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Abstract Given a document d, the task of text reuse detection is to find those
passages in d which in identical or paraphrased form also appear in other docu-
ments. To solve this problem at web-scale, keywords representing d’s topics have
to be combined to web queries. The retrieved web documents can then be deliv-
ered to a text reuse detection system for an in-depth analysis. We focus on the
query formulation problem as the crucial first step in the detection process and
present a new query formulation strategy that achieves convincing results: com-
pared to a maximal termset query formulation strategy [10, 14], which is the most
sensible non-heuristic baseline, we save on average 70% of the queries in realis-
tic experiments. With respect to the candidate documents’ quality, our heuristic
retrieves documents that are, on average, more similar to the given document than
the results of previously published query formulation strategies [4, 8].

1 Introduction

The problem considered in this paper appears as an important sub-task of automatic text
reuse detection. A text reuse detection system aims at finding passages within a given
document which, in a similar form, are also contained in another document. The goal is
not only to identify simple one-to-one copies but also cases of paraphrased text reuse.
Note that plagiarism detection represents a special case whereas text reuse detection
addresses a broader spectrum that also covers problems like information spread analysis
(e.g., where are news stories reused?).

Usually, automatic detection systems find potential reuse passages via face-to-face
comparisons of the given document against a set of “promising” documents. While for
small document collections it is feasible to perform a complete comparison against ev-
ery document, this is obviously not possible when the collection is large. The idea then
is to compare only against documents that cover a topic similar to the given document,
with the rationale that such documents are more likely to be the source (or “sink”) of
text reuse. A straightforward approach to find documents on similar topics is to extract
keywords or longer components like head noun phrases from the given document and
to retrieve other documents also containing these keywords.

Our contribution to this problem is a strategy of how to query a web search en-
gine using the extracted keywords. However, we do not deal with the complete task of
? Extended version of an ECDL 2010 poster paper [10].
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text reuse detection. We tackle the essential pre-computation step that finds promising
candidate documents for the in-depth analysis (for which we in turn assume that state-
of-the-art text reuse or plagiarism detection techniques are used [4, 9, 13, 16]). We focus
on web querying to identify potential candidates since the web became the typical place
of text reuse. However, a detection system usually is not given arbitrary access to a web
search engine’s index; moreover it has incomplete or even no knowledge about the en-
gine’s underlying retrieval model, implementation details, and the like. A web search
engine appears as a black box and queries are not for free but entail costs—at the very
least some non-negligible amount of time is consumed, and monetary charges come
into play for larger contingents of queries.1

1.1 User over Ranking

The number of documents a detection system can consider for an in-depth text reuse
analysis is constrained by a processing capacity k, which in turn depends on the de-
sired answer time, the processing time per document, and machine usage cost. If the
entire set of extracted keywords (typically about 10) from a given document is submit-
ted as a single web query, this query will probably be overspecific (i.e., hardly returning
more than a handful of documents) and thus wasting processing capacity. On the other
hand, queries containing only few of the extracted keywords are likely to be underspe-
cific (i.e., having very long result lists) and discard valuable information: from overlong
result lists only a fraction, typically the top-ranked results, can be processed by the
detection system. Notice that such queries put the burden of selecting the most promis-
ing text reuse candidates on the search engine’s ranking algorithm; potential text reuse
cases that are not among the top results will be missed. Hence, a set of promising web
queries should avoid underspecificity and, combined, cover all extracted keywords in
order to ensure a high similarity to the given document’s topic. Altogether, we argue
that the probability to find potential text reuse cases by exploring k results becomes
maximum if the combined result list length of the set of promising queries is in the
order of magnitude of the processing capacity k of the detection system. This is an im-
plication of the recent User-over-Ranking hypothesis, which states that queries have a
higher probability of satisfying a user’s information need if they return about as many
results as the user can consider [17]. Figure 1 illustrates the outlined connections.

Under the User-over-Ranking hypothesis the treated query formulation sub-problem
of text reuse detection is defined as follows:

CAPACITY CONSTRAINED QUERY FORMULATION

Given: (1) Set W of keywords.
(2) Query interface for web search engine S.
(3) Upper bound k on the number of desired documents.

Task: Find a familyQ ⊆ 2W of queries together returning at most k documents,
while containing all keywords from W .

1 E.g., $0.40–$0.80 per 1000 Yahoo! BOSS queries, http://www.ysearchblog.com/
2011/02/08/latest-on-boss/ (accessed April 16th, 2011).
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Figure 1. Left: a query with few terms or many results is likely to be underspecific, queries with
many terms or few results tend to be overspecific. Right: under the User-over-Ranking hypothesis
a combined result list length of the detection system’s capacity k maximizes the probability of
finding potential text reuse cases [17].

1.2 Related Work

One of the earliest approaches on formulating queries respecting a bound on the number
of returned results is the maximal termset query formulation of Pôssas et al. [14]. We use
an adapted version of maximal termset query formulation as our baseline. With respect
to runtime, our new system clearly improves upon the maximal termset baseline while
retrieving basically the same candidate documents.

A recent paper by Bendersky and Croft also deals with the scenario of text reuse
detection on the web [4]. However, Bendersky and Croft’s problem setting is different
from ours: they focus on single sentences and not on complete documents as input, and
hence their querying strategy is quite elementary. Our setting is also more general in
another respect: the passages from the document for which a reuse analysis is requested
have not to be known a priori. Nevertheless, in our experiments we compare our query
formulation strategy to Bendersky and Croft’s querying approach.

In our setting it would be desirable to use the given document as a query itself
(“query by document”). Yang et al. [19] focus on such a scenario in the context of
analyzing blog posts. But, similar to us, they also try to derive a keyword query that
reflects the document’s (blog post’s) content. Their approach extracts keyphrases from
the document, but formulates only a single query from them. Since this would waste
capacity in our setting and since their approach of manually selecting the number of
“good” keywords for each document is not applicable in a fully automatic system, we
do to not include Yang et al.’s approach in the experimental comparison.

A more applicable setting which is also related to ours is Dasdan et al.’s work on
finding similar documents by using only a search engine interface [8]. Although Das-
dan et al. focus on a search engine coverage problem (resolve whether a search engine’s
index contains a given document or some variant of it), their approach of finding sim-
ilar documents using keyword interfaces is basically equivalent to our setting. Dasdan
et al. propose two querying strategies and experimentally show that their approaches
indeed find similar documents. In our experiments we also compare their strategies to
our heuristic.

A very promising idea for our setting would be to predict a given query’s perfor-
mance before submitting it to a search engine [6, 7, 11, 12]. However, the evaluation
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of the best performing predictors needs access to knowledge that is not available at
user site in a standard web search scenario. For example, the simplified query clarity
predictor [12] needs the total keyword frequencies for the whole corpus—web search
engines just return an estimation of the number of documents in the corpus that contain
the keyword. The query scope predictor [12] needs the number of documents in the
index—most web search providers stopped publishing it. Furthermore, there are stud-
ies suggesting to take care when interpreting the published evaluations of established
predictors [15] such that we decided not to use quality prediction in our approaches.

2 Notation and Basic Definitions

Starting point of the query formulation process is a set W = {w1, . . . , wn} of key-
words; allowing the wi to be longer components like head noun phrases makes no dif-
ference. Subsets Q ⊆W can be submitted as web queries, with the notion that phrases
are included in quotation marks. An engine’s reply to a query consists of the beginning
of an exhaustive, ranked list LQ of snippets and URLs of documents relevant forQ, and
an estimation `Q for the result list length |LQ|. The task of CAPACITY CONSTRAINED
QUERY FORMULATION is to find a family Q = {Q1, . . . , Qm} of queries Qi ⊆ W
having the following properties:

1. Q is simple in the sense that Qi 6⊆ Qj for any Qi, Qj ∈ Q, with i 6= j. This avoids
redundancy in the queries and the results.

2. Combined,Q’s queries don’t return more than k results. This respects the detection
system’s processing capacity.

3. Combined, Q’s queries cover W ’s keywords if possible: ideally
⋃

Q∈QQ = W .
This ensures that the resulting documents cover all the topics contained in W .

With respect to the capacity k, we introduce a per-query upper bound `max with
the notion that a query Q is promising iff `Q ≤ `max (i.e., it returns at most `max

results). How exactly this upper bound is derived will be explained in Section 3. A per-
query lower bound `min serves convenience purposes of ruling out queries with very
few results (e.g., `min = 1 means that queries returning an empty result list are not
tolerated). Applying both bounds, a query Q ∈ Q has to satisfy `min ≤ `Q ≤ `max.
Adopting notation from Bar-Yossef and Gurevich [2], we say that for `Q < `min the
query Q is underflowing, whereas for `Q > `max it is overflowing. Queries that are
neither under- nor overflowing are valid. A valid query Q is minimal iff dropping some
keyword from Q results in an overflowing query.

As a solution to CAPACITY CONSTRAINED QUERY FORMULATION we suggest
the familyQlo of all minimal valid queries for an appropriate value of `max. Obviously,
Qlo is simple and depends on the value of `max. Our approach will adaptively determine
values for `max, derive the corresponding Qlo and, according to the combined number
of Qlo’s results (more or less than k), output this Qlo or re-iterate by setting `max to a
more appropriate value. Hence, an appropriate Qlo respects the first two constraints of
being simple and not returning more than k results.

That Qlo also is a good choice with respect to the third constraint of covering as
many keywords of W as possible can be seen as follows. We say that a query Q covers
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all its keywords. Analogously, a family Q of queries covers all keywords in
⋃

Q∈QQ.
Note that there are situations where it is not possible to cover W with a family of valid
queries (e.g., when a single keyword itself is underflowing). A keyword w ∈ W is
coverable iff there is a valid query Q ⊆W with w ∈ Q.

Lemma 1. Let Q be a family of valid queries covering the coverable keywords from a
keyword setW for given `min and `max. For everyQ ∈ Q we have: there is a sub-family
Q′

lo ⊆ Qlo such that Q =
⋃

Q′∈Q′
lo
Q′.

Proof. Assume we have Q ∈ Q but Q 6=
⋃

Q′∈Q′
lo
Q′ for any Q′

lo ⊆ Qlo. Since Q is a
family of valid queries, Q must be valid. Assume that Q contains only coverable key-
words from W . Now consider the family Q′ of the 2|Q| − 1 subqueries of Q excluding
the empty query. Let Q′′ ⊆ Q′ be the sub-family of valid queries. Note that Q′′ is not
empty since it contains Q. From Q′′ we remove all queries that are proper supersets of
queries in Q′′ and obtain the family Q̃ of minimal valid subqueries of Q. Note that Q̃
is not empty since Q′′ is not empty and that Q =

⋃
Q̃∈Q̃ Q̃. Since Q̃ contains minimal

valid queries only, we have Q̃ ⊆ Qlo; a contradiction to our assumption. Hence, Q
contains a non-coverable keyword w ∈ W . Since w is not coverable by a valid query,
Q cannot be valid. A contradiction again. ut

Corollary 1. For a given set W of keywords and given `min and `max, the respective
family Qlo covers the coverable keywords. Furthermore, Qlo contains the with respect
to set inclusion minimal queries covering the coverable keywords.

In the process of finding an appropriateQlo on input W , we count the overall num-
ber cost of queries that are submitted to the search engine. The underlying assumption
is that a system is faster when it submits less queries.

3 Baseline: Maximal Termset Query Formulation

As a baseline query formulation process, we adapt the maximal termset approach by
Pôssas et al. [14]. We refrain from using GENMAX as a subroutine to enlarge promising
keyword subsets (as proposed in [14]) but choose the classic Apriori algorithm instead,
which also comes from the field of frequent itemset mining [1]. Apriori is considered
as one of the top 10 data mining algorithms [18]; it traverses the search space of all
possible queries in a level-wise manner. A basic pseudo-code listing of Apriori for fixed
lower and upper bounds `min and `max is given as Algorithm 1. How the algorithm
handles the adaptive adjustment to detect a reasonable `max is explained below, after
introducing the basic Apriori framework.

Apriori first checks which of the initial keywords itself are overflowing or valid. The
overflowing keywords form the first level of candidate queries (variable C1 in line 2)
that can be further expanded. A second pre-check ensures that these remaining key-
words from the first candidate level altogether are not overflowing (line 3). Otherwise
no valid queries can be formulated from them. After the pre-checks, Apriori combines
candidate queries (lines 5 to 11) in a level-wise manner. It is straightforward to show
that Algorithm 1 finally outputs the desired Qlo for given `min and `max; just notice
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Algorithm 1 The Apriori algorithm for query formulation
Input: a set W of keywords, `min, and `max

Output: the familyQlo

1: Q ← {{w} : w ∈W and {w} is valid}
2: C1 ← {{w} : w ∈W and {w} overflows}
3: if

⋃
{w}∈C1

{w} overflows then stop and outputQ

4: i← 1
5: while Ci 6= ∅ do
6: for all Q,Q′ ∈ Ci, |Q ∩Q′| = i− 1 do
7: Qcand ← Q ∪Q′

8: if Qcand \ {w} ∈ Ci for all w ∈ Qcand then
9: if Qcand overflows then Ci+1 ← Ci+1 ∪ {Qcand}

10: if Qcand is valid thenQ ← Q∪ {Qcand}
11: i← i+ 1

12: outputQ

that whenever a query becomes valid it is directly added to the output (thus being min-
imal) and that, due to the exhaustive search character, no minimal valid query will be
missed. A query’s validity (lines 1, 2, 3, 9, and 10) is checked via submission to the
web search engine. We use the engine’s estimations `Q, although they often overesti-
mate the correct result list lengths. However, they usually respect monotony (queries
containing additional keywords have smaller `-value) and the shorter the result list, the
more accurate the estimations.

We adopt Algorithm 1 as our baseline—and even tighten this baseline by applying
the following Lemma as a means to reduce the number of web queries Apriori submits.

Lemma 2. Let Q1, Q2, Q3 ⊆ W be queries. Assuming the `-estimations to be reason-
able we have `Q1∪Q2∪Q3 ≥ `Q1∪Q2 + `Q1∪Q3 − `Q1 .

Proof. `Q1∪Q2∪Q3 = |LQ1∪Q2 ∩ LQ1∪Q3 | = |LQ1∪Q2 \ (LQ1∪Q2 \ LQ1∪Q3)|
≥ |LQ1∪Q2 \ (LQ1 \ LQ1∪Q3)| ≥ |LQ1∪Q2 | − |LQ1 \ LQ1∪Q3 |
= |LQ1∪Q2 | − (|LQ1 | − |LQ1∪Q3 |) = `Q1∪Q2 + `Q1∪Q3 − `Q1 ut

Let Q and Q′ be the queries that are merged to get Qcand (line 7 of Apriori).
Lemma 2 then is applied as follows: Q1 ∪Q2 = Q, Q1 ∪Q3 = Q′, and Q1 = Q∩Q′.
The rationale is: if the Lemma 2 estimation `Qcand

≥ `Q + `Q′ − `Q∩Q′ is larger than
`max, we do not have to submitQcand to an engine but can add it to the current candidate
set Ci+1 immediately.

A remaining problem is to adaptively set `max. The algorithm starts with `max = k,
computes Qlo using Apriori and checks the number of results returned by Qlo. Usually
this will be too many since Qlo contains more than one query. The algorithm then sets
`max = b`max/2c and computes the correspondingQlo. A naïve approach would restart
the entire Apriori computation from scratch and repeat all steps from the previous run,
resulting in a bad overall practical performance. However, a nice feature of Apriori
is that it can be easily modified to continue computation on the reached state of the
previous `max setting such that re-computations and re-submissions of web queries are
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avoided. If at one intermediate step the algorithm notices that the current Qlo returns
not more but approximately k results (we set the bound to at least 90%), it stops and
outputs the current Qlo. If eventually too few results are returned, the algorithm sets
`max = b3/2 · `maxc. Altogether, this implements a kind of binary search for a good
value of `max. Note that whenever the algorithm enlarges `max for the first time, all of
the currently needed queries have already been examined during the previous step such
that no further queries have to be submitted.

4 Heuristic Search Strategy

Preliminary tests revealed that the savings due to Lemma 2 in the Apriori algorithm
are often negligible: the sum `Q + `Q′ usually is too small compared to `Q∩Q′ and
hence the query Qcand = Q∪Q′ has to be submitted. Nevertheless, the performance of
the baseline Apriori framework can be significantly improved. We propose a heuristic
that mimics Apriori’s workflow in the second of the following two phases. The first
phase of our heuristic can be seen as a pre-processing step although it submits exactly
the same queries as Apriori does on the first two levels (while i < 2). However, for
a keyword set W co-occurrence information obtained from the estimations of the first
and second Apriori levels are stored in a matrix M in form of the—here called—yield
factors γ(w,w′) = `{w,w′}/`{w}. A yield factor γ(w,w′) multiplied by `{w} gives the
yield of web results when the keyword w′ is added to the query {w}. Note that the yield
factors are not symmetric (i.e., usually γ(w′, w) 6= γ(w,w′)) such that M also is not
symmetric.

The second phase of our heuristic then starts an Apriori-like candidate generation on
the third level (queries containing three keywords). Hence, our technique does not save
queries on the first two levels compared to our baseline Algorithm 1 but from Level 3
on the heuristic uses the yield factors to internally estimate a query and only submit it
as a web query if necessary. Assume we are on some level i ≥ 3 and that all processed
queries Q from lower levels have a stored value estQ, indicating an estimation of the
length of their result lists, and a value ageQ, indicating the elapsed Apriori levels from
the last time a subset of Q was submitted as a web query. Hence, for ageQ = 0 we
have estQ = `Q. Let the current candidate query Qcand be obtained by merging Q
and Q′ (line 7 of Apriori). Before submitting a web query, we now internally compute
estQcand

as follows. Let ageQ ≤ ageQ′ and Q′ \ Q = {w′}. We set estQcand
=

estQ ·avg{γ(w,w′) : w ∈ Q}, where avg denotes the mean value. SubmittingQcand as
a web query and storing the engine’s `Qcand

as estQcand
is done iff estQcand

< adj ·`max

for a given adjustment factor adj . If however estQcand
≥ adj · `max we do not submit

a web query but store the internally derived estQcand
and set ageQcand

= ageQ + 1.
The rationale for using the factor adj in the above inequalities is as follows. An

experimental in-depth analysis revealed that `Q ≥ estQ holds for most queries Q,
though there are rare cases where Q is valid or underflowing while estQ > `max (i.e.,
even the tendency of the internal estimation is wrong). For this reason, the informed
heuristic does not blindly follow the internal estimations but only trusts them when
estQcand

≥ adj · `max for an adjustment factor adj . The rationale is that as long as the
internal estimations are sufficiently above the validity bound `max, the probability for
a wrong validity check based on the internal estimation is negligible. Only when the
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internal estimation estQcand
is close to or below the validity bound `max, the current

query is submitted to the search engine in order to “adjust” the internal estimation with
the search engine’s `Qcand

. Larger values of adj enlarge the adjustment range and thus
guarantee to catch more of the rare cases where Q is valid but estQ > `max. However,
this comes with a larger amount of submitted web queries. Moreover, only huge values
of adj can guarantee the heuristic to return the same family Qlo as the baseline. We
compare different realistic settings of adj , and the fine-tuning shows good conformity
of the output with the baseline’s Qlo while saving lots of queries (cf. Section 5).

5 Experimental Analysis

In a first experiment, we compare the uninformed Apriori baseline to our yield factor
informed heuristic with respect to the number of submitted queries. In a second experi-
ment, we then compare our heuristic to Bendersky and Croft’s and Dasdan et al.’s query
formulation strategies [4, 8] with respect to the quality of the retrieved documents. The
experimental setting for both experiments is inspired by the observation that scientific
publications often follow an evolutionary process from a technical report / workshop /
poster / or short paper level to a full conference paper and sometimes to a journal pa-
per. Although the different versions of the same publication have a potentially different
and more complete presentation at more mature levels, they still deal with the same
topic—such that we assume a significant amount of text reuse among them. To model
the described scenario, we crawled computer science papers from major conferences
and journals available on the web and tried to find a previous version for each. The
document pairs were manually checked to ensure that they really are different versions
of the same paper; we obtain 257 such verified pairs, all written in English. We verified
that both versions are retrievable using the Bing API that we use in our experiments.

5.1 Number of Submitted Queries

For each of the 257 document pairs we extract a number of keywords from the more
mature paper (e.g., conference vs. workshop) and then formulate queries using these
keywords. For the keyword extraction we use an implementation of the head noun ex-
tractor [3]. We set `min = 1 to foreclose queries with no results. Furthermore, we
set k = 1000 since current state-of-the-art automatic plagiarism detection techniques
against a collection of 1000 potential source documents run in about 10 minutes [9],
which we consider as a reasonable answer time for most text reuse detection scenarios.
For each keyword set extracted from a document of our test collection, we run the Apri-
ori baseline and our heuristic with the first 4, 5, . . . , 10 extracted keywords against the
Bing API during November 07–20, 2010.

Table 1 contains the results of this experiment. Different settings of the heuristic’s
adjustment factor correspond to different rows. Note that especially for small numbers
of extracted keywords even the complete query containing all keywords is often over-
flowing. Because Qlo cannot be computed in such cases and the first 1000 results of
the complete query should be used instead, we filter out the corresponding documents
and derive the statistics just for the remaining ones. For those inputs where the compu-
tation of Qlo is possible, all four approaches always find a Qlo. We report the average
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Table 1. Results of the number-of-queries experiment.

Number of extracted keywords
3 4 5 6 7 8 9 10

Number of documents where
Complete query overflows 238 207 177 146 124 102 93 81
Qlo computation possible 19 50 80 111 133 155 164 176

Average cost (number of submitted queries)
Heuristic, adj = 1 4.91 6.69 9.35 13.30 20.20 32.58 53.13 95.86
Heuristic, adj = 3 5.81 7.88 10.85 16.48 26.16 43.44 70.77 125.56
Heuristic, adj = 5 5.91 8.73 13.55 20.41 33.30 53.13 87.70 159.16
Uninformed baseline 6.09 10.65 19.08 34.60 61.66 106.19 178.98 302.87

Average cost ratio (basis: uninformed baseline)
Heuristic, adj = 1 0.80 0.63 0.49 0.38 0.33 0.31 0.30 0.32
Heuristic, adj = 3 0.95 0.74 0.57 0.48 0.42 0.41 0.40 0.41
Heuristic, adj = 5 0.97 0.82 0.71 0.59 0.54 0.50 0.49 0.53

Average |Qlo|
Heuristic, adj = 1 1.33 1.85 2.69 3.76 5.25 7.44 10.65 14.72
Heuristic, adj = 3 1.32 1.84 2.69 3.75 5.28 7.50 10.88 14.85
Heuristic, adj = 5 1.33 1.85 2.72 3.83 5.38 7.61 11.01 14.97
Uninformed baseline 1.33 1.87 2.75 3.88 5.49 7.78 11.12 15.18

Average number of retrievable result URLs (without duplicates)
Heuristic, adj = 1 71 104 157 221 315 428 555 679
Heuristic, adj = 3 68 101 158 223 314 422 553 682
Heuristic, adj = 5 70 99 161 228 325 439 562 686
Uninformed baseline 69 98 162 231 328 445 569 690

Average ratio of common result URLs with baseline
Heuristic, adj = 1 0.95 0.92 0.92 0.93 0.93 0.94 0.94 0.95
Heuristic, adj = 3 0.92 0.97 0.98 0.98 0.97 0.98 0.95 0.97
Heuristic, adj = 5 0.98 0.98 0.99 0.99 0.98 0.99 0.98 0.98

number cost of web queries the approaches submitted to obtain the output Qlo and the
average ratio of submitted queries compared to the baseline (smaller cost and smaller
ratio indicate better approaches). Note that using very few keywords results in fewer
retrievable documents using the Qlo queries. We also observed that we needed at least
6 keywords to guarantee the retrieval of the original document and its previous version
among Qlo’s web results. Hence, we suggest to use about 10 extracted keywords to
obtain a meaningful set of documents from our approaches.

With respect to the runtime, the possible savings in the number of submitted queries
are substantial compared to the baseline. For 7 or more keywords our heuristics save
70% of the queries. For all approaches the internal computation time to formulate the
queries is never larger than several hundred milliseconds, while a typical web query
against the API takes about 300ms–550ms. Hence, the fastest algorithm always is the
one that submits the fewest queries. With respect to the quality of the heuristics’ Qlo,
we compare the average size of the generatedQlo and the ratio of retrieved result URLs
common with the baseline’s results. The small differences are due to some rare overesti-
mations using the internal expectations that hide some of the queries the baseline finds.
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It can be observed that larger values of the adjustment factor adj are able to compensate
for more of these overestimations. Additional spot checks show that the difference of
the baseline’s results to the heuristic with adj = 1 is rather small, such that for larger
keyword sets the by far better running time should be favored. For keyword sets of
size 10 the fastest heuristic with adj = 1 computes Qlo in about 38 seconds compared
to 50 seconds for adj = 3, 64 seconds for adj = 5, and about 2 minutes for the base-
line. This is a saving of 70%. Hence, a near real time text reuse detection service can
safely extract 10 keywords.

5.2 Candidate Document Quality

The first experiment shows the heuristic with adj = 1 to outperform the other ap-
proaches with respect to runtime (while retrieving basically the same set of documents).
On the same corpus, we now compare this variant to other previously published query
formulation strategies with respect to the quality of the retrieved documents. Important
competitors in this regard are Bendersky and Croft’s and Dasdan et al.’s query formu-
lation approaches [4, 8].

Bendersky and Croft submit 2n − 1 queries for a set of n keywords [4]; the first
n queries are submitted to obtain the search engine estimations `w for each keyword w.
The keywords are ordered by descending `-value and submitted as a single query con-
taining all n keywords. The approach then iteratively drops the last keyword and sub-
mits the resulting queries until 1000 documents are retrieved.

Dasdan et al. describe two approaches [8] that are slightly different right from the
keyword extraction. Their first approach (LFT) extracts from a document the terms that
are least frequent on the web, using a dictionary with web frequencies like 1-grams
from the Google 5-gram corpus [5]. The strategy submits 10 queries: the first one con-
tains the 10 least frequent keywords, the second one contains the next 10 least frequent
keywords, and so forth. Dasdan et al.’s second approach (RST) builds 10 queries each of
which containing a random sequence of 10 words from the given document. Note that
this approach aims to their original problem setting of search engine coverage analysis,
where the task is to find near-duplicates of a document in a search engine index. How-
ever, such strategies of using a random string from a document are also often suggested
as an “intelligent” strategy to manually detect plagiarism. Hence, we decided to employ
RST in our candidate document quality experiment. We adjust LFT and RST to only
retrieve the top 100 results of each of the constructed queries to ensure for k = 1000.

Bendersky and Croft’s approach uses the same 10 extracted keywords as our heuris-
tic. Note that for the 81 documents from our collection, where the 10 keywords as one
query already overflow, our heuristic and Bendersky and Croft’s approach retrieve the
same result documents, since both use the first 1000 documents from the all-keywords
query. To detect the keywords for LFT, we indexed the Google 1-grams in a big hash
table and for our 257 documents in a pre-processing detected the 100 keywords with
lowest frequencies. As for the RST approach, a pre-processing sampled 10 random se-
quences of 10 consecutive words from the documents. Our heuristic obviously submits
more queries (65.96 on average: just one query for the 81 documents where Qlo is not
possible and an average of 95.86 for the other 176 documents) than Bendersky and
Croft’s approach (10.45 queries on average; note that 19 is the worst case but often
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Table 2. Average cosine similarity (tf weights) of the retrieved documents to the given document.

Measure Approach
Our heuristic [4] LFT RST

10 most similar documents 0.55 0.55 0.56 0.56
100 most similar documents 0.39 0.37 0.35 0.29

all retrieved documents 0.29 0.25 0.22 0.21

1000 results are retrieved earlier, for 81 documents even with the first query) or LFT
and RST (10 queries). With respect to the quality of the retrieved documents, we first
check whether the different approaches have the two paper versions among their results.
For our heuristic, for Bendersky and Croft’s approach as well as for LFT this is always
the case. However, RST missed the previous version 8 times. This is probably due to
the fact that random sequences help to find nearly-identical versions of a document but
that scientists also often rewrite a paper in different versions. Since RST was primarily
developed to find near-duplicates, the few misses are no surprise.

The aim of our approach is not only to retrieve the documents from our corpus but
also to retrieve similar documents as good candidates: the assumption for text reuse
detection is that more similar documents are more likely to contain the assumed text
reuse. Hence, we downloaded the results the different approaches retrieve and com-
pare the approaches with respect to similarity of the retrieved documents. As similarity
measure we use cosine similarity with tf weights. Table 2 contains the results of this
experiment. With respect to the retrieved 10 most similar documents, all approaches
are somehow on par. However, this behavior changes significantly when one checks the
average similarity for the 100 most similar or even all retrieved documents: then our ap-
proach outperforms the other approaches. The gap to Bendersky and Croft’s approach
is only due to the given documents for which Qlo could be computed, since on the
other documents our heuristic and Bendersky and Croft’s approach return exactly the
same documents (the top 1000 results of the query containing all keywords). The gap
to LFT and RST is probably due to the slightly different use case as LFT and RST were
mainly designed to retrieve a few near-duplicate instances of a given document. That
goal is achieved as shown by Dasdan et al.’s experiments [8] and the slightly worse
performance in our experiments is probably mainly due to the different scenario that
our experiments address.

6 Conclusion and Outlook
We developed a new strategy to formulate promising queries from a given set of key-
words. In our scenario a text reuse detection system “plays” against a retrieval system
(the web search engine) in order to find promising queries that help to detect text reuse
in or from a given document. Our formalization forms the ground for both to define the
problem CAPACITY CONSTRAINED QUERY FORMULATION and to develop a heuris-
tic search strategy that tackles a query-cost-oriented optimization variant. The analysis
of our heuristic shows (1) that it drastically outperforms a maximal termset query for-
mulation baseline system, and (2) that it finds candidate documents which are more
similar to the original document than other approaches for related problems. If, how-
ever, a method is needed that returns few very similar web results for a given document
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(like it is the case in Dasdan et al.’s scenario), using our heuristic would probably be an
overhead since it requires more queries. But, if the aim is to retrieve a larger collection
of documents all of which are similar to a given document (like it is the case in the text
reuse detection scenario), the rather small 20 second overhead of our method can be
regarded as a worthwhile investment for a better average similarity. A straightforward
extension of the above similarity experiment is an analysis of the retrieved documents
with state-of-the-art text reuse or plagiarism detection techniques [4, 9, 13, 16], and to
compare the candidate document sets with respect to the number of found text reuse
cases (and not just the similarity). However, this is beyond the scope of this paper: hav-
ing shown the potential of our heuristic for the retrieval step, we leave the examination
of text reuse cases as an interesting task for future work.
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