
Query Segmentation Revisited

Matthias Hagen Martin Potthast Benno Stein Christof Bräutigam

Bauhaus-Universität Weimar
99421 Weimar, Germany

<first name>.<last name>@uni-weimar.de

ABSTRACT

We address the problem of query segmentation: given a keyword
query, the task is to group the keywords into phrases, if possible.
Previous approaches to the problem achieve reasonable segmen-
tation performance but are tested only against a small corpus of
manually segmented queries. In addition, many of the previous ap-
proaches are fairly intricate as they use expensive features and are
difficult to be reimplemented.

The main contribution of this paper is a new method for query
segmentation that is easy to implement, fast, and that comes with a
segmentation accuracy comparable to current state-of-the-art tech-
niques. Our method uses only raw web n-gram frequencies and
Wikipedia titles that are stored in a hash table. At the same time,
we introduce a new evaluation corpus for query segmentation. With
about 50 000 human-annotated queries, it is two orders of magni-
tude larger than the corpus being used up to now.

Categories and Subject Descriptors: H.3.3 [Information Search
and Retrieval]: Query Formulation

General Terms: Algorithms, Experimentation

Keywords: Query Segmentation, Web N-Grams, Corpus

1. INTRODUCTION
The interfaces of today’s web search engines are mainly

keyword-based: users submit queries by typing several keywords
into a search box. It is not uncommon that queries comprise phrases
and compound concepts; take times square as an example. A
search engine that is informed about such phrases and concepts by
means of proper quotation may consider them as indivisible units
and use them to improve retrieval precision (e.g., by excluding
documents that do not contain words in the exact same order of
the phrases). Other server-side algorithms that benefit from quo-
tation include query reformulation, which could be done on the
level of phrases instead of keywords, and query disambiguation,
which has to cope with tricky queries like times square dance.
Without quotes, it is difficult to know whether the user intends to
find newspaper articles on square dance in the London times

or rather dance events at times square, New York (locating the
user might also help, of course). Skilled web searchers surround
phrases with quotes, but experience shows that most searchers are
not even aware of this option. Hence, search engines should apply
pre-retrieval algorithms that automatically divide queries into seg-
ments in order to second-guess the user’s intended phrases and to
improve the overall user satisfaction.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2011, March 28–April 1, 2011, Hyderabad, India.
ACM 978-1-4503-0632-4/11/03.

Our algorithmic contribution in this respect is a new and robust
approach to the task of query segmentation; it relies only on web n-
gram frequencies and Wikipedia titles. We achieve a segmentation
accuracy that is competitive with state-of-the-art algorithms on a
widely used evaluation corpus comprising 500 queries. As part
of our evaluation, we compare our algorithm with 7 others pro-
posed in the literature. Our second contribution relates to evalua-
tion and verifiability; it is a new query segmentation corpus com-
prising 50 000 queries. Our corpus subsumes the current standard
corpus and, unlike that, meets the requirements of representative
large-scale evaluations, which was one of the main points raised at
the SIGIR 2010 workshop on “Query Representation and Under-
standing” [8].

The new query segmentation approach is inspired by our recently
proposed naïve query segmentation technique, which involves an
exponential weighting function to normalize web n-gram frequen-
cies [10]. However, until now, no convincing explanation could be
given as to why naïve query segmentation performs so well. We
will close this gap by giving an empirical justification for the naïve
query segmentation approach.

The paper is organized as follows. Section 2 reviews existing ap-
proaches to query segmentation. Section 3 presents the basic nota-
tion of our query segmentation framework. In Section 4, we revisit
the naïve query segmentation method and provide justification for
its remarkable performance. Based on these findings, we develop
our new method in Section 5. An empirical evaluation in Section 6
shows the segmentation accuracy of our method on the current gold
standard, compared to existing approaches. Furthermore, this sec-
tion introduces our new corpus, outlines its construction with the
aid of crowdsourcing, and compares the segmentations obtained
this way to expert segmentations. Section 7 provides an outlook on
future work.

2. RELATED WORK
Recent research suggests a variety of approaches to query

segmentation. For instance, Guo et al. [9], Yu and Shi [20],
and Kiseleva et al. [13] use methods based on conditional ran-
dom fields (CRF). Guo et al. evaluate their method on a propri-
etary query corpus and tackle the broader problem of query re-
finement that simultaneously involves spelling correction, stem-
ming, etc. Hence, their approach is not entirely comparable to
ours, since we assume that spelling correction is done prior to query
segmentation—an assumption shared by most other query segmen-
tation studies. The other CRF-based methods by Yu and Shi and
Kiseleva et al. also address query segmentation in settings different
from ours. Yu and Shi focus on query segmentation in the context
of text stored in relational databases and use database-specific fea-

tures not available in web search. Kiseleva et al. focus on product
queries and aim to improve the user experience in web shops.

One of the earliest approaches to web query segmentation is by
Risvik et al. [18]. They segment queries by computing so-called
connexity scores that measure mutual information within a seg-
ment and the segment’s frequency in a query log. Jones et al. [12]
also use a mutual information-based scoring that finds segments in
which adjacent terms have high mutual information. However, nei-
ther Risvik et al. nor Jones et al. evaluate the segmentation accuracy
of their approaches. In a very recent paper, Huang et al. [11] also
use segment-based pointwise mutual information scores obtained
from web-scale language models. For a given query, they derive a
tree of concepts. The tree is then used to obtain a final query seg-
mentation. However, Huang et al. evaluate their method only on a
proprietary query corpus without comparing it to other approaches.
Note that in many query segmentation studies, mutual information-
based segmentation is used as a baseline, often performing worse
than the more involved methods.

One of the earliest methods that does not rely only on mutual
information is the supervised learning approach by Bergsma and
Wang [4]. Bergsma andWang incorporate many features: statistical
ones like phrase frequencies on the web and in query logs, as well
as dependency features that focus on noun phrases. They also estab-
lished the first gold standard corpus of 500 queries, each segmented
by three human annotators. Subsequent work [7, 10, 19, 21] has
adopted this gold standard; as do we in our evaluations in order to
ensure comparability. However, Bergsma and Wang’s evaluation
corpus is rather small, so that we decided to introduce a larger and
more representative corpus in this paper. As for the query segmen-
tation, Bergsma and Wang’s supervised learning method is trained
on queries segmented by a single annotator who also segmented the
gold standard. This leaves some doubts with regard to the generaliz-
ability of the results. Nevertheless, Bendersky et al. [2] successfully
use a version of Bergsma and Wang’s method as a sub-procedure
in their two-stage query segmentation approach.

Instead of the supervised approach that requires training data,
Tan and Peng [19] and Zhang et al. [21] suggest unsupervised meth-
ods. Zhang et al. compute segment scores from the eigenvalues of a
correlation matrix corresponding to a given query. Tan and Peng’s
method, like ours, uses only n-gram frequencies from a large web
corpus as well as Wikipedia. However, Tan and Peng state that raw
n-gram frequencies by themselves cannot be used for query seg-
mentation. Hence, they build a language model from the n-gram
frequencies via expectation maximization. In a second step, Tan
and Peng boost a segment’s score derived from the language model
if it is used prominently in Wikipedia. Our new method uses the
same features as Tan and Peng’s but with superior segmentation
accuracy (cf. Section 6). Moreover, in contrast to Tan and Peng’s
assumption, our naïve query segmentation method [10] shows how
raw n-gram frequencies can be exploited for query segmentation
using an appropriate normalization scheme (cf. Section 4).

The recent snippet-based method by Brenes et al. [7] is quite
simple compared to the aforementioned approaches: it segments a
web query based on search result snippets for the unquoted query.
Brenes et al. evaluate different techniques of deriving a query’s seg-
mentation from snippets. Obviously, the main concern with this ap-
proach is runtime. Most queries have to pass the retrieval pipeline
twice before any results are returned: once unquoted to obtain the
snippets used for segmentation, and once more with quoted seg-
ments.

Bendersky et al. [3] also suggest a method that involves time
consuming double-retrieval for most queries. Their method intro-
duces a segment break between two words whenever a likelihood

ratio is below some threshold. The likelihood ratios are obtained
by combining web n-gram probabilities and pseudo-relevance feed-
back (PRF) from the top-ranked documents for the original, un-
quoted query. The PRF-based method achieves a promising experi-
mental segmentation accuracy. However, Bendersky et al.’s evalua-
tion corpus is rather small (250 queries) and it has been segmented
by only one annotator, which suggests a bias in the segmentations.
Furthermore, the PRF-based segmentation method is not compared
with state-of-the-art approaches.

Our previous naïve query segmentation method [10] scores all
segmentations for a given query by the weighted sum of the fre-
quencies of contained n-grams, obtained from a large web corpus.
Besides raw n-gram frequencies, no other features are involved,
making this approach easy to explain and straightforward to imple-
ment. The weighting scheme of naïve query segmentation aims at
“normalizing” the n-gram frequencies, so that a longer segment like
“toronto blue jays” has a chance to achieve a higher score
than shorter sub-segments like “blue jays”. With respect to seg-
mentation accuracy, the naïve approach performs comparable to the
other approaches that use, supposedly, more sophisticated features.
Furthermore, storing the n-gram frequencies in a large hash table
ensures very competitive runtime on machines with sufficient main
memory. However, until now, no explanation was given why the
exponential normalization scheme of naïve query segmentation per-
forms so well. We close this gap with an in-depth analysis in Sec-
tion 4. Our new segmentation method, which is inspired by naïve
query segmentation, is introduced in Section 5.

Finally, the very recent approach of Mishra et al. [14] compares
with our method in terms of feature complexity. But instead of web
n-gram frequencies, Mishra et al. exploit n-gram frequencies from
a large query log. Their experiments on a proprietary query corpus
indicate an improvement over a mutual information baseline.

3. BASIC NOTATION AND FRAMEWORK
We regard a query q as a sequence (w1, w2, . . . , wk) of k key-

words. A valid segmentation S for q is a sequence of disjunct seg-
ments s, each a contiguous subsequence of q, whose concatenation
equals q. There are 2k−1 valid segmentations for q, and (k2−k)/2
potential segments that contain at least two keywords from q.

The basic and major assumption of both our approaches is that
phrases contained in queries must exist on the web—otherwise they
cannot increase web retrieval performance. The idea then is to use
the web as a corpus of potential query phrases. The largest ob-
tainable collection of web phrases, besides the web itself, is the
Google n-gram corpus [5]. It contains n-grams of length 1 to 5
from the 2006 Google index along with their occurrence frequen-
cies. For n-grams up to n = 5, the frequencies can be directly
retrieved from the corpus; for longer n-grams up to n = 9, estima-
tions can be made analogously to the set-based method described
in [19]. For example, the frequency of a 6-gram ABCDEF can
be lower-bounded by the sum of the Google n-gram frequencies of
the 5-grams ABCDE and BCDEF decreased by the frequency
of their 4-gram intersection BCDE. In practice, however, despite
being set-theoretically sound, these lower bound estimations often
evaluate to 0 (i.e., the intersection’s frequency is too large to be
compensated by the frequencies of the two longer n-grams). That
said, there are still situations where non-zero lower bound estima-
tions appear and do some good.

Using the web occurrence frequencies from the Google n-gram
corpus and the set-based estimations, both our approaches score
and rank all possible segmentations of a query. They apply normal-
ization schemes to the raw n-gram frequencies and allow long seg-
ments to achieve scores comparable to their shorter sub-segments.

For example, blue jayswill always have a larger raw n-gram fre-
quency than toronto blue jays, but the latter should be the pre-
ferred segmentation in queries concerning the baseball team. In the
following section, we detail our previously proposed naïve normal-
ization scheme and provide some additional insights, as it inspired
our new technique explained in the section thereafter.

4. NAIVE NORMALIZATION
Naïve query segmentation derives a score for each valid segmen-

tation S of a query q as follows. The n-gram frequencies freq(s) of
all potential segments s with at least two words are retrieved. Hav-
ing the frequencies at hand, all valid segmentations are enumerated
systematically, and each segmentation S is scored according to the
following function:

score(S) =















∑

s∈S,|s|≥2

|s||s| · freq(s) if freq(s) > 0 for
all s ∈ S, |s| ≥ 2

−1 else.

The weight factor |s||s| is a means of normalizing freq(s) to com-
pensate the power law distribution of web n-gram frequencies.
This way, a long segment s has a chance of being selected com-
pared to its shorter sub-segments. For a query q, the valid seg-
mentations are ranked according to their scores and naïve query
segmentation selects the one that maximizes score(S).

For example, toronto blue jays has an n-gram frequency
of 0.8 million, which is smaller than the 1.4 million of blue jays;
simply using the length |s| of s as weight factor does not help to
prefer the three-word segment (score of 2.4 million vs. 2.8 mil-
lion). However, using the exponential weight factor |s||s|, the
segmentation “toronto” “blue jays” with a score of 5.2 mil-
lion is discarded in favor of “toronto blue jays” with a score
of 21.6 million.

In the above scoring function, the n-gram frequencies of sin-
gle word segments are implicitly set to 0, so that the “null”-
segmentation that consists of only single word segments—the un-
quoted query—gets a score of 0 (the else-case does not match and
the summation is empty). A segmentation gets a negative score
of -1 if it contains a segment (with at least two words) that does not
exist in the web n-gram corpus. Such a segmentation cannot help
to improve retrieval performance since the non-existent segment is
not found on the web at all, that is, in our n-gram representation of
the web. Scoring such segmentations with a negative score ensures
that the unquoted query will be chosen as a fallback solution in case
all other valid segmentations contain non-existent phrases.

Compared to other methods, naïve query segmentation is the
most basic approach as it uses only raw n-gram frequencies instead
of many different features. Also, the scoring can be explained (and
implemented) within a few lines (of code). What remains to be il-
lustrated is why the exponential scoring performs well in practice,
and not only for the toronto blue jays.

Empirical Justification

In what follows, we provide empirical evidence that the exponen-
tial scoring scheme of naïve query segmentation reproduces hu-
man preferences of segmenting queries. This sheds light on why
the method achieves its convincing segmentation accuracy reported
in [10] and in Section 6. To this end, we take a closer look at the
underlying data used in the naïve scoring scheme and its evalua-
tion: the Google n-gram frequencies and the 500 human-annotated
queries from the Bergsma-Wang-Corpus.

The Google n-grams contain occurrence frequencies for all 1- to

Table 1: Overview of the Google n-gram corpus.

Corpus Subset Entries Frequency
Average Median

2-grams
all 314 843 401 2 893 110
clean 215 114 473 2 065 108

3-grams
all 977 069 902 756 91
clean 492 457 391 608 89

4-grams
all 1 313 818 354 387 80
clean 556 957 524 330 79

5-grams
all 1 176 470 663 300 75
clean 421 372 587 258 73

5-grams that appeared more than 40 times within Google’s web in-
dex as of 2006. Some overview figures are given in Table 1, includ-
ing the average and the median frequencies for all 2- to 5-grams in
the original corpus (rows “all”) as well as for a cleaned version of
the corpus (rows “cleaned”) from which all n-grams were removed
that contain non-alphanumeric characters. We assume that n-grams
occurring in real web queries are better represented by the cleaned
corpus. Note that the resulting average and median frequencies are
quite low and thus illustrate the presumed long tail distribution of
n-gram frequencies (most n-grams have very low frequencies).

To experimentally justify the naïve scoring scheme, we address
the situation of a query in which a longer n-gram should be favored
over its shorter prefixes in a segmentation. The longer n-gram then
has to obtain at least a better score than any of its shorter prefixes.
To simulate this scenario, we sampled 10 million 5-grams from the
cleaned 5-gram corpus. The sampling probability is chosen propor-
tional to a 5-gram’s frequency, so that frequent 5-grams are favored.
We speculate that favoring frequent 5-grams for our sample makes
it more representative of the most frequent segments observed in
web queries. From all of the sampled 5-grams, we computed all
prefixes of length 2 to 4 words.

Table 2 gives an overview of the 5-gram sample and their pre-
fixes. Observe that the median frequencies of the sample show an
exponential decrease. In order to further compare this decrease to
the |s||s|-scoring, we also provide the ratio of the median 2-gram
frequency to the median s-gram frequency. Note that the last two
columns of Table 2 show that the |s||s|-compensation for the expo-
nential frequency decrease is always in the correct order of magni-
tude. In this connection, one may wonder why not to choose the
observed ratios instead of |s||s|-scoring (i.e., multiplying freq(s)
of a 3-gram s with 44 instead of 33, etc.). To test this possibil-
ity, we performed a pilot study where the ratios from Table 2 were
used as “hard-wired” weight factors instead of |s||s|: the achieved
segmentation accuracy dropped significantly.

An explanation for this behavior can be found when comparing
the expected median score-values of our sample with the query
corpus used in our evaluation. As can be seen in Table 3, the hard-
wired scoring achieves a very good normalization of the expected
score-values for the 5-gram sample in the sense that all median

Table 2: Overview of the sample of 10 million 5-grams.

|s|-grams Unique Entries Median Freq.
2-gram Freq.

|s|-gram Freq.
|s||s|

2-grams 2 409 063 3 461 030 1 4
3-grams 5 431 544 78 733 44 27
4-grams 8 073 863 7 356 470 256
5-grams 10 000 000 1 129 3 065 3 125

Table 3: Expected score in the 5-gram sampling experiment.

|s|-grams Median Freq. |s||s|-scoring "Hard-Wired"

2-grams 3 461 030 13 844 120 3 461 030
3-grams 78 733 2 125 791 3 464 252
4-grams 7 356 1 883 136 3 457 320
5-grams 1 129 3 528 125 3 460 385

score -values have the same order of magnitude. Then again, |s||s|-
scoring clearly favors 2-grams, whereas the longer n-grams are
somehow “on par.” To compare this with human segments, Table 4
compiles the segment length distribution of the 3 human annotators
of the widely used Bergsma-Wang-Corpus. The last row of Table 4
contains only queries that all three annotators segmented in the
same way. Observe that human annotators also favor 2-grams in-
stead of longer segments, especially in queries they all agree upon.
The |s||s|-scoring of naïve query segmentation reproduces this be-
havior on our 5-gram sample, which explains, to some extent, why
it performs so well.

5. WIKIPEDIA-BASEDNORMALIZATION
In pilot experiments, the aforementioned approach that normal-

izes each segment’s frequency with hard-wired average frequencies
shows an inferior segmentation accuracy compared to the naïve ap-
proach that involves a similar, but less even normalization scheme.
Nevertheless, normalizing segment frequencies with average fre-
quencies also bears the idea of normalizing in a segment-specific
way, which is exactly what we propose for our Wikipedia-based
normalization scheme. As the name suggests, the new scheme in-
volves another feature besides the raw n-gram frequencies, namely
a Wikipedia title dictionary obtained from a dump of the English
Wikipedia. Note that Tan and Peng [19] also use this feature in their
segmentation approach. Our dictionary contains all Wikipedia ti-
tles and their respective disambiguations, but no words from within
articles. Otherwise, the new normalization scheme is just as simple
as naïve query segmentation.

Again, the n-gram frequencies freq(s) of all potential seg-
ments s with at least two words are retrieved. For each segment s,
we check whether it is present in the Wikipedia title dictionary.
If a segment s appears in the dictionary, we replace its frequency
freq(s) with the maximal Google n-gram frequency found among
the sub-2-grams s′ ⊑ s, given by the following weight :

weight(s) =











|s|+ max
s′⊑s

|s′|=2

freq(s′) if s is a title
in Wikipedia

freq(s) else.

This way, the normalization of a segment’s frequency is segment-
specific in that every potential segment’s freq-value is treated sepa-
rately rather than normalizing it with some average frequency. Note
that |s| is added to the maximal sub-2-gram frequency for conve-
nience reasons, as it allows us to prove that queries that consist of
a single Wikipedia title will not be split into sub-segments (shown
in the next subsection). Otherwise, adding |s| had no measurable
effect in our experiments so that a query segmentation system “in
the field” could safely omit it. Based on the Wikipedia-normalized
weight -values, a valid segmentation S of q is scored as follows:

score(S) =















∑

s∈S,|s|≥2

|s| · weight(s) if weight(s) > 0 for
all s ∈ S, |s| ≥ 2

−1 else.

Table 4: Segment length distribution of human segmentations.

Annotator Segment Length

1 2 3 4 5 6

A 451 699 74 14 2
B 351 541 113 77 9 2
C 426 588 100 51 5 1
Agree 151 318 31 9

Again, for a query q we choose from all valid segmentations the
one that maximizes score(S).

Remarks. The Wikipedia-based normalization can run into the
special case of encountering a “new” concept s that is present in
the Wikipedia titles but not in the n-gram corpus (e.g., some new
product or brand that did not exist back in 2006). If all the sub-2-
grams of s exist in the n-gram corpus, this is not an issue since the
Wikipedia-based normalization still works. Otherwise, however,
weight(s) would be set to |s|, although s is prominently placed
in Wikipedia, which is not satisfactory. We tackle this problem by
a simple additional rule for the more general case that only some
sub-2-grams of s are not yet present in the n-gram corpus. In that
case, we set the missing 2-gram frequencies to the median 2-gram
frequency 3 461 030 from Table 2. As before, weight(s) is set to
the maximal frequency found among the sub-2-grams of s (which
now also could be the median frequency).

Another straightforward method of circumventing the situation
of Wikipedia titles being out of sync with the n-gram corpus ex-
ists at search engine site: to update the n-gram corpus in real-
time. However, we expect that n-gram updates will still be done
less frequently compared to updating the Wikipedia title dictionary.
And since Wikipedia typically contains pages on new, important
“concepts” very quickly, setting the corresponding frequencies to
the median 2-gram frequency is a reasonable heuristic. As a side
note, in our experiments we did not find any “new” Wikipedia con-
cepts since the Bergsma-Wang-Corpus and our newly developed
corpus both stem from the AOL query log of 2006 and thus fit the
2006 Google n-gram corpus very well.

Theoretical Justification

The idea of Wikipedia-based normalization is similar to that of
the naïve normalization approach, namely giving longer segments
a chance to be preferred over their shorter sub-segments. But
now this goal is achieved by using Wikipedia for segment re-
weighting instead of some “magic,” yet powerful exponential factor.
Wikipedia serves as a database of named entities that helps to iden-
tify widely known concepts like names, places, etc. These concepts
should not be split up when segmenting a query. In case a concept
forms an entire query, it can be proven that the above scoring func-
tion will prefer the complete concept as one segment.

LEMMA 1. Let s be a sequence of words found in the Wikipedia

title dictionary. Whenever a query q = s shall be segmented, the

Wikipedia-based scoring function will choose the segmentation “s”

without any intermediate quotes.

PROOF. Let ℓ be the largest freq-value of any sub-2-gram of s.
As s is found in the Wikipedia title dictionary, the segmentation “s”
gets score(“s”) = |s| · (ℓ+ |s|).

Now consider any other valid segmentation S of s that splits s
into sub-segments and gets a positive score by the Wikipedia-based
normalization scoring function. The worst possible case is that all

sub-segments of s also are Wikipedia concepts and that all sub-2-
grams of s have ℓ as their freq-value. Note that this worst case
scenario is independent of whether all sub-2-grams of s are in the
n-gram corpus or not: it does not matter whether ℓ is the median
2-gram frequency from Table 2 or not.

As S divides s into non-overlapping sub-segments (otherwise
S is not valid), the sum of the length-weight-factors of the sub-
segments cannot be larger than |s|. Furthermore, the Wikipedia-
normalized weight -value of each of these sub-segments cannot be
larger than ℓ + |s| − 1 as the largest sub-segments of s have size
|s| − 1. Basic calculus yields score(S) ≤ |s| · (ℓ + |s| − 1) <
score(“s”) so that the segmentation “s” will be chosen.

As an example, consider the query new york yankees—to
stay within the baseball domain. The relevant Google n-gram fre-
quencies for this query are 165.4 million for new york and 1.8 mil-
lion for new york yankees. Note that naïve query segmentation
would segment the concept as “new york” “yankees” since this
achieves a naïve scoring of 661.6 million compared to 28.8 mil-
lion for “new york yankees”. However, with Wikipedia-based
normalization, new york yankees gets as weight the 165.4 mil-
lion frequency of new york. Hence, “new york yankees”

achieves a 496.2 million score compared to 330.8 million for “new
york” “yankees”.

The only way that a Wikipedia title s is split up during segmenta-
tion is when a word in front of or after s co-occurs very often with a
prefix or a suffix of s, respectively. This is especially the case when
two Wikipedia titles are interleaved within a query. However, s is
only split up if the score-value of some segmentation containing a
sub-segmented s is superior to all the segmentations containing s
as a complete segment. This is in line with the rationale that larger
score -values represent better segmentations.

An example where a Wikipedia concept is split, is the query
times square dance from the introduction. The relevant seg-
ments that appear in the Wikipedia title dictionary are times

square and square dance. Based on the Google n-gram cor-
pus, times square gets a 1.3 million weight and square dance

achieves 0.2 million. Our new segmentation scoring function then
assigns “times square” dance the highest score of 2.6 million
while times “square dance” achieves 0.4 million—either way,
a Wikipedia concept is split.

It is of course debatable whether the segmentation “times

square” dance is a good choice, since we have pointed out the
ambiguity of this query. This situation can only be resolved by in-
corporating information about the user’s context. For instance, if
the user stems from London, reads “The Times” and is a passionate
folk-dancer, this might make the alternative segmentation times

“square dance” preferable. If no such context information is at
hand, there is still another option: the search engine may present
the results of the best scoring segmentation to the user and offer the
second best segmentation in a “Did you mean” manner.

Besides the theoretical justification for Wikipedia-based normal-
ization, our new method also shows very promising experimental
performance with respect to segmentation accuracy against human-
segmented queries, as the next section shows.

6. EVALUATION
In this section we report on an evaluation that compares our ap-

proach to 7 others proposed in the literature. We employ the per-
formance measures proposed in [4, 19], use a mutual information-
based method as baseline, and evaluate against three corpora: the
Bergsma-Wang-Corpus 2007 [4], an enriched version of that cor-
pus, and a new, significantly larger corpus, called Webis Query

Segmentation Corpus 2010. The latter two have been compiled
with the aid of Amazon’s Mechanical Turk. In this connection, we
also compare segmentations from experts with those of laymen.

6.1 Performance Measures
Performance evaluation of query segmentation algorithms is

twofold. On the one hand, runtime is crucial since query segmenta-
tion must be done on-the-fly during retrieval. Runtime is typically
given as throughput (i.e., the number of queries segmentable per
second). On the other hand, the computed segmentations should be
as accurate as possible. There are three levels on which to measure
segmentation accuracy in a supervised manner:

Query Level. As a whole, a computed segmentation of a query is
correct iff it contains exactly the same segments as a human
reference segmentation. Hence, the query accuracy is the
ratio of correctly segmented queries for a given corpus.

Segment Level. Let S denote the set of segments of a human seg-
mentation of a query q. A computed segmentation S′ can
be evaluated using the well-known measures precision and
recall. The segment precision and the segment recall are de-
fined as follows:

seg prec =
|S ∩ S′|

|S′|
and seg rec =

|S ∩ S′|

|S|
.

Both values can be combined into a single score by comput-
ing their harmonic mean, called segment F -Measure :

seg F =
2 · seg prec · seg rec

seg prec+ seg rec
.

Break Level. Note that query segmentation can also be considered
a classification task in which, between each pair of consec-
utive words in a query, a decision has to be made whether
or not to insert a segment break. This allows for k − 1 po-
tential break positions in a query with k keywords. For every
break position, the computed segmentation may either decide
correctly or not, according to a reference segmentation. The
break accuracy measures the ratio of correct decisions.

As an illustration, consider the query san jose yellow

pages with the reference segmentation “san jose” “yellow

pages”. A computed segmentation “san jose” yellow pages

is not correct on the query level, resulting in a query accuracy of 0.
However, on the segment-level, “san jose” yellow pages at
least contains one of the two reference segments, yielding a seg-
ment recall of 0.5. But since the other two single word segments are
not part of the reference segmentation, precision is 0.333, yielding
a segment F -Measure of 0.4. The break accuracy is 0.666, since
“san jose” yellow pages decides incorrectly only for one of
the three break positions.

6.2 Baseline: Mutual Information
As a baseline for query segmentation we adopt the mutual in-

formation method (MI) used throughout the literature. A segmen-
tation S for a query q is obtained by first computing the point-
wise mutual information score for each pair of consecutive words
(wi, wi+1) in q, with i ∈ {1, . . . , k − 1} and k = |q|:

PMI(wi, wi+1) = log
p(wi, wi+1)

p(wi) · p(wi+1)
,

where p(wi, wi+1) is the joint probability of occurrence of the 2-
gram (wi, wi+1), and p(wi) and p(wi+1) are the individual oc-
currence probabilities of the two words wi and wi+1 in a large text

corpus. Second, segment breaks are introduced into q whenever the
pointwise-mutual information score of two consecutive words is be-
low a pre-specified threshold τ (i.e., when PMI(wi, wi+1) < τ).

In our evaluation, the probabilities for all words and 2-grams
have been computed using the Microsoft Web N-Gram Ser-
vices [11].1 More specifically, the language model of web page bod-
ies from April 2010 has been used. We recorded all probabilities
for all our corpora in order to ensure replicability. For our experi-
ments, we chose τ = 0.894775, which maximizes the MI method’s
break accuracy on the Bergsma-Wang-Corpus.

6.3 The Bergsma-Wang-Corpus 2007
The Bergsma-Wang-Corpus 2007 (BWC07) consists of

500 queries which have been sampled from the AOL query log
dataset [15]. The sample was chosen at random from the subset of
queries that satisfy all of the following constraints:

• A query consists of only determiners, adjectives, and nouns.

• A query is of length 4 words or greater.

• A query has been successful (i.e., the searcher clicked on one
of the search result URLs returned by the search engine).

The query sample was then segmented independently by 3 annota-
tors, who were instructed to first guess the user intent based on the
query in question and the URL the user clicked on, and then seg-
ment the query so that it describes the user intent more clearly. In
44% of the queries, all three annotators agree on the segmentation,
and in about 60% of the cases, at least two annotators agree.

Remarks. The BWC07 has a number of shortcomings that render
evaluations based on this corpus less insightful: the query sample
of the corpus is not representative, partly because of the small num-
ber of queries and partly because of the sampling constraints. The
first constraint particularly raises concerns since its motivation was
to accommodate design limitations of the proposed query segmen-
tation algorithm; the authors stated that “as our approach was de-

signed particularly for noun phrase queries, we selected for our

final experiments those AOL queries containing only determiners,

adjectives, and nouns” [4]. The other two constraints are less of a
problem, though one might argue that queries of length 3 should
also be subject to segmentation, and that, unless query quality pre-
dictors are employed, a search engine cannot know in advance
whether a query will be successful. Moreover, the number of anno-
tators per query appears to be too small, since in 40% of the queries
no agreement was achieved. This, in turn, tells something about the
difficulties involved in manually segmenting queries. On a minor
point, there are also a few duplicate queries, spelling errors, and
character encoding errors. The former have a measurable effect
on segmentation performance, given the small size of the corpus,
while the latter two should not be part of a query segmentation cor-
pus. Query segmentation does not necessarily involve spell check-
ing and encoding normalization, as those may be treated as separate
problems. However, none of the above should be held to the disad-
vantage of the corpus’ authors, since their intentions were first and
foremost to evaluate their approach on a new retrieval problem, and
not to construct a reference corpus, which it became nonetheless.

Experiments. Several previous studies evaluate their query segmen-
tation algorithms against the BWC07 [4, 7, 10, 19, 21]. We fol-
low suit, to ensure comparability to the existing evaluations. How-
ever, prior to that we chose to correct the aforementioned minor
errors and remove duplicate queries; the cleaned corpus consists of

1
http://web-ngram.research.microsoft.com

496 queries. Since the existing studies do not mention any prob-
lems with the BWC07, we have asked the respective authors for
their segmentations of the BWC07 queries. Our rationale for this is
to avoid an error-prone reimplementation of the existing algorithms,
since their output for the BWC07 suffices to recalculate the accu-
racy measures. The authors of [4, 7, 10, 21] kindly provided their
segmentations. Based on this data, we have been able to verify the
performances reported in the respective papers, and to reevaluate
the algorithms on the cleaned version of the BWC07.

Table 5 shows the results of our evaluation. Each column
presents the segmentation accuracies of one algorithm. The right-
most two columns show the results of our naïve query segmen-
tation [10] and those of Wikipedia-based normalization (entitled
“Our”). The table should be read as follows: three annotators—
A, B, and C—independently segmented the 496 queries of the
BWC07 and they agreed on 218 of them, denoted in the rows
“Agree.” The rows “Best of A, B, C” evaluate simultaneously
against the up to three reference segmentations of A, B, and C,
choosing the one that maximizes a computed segmentation’s break
accuracy. Note that, compared to the originally published results,
the segmentation accuracies of most systems slightly decrease in
our evaluation. This is due to the removed duplicate queries that
are rather “easy” and correctly segmented by most systems. An ex-
ception is the remarkable performance of our mutual information
baseline with a significant improvement over previously reported
values. One reason for this is that the language model underlying
the Microsoft Web N-Gram Services presumably gives more accu-
rate probabilities than those used in previous evaluations. However,
more importantly, note that the baseline’s threshold τ was derived
on the BWC07 queries with the explicit aim of maximizing the
resulting break accuracy. Hence, it represents the best case MI ap-
proach for the BWC07 queries and yields a challenging baseline.

Since we did not get the query segmentations of Tan and
Peng [19], we include the values they published in their paper (in
gray). However, the removal of duplicate queries would most likely
decrease their performances as well. Since some previous studies
did not report all measures for their algorithms, Table 5 contrasts
for the first time all performance values for all algorithms that have
been evaluated against the BWC07.

The results show that the approach of Bergsma and Wang [4]
performs very well on annotator A as well as on the queries all an-
notators agree upon. However, this is not too surprising as their ap-
proach is based on a supervised learning algorithm that was explic-
itly trained on queries segmented by annotator A (the agreement
queries also match A’s segmentation). This leaves some doubts
with regard to generalizability, underpinned by the inferior perfor-
mance of their approach on the two other annotators B and C. As
for the other systems, note that our naïve query segmentation al-
gorithm with n-gram frequency normalization achieves a perfor-
mance comparable to the best approaches of Brenes et al. [7], Tan
and Peng [19], and Zhang et al. [21]. Furthermore, note that
our new Wikipedia-based frequency normalization method (col-
umn “Our”) outperforms all other methods with respect to query
accuracy and segment precision, while being on par with the best
performing system at break accuracy.

An Excursus on Retrieval Performance. Besides measuring seg-
mentation accuracy against a gold standard, one might as well
evaluate whether a segmentation actually yields an improvement
in retrieval performance (i.e., retrieving results that are more rel-
evant). To this end, we have conducted the following small-
scale experiment in order to compare the two best performing
approaches: Bergsma and Wang’s supervised learning approach
and our Wikipedia-based normalization scheme. For each of the

Table 5: Segmentation performance on the Bergsma-Wang-Corpus.

Annotator Performance Algorithm

Measure MI [4] [19] [21] [7] [14] [10] Our

query 0.407 0.609 0.526 0.518 0.540 0.256 0.597 0.573
seg prec 0.553 0.748 0.657 0.673 0.686 0.476 0.724 0.706

A seg rec 0.550 0.761 0.657 0.650 0.672 0.566 0.711 0.679
seg F 0.552 0.754 0.657 0.662 0.679 0.517 0.717 0.692
break 0.761 0.859 0.810 0.810 0.797 0.681 0.826 0.826

query 0.413 0.435 0.494 0.504 0.383 0.185 0.438 0.508
seg prec 0.539 0.582 0.623 0.637 0.527 0.369 0.577 0.635

B seg rec 0.548 0.608 0.640 0.632 0.533 0.450 0.583 0.627
seg F 0.544 0.595 0.631 0.634 0.530 0.405 0.580 0.631
break 0.765 0.783 0.802 0.811 0.741 0.598 0.777 0.803

query 0.417 0.472 0.494 0.484 0.440 0.224 0.480 0.508

seg prec 0.553 0.623 0.634 0.627 0.580 0.424 0.618 0.647

C seg rec 0.557 0.643 0.642 0.613 0.575 0.515 0.613 0.632
seg F 0.555 0.633 0.638 0.620 0.578 0.465 0.615 0.640
break 0.764 0.795 0.796 0.789 0.755 0.639 0.777 0.795

query 0.555 0.688 0.671 0.670 0.615 0.294 0.693 0.720

seg prec 0.659 0.792 0.767 0.787 0.731 0.491 0.789 0.810

Agree seg rec 0.665 0.809 0.782 0.770 0.724 0.575 0.782 0.792
seg F 0.662 0.800 0.774 0.779 0.727 0.529 0.785 0.801
break 0.828 0.889 0.871 0.883 0.834 0.699 0.868 0.885

Best of
A, B, C

query 0.583 0.702 0.692 0.694 0.629 0.333 0.700 0.726

seg prec 0.693 0.812 0.797 0.811 0.749 0.558 0.800 0.820

seg rec 0.697 0.831 0.807 0.801 0.746 0.649 0.796 0.807
seg F 0.695 0.821 0.801 0.806 0.747 0.600 0.798 0.814
break 0.849 0.899 0.891 0.897 0.857 0.736 0.889 0.900

218 BWC07 queries on which all three annotators agree, we sub-
mit 4 queries to the Bing web search engine, each time storing the
top-50 results: the BWC07 segmentation, the computed segmen-
tation of Bergsma and Wang, the computed segmentation of our
method, and the unquoted query. We consider the top-50 results
obtained by the BWC07 segmentation as “relevant,” which allows
us to measure the recall of the other three queries. Averaged over
all 218 trials, the supervised learning approach achieves a recall of
0.844, our Wikipedia-based normalization achieves 0.836, whereas
unquoted queries achieve a recall of 0.553.

Presuming the user intent is well captured in the segmented
queries of the BWC07 (three annotators agreed upon these segmen-
tations), the results might be interpreted as indication that segment-
ing queries improves recall over unquoted queries. Comparing the
average recall of Bergsma and Wang’s segmentations and ours also
suggests that their worse query accuracy is compensated by their
better segment recall so that the overall retrieval recall is compara-
ble. It is important to note that this small experiment is not meant to
replace a large-scale TREC-style evaluation, since the results have
not been judged manually as relevant or not. Instead, this experi-
ment is meant as a first step toward not just comparing segmenta-
tion accuracy. After all, the ultimate goal of query segmentation is
to improve retrieval performance.

6.4 The Enriched Bergsma-Wang-Corpus
One point of criticism about the BWC07 is the non-agreement

of its annotators in 40% of the queries. We attribute this problem
to the fact that not all queries are the same, and that some are more
ambiguous than others. A search engine user who poses an am-
biguous query would know of course, if being asked, how exactly
to segment it, whereas an annotator has a hard time figuring this out
afterwards. One way to overcome this problem is to collect more
opinions from different annotators and then make a majority deci-
sion. Recently, paid crowdsourcing has become an important tool

in this respect, enabling researchers to significantly scale up corpus
construction.2

Amazon’s Mechanical Turk (AMT) is a well-known platform for
paid crowdsourcing. In short, it acts as a broker between workers
and so-called requesters, who offer tasks and payment for their suc-
cessful completion. Since real money is involved and since workers
remain anonymous, the platform attracts scammers who try to get
paid without actually working. Hence, requesters get the opportu-
nity to check submitted results and reject those that are unsatisfac-
tory. Besides saving money, rigorous result checking is of course a
necessity to ensure quality.

In an effort to enrich the BWC07, we have offered a query seg-
mentation task on AMT in which we asked to segment the queries
of this corpus. At least 10 valid segmentations per query were col-
lected, while manually checking and rejecting the invalid ones. To
measure the success of our initiative and to learn about how much
laymen agree with experts, we compute all of the aforementioned
performance measures, treating the segmentations obtained from
AMT as if they were segmentations returned by an algorithm. For
each query, the segmentation that was submitted most often by the
workers was used. The results of this comparison are shown in Ta-
ble 6. Again, “Best of A, B, C” means that from the three reference
segmentations of A, B, and C the one is chosen for comparison
that maximizes the AMT workers’ break accuracy. Note that the
workers of AMT outperform the algorithmic query segmentation
approaches (cf. Table 5) on all accounts. However, the AMT work-
ers cannot achieve perfect segmentation accuracy when compared
to the expert segmentations of BWC07, since it must be admitted
that even experts make errors.

Having established that the segmentations obtained via AMT are
indeed valid, we reevaluated all of the segmentation algorithms
against the AMT segmentations as well as against the combination

2See [1], and our previous works [16, 17].

Table 6: Segmentation performance of Amazon’s Mechanical

Turk (AMT) workers on the Bergsma-Wang-Corpus.

Annotator
Performance “Algorithm”

Measure AMT

Best of
A, B, C

query 0.821
seg prec 0.892
seg rec 0.883
seg F 0.887
break 0.941

of the BWC07 segmentations and the AMT segmentations. The re-
sults of this evaluation are shown in Table 7. As can be observed,
our naïve query segmentation algorithm [10] performs best on the
enriched BWC07. Our Wikipedia-based normalization comes in
second. A speculative explanation for the remarkable performance
of the naïve |s||s|-scoring might be that web n-gram frequencies
are correlated with the n-grams an average AMT worker knows.

6.5 The Webis Query Segmentation Corpus
Given the encouraging results achieved with enriching the

Bergsma-Wang-Corpus by means of crowdsourcing, the logical
next step is to build a larger corpus, thus addressing the remain-
ing points of criticism about the BWC07, namely its small size and
the sampling constraints. Following a new sampling strategy (de-
tailed below), we have sampled 50 000 queries from the AOL query
log. These queries were checked for correctness of spelling and
encoding, and then segmented by workers recruited on Amazon’s
Mechanical Turk. We followed the same strategy as with enriching
the BWC07 corpus, however, this time using the enriched BWC07
as check queries to identify workers who perform poorly. As a re-
sult, we present the new Webis Query Segmentation Corpus 2010
(Webis-QSeC-10).3 Finally, we have evaluated our query segmenta-
tion algorithms as well as the baseline algorithm against this corpus,
the results of which are shown in Table 8. Unsurprisingly, the abso-
lute performance values are far below those on the BWC07, since
our new corpus contains the whole spectrum of queries and not only
noun phrase queries. While the mutual information baseline allows
for some comparability to the earlier results, a complete compari-
son of all algorithms against our new corpus is still missing. So far,
our Wikipedia-based normalization scheme performs best on this
corpus, but once again, mutual information serves as a reasonable
and challenging baseline.

Corpus Construction. The 50 000 queries for our corpus were cho-
sen in three steps from the AOL query log: first, the raw query log

3
http://www.webis.de/research/corpora

Table 8: Segmentation performance on the Webis Query Seg-

mentation Corpus 2010.

Annotator
Performance Algorithm

Measure MI [10] Our

Best of
AMT

query 0.598 0.599 0.616
seg prec 0.727 0.736 0.744

seg rec 0.738 0.733 0.739

seg F 0.732 0.734 0.742

break 0.844 0.842 0.850

was filtered in order to remove ill-formed queries; second, from the
remainder, queries were sampled at random; and third, the sampled
queries were corrected.

In the filtering step, queries were discarded according to the fol-
lowing exclusion criteria:

• Queries comprising remnants of URLs (navigational queries)
or URL character encodings.

• Queries from searchers having more than 10 000 queries.

• Queries from searchers whose average time between consec-
utive queries is less than 1 second.

• Queries from searchers whose median number of letters per
query is greater than 100.

• Queries that contain non-alphanumeric characters except for
dashes and apostrophes in-between characters.

• Queries that are shorter than 3 words or longer than 10.

• Queries from searchers that duplicate preceding queries of
themselves (result page interaction).

Of the 36 389 567 queries in the raw AOL query log,
6 027 600 queries remained after filtering. The majority of the fil-
tered queries (22.8 million) were removed by the criteria pertaining
to special characters and query length (e.g., queries shorter than
3 words).

In the sampling step, 50 000 queries were chosen at random from
the filtered query log, while maintaining the original distributions
of query frequency and query length. To accomplish this, the log
was divided into query length classes, where the i-th class contains
all queries of length i ∈ {3, . . . , 10}, keeping duplicate queries
from different searchers. Then, the query length distribution was
computed and the amount of queries to be expected for each length
class in a 50 000 query sample was determined (see Table 9). Based
on these expectations, for each length class, queries were sampled
without replacement until the expected amount of distinct queries
was reached. Hence, our sample represents the query length distri-
bution of the filtered AOL log. And since each length class in the

Table 7: Segmentation performance on the enriched Bergsma-Wang-Corpus.

Annotator
Performance Algorithm

Measure MI [4] [19] [21] [7] [14] [10] Our

Best of
AMT

query 0.738 0.812 n/a 0.831 0.794 0.546 0.859 0.857
seg prec 0.802 0.890 n/a 0.891 0.869 0.758 0.909 0.908
seg rec 0.806 0.904 n/a 0.889 0.868 0.830 0.909 0.908
seg F 0.804 0.897 n/a 0.890 0.868 0.792 0.909 0.908
break 0.916 0.944 n/a 0.945 0.924 0.850 0.950 0.952

Best of
A, B, C
and AMT

query 0.754 0.825 n/a 0.849 0.802 0.546 0.873 0.867
seg prec 0.809 0.897 n/a 0.910 0.876 0.753 0.921 0.917
seg rec 0.813 0.910 n/a 0.910 0.874 0.825 0.921 0.914
seg F 0.811 0.903 n/a 0.910 0.875 0.787 0.921 0.916
break 0.920 0.947 n/a 0.954 0.928 0.847 0.957 0.956

Table 9: Overview of the Webis-QSeC-10 query sample.

Length AOL Queries Distribution Sample

3 2 750 697 45.64% 22 820
4 1 620 818 26.89% 13 445
5 846 449 14.04% 7 020
6 418 621 6.95% 3 475
7 202 275 3.36% 1 680
8 102 792 1.70% 850
9 55 525 0.92% 460
10 30 423 0.50% 250

Σ 6 027 600 100.00% 50 000

filtered log contained duplicate entries of queries according to their
frequency, our sample also represents the query frequency distribu-
tion in the filtered query log.

In the final correction step, we attempted to correct spelling er-
rors present in the sampled queries by means of semi-automatic
spell checking. We collected a 1 million word dictionary of words
by combining various dictionaries and other sources for often-
checked words available online, such as aspell, WordNet, Wik-
tionary, and Wikipedia titles, to name only a few. Using this dictio-
nary as well as their Google n-gram counts, we applied the statis-
tical spell checker proposed by Peter Norvig4 to the query sample.
However, we did not follow the spell checker blindly, but reviewed
each replacement manually. This way, about 14% of the queries
in our sample have been corrected. It must be mentioned, though,
that not all errors can be identified this way, and that correcting the
queries will remain an ongoing task.

Corpus Anonymization. The AOL query log has been released
without proper anonymization, other than replacing the searchers’
IP addresses with numerical IDs. This raised a lot of concerns
among researchers as well as in the media, since some AOL users
could be personally identified by analyzing their queries. We ad-
dress this problem in our corpus by removing the searcher IDs en-
tirely. This way, only queries from our sample that are unique in
the raw log may be mapped back onto their original searcher IDs,
if someone would choose to do so.

6.6 Runtime
As mentioned at the outset, it is important to achieve a low run-

time per query in order for a query segmentation algorithm to be
practical. Since our method heavily relies on looking up potential
segments in the Google n-gram corpus, an efficient implementation
of an external hash table is required. We have used the approach
described in [6], which employs a minimal perfect hash function,
to implement a hash table that maps n-grams to their frequencies.
This hash table fits in 13 GB of main memory. The implementation
of our query segmentation method is capable of segmenting about
3 000 queries per second on a standard PC. Unfortunately, for lack
of implementations of the other query segmentation algorithms, we
cannot yet report their runtime performances. However, given the
sometimes high number of features proposed in the literature and
their complexities, we doubt that any of these approaches can beat
ours in a fair comparison.

7. CONCLUSION AND OUTLOOK
We introduced a new approach to query segmentation that is

competitive with state-of-the-art algorithms in terms of segmen-
tation accuracy, while simultaneously being more robust and less

4
http://norvig.com/spell-correct.html

complicated. The approach can be understood as a normalization
scheme for n-gram frequencies based on Wikipedia background
knowledge. All relevant feature values are pre-processed and stored
in a hash table, rendering the approach very fast and efficient. We
provided theoretical and empirical arguments to better understand
the rationale of our approach. For this purpose, a much larger eval-
uation corpus also became necessary. We developed a new query
segmentation corpus with 50 000 queries, which is two orders of
magnitude larger than the reference corpus used in earlier publica-
tions. The paper introduced this new corpus and its construction via
Amazon’s Mechanical Turk. We are planning to release the corpus
in the course of an open query segmentation competition.

Furthermore, we pointed out several future directions for re-
search and development. The current evaluation of query segmenta-
tion algorithms relies solely on comparing segmentation accuracy
against corpora of human-segmented queries, which is fine in it-
self, but which cannot tell whether query segmentation is actually
useful in practice. Hence, future evaluations should also focus on
the question whether query segmentation leads to a significant im-
provement of retrieval performance. In this paper, first steps in this
direction were taken.

Another promising future research task is to analyze more elab-
orate performance measures for query segmentation algorithms.
Since many queries are ambiguous, measures that quantify rank-
ings of alternative segmentations for a given query should be inves-
tigated. In practice, it is an interesting option for a search engine
to deal with ambiguous segmentations by presenting the results of
the top-ranked segmentation, but also to offer the second-ranked
segmentation in a “Did you mean” manner. Within our experimen-
tal evaluation, we observed that whenever our approaches did not
match the BWC07 segmentation for the queries on which all three
BWC07 annotators agreed, the systems’ second-ranked segmenta-
tion very often did.

Acknowledgments

We would like to thank Shane Bergsma and Qin Iris Wang (the
authors of [4]); David J. Brenes, Daniel Gayo-Avello, and Rodrigo
Garcia (the authors of [7]); Chao Zhang, Nan Sun, Xia Hu, Tingzhu
Huang, and Tat-Seng Chua (the authors of [21]); and Nikita Mishra,
Rishiraj Saha Roy, Niloy Ganguly, Srivatsan Laxman, and Monojit
Choudhury (the authors of [14]) for providing us with their experi-
mental data, especially for doing so on a very short notice.

8. REFERENCES

[1] O. Alonso and S. Mizzaro. Can We Get Rid of TREC
Assessors? Using Mechanical Turk for Relevance
Assessment. In Proceedings of the SIGIR 2009 Workshop on

The Future of IR Evaluation.

[2] M. Bendersky, W. B. Croft, and D. Smith. Two-stage Query
Segmentation for Information Retrieval. In J. Allan, J. A.
Aslam, M. Sanderson, C. Zhai, and J. Zobel, editors,
Proceedings of the 32nd Annual International ACM SIGIR

Conference on Research and Development in Information

Retrieval, SIGIR 2009, Boston, USA, July 20-24, 2009, pages
810–811.

[3] M. Bendersky, W. B. Croft, and D. Smith. Structural
Annotation of Search Queries Using Pseudo-Relevance
Feedback. In J. Huang, N. Koudas, G. J. F. Jones, X. Wu,
K. Collins-Thompson, and A. An, editors, Proceedings of the
19th ACM Conference on Information and Knowledge

Management, CIKM 2010, Toronto, Ontario, Canada,

October 26-30, 2010, pages 1537–1540.

[4] S. Bergsma and Q. Wang. Learning Noun Phrase Query
Segmentation. In Proceedings of Conference on Empirical

Methods in Natural Language Processing and Conference on

Computational Natural Language Learning, EMNLP-CoNLL

2007, June 28-30, 2007, Prague, Czech Republic, pages
819–826.

[5] T. Brants and A. Franz. Web 1T 5-gram Version 1. Linguistic
Data Consortium LDC2006T13, Philadelphia, 2006.

[6] T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean. Large
Language Models in Machine Translation. In Proceedings of
Conference on Empirical Methods in Natural Language

Processing and Conference on Computational Natural

Language Learning, EMNLP-CoNLL 2007, June 28-30,

2007, Prague, Czech Republic, pages 858–867.

[7] D. Brenes, D. Gayo-Avello, and R. Garcia. On the Fly Query
Entity Decomposition Using Snippets. In Proceedings of the
First Spanish Conference on Information Retrieval, CERI

2010, June 15-16, 2010, Madrid, Spain.

[8] W. B. Croft, M. Bendersky, H. Li, G. Xu. Query
Representation and Understanding Workshop. SIGIR Forum,
44(2):48–53, 2010.

[9] J. Guo, G. Xu, H. Li, and X. Cheng. A Unified and
Discriminative Model for Query Refinement. In S. Myaeng,
D. Oard, F. Sebastiani, T. Chua, and M. Leong, editors,
Proceedings of the 31st Annual International ACM SIGIR

Conference on Research and Development in Information

Retrieval, SIGIR 2008, Singapore, July 20-24, 2008, pages
379–386.

[10] M. Hagen, M. Potthast, B. Stein, and C. Bräutigam. The
Power of Naïve Query Segmentation. In F. Crestani,
S. Marchand-Maillet, H.-H. Chen, E. N. Efthimiadis, and
J. Savoy, editors, Proceedings of the 33rd International ACM

SIGIR Conference on Research and Development in

Information Retrieval, SIGIR 2010, Geneva, Switzerland,

July 19-23, 2010, pages 797–798.

[11] J. Huang, J. Gao, J. Miao, X. Li, K. Wang, and F. Behr.
Exploring Web Scale Language Models for Search Query
Processing. In M. Rappa, P. Jones, J. Freire, and
S. Chakrabarti, editors, Proceedings of the 19th International
Conference on World Wide Web, WWW 2010, Raleigh, North

Carolina, USA, April 26-30, 2010, pages 451–460.

[12] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating
Query Substitutions. In L. Carr, D. D. Roure, A. Iyengar,
C. A. Goble, and M. Dahlin, editors, Proceedings of the 15th
International Conference on World Wide Web, WWW 2006,

Edinburgh, Scotland, UK, May 23-26, 2006, pages 387–396.

[13] J. Kiseleva, Q. Guo, E. Agichtein, D. Billsus, and W. Chai.
Unsupervised Query Segmentation Using Click Data:
Preliminary Results. In M. Rappa, P. Jones, J. Freire, and
S. Chakrabarti, editors, Proceedings of the 19th International
Conference on World Wide Web, WWW 2010, Raleigh, North

Carolina, USA, April 26-30, 2010, pages 1131–1132.

[14] N. Mishra, R. Roy, N. Ganguly, S. Laxman, and
M. Choudhury. Unsupervised Query Segmentation Using
Only Query Logs. In Proceedings of the 20th International
Conference on World Wide Web, WWW 2011, Hyderabad,

India, March 28-April 1, 2011.

[15] G. Pass, A. Chowdhury, and C. Torgeson. A Picture of
Search. In X. Jia, editor, Proceedings of the First
International Conference on Scalable Information Systems,

Infoscale 2006, Hong Kong, May 30-June 1, 2006, article 1.

[16] M. Potthast. Crowdsourcing a Wikipedia Vandalism Corpus.
In F. Crestani, S. Marchand-Maillet, H.-H. Chen, E. N.
Efthimiadis, and J. Savoy, editors, Proceedings of the 33rd
International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR 2010, Geneva,

Switzerland, July 19-23, 2010, pages 789–790.

[17] M. Potthast, B. Stein, A. Barrón-Cedeño, and P. Rosso. An
Evaluation Framework for Plagiarism Detection. In C.-R.
Huang and D. Jurafsky, editors, Proceedings of the 23rd
International Conference on Computational Linguistics,

COLING 2010, Beijing, China, August 23-27, 2010, pages
997–1005.

[18] K. M. Risvik, T. Mikolajewski, and P. Boros. Query
Segmentation for Web Search. In Proceedings of the Twelfth
International World Wide Web Conference, WWW 2003,

Budapest, Hungary, May 20-24, 2003. Posters.

[19] B. Tan and F. Peng. Unsupervised Query Segmentation
Using Generative Language Models and Wikipedia. In
J. Huai, R. Chen, H. Hon, Y. Liu, W. Ma, A. Tomkins, and
X. Zhang, editors, Proceedings of the 17th International

Conference on World Wide Web, WWW 2008, Beijing, China,

April 21-25, 2008, pages 347–356.

[20] X. Yu and H. Shi. Query Segmentation Using Conditional
Random Fields. In M. T. Özsu, Y. Chen, and L. Chen,
editors, Proceedings of the First International Workshop on

Keyword Search on Structured Data, KEYS 2009, Providence,

Rhode Island, USA, June 28, 2009, pages 21–26.

[21] C. Zhang, N. Sun, X. Hu, T. Huang, and T.-S. Chua. Query
Segmentation Based on Eigenspace Similarity. In
Proceedings of the Joint Conference of the 47th Annual

Meeting of the Association for Computational Linguistics

and the Fourth International Joint Conference on Natural

Language Processing of the Asian Federation of Natural

Language Processing, ACL-IJCNLP 2009, August 2-7, 2009,

Singapore. Short papers, pages 185–188.

