Applying the User-over-Ranking Hypothesis to
Query Formulation*

Matthias Hagen and Benno Stein

Faculty of Media
Bauhaus-Universitit Weimar, Germany
<first name>.<last name>@uni-weimar.de

Abstract The User-over-Ranking hypothesis states that the best retrieval per-
formance can be achieved with queries returning about as many results as can
be considered at user site [21]. We apply this hypothesis to Lee et al.’s prob-
lem of automatically formulating a single promising query from a given set of
keywords [16]. Lee et al.’s original approach requires unrestricted access to the
retrieval system’s index and manual parameter tuning for each keyword set. Their
approach is not applicable on larger scale, not to mention web search scenarios.
By applying the User-over-Ranking hypothesis we overcome this restriction and
present a fully automatic user-site heuristic for web query formulation from given
keywords. Substantial performance gains of up to 60% runtime improvement over
previous approaches for similar problems underpin the value of our approach.

1 Introduction

Experienced web search users come up with a whole set of keywords that describe their
information need. But if the entire set is submitted as a single query, it is likely that
only very few or even no results are returned. On the other hand, single-word queries
can usually not satisfy intricate information needs, as such queries are not sufficiently
specific. In practice, users then often strive for a longer and more specific query from
their keywords, which finally leads to the desired result.

Lee et al. examined the corresponding problem of automatically formulating a sin-
gle good query from given keywords [16]. Their approach selects the & best keywords
according to a learnt ranking function and achieves good performance on TREC topics
when given (1) the known relevant documents, (2) full access to an index of the doc-
ument collection, and (3) a hand-tuned k for each topic—making the algorithm semi-
automatic only. Their approach is not applicable in a standard web search scenario
since search engines protect their proprietary indexes from direct access. Searches are
only possible through interfaces and entail costs; at the very least some non-negligible
amount of time is consumed, and larger contingents of queries may entail monetary
charges.! We overcome the issues of Lee et al.’s approach with a fully-automatic ex-
ternal algorithm (i.e., working at user site against public web search interfaces) that

* Extended version of a paper presented at the TIR 2010 workshop [7].
'E.g., $0.40-$0.80 per 1000 Yahoo! BOSS queries, http://www.ysearchblog.com/
2011/02/08/latest-on-boss/ (accessed April 16, 2011).

2 Matthias Hagen and Benno Stein

Specificity of queries

Retrieval performance

6 .
10 underspecific 1 probability for successful

g retrieval is maximum
55 (e
a_ result list length = k
o2 overspecific ;

o T T T 0 T T : T T

1 10 20 Query 10 100 103 104 Result
length list length

Processing
capacity
Figure 1. Left: a query with few terms and many results is likely to be underspecific; queries
with many terms and few results tend to be overspecific. Right: under the User-over-Ranking
hypothesis a result list length of the user’s capacity k maximizes the retrieval performance [21].

for given keywords finds a web query returning a reasonable number of results. The
term reasonable deserves closer consideration. Typically, the number of search results
a user will consider is constrained by a processing capacity lya.x, determined by the
user’s reading time, available processing time, etc. From queries returning more than
lmax results only a fraction—typically the top-ranked results—are considered at user
site. Often the search engine’s ranking works reasonably well to bring up relevant doc-
uments to the top even for shorter queries. But what if the first), results of a short
query don’t satisfy the user’s information need? The user can never be sure that there
are no lower-ranked relevant documents and will try another query containing more or
other keywords and thus being more descriptive of her information need. The User-
over-Ranking hypothesis states that the user is best served by queries returning in the
order of [, results [21]. In this case, the user can avoid any ranking issues that she can-
not influence by simply processing all the documents. The hypothesis is underpinned
with a TREC-style experiment showing best performance for queries returning about
100 results [21]. See Figure 1 for an idealized illustration of the hypothesis.

If one follows the User-over-Ranking hypothesis, a central question is: Which sub-
set of the keywords must be chosen to obtain about /., results? This question is a
natural web generalization of Lee et al.’s problem setting. But instead of analyzing the
quality of keywords in isolation, the task now is to analyze keyword combinations in
order to find queries that are sufficiently specific of a user’s information need while not
exceeding the user’s capacity. The corresponding problem is formalized as follows.

PROMISING QUERY

Given: (1) A set W of keywords.
(2) A query interface for a search engine S.
(3) Upper and lower bounds /5% and ly,i, on the result list length.
Task: Find a query ¢ € W containing the most keywords possible that

meets the result list constraints against S.

The convenience lower bound [, is introduced to rule out queries that return too
few result (i.e., setting /,,;, = 1 means that we do not tolerate queries that do not return
any result). Note that the PROMISING QUERY formulation is a variant of Lee et al.’s
initial setting: given a set W, find one good query from . An important difference is
that PROMISING QUERY targets the real web setting, where users can only consider a

Applying the User-over-Ranking Hypothesis to Query Formulation 3

small amount of results and do not have full access to the engine’s index. Obviously, a
series of web queries must be submitted to a search engine when solving PROMISING
QUERY. As querying consumes time and may entail monetary costs too, we measure
the costs at user site with the number of submitted queries and address the optimization
problem of minimizing the average number of submitted queries.

1.1 Use Cases

Since today’s search engines do not suggest promising subsets of a user’s keywords,
several use-cases can benefit from an external user-site approach. Note that our experi-
mental evaluation in Section 4 is also based on these use cases.

Known Item Finding. Assume a user who once had access to a document on the web,
forgot to save the document, and now comes up with some keywords that describe the
document’s content or that occur in the document. Re-finding the desired document has
to be done via a web search engine and can be tackled by automatically constructing a
good query from the user’s set of keywords. Such a query should not return too many
results since then the expectation is that the query is not descriptive enough to bring
up the known item on the top of the result list. Furthermore, some of the remembered
keywords might be “wrong” and should be omitted. Solving an instance of PROMISING
QUERY provides a potential way-out.

Search Session Support. Assume a web search engine that recognizes sessions of con-
secutive web queries. Starting with some query, the user submits reformulated queries
with varying keywords until she is satisfied or gives up. To support such a user, the en-
gine itself can suggest a promising query returning a reasonable number of results from
all the keywords submitted in the session [20]—an instance of PROMISING QUERY.
According to the User-over-Ranking hypothesis [21], such promising query sugges-
tions could improve the user’s search experience in sessions that did not lead to the
satisfaction of the user’s information need.

Empty Result Lists. A search engine should avoid showing an empty result list on a
user’s web query. If a query does not produce any hit, an interesting option is to present
a largest subset of the keywords that still give a reasonable number of results. According
to the User-over-Ranking hypothesis [21], this will raise the probability of satisfying the
user’s initial information need. Solving an instance of PROMISING QUERY, the engine
can provide an appropriate result list instead of an empty page.

1.2 Related Work

Besides Lee et al.’s keyword ranking, a lot of research has been done on approaches
for better results on better queries. A promising idea is to estimate or to predict a given
query’s performance [5, 6, 9, 10, 14]. Especially the pre-retrieval predictors, which can
be evaluated prior to the actual result retrieval phase, could be interesting for avoiding
submission of too many queries. However, the evaluation of most predictors needs ac-
cess to knowledge the user site does not have in a standard web search scenario. For
example, the simplified query clarity predictor [10] needs the total keyword frequencies
for the whole corpus—web search engines just return an estimation of the number of
documents in the corpus that contain the keyword. The query scope predictor [10] needs

4 Matthias Hagen and Benno Stein

the number of documents in the index—most web search providers stopped publishing
it. The mutual information based predictors [14] need the frequency of two keywords in
a sliding window with given size over the whole corpus—no engine reports such values.
Nevertheless, two approaches on reducing long queries successfully use query quality
predictors [14, 17]—but with unrestricted access to the index. The task of long query
reduction can be primarily described as the formulation of queries from verbose text,
similar to the description parts of TREC topics or queries to medical search engines.

Reducing a large set of keywords to reasonable queries, as is the case in our setting,
is also often termed as long query reduction. The interest in the issue of how to han-
dle long queries is on the rise [1, 4, 12, 13, 15], as a significant part of todays typical
web queries is becoming longer or “more verbose.” In contrast to our setting, most of
the existing research approaches assume full access to the system’s index; only Hus-
ton and Croft use the notion of a black box search engine [11]. However, they focus
on a scenario different from ours, namely: finding answers to verbose “wh-"questions
in collaborative question answering systems, and they do not analyze the number of
submitted web queries. Shapiro and Taksa explicitly deal with the problem setting of
formulating queries while considering a bound on the number of results [19]. They sug-
gest a rather simple “open end query formulation.” Since their approach does not apply
an exhaustive search, it is straightforward to construct situations in which promising
queries exist, but the open end approach cannot produce even one of them.

1.3 Notation and Basic Definitions

Like in Lee et al.’s setting [16], our starting point for query formulation is a set W =
{w1, ..., wy} of keywords (phrases are also allowed). These keywords may be entered
by a user or be generated automatically, by an automatic query expansion for example.
Subsets () € W can be submitted as web queries, with the notion that phrases are
included in quotation marks. A web search engine’s reply to a query () consists of a
ranked list Ly of snippets and URLs of documents relevant to the keywords from @),
along with an estimation g for the real result list length |Lg|.

Lee et al. try to identify the k “best” keywords in W. Their approach relies on the as-
sumption that relevant documents for the information need described by W are known
and that k can be manually determined for different W. Since this is unrealistic in web
search scenarios, we combine the problem setting of automatic query formulation with
the User-over-Ranking hypothesis [21]. Hence, our approach will select keywords to
form a query that does not return too many results. Not the length of the query is the cri-
terion, which is suggested by Lee et al., but the length of the result list: the PROMISING
QUERY problem asks to find a largest subset) C W that satisfies lnin < lg < lnax
for given constant lower and upper bounds /i, and /.« Requiring @) to be as large as
possible ensures () to be as specific as possible, while the result list constraints reflect
the user’s capacity, this way accepting the User-over-Ranking hypothesis. Adopting the
notation of Bar-Yossef and Gurevich [2], we say that for lg < lyin (too few results) the
query @ is underflowing, whereas for lg > l,ax (too many results) it is overflowing.
Queries that are neither under- nor overflowing are valid. A valid query @ is maxi-
mal iff adding any keyword from W \ @ results in an underflowing query. As for the
PROMISING QUERY setting we are interested in the largest maximal queries.

Applying the User-over-Ranking Hypothesis to Query Formulation 5

In the process of finding a promising query (), we count the overall number cost
of queries that are submitted to the search engine. Since a typical web query takes sev-
eral hundred milliseconds, the time for internal client site computations will be clearly
smaller than the time for submitting the web queries. An approach saving a significant
number of web queries will dominate other approaches with respect to runtime, too.

In all query formulation algorithms of this paper, the result list length estimations g
of commercial search engines will be used, although they often overestimate the correct
numbers. However, the estimations usually respect monotony (queries containing addi-
tional keywords have smaller [-value, indicating an AND-semantics at search engine
site), and the shorter the result list, the better the estimations. Hence, in the range of our
user constraints, where we require at most 100 results, they are pretty accurate.

2 Baseline Strategies for Promising Queries

The baseline approach can be described as a simple depth-first search on a search tree
containing all possible queries; pseudo code listing given as Algorithm 1. A first pre-
check removes underflowing keywords (first two lines of the listing) because they can-
not be contained in a promising query. Such validity checks for queries always cause
a submission to the search engine. A second pre-check (fourth line) ensures that the
remaining set W of non-underflowing keywords itself is underflowing, since otherwise
W itself is the promising query or no valid query can be found at all. Afterwards, Al-
gorithm 1 invokes an exhaustive search such that it is guaranteed to find a promising
query if one exists. Revisiting nodes in the search tree is prohibited by processing the
keywords in the order of their indices. The algorithm starts trying to find a maximal
valid query containing the first keyword w; . It then adds the keywords ws, ws, etc., as
long as the query remains non-underflowing. Whenever the query underflows, the last
keyword is removed and the next one tried. If all keywords have been tried and the re-
sulting query is valid, it is the current candidate to be a promising query. The algorithm
then backtracks to other possible paths in the search tree. Pruning is done whenever the
current candidate cannot become larger than the currently stored promising query. A
valid query that contains more keywords than the current promising query is stored as
the new promising query.

Algorithm 1 Baseline algorithm for PROMISING QUERY

Input: keywords W = {wi, ..., wn}, result list bounds lyin and lmax
Output: a largest valid query Qprom € W

for allw € W do procedure ENLARGE(query @, keywords W)
if {w} is underflowing then W «+ W\ {w} while (Wiegt # 0) A (|QU Wiegt| > |Qprom|) do
Qprom — 0 w <— keyword with lowest index from Wieg
if W is underflowing then Wleft — VV}eft \ {w})
while (W # 0) A (IW]| > |Qprom]|) do if Q Li {w} is overflowing or valid then
w < keyword with lowest index from W/ Q' < ENLARGE(Q U {w}, Wict;)
W« W\ {w} if Q' is valid and |Q’| > |Qprom | then
ENLARGE({w}, W) Qprom + Q'
output Qprom return Q

else output {WW}

6 Matthias Hagen and Benno Stein

Note that Algorithm 1 outputs the lexicographically first promising query with re-
spect to the initial keyword ordering. Here lexicographically means the following. Let
Q and Q' be two different queries and let wyy,;, be the keyword with lowest index in the
symmetric difference Q A Q' = (QU Q") \ (Q NQ"). Then Q) comes lexicographically
before Q' with respect to the keyword ordering w1, . . . , w,, iff wy;, € Q. Computing
the lexicographically first promising query can be seen as a reasonable approach reflect-
ing the idea that users in their queries first type the keywords that are most descriptive
of their information need.

2.1 Computing All Promising Queries

Whenever the current candidate can only become as large as the current promising
query, Algorithm 1 prunes the search. Instead, a slightly adapted version can check the
current candidate enlarged by the full set Wg for validity. If this query is valid, then
it forms an additional promising query of the same size as the current promising query
and could be stored. If eventually on some other path a valid query is found that is larger
than the current promising queries, the stored promising queries are deleted and the set
of promising queries is initialized with the then found larger one. Note that this slight
change in the baseline yields all promising queries for a given W. All of them could be
presented to the user, or the lexicographically first one could be selected.

The described technique requires the submission of more queries to the engine. But
only in pathological cases, which hardly occur in practice, this will significantly influ-
ence the overall performance. Experiments show that computing all promising queries
in practice usually requires in the order of |WW| additional queries compared to com-
puting just one promising query. These few additional queries can be a worthwhile
investment in our heuristics (cf. the corresponding discussion in Section 3).

2.2 Co-Occurrence-Informed Baseline

The main drawback of the above uninformed baseline is that it submits all interme-
diate query candidates to the search engine. To overcome this issue, we improve the
approach by informing it with keyword co-occurrence probabilities. A pre-processing
step determines [(,,) for each w € W and l(,, -} for each pair w, w’ € W. Using these
values, we store the yield factors y(w, w') = l{y '} /l{w} in @ non-symmetric matrix.
The yield factor (w, w’) multiplied by I, gives the yield of web results when the
keyword w' is added to the query {w}. We do not consider the queries needed for ob-
taining the yield factors. Our rationale is that in case of substantial savings achievable
by using the yield factors, a promising future research task is to identify local “sand-
box corpora” from which good approximations of web yield factors can be computed at
zero cost (e.g., a local index of Wikipedia documents or the ClueWeb collection). Here
we show the potential of our yield-factor-informed methods. In order to fairly treat the
uninformed baseline, we don’t count the baseline’s submitted web queries with just one
or two keywords in our experimentation.

The informed baseline uses the yield factors to internally estimate the number of
returned results for a query candidate. The idea is to check validity without invoking
the search engine and to directly enlarge query candidates with overflowing internal
estimations.

Applying the User-over-Ranking Hypothesis to Query Formulation 7

Let the current query candidate be Qcanq and assume that all queries () from pre-
vious computation steps already have a stored value estq indicating an estimation
of the length of their result lists. Let w’ be the last added keyword. Hence, the in-
formed baseline already knows the value estg for Q@ = Qcana \ {w'}. It then sets
estg...a = estg - avg{y(w,w’) : w € Q}, where avg denotes the mean value. Dur-
ing specific analyses we observed that Ig > estg for most queries @ (i.e., the internal
estimations usually significantly underestimate the real number of search results). If
this would always be the case, queries with overflowing internal estimations could di-
rectly be enlarged. However, our analyses also contained some very rare cases where
@ is valid or underflowing but estgy > lnax (i.e., even the tendency of the internal es-
timation is wrong). For this reason, the informed heuristic does not blindly follow the
internal estimations but only trusts them when estq_, ., = adj - lnax for an adjustment
factor adj. The rationale is that as long as the internal estimations are sufficiently above
the validity bound /., the probability for a wrong validity check based on the internal
estimation is negligible. Only when the internal estimation est_,, , is close to or below
the validity bound /., the current query is submitted to the search engine in order to
“adjust” the internal estimation with the search engine’s Iy, ,. Larger values of adj
enlarge the adjustment range and thus guarantee to catch more of the rare cases where
@ is valid but estg > lnax. However, this comes with a larger amount of submitted web
queries. Moreover, only huge values of adj can guarantee to return the same promising
query as the uninformed baseline. We performed an experimental analysis to compare
different reasonable settings of adj = 1, 3, 5, and 10. The somehow surprising outcome
of these experiments is that a value of adj = 1 shows a good overall conformity of the
informed baseline’s derived promising query with the uninformed baseline’s promis-
ing query. As setting adj = 1 significantly reduces the query cost compared to larger
values, the very few differences to the uninformed baseline’s results are compensated
by a significantly reduced cost resulting in a challenging informed baseline for our
heuristics.

3 Heuristic Search Strategies

Both the uninformed and the informed algorithms follow the scheme of Algorithm 1
and process the keywords in their initial ordering. We improve upon this ordering and
suggest to use co-occurrence information not only to save some of the intermediate
queries by internal estimations but also to adopt a heuristic search strategy with a po-
tentially better keyword ordering. Compared to the baselines, the more involved order
of processing will save a lot of queries (cf. the experiments in Section 4).

There are two points where a heuristic re-ordering strategy seems to be reasonable:
the choices of using the keywords with lowest index as the next to-be-processed key-
word (sixth line of Algorithm 1 and second line of procedure ENLARGE). We propose
the following two yield-factor-informed re-ordering heuristics.

1. The first heuristic picks as the next keyword w € W in the sixth line of Algorithm 1
the one with the largest value Ir,,}. The rationale is that this will be the keyword
with the least commitment: We assume that w together with the next added key-
words W’ will result in a query {w} U W’ having larger [-value than the queries
for any other remaining w’ # w.

8 Matthias Hagen and Benno Stein

In the ENLARGE procedure, the heuristic chooses as the best keyword w € Wies; the
one having the largest value avg{y(w’,w) : W € Qcana}. Again, the heuristic’s
assumption is that this will be the keyword with least commitment (i.e., adding w
to the current query candidate Q..,q Will decrease the web count the least). Since
the heuristic processes the keywords by descending [-value and descending yield
factor, it is called the descending heuristic.

2. The second heuristic is the ascending heuristic, which reverses the descending
heuristic’s ordering. It picks as the next keyword w € W in the sixth line of Algo-
rithm 1 the one with the smallest value If,,,. In the ENLARGE procedure, the key-
word w € Wieg, with the smallest value avg{y(w’,w) : W' € Qcana} is chosen.
The rationale for the ascending heuristic’s approach can be best seen in a scenario
where some keywords do not “fit” the others: keywords with very small [-value
or very small avg{y(w’,w) : W' € Qcana} are often not contained in a promis-
ing query. The ascending heuristic’s ordering checks these keywords first and thus
can weed out them early, while the descending heuristic would unsuccessfully (and
costly) try to add them at the end of every search path.

Observe that due to the re-ordering of the keywords the first promising query found
by either heuristic may not be the lexicographically first one that the uninformed or
the informed baseline compute as their first promising query. This issue can be eas-
ily addressed as described in Section 2.1, namely by computing all promising queries
and then selecting the lexicographically first among them. An argument for outputting
the lexicographically first promising query is that this query probably contains the key-
words that are most important for the user as she typed them earlier. Another option is
to present all promising queries and let the user select.

4 Experimental Analysis

We experimentally compare our two heuristic search strategies to the two baselines. The
experimental setting is chosen to reflect the different use cases described in Section 1.1.

4.1 Known Item Finding

For the known item finding use case we utilized the corpus from our previous exper-
iments [7]. We crawled a 775 document collection consisting of papers on computer
science from major conferences and journals. From each such document—the known
items to be found—a number of keywords is extracted by a head noun extractor [3].
We set the bounds /,ax = 100 (following the findings of the User-over-Ranking hy-
pothesis) and l,;;, = 10. For each document of the test collection we had runs of the
baselines and our heuristics with 3,4, ..., 15 extracted keywords against the Bing API
from October 11-23,2010. A typical web query against the API took about 200—500m:s.

Table 1 shows selected results. Especially for sets with few keywords, a promising
query is often not possible, since the complete query containing all keywords is still
overflowing. The table’s statistics are computed for the documents for which a promis-
ing query is possible. On these remaining documents all four approaches always find a
promising query. Furthermore, the known item—the source document from which the

Applying the User-over-Ranking Hypothesis to Query Formulation 9

Table 1. Experimental results on the known item use case.

Number of keywords

5 7 9 10 11 12 13 14 15
Number of documents where
Promising query not possible 614 481 338 328 219 155 117 100 86
Promising query found 161 294 437 447 556 620 658 675 689
Average cost (number of submitted queries)
Ascending heuristic 10.39 1571 2194 2493 2932 34.10 4270 4470 53.78
Descending heuristic 9.71 15.03 22.65 2526 3554 45.04 73.03 91.63 130.92
Informed baseline 10.36 16.13 24.19 27.01 36.82 4733 7190 7041 108.78
Uninformed baseline 11.81 18.64 28.80 30.94 4346 54.61 8448 88.78 116.22
Average cost ratio (basis: uninformed baseline)
Ascending heuristic 0.88 084 076 081 0.67 062 051 0.50 0.46
Descending heuristic 082 081 079 082 082 082 086 1.03 1.13
Informed baseline 088 087 084 087 08 087 085 0.79 0.94
Average size promising query
Ascending heuristic 345 503 672 773 836 897 954 999 1040
Descending heuristic 349 503 677 1776 839 897 950 10.07 1041
Informed baseline 350 502 679 7.83 838 898 953 10.07 10.55
Uninformed baseline 350 506 683 790 842 9.01 954 10.16 10.57
Average ratio of common result URLs (basis: uninformed baseline)
Ascending heuristic 096 093 093 093 095 09 098 0.93 0.93
Descending heuristic 098 09 09 09 095 09 096 097 0.93
Informed baseline 099 098 098 098 099 098 098 097 0.98

keywords were extracted—always is among the results returned by the search engine
for the promising queries. This suggests that promising queries are a reasonable tool to
support known item finding.

The average number cost of web queries submitted to solve PROMISING QUERY
and the respective ratio of submitted queries compared to the uninformed baseline show
that overall the ascending heuristic performs best (smaller cost and smaller ratio indi-
cate better approaches). The ascending heuristic on average submits less than 54 queries
saving more than 50% of the queries compared to the uninformed baseline. Note that
the descending heuristic fails to save queries for sets of 14 or more keywords. A possi-
ble explanation is that among the extracted keywords a non-negligible part does not fit
the rest in the sense that not all extracted keywords describe the same concept.

The quality of the heuristics’ promising queries is comparable to the baselines as
can be seen by comparing the average size of the generated promising queries and the
overlap in the retrieved document URLs. The small differences compared to the un-
informed baseline are due to some rare overestimations using the internal estimations,
which “hide” some of the queries the uninformed baseline finds (cf. the respective dis-
cussion on the adjustment factor setting at the very end of Section 2.2). However, in-
tensive spot checks showed that the heuristics usually produce the same output as the
uninformed baseline. This is also supported by the average ratio of common URLSs re-
trieved compared to the uninformed baseline (always above 90%) indicating that the
heuristics’ results are comparable to the baseline’s results.

10 Matthias Hagen and Benno Stein

Table 2. Experimental results on the search session use case.

Number of keywords
5 7 9 10 11 12 13 14 15

Number of sessions where
Promising query not possible 1939 1868 1796 1719 1671 1543 1387 1167 903

Promising query found 61 132 204 281 329 457 613 833 1097
Average cost (number of submitted queries)

Ascending heuristic 11.18 19.25 3328 4438 63.62 7375 81.32 9798 102.76
Descending heuristic 11.41 22.11 57.03 10532 149.83 172.08 192.39 234.70 273.18
Informed baseline 1190 2235 4507 6340 89.74 107.11 117.02 145.83 167.92
Uninformed baseline 1459 29.02 73.70 11040 156.48 175.59 198.34 227.86 250.63
Average cost ratio (basis: uninformed baseline)

Ascending heuristic 0.77 0.66 045 0.40 0.41 0.42 0.41 0.43 0.41
Descending heuristic 078 0.76 0.77 0.95 0.96 0.98 0.97 1.03 1.09
Informed baseline 0.82 0.77 0.61 0.57 0.57 0.61 0.59 0.64 0.67
Average size promising query

Ascending heuristic 331 510 6.57 7.48 8.48 956 1079 11.83 12.78
Descending heuristic 320 5.07 6.67 7.60 8.58 9.69 1085 11.89 12.77
Informed baseline 3.02 495 642 7.34 8.34 951 1070 11.75 12.69
Uninformed baseline 334 522 677 7.70 8.67 9.73 10.87 1192 12.83
Average ratio of common result URLs (basis: uninformed baseline)

Ascending heuristic 097 093 092 091 0.92 0.94 0.95 0.97 0.97
Descending heuristic 095 093 095 0.93 0.96 0.98 0.98 0.99 0.97
Informed baseline 0.87 091 0.89 0.86 0.91 0.93 0.93 0.95 0.96

For the time consumption of the algorithms (not reported in Table 1) we observed
the expected behavior: the internal computation time of all approaches is always orders
of magnitude lower than the time for web queries (a few milliseconds vs. several sec-
onds or even minutes). Hence, the fastest approach always is the one that submits the
fewest queries and the ratio of runtime savings is equivalent to the query savings.

4.2 Search Session Support

For the search session use case we utilized a corpus similar to our previous experi-
ments [20]: sessions with at least two queries extracted from the AOL query log [18]
using two session detection techniques. One is a temporal method with a 10 minute cut-
off (two consecutive queries belong to a session iff they are submitted within 10 min-
utes) and the other is the cascading method [8] (two consecutive queries belong to a
session iff the contained keywords overlap and a time constraint is fulfilled, or if the
queries are semantically very similar). Stopwords were removed from the derived ses-
sions and for each method a random sample of 1000 sessions containing 7 keywords for
every i € {4,5,...,15} was selected. As before, we set the bounds Iy, = 100 and
lmin = 10. For each session we had runs of the algorithms against the Bing API from
September 27-October 13, 2010. A typical web query took about 300—600ms.

Table 2 contains the experimental results; the table’s organization follows that of
Table 1. Again, sessions with few keywords often do not allow for a promising query
because the complete query containing all words is still overflowing. Such sessions are

Applying the User-over-Ranking Hypothesis to Query Formulation 11

filtered out and the statistics are derived just for the remaining sessions. Note that on
these remaining sessions all approaches always find a promising query.

The average number cost of submitted web queries and the respective ratio over the
uninformed baseline again show that overall the ascending heuristic performs best. The
possible savings seem to converge to about 60% of the queries compared to the unin-
formed baseline. The descending heuristic does not really improve upon the baselines.

Similar to the known item experiments the quality of the heuristics’ promising
queries is comparable to the baselines as can be seen by comparing the average query
size and the overlap in the retrieved document URLs. As for the time consumption of
the algorithms we again observe the expected behavior: the internal computation time
of all approaches is always orders of magnitude lower than the web query time. Hence,
the fastest approach always is the one that submitted the fewest queries.

4.3 Empty Result Lists

For the use case of queries with empty result lists we sampled longer queries from the
AOL query log [18]. The log contains 1 015 865 distinct queries with at least 5 and at
most 30 keywords. From these, we sampled 497 queries without typos that returned
less than 10 results as of October 27-30, 2010 using the Bing API. Empty result lists
are modeled by a threshold of 10 returned results (instead of 0) as there exist several
mirror pages of the complete AOL query log on the web. Thus, each AOL query with
an empty result list back in 2006 today will return several such “mirror” results.

The average query length of the sample is 20.93 keywords (including stopwords).
We removed stopwords obtaining an average query length of 12.47 keywords. As be-
fore, we set the bounds /,,,x = 100 and /,,;, = 10. Hence, a promising query is possible
for all 497 queries (all return less than 10 results). For each query we had runs of the
four algorithms against the Bing API from November 04-November 06, 2010. A typical
web query in this experiment took about 250-550ms.

All four approaches always find a promising query. On average, the ascending
heuristic submitted 92.37 queries, the descending heuristic submitted 207.37, the in-
formed baseline 129.66, and the uninformed baseline 215.41. Hence, the ascending
heuristic again obtains the best ratio over the uninformed baseline (about 0.43) and, as
before, the ascending heuristic is the fastest among the four approaches. Also the ratio
of common URLSs (above 0.90 for all approaches) and the size of the promising queries
again show that the heuristics’ results are comparable to the baselines.

5 Conclusion and Outlook

We applied the User-over-Ranking hypothesis to Lee et al.’s query formulation problem
and showed the effects of a user-oriented query cost analysis when formulating queries
against a web search engine. In such situations a user plays against the engine in order
to satisfy her information need by submitting keyword queries. Our formalization forms
the ground for fully automatic and external algorithms that can be applied against the
standard web search engine interfaces.

Altogether, the ascending heuristic should be preferred over the other methods,
which is underpinned by experiments for three use cases. The ascending heuristic al-
ways comes with substantial savings in the number of submitted queries, whereas these

12

Matthias Hagen and Benno Stein

savings do not impair the quality of the found promising queries. Compared to the un-
informed baseline, only 40% of the queries have to be submitted for larger problem
instances which is equivalent to a 60% reduced runtime.

A very interesting task for future work is to analyze the use of dedicated sandbox

corpora from which yield factors resembling the ones obtained through web queries can
be derived at zero cost.

Bibliography

(1]
(2]
(3]
(4]
(5]
[6]
(71
(8]
(91
(10]
(1]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]

N. Balasubramanian, G. Kumaran, and V. R. Carvalho. Exploring reductions for long web
queries. Proceedings of SIGIR 2010, pages 571-578.

Z. Bar-Yossef and M. Gurevich. Random sampling from a search engine’s index. Journal
of the ACM, 55(5), 2008.

K. Barker and N. Cornacchia. Using noun phrase heads to extract document keyphrases.
Proceedings of AI 2000, pages 40-52.

M. Bendersky and W. B. Croft. Discovering key concepts in verbose queries. Proceedings
of SIGIR 2008, pages 491-498.

D. Carmel, E. Yom-Tov, A. Darlow, and D. Pelleg. What makes a query difficult?
Proceedings of SIGIR 2006, pages 390-397.

S. Cronen-Townsend, Y. Zhou, and W. B. Croft. Predicting query performance.
Proceedings of SIGIR 2002, pages 299-306.

M. Hagen and B. Stein. Search strategies for keyword-based queries. Proceedings of
DEXA 2010 workshop TIR 2010, pages 37-41.

M. Hagen, T. Riib, and B. Stein. Query session detection as a cascade. Proceedings of
ECIR 2011 workshop SIR 2011.

C. Hauff, D. Hiemstra, and F. de Jong. A survey of pre-retrieval query performance
predictors. Proceedings of CIKM 2008, pages 1419-1420.

B. He and I. Ounis. Inferring query performance using pre-retrieval predictors.
Proceedings of SPIRE 2004, pages 43-54.

S. Huston and W. B. Croft. Evaluating verbose query processing techniques. Proceedings
of SIGIR 2010, pages 291-298.

G. Kumaran and J. Allan. Adapting information retrieval systems to user queries.
Information Processing and Management, 44(6):1838—-1862, 2008.

G. Kumaran and J. Allan. Effective and efficient user interaction for long queries.
Proceedings of SIGIR 2008, pages 11-18.

G. Kumaran and V. R. Carvalho. Reducing long queries using query quality predictors.
Proceedings of SIGIR 2009, pages 564-571.

M. Lease, J. Allan, and W. B. Croft. Regression rank: Learning to meet the opportunity of
descriptive queries. Proceedings of ECIR 2009, pages 90-101.

C.-J. Lee, R.-C. Chen, S.-H. Kao, and P.-J. Cheng. A term dependency-based approach for
query terms ranking. Proceedings of CIKM 2009, pages 1267-1276.

G. Luo, C. Tang, H. Yang, and X. Wei. MedSearch: a specialized search engine for
medical information retrieval. Proceedings of CIKM 2008, pages 143-152.

G. Pass, A. Chowdhury, and C. Torgeson. A picture of search. In Proceedings of
Infoscale 2006, paper: 1.

J. Shapiro and I. Taksa. Constructing web search queries from the user’s information need
expressed in a natural language. Proceedings of SAC 2003, pages 1157-1162.

B. Stein and M. Hagen. Making the most of a web search session. Proceedings of
WI-IAT 2010, pages 90-97.

B. Stein and M. Hagen. Introducing the user-over-ranking hypothesis. Proceedings of
ECIR 2011, pages 503-509.

