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ABSTRACT

We consider the problem of re-ranking the top-k£ documents
returned by a retrieval system given some search query. This
setting is common to learning-to-rank scenarios, and it is
often solved with machine learning and feature weighting
based on user preferences such as clicks, dwell times, etc. In
this paper, we combine the learning-to-rank paradigm with
the recent developments on axioms for information retrieval.
In particular, we suggest to re-rank the top-k£ documents of a
retrieval system using carefully chosen axiom combinations.

In recent years, research on axioms for information re-
trieval has focused on identifying reasonable constraints that
retrieval systems should fulfill. Researchers have analyzed a
wide range of standard retrieval models for conformance to
the proposed axioms and, at times, suggested certain adjust-
ments to the models. We take up this axiomatic view—but,
instead of adjusting the retrieval models themselves, we sug-
gest the following innovation: to adopt the learning-to-rank
idea and to re-rank the top-k results directly using promis-
ing axiom combinations. This way, we can turn every rea-
sonable basic retrieval model into an axiom-based retrieval
model. In large-scale experiments on the ClueWeb corpora,
we identify promising axiom combinations for a variety of
retrieval models. Our experiments show that for most of
these models our axiom-based re-ranking significantly im-
proves the original retrieval performance.

1. INTRODUCTION

Information retrieval research that deals with axioms for
ranking quality plays a rather “theoretical” role in the com-
munity today. Most of the axiomatic research focuses on the
question of whether the result rankings of retrieval models
(e.g., BM25 or language models) are in accordance with spe-
cific reasonable axioms that formalize ranking preferences.
E.g., from two documents of the same length, the docu-
ment that contains the query terms more often should be
favored. Some of these axiomatic studies also suggest subtle
changes to the original retrieval models to better conform
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with specific axioms and then demonstrate retrieval perfor-
mance improvements based on these changes. However, up
to now, no “operationalized” axiomatic retrieval model has
been proposed that by construction conforms with as many
axioms as possible and that hence could lead to substantial
retrieval performance gains.

This observation leads to the main research question of
our paper: Is it possible—and how—to seamlessly integrate
axioms for ranking preferences in order to improve the re-
sults of a given basis retrieval model? Our proposed solution
is inspired by the learning-to-rank framework: Given some
basis retrieval model, a carefully chosen axiom combination
re-ranks the top-k results and produces an axioms-compliant
output. In this regard we consider as many of the published
axioms as possible and also suggest several newly developed
term proximity axioms.

Most axioms in the information retrieval literature have a
similar basic structure: for a pair or a triple of documents,
ranking preferences are deduced from standard features such
as document length, term frequency, or semantic similarity.
When such an axiom is applied to all pairs or triples of
documents in a retrieval model’s result list, the matrix of
the inferred preferences may induce a result re-ranking. For
example, consider a situation with an axiom A and three ini-
tially retrieved documents dy, dz2, and ds. After applying ax-
iom A to all document pairs, one might end up with the pref-
erences da >4 di, do >4 d3, and di >4 ds, where d; >4 d;
means that document d; should be ranked above d; accord-
ing to axiom A. Only the ranking [d2, d1, d3] matches these
preferences and will thus become the re-ranked document
list. However, in the general case there are many axioms
(typically of different importance) and contradictory rank
preferences will become likely. As a solution and a way
of combining the weighted axioms’ matrices of rank prefer-
ences, we apply fusion algorithms that were developed in the
field of computational social choice.

The effectiveness of our axiom-based retrieval system is
studied in a large-scale evaluation with 17 basis retrieval
models in the setting of the TREC Web tracks 2009-2014.
As a result, the performance of almost all basis retrieval
models is improved via axiomatic result re-ranking. It is
thus possible to improve existing retrieval models in an “ex-
post manner”; considering the latest insights from the re-
search on retrieval axioms. The main contributions of our
paper are: (1) We show how combinations of known axioms
can be incorporated into a learning-to-rank inspired result
re-ranking for any given basis retrieval model. The result-
ing axiom-based retrieval systems are shown to significantly
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increase retrieval performance for many standard retrieval
models. (2) We propose axioms to model term proximity
preferences and show their effect in the axiomatic re-ranking
retrieval model.

2. RELATED WORK

We first briefly review the recent developments on ax-
iomatic ideas for information retrieval. More detailed de-
scriptions of the used axioms follow in Section 3. Further-
more, we give some background on the general learning-to-
rank setting since it inspired our approach. The rank aggre-
gation method borrowed from computational social choice
is discussed in the description of our approach in Section 3.

2.1 Axioms for Information Retrieval

The earliest studies of axioms in the context of infor-
mation retrieval systems date back more than 20 years
now [30, 31, 4]. One of the first published ideas that possi-
bly could be considered as “axiomatic” is a retrieval system
based on production rules from artificial intelligence by Mc-
Cune et al. [30], which led to some improvements over a
simple Boolean model. Another approach using more for-
mal rules (again, these could be viewed as axioms) is pre-
sented by Meghini et al. [31], who use terminological logics
for building a retrieval model. The first real reference to
a notion of axioms for information retrieval is contained in
the aboutness study of Bruza and Huibers [4]. Actually, the
authors do not propose a retrieval model but rather a way
of expressing what should be expected from a good result
ranking. It took a while but, especially in the last decade,
the interest in this direction of using axioms to describe
what a good ranking looks like increased substantially. Hui
Fang’s web page gives a good overview of the existing liter-
ature and axioms.’ The goal of most of the recent studies is
to propose new reasonable axioms and to evaluate how well
existing retrieval models match the respective assumptions.
While they also propose improvements for retrieval models,
typically only a handful of specific axioms are considered.
We propose a way of incorporating all of the known axioms
in one retrieval system with the possibility of adding new
axioms in the future.

We give a brief overview of the existing axiomatic litera-
ture divided by the goal of the axioms: term frequency and
lower bounds on it, document length, query aspects, seman-
tic similarity, term proximity, and other axiomatic ideas that
do not fit any of these categories. The axioms that are part
of our re-ranking scheme will be explained in more detail in
Section 3.

Term frequency.

Term frequency axioms follow the idea that documents
containing query terms more often should be ranked higher.
Fang et al. define several such axioms (TFC1-TFC3 and
TDC) [17, 19, 18] and experimentally show that these ax-
ioms should be satisfied in order to produce better rankings.
We employ all of these axioms in our re-ranking scheme.
Na et al. [32] propose some specific axiomatic term frequency
constraints tailored to language modeling (LM) retrieval ap-
proaches. Since their axioms cannot be easily rephrased to
be generally applicable to non-LLM retrieval, we decided not
to include these axioms.

"http:/ /www.eecis.udel.edu/~hfang/AX. html

Document length.

Besides the term frequency axioms, Fang et al. also define
document length axioms (LNC1, LNC2 and TF-LNC) [17]
with the basic idea that in case of same term frequencies
shorter documents should be ranked higher. We employ all
of these axioms in our re-ranking scheme. A query-based
document length constraint (QLNC) proposed by Cummins
and O’Riordan [13] can not easily be reformulated to in-
duce rank preferences so that we do not include it in our
re-ranking scheme.

Lower bounds on term frequency.

Combining term frequency and document length, the idea
of the lower bound axioms is that long documents should not
be penalized too much. Lv and Zhai propose two respective
axioms (LB1 and LB2) [28, 29]. We use adapted versions in
our re-ranking scheme.

Query aspects.
Zheng and Fang [42], and Wu and Fang [39] propose ax-

ioms (REG and AND) that aim at ranking documents higher
that match more query terms or aspects. Gollapudi and
Sharma [22] developed axioms (DIV) with a similar purpose,
modeling the diversity of a result set as a whole. Interest-
ingly, they show that no diversification function can satisfy
all the axioms simultaneously. However, these query aspect
related axioms in their original formalizations do not induce
rank preferences such that we use adapted versions in our
re-ranking scheme.

Semantic similarity.

Often it can be very important not to rely on exact term
matching between queries and documents but to also take
documents into account that contain semantically similar
terms. Yang and Fang propose five axioms in this regard
(STMC1-STMC3, TSSC1, TSSC2) [20], which were later
shown beneficial also in a query expansion setting [16]. We
only use STMC1 and STMC2 in our re-ranking scheme since
STMC3, TSSC1, and TSSC2 can not be restated to induce
rank preferences.

Term proximity.

Term proximity axioms aim at describing the importance
of query terms appearing close to each other in result docu-
ments (e.g., phrases). Tao and Zhai [37] introduce several re-
spective axioms (DIST1-DIST5)—but rather with the goal
of improving a retrieval model’s proximity feature than to
induce rank preferences. Since their axioms do not induce
rank preferences, we propose five new proximity axioms as
one of our contributions (cf. Section 3).

Other axiom ideas.

There is a wide range of other axiomatic studies that do
not fit the above groups. Many of these are not helpful in our
setting since either the axioms have a completely unrelated
purpose (e.g., axioms for evaluation [3, 5]) or the axioms
do not induce rank preferences by nature. An exception
is Altman and Tennenholtz’ study of properties implied by
graph-theoretic axioms for link graphs [2]. They show that
their axioms are satisfied by the PageRank algorithm but the
axioms do not induce any rank preferences. We include a
modified PageRank-based axiom as one of our contributions.
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Cummins and O’Riordan [11, 12| analyze axioms for
learned ranking functions, but since none of the basis re-
trieval models we will use is machine-learning-based, the re-
spective axioms would not help. Clinchant et al. [9, 10] de-
scribe axioms for pseudo-relevance feedback models (PRF)
that are also not applicable in our setting since we do not
employ PRF methods. Gerani et al. [21] propose axioms for
combining scores in a multi-criteria relevance approach [21]
that also do not fit the basis retrieval models we will em-
ploy. Zhang et al. [41] present an axiomatic framework for
user-rating based ranking of items in Web 2.0 applications,
but since our ad-hoc retrieval task is different, their axioms
could not be applied. Karimzadehgan and Zhai [24] and
Rahimi et al. [35] perform axiomatic analysis of translation
language models in order to gain insights about how to op-
timize the estimation of translation probabilities; again, the
purpose is different to our setting such that we do not in-
clude these axioms. Ding and Wang [14] show how axioms
covering term dependency can be integrated into language-
model-based retrieval approaches, but since their axioms do
not induce preference lists and are not applicable to the non-
LM approaches among our basis retrieval models, we do not
include these axioms in our re-ranking scheme.

2.2 Learning to Rank

Our axiomatic re-ranking framework follows ideas devel-
oped in the learning-to-rank domain. There, the goal is to
rank documents based on machine learning algorithms [27].
In general, three different approaches can be distinguished:
pointwise, pairwise, and listwise ranking. In the pointwise
approach, machine learning methods are used for each doc-
ument to predict the rank based on document-individual
feature values. The pairwise approach instead uses pairs
of documents to conclude rank preferences for each pair.
The listwise approach does not learn a ranking function for
individual documents or pairs but processes entire result
lists. Independent of the employed learning approach, most
learning-to-rank systems are built on top of a basis retrieval
model: An initial document set typically consisting of the
basis model’s top-k results is retrieved and then re-ranked,
using the learned ranking method. In our system, we will
follow this paradigm and employ a mixture of the pairwise
and the listwise approach since the used axioms yield pair-
wise rank preferences, but the optimization criterion mea-
sures the performance over a range of result lists of different
queries used for training—an approach inspired by a study
of Cao et al. [6].

There are many directions for improving rankings in a
learning-to-rank style. For example search engine logs pro-
vide a lot of implicit information that can be used to inform
the learning process. Radlinski and Joachims [34] describe
a learning-to-rank system that exploits click-through data
in such a way. Since we do not have huge logs available
for training, we stick to explicit feedback from the TREC
relevance judgments for training. At first sight this may ap-
pear related to an approach of Veloso et al. [38] who use
data mining techniques to learn association rules based on
relevance judgments. However, instead of learning associa-
tion rules, we take the set of axioms as given and learn only
their importance by inferring an aggregation function. Our
idea of training different axiomatic rankers while optimizing
the target performance measure of nDCG @10 is inspired by

the AdaRank framework [40] that also directly optimizes the
performance measure instead of classification errors.

3. AXIOMATIC RE-RANKING

We put axiomatic re-ranking to work within three steps.
First, an initial search is done with some basis retrieval
model; the returned top-k results are used as re-ranking
candidates (in our experiments we set k = 50). Recall that
our approach is not restricted to a certain retrieval model—a
fact which is later demonstrated in the experimental eval-
uation. Second, each axiom is evaluated regarding the re-
trieved documents, and the resulting pairwise rank prefer-
ences are stored as a matrix. Using a machine learning al-
gorithm on a training set of document pairs with known
relevance judgments, we infer an aggregation function to
combine multiple axiom preferences into a joint preference
matrix. Third, on the resulting matrix a rank aggregation
is applied that utilizes ideas from the field of computational
social choice. In particular, we derive the final re-ranked
results by employing the KwikSort algorithm [1] to solve
the Kemeny rank aggregation problem [25] on the sum ma-
trix. We argue that the training should yield different ax-
iom aggregation functions for different basis retrieval mod-
els. Hence, when applying axiomatic re-ranking given some
basis retrieval model’s results, we consult the correspond-
ing learned aggregation function. The general setup of our
approach is illustrated in Figure 1.

In the remainder of this section we explain which axioms
from the axiomatic IR literature we use and the sometimes
necessary modifications. We also present our newly devel-
oped term proximity axioms, and detail the employed rank
aggregation method and the axiom aggregation scheme.

3.1 Requirements on Axioms

We analyzed the literature on published retrieval model
axioms and carefully selected those that can be restated to
induce rank preferences for result lists. In this regard we de-
cided to restrict to axioms that formalize rank preferences
on pairs of documents—reflecting the pairwise approach to
learning to rank. From its syntax, an axiom A in our frame-
work is formulated as a triple:

A = (precondition, filter, conclusion),

where precondition is any evaluable condition, filter is a
more specific filter condition, and conclusion is a rank pref-
erence d; >4 d; (semantics: document d; should be ranked
above d; according to A). For each axiom A and for all
pairs of documents these rank preferences are stored in a
matrix Ma:

L 1 ifd; >a dj,
Mali, 31 = {O otherwise.

Note that, at least theoretically, the application of an ax-
iom requires the iteration over all pairs of candidate doc-
uments to check precondition and filter to infer the rank
preferences. In this paper, however, we do not focus on the
practical efficiency of axiomatic re-ranking but demonstrate
its effectiveness. Further tuning the efficiency of the ax-
iomatic re-ranking approach will be an interesting task for
future research given the promising experimental improve-
ments of retrieval quality we achieve (cf. Section 4).
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Figure 1: Illustration of our axiomatic result re-ranking approach. (1) Initial result set construction of size k
using a basis retrieval model. (2) Deduction of axiom-specific partial orderings (matrices) for the result
set documents, which are combined into a single matrix based on a previously learned axiom aggregation
function. (3) Re-ranking of the original result list by solving the Kemeny rank aggregation problem with the

KwikSort algorithm.

3.2 Existing Axioms And Modifications

We start with remarks on modifications that pertain to
most axioms and then present the analyzed axioms with
potential individual modifications.

General Modifications.

Some axioms from the literature rely on conditions or
filters that require two to-be-compared documents having
exactly the same length (e.g., TFC1 and TFC2). How-
ever, despite being theoretically sound, in real-world top-
k search results there are not that many documents that
fulfill this (or some other) value constraint perfectly. We
hence relax such conditions and require only a fuzzy match,
allowing a difference of at most 10%. A length condition
length(d;) = length(d;) requiring the exact same length of
d; and d; would be adapted to length(d;) ~10% length(d;)
with the following semantics:

|length(d;) — length(d;)] <0.10
max{length(d;), length(d;)} —

Consequently, a requested length difference then corre-
sponds to a difference of more than 10%, denoted as >1¢9.
Similarly, axioms with equality constraints on the term fre-
quency are treated also with a 10%-relaxation. Some ax-
ioms’ conditions require the same term discrimination value
for two terms. We use ¢df in such cases but do not apply a
10%-rule since this would result in too many terms with the
“same” idf-values. Instead, we round values to two decimal
digits and then two terms have the “same” idf-value, when
their rounded idf-values are the same. In some axioms, a
semantic similarity measure s(w1,w2) for two terms is em-
ployed. We use WordNet? in such cases. Also note that
some axioms conclude properties of some abstract query-
document scoring function score(d, q). However, we just use
the induced rank preferences in these cases.

Term Frequency Axioms.

The basic idea of the term frequency axioms TFC1-TFC3
and TDC is to formulate reasonable assumptions on the cor-
relation between term frequency and document ranks. For
the example axiom TFC1, we give the original description
and our employed restated version in full detail. For all the
other axioms, we restrict the explanations to fewer details

http://wordnet.princeton.edu/

due to space constraints. Axiom TFC1 assigns higher scores
to documents that contain a query term more often based
on the following original definition [17]:

TFC1: Let ¢ = {t} be a query with only one term ¢. As-
sume |d1| = |d2|. If ¢f(¢,d1) > ¢f(t,dz), then score(ds,q) >
score(dz, q).

We transform TFC1 to our triple notation by setting

precondition = length(d1) ~10% length(dz),
filter = tf(t,d1) >10% tf(t,d2), and
conclusion = dy >Trc1 do.

In case of more than one query term, we use the sum of
the individual term frequencies in the filter condition as a
generalized version of TFC1. In a similar way, we generalize
and transform TFC2, TFC3, and TDC. Axiom TFC2 com-
pares three documents and checks the term frequency gaps
between these documents. The problem is that it concludes
score differences score(dz,q) — score(d1,q) > score(ds,q) —
score(dz, q) for the three documents that cannot directly be
modeled in our framework. Based on the precondition of
TFC2, ds has the highest term frequency and d; the low-
est such that we change the conclusion to ds >trc2 d2 and
d2 >T1rc2 di. This way, TFC2 could be seen as a transitive
version of TFC1 such that it probably does not add much
to an axiomatic re-ranking that also includes TFC1.

Axioms TFC3 and TDC conclude scoring properties for
two-keyword queries based on term discrimination values
(rounded idf-values in our setting). The document contain-
ing the terms more often or containing terms with higher
idf-values is favored. To be applicable also to longer queries,
we generalize TFC3 and TDC by applying them to every
query term pair.

Document Length Axioms.

The axioms LNC1, LNC2, and TF-LNC are focusing on
document length normalization [17]. In axiom LNC1 two
documents are compared that have the same term frequency
for all query terms (remember the 10%-softening in our set-
ting). Then the shorter document is preferred.

Axiom LNC2 checks whether one document is an m-times
copy of another document. In such a case, the “original”
document (i.e., the shorter one) gets a better rank. Note
that the m-times copy condition is a rather artificial case,
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since hardly any real-world documents would contain one
other document even only twice and nothing else. Hence, we
modify this condition in the following way. We first calculate
the Jaccard coefficient of the documents’ vocabularies (i.e.,
overlapping terms). If it is at least 80%, we derive the value
of m based on the ratio of the minimum and maximum term
frequencies of the shared terms only.

Axiom TF-LNC combines term frequency and document
length for single term queries. From a document pair the
one with the higher term frequency is preferred when the
documents without the term have the same length (10%-
softening in our setting). We further generalize TF-LNC
to multi-term queries using the sum of the term frequencies
similar to the LNC1 generalization.

Lower Bound Axioms.

The axioms LB1 and LB2 capture a heuristic of lower-
bounding term frequency such that long documents are not
overly penalized [28]. In LB1, documents are examined that
have the same retrieval score score(q,d) (10%-softening in
our case). If there is a query term t with ¢f(t,d1) = 0
and tf(t,d2) > 0, then di <ppi d2. The axiom LB2 con-
cludes rank preferences for artificially generated documents
not contained in the original result list such that we modify
it to work on pairs of actual documents. If the ¢f-values of a
query term pair ¢, t’ are at most 20% different in two docu-
ments d; and d2, the document with the higher frequency of
the query term that comes earlier in the query is preferred.

Semantic Similarity Axioms.

Matching semantically similar terms instead of exact
matches of the query terms might be helpful in vocabu-
lary mismatch situations but also to enhance small result
sets. We use WordNet to determine semantically similar
terms and analyze the axioms STMC1-3 and TSSC1-2 [20,
16]. The conditions of STMC3, TSSC1, and TSSC2 are
very specific and cannot be “softened” such that we do not
include these axioms in our framework. The original for-
mulation of STMCI1 is for one-term queries and uses two
single-term documents. We generalize this setting as fol-
lows. We calculate the semantic similarity for each word
from a document d with each query term t of the query ¢
to derive their average as the similarity o(d,q). From two
documents d; and dz the one having the larger average value
will be preferred. Also the formulation of STMC2 is gener-
alized. For a pair of documents d; and d2 we find the non-
query term t from any of both documents that is maximally
similar to any query term t'. We conclude d; >stmoe da iff

‘d2|/|d1| —approxgygy tf(tv d2)/tf(t/7 dl)-

Query Aspect Axioms.

The axioms REG and AND [42, 39] focus on the individ-
ual query terms. We modify REG as follows. Let ¢ be the
query term most similar to the other query terms. If both
di and dz contain all the other query terms, the document
is preferred that has a higher tf-value for ¢t. In case of AND,
from a document pair d; and dz where only d; contains all
query terms, dy is preferred. To modify the original version
of the diversity-inducing axiom DIV [22], let J(d, q) be the
Jaccard coefficient between the set of terms in document d
and the set of query terms. If J(d1,q) < J(d2,q), we con-
clude d; >prv dz2. To penalize duplicate entries, we further
propose a new axiom RSIM that computes the simhash-

Table 1: Axioms included in our re-ranking scheme.

Purpose Acronyms Source Incl.
Term frequency TFC1-TFC3 [17] Yes
TDC [17] Yes
Document length LNC1 + LNC2 17] Yes
TF-LNC 17] Yes
QLNC 13] No
Lower bound LB1 + LB2 (28] Yes
Query aspects REG 42, 39] Yes
AND 42, 39] Yes
DIV 22]  Yes
RSIM new Yes
Semantic similarity STMC1 + STMC2 [20] Yes
STMC3 20] No
TSSC1 + TSSC2 20] No
Term proximity QPHRA new Yes
PROX1-5 new Yes
PHC + CCC [37] No
Other ORIG new Yes
P-RANK 2] Yes
CPRF 9] No
CTM [24] No
CMR [21] No
CEM [3] No

based similarity of all document pairs and from any formed
similarity cluster only favors one particular document over
all the others while not having preferences for documents
from different clusters.

Other Axioms.

We include a straightforward new P-RANK axiom that
simply prefers a document with higher PageRank. All the
other published axioms discussed in Section 2 are either too
specific, could not be formulated in our triple formulation,
are already covered by other used axioms, or do not aim at
retrieval (e.g., axiomatizing evaluation) such that we do not
use them. Besides the above described axioms and our new
proximity axioms (explained in the next section), we also
include a simple axiom ORIG that represents the original
top-k ranking and does not modify any rank decision. Its
purpose is to give some “voting power” in the rank aggrega-
tion to the reasonable ideas underlying the employed basis
retrieval model.

Summary.

Table 1 lists the known axioms and whether we could
implement them for our re-ranking scheme; including our
newly developed term proximity axioms explained in the
next section and the ORIG axiom as a fallback option if no
other axiom is effective.

3.3 Our New Term Proximity Axioms

As a first “proximity”-style axiom, we propose the new
QPHRA axiom aimed at queries that contain highlighted
phrases (e.g., via double quotes). A document containing
all the query phrases is favored over a document not con-
taining all phrases. Tao and Zhai [37] propose two axiomatic
constraints on proximity importance for retrieval. However,
these axioms are meant to describe properties a distance
measure should have—not meaningful in our rank preference



framework. Hence, we propose the new term proximity ax-
ioms PROX1-PROXS5 inspired by Tao and Zhai’s proposed
proximity measures. Let ¢ = {t1,...,tn} be a multi-term
query and di,d2 be two different documents. We also as-
sume that all the query terms appear in both documents:
Vt;j €q: tf(tj7di) > 0, for i € {1,2}.

Our first proximity axiom captures proximity via the av-
erage position difference of all query term pairs.

PROX1: Let 7(q,d) be the average difference of query term
pair positions calculated as

wla.d) = g > ddig),
(i,j)eP

where P = {(i,7) | i,5 € q,© # j} is the set of all possible
query term pairs and 6(d, ¢, j) calculates the average number
of words between the terms ¢; and ¢; in the document d
based on all positions of ¢; and ¢;.

If m(q,d1) < w(q,dz2), we conclude d1 >prox1 d2 assuming
that a document with a lower 7-value (i.e., query term pairs
are closer to each other) should get a better rank.

We note two caveats with PROX1: It uses all pairs of term
occurrences in a document, but naturally many of these will
be far apart even if some pairs are very close together. It
might also be desirable for the first close co-occurrence of
query terms to be near the document’s beginning, such that
the searcher will encounter them early while reading. The
following axioms PROX2 and PROX3 address these issues.

PROX2: Let first(t;,d) be the position of the first occur-
rence of query term ¢; in document d and let p(d, q) be the
sum of first positions over all query terms. If u(di,q) <
u(dz, q), we conclude di >prox2 da.

Axiom PROX2 considers every query term separately,
disregarding whether documents contain phrases from the

query.

PROX3: Let 7(d,q) be the first position of the whole
query q as one phrase in the document d; if ¢ is not a phrase
in d, we set 7(d, q) = oo. If 7(d1,q) < 7(d2, q), we conclude
d1 >proxs d2.

A problem of PROX3 is that important documents may
not contain the whole query as one phrase but many subsets
of the query terms as shorter phrases. The following axiom
measures proximity using the closest tuples of query terms.

PROX4: Let w(d, q) be a pair (a,b), where a is the number
of non-query words within the closest grouping of all terms
from query ¢ in document d, and b is the frequency of this
gap value. If w(d1, q) < w(dz, q), we conclude di >proxa da.

We assume that the document with the lower w-value bet-
ter matches the query, since all query terms are closer to-
gether in the document. Further improving the proximity
notion, we propose an axiom PROX5 focusing on the small-
est window width that contains all query terms.

PROX5: Given a query term t; € ¢ and a document d,
we consider the size of the smallest text span containing all
query terms around each occurrence of t;. Let 5(d, ¢) be the
average smallest text span across all occurrences of all query
terms in d. If 5(d1, q) < §(d2, q), we conclude di1 >proxs da.

3.4 Rank-aggregation

As stated previously, each axiom’s ranking preferences for
a given top-k result set are expressed as a matrix M, whose
elements (i, j) determine whether or not document d; should
be ranked before document d; according to axiom A. In or-
der to re-rank a top-k result set based on these preferences,
we derive an aggregation function that yields a single, com-
bined preference matrix M using a machine learning model
described in detail in the next section.

However, after axiom preference aggregation, the re-
sulting matrix M probably contains conflicts: if for in-
stance M]i, j] > M[j,i] and Mj, k] > M|k, j] but Mk,] >
M]i, k], it is not clear what document to rank the highest.
This describes a typical rank-aggregation problem that can
be translated to a social choice problem for which a variety
of possible rank aggregation schemes exist [7]. We choose
Kemeny rank aggregation since it has been shown benefi-
cial in meta-search engines [15]. Kemeny rank aggregation
merges m rankings into one global ranking while minimiz-
ing a distance function to the original m rankings (e.g., the
number of pairs that are ranked in a different ordering) [25].

Solving Kemeny rank aggregation is a well known NP-
complete problem [23]. From the different existing approx-
imation schemes proposed in the literature, we choose the
KwikSort approach [1]. KwikSort originally solves the mini-
mum feedback arc set problem in weighted tournaments. It
can be transferred to our setting, since the matrix M can
be viewed as the incidence matrix of a directed weighted
tournament graph with the vertex set V.= {di,...,dn}.

3.5 Learning Axiom Preference Aggregation

We use the 23 axioms shown in Table 1 based on various
different ideas (term frequency, proximity, etc.). Given a
query ¢ and a pair of documents (d;, d;) from the result set
for g, each axiom A may express a preference for ranking d;
higher (Mali, j] > Malj,i]), lower (Mali,j] < Ma[j,i]) or
the same (Mali,j] = Malj,4]) as dj. In a set of documents
with known relevance judgments, the optimal ordering for
each document pair is known. Hence, we view the problem
of axiom preference aggregation as a supervised classifica-
tion problem at the level of document pairs, seeking to infer
the aggregation function that best approximates the partial
ordering induced by the relevance judgments.

We train a Random Forest classifier to predict the docu-
ments’ relative ordering in an optimal ranking, using the in-
dividual axiom preferences as predictors, and relevance judg-
ments as ground truth. For each document pair, we assign
a class attribute from the set {lower, higher, same}. Since
the relative ordering of documents with the same relevance
has no influence on the measured quality of the final ranking,
we employ an instance weighting scheme that halves the im-
pact of the “same” class. And since not all axioms might be
equally important for different retrieval models (e.g., ¢f-idf
already has a term frequency component), we train separate
preference aggregation functions for each retrieval model.

Due to the non-availability of large click logs or other
large-scale implicit user feedback on our side, we use
the nDCG @10 over relevance judgments for TREC queries
as the performance measure in our experiments. We ran-
domly split the queries into a training set to learn the
retrieval-model-specific aggregation functions, and a test set
to evaluate their retrieval performance before and after ax-
iomatic re-ranking.



4. EVALUATION

Our experimental evaluation of the axiomatic re-ranking
scheme is conducted as a large-scale study on the TREC
Web tracks of 2009-2014 with a variety of basis retrieval
models serving the initial top-k results. For the experi-
ments on the 200 queries from the Web tracks 2009-2012,
we employ 16 different basis retrieval models included in
the Terrier framework [33], which we use to index the
ClueWeb09 Category B. For the 100 queries from the Web
tracks 2013 and 2014, we use the TREC-provided Indri®
and Terrier baselines for the ClueWebl2 as our two basis
retrieval models.

To speed up the experimental process, we perform the
training and testing of the axiom aggregation schemes, each
axiom’s individual ranking, and the KwikSort Kemeny rank
aggregation on a 135-node Hadoop cluster that also hosts the
ClueWeb09 and ClueWeb12 documents and corpus statistics
(e.g., idf-values) needed in some axioms.

4.1 Axiomatic Web Track Performance

We evaluate the axiomatic re-rankings on the queries from
the TREC Web tracks of 2009-2014. From the ClueWeb09-
based Web tracks of 2009-2012, there is a total of 198 queries
with available relevance judgments. After discarding the
18 queries for which none of the basis retrieval models find
any relevant results, we randomly select 120 of the remain-
ing 180 queries as the training set, and use the other 60 as
the test set. The 16 basis retrieval models shown in Table 2
are employed; more details on these models can be found
in the extensive Terrier documentation.” We have set up
Terrier to index the Category B part of the ClueWeb09 and
train the axiom aggregation functions for each model sepa-
rately on the training set topics as described in Section 3.

The evaluation results on the test set topics are depicted
in Table 2. The models in the table are ordered according
to their “Base” performance without axiomatic re-ranking.
The average base performance over all test set topics is
shown in the second column of the table. The two subse-
quent columns show the nDCG @10 after applying axiomatic
re-ranking (“4+AX”), and Terrier’s Markov Random Field
term dependency score modifier (“MRF”) to the basis result
set, respectively. We note that while MRF term dependency
improves upon the average base performance in all cases, the
magnitude of the improvement is larger for axiomatic re-
ranking for nearly half of the studied retrieval models. The
fifth column shows the average nDCG @10 when applying
axiomatic re-ranking after MRF term dependency; the ef-
fect sizes reported in this column are computed with respect
to the “MRF” values. The final column of Table 2 shows
the maximum nDCG @10 achievable on the basis models
top-50 result set—i.e., when ranking these documents in an
“oracle”-stlye directly by their TREC relevance judgments.

Except for two retrieval models of middling performance,
our axiomatic re-ranking consistently improves the average
basis retrieval performance. This improvement is statisti-
cally significant (paired two-sided t-test, p=0.05) for only
four retrieval models at the lower end of the performance
spectrum; however, we note that MRF term dependency
achieves a significant improvement in only two further cases,
while the magnitude of the effect tends to be smaller. Even

3http:/ /lemurproject.org/clueweb12 /services.php
*http:/ /terrier.org/docs/v4.0/configure_retrieval.html

Table 2: Retrieval performance (nDCG @10) of the
different retrieval models on the test set queries.
The basis model’s performance (Basis), with ax-
iomatic re-ranking (4+AX), and with MRF term
dependence. Significant differences between Ba-
sis/4+AX, Basis/MRF and MRF/MRF+AX (paired
two-sided t-test, p = 0.05) are marked with a dagger';
the effect size (Cohen’s d) is given in brackets below
each value. The final column shows the nDCG @10 of
the best possible re-ranking.

Model Basis +AX MRF MRF+AX max
DPH 0.273 0.291 0.307t  0.314 0.642
(0.062)  (0.112)  (0.025)
DFRee 0.205 0.236 0.230 0.245 0.599
(0.121)  (0.091)  (0.057)
In_expC2 0.205 0.214 0.229 0.238 0.591
(0.038)  (0.091)  (0.031)
TF_IDF 0.202 0.228 0.239 0.200 0.589
0.098)  (0.134)  (-0.155)
In_expB2 0.201 0.202 0.234 0.237 0.592

(0.006) (0.124) (0.011)
DFReeKLIM  0.199 0.213 0.224 0.224 0.591
(0.057) (0.095)  (-0.001)

BM25 0.198 0.188 0.229 0.216  0.587
(-0.044)  (0.116)  (-0.049)
InL2 0.197 0.197 0.235 0.212 0.593

(-0.001)  (0.139)  (-0.091)
BB2 0.195 0.197 0.2361 0.234 0.587
(0.005) (0.151)  (-0.006)
DFR_BM25 0.194  0.206 0.236 0.220 0.591
(0.049) (0.156)  (-0.062)

LemurTF_IDF 0.187 0.2247 0.2217  0.237" 0.576
(0.151) (0.132) (0.060)
DLH13 0.164 0.187 0.184 0.201 0.499

(0.100) (0.080) (0.067)

PL2 0.16 0.213" 0.190f 0.211 0.550
(0.221) (0.125) (0.084)

DLH 0.153 0.187 0.181 0.197 0470
(0.144) (0.113) (0.064)

DirichletLM 0.139 0.242% 0.192t 0.2537 0.564

(0.456) (0.276) (0.249)

0.167" 0.161% 0.163 0.397
(0.277) (0.245) (0.005)

Hiemstra LM 0.107

on our fairly small test set, axiomatic retrieval yields a mid-
sized effect on the performance of poorly-performing basis
retrieval models. It should be noted that the performance
improvements seen especially for the models with weaker
base performance only come from the axiomatic re-ranking
of the top-50 results of the weak model, not by incorporating
knowledge from the better-performing models.

There are several interesting observations from these ini-
tial experiments. First, the retrieval model with the second-
worst base performance (DirichletLM) achieves the second-
best performance after axiomatic re-ranking, both with and
without MRF term dependency scoring. Second, the differ-
ences between retrieval models after re-ranking are smaller
than before. However, this leveling effect is not due to the
re-ranked results being almost optimally ranked. As the fi-
nal column of Table 2 shows, none of the studied re-ranking
approaches achieve more than half of the nDCG @10 of the
optimal re-ranking; there is a considerable potential for im-
provement in moving the retrieval performance closer to
the optimum with stronger axioms. Future re-ranking ideas
probably would need to include axioms capturing more so-
phisticated signals of relevance than the rather simplistic
assumptions of the axioms used in our study. We will shed


http://lemurproject.org/clueweb12/services.php
http://terrier.org/docs/v4.0/configure_retrieval.html

Table 3: Retrieval performance (nDCG @10) on the
‘Web track 2014 topics before and after applying the
axiomatic re-ranking apporach. The axiom aggre-
gation functions are trained on the topics of the
Web track 2013. Significant differences between be-
fore and after (paired two-sided t-test, p = 0.05) are
marked with a dagger (') and effect size according
to Cohen’s d is given.

Model Before After Effect size
Terrier DPH 0.471  0.446 -
Indri LM 0.346  0.502" 0.69

some more light on the influence of the different axioms in
a second experimental study.

Before analyzing the individual axioms’ impact, we con-
duct an experiment similar to the above for the TREC Web
track baselines of the years 2013 and 2014. We did not index
the ClueWeb12 ourselves for this experiment but relied on
the rankings provided by the Web track organizers as the
baselines. The preference aggregation schemes are trained
for the topics of the Web track 2013 and tested on the topics
of 2014, yielding 50 topics each for training and testing. The
results are depicted in Table 3.

As can be seen, the performance of the Indri baseline is
significantly improved with a medium effect size while the
Terrier baseline’s performance is decreased—although not
significantly. One possible explanation for the decreased
Terrier DPH performance is that for this ClueWebl2 ex-
periment, we only used 50 topics for training, while for
the ClueWeb09 experiments we used 120 topics. Apply-
ing the aggregation function trained for DPH on the Web
track 2009-2012 topics to the Web track 2014 test set yields
a slight, albeit non-significant, performance improvement to
an nDCG @10 of 0.48 for DPH on the Web track 2014 top-
ics. This indicates that the fifty Web track 2013 topics might
not suffice to train a good aggregation function for axiomatic
re-ranking of DPH results.

Similarly to the ClueWeb09 setting, this experiment again
indicates that axiomatic re-ranking can even out perfor-
mance differences between different basis retrieval models,
such that the specific model used for the initial top-k re-
trieval has less of an impact. Still, there is room for further
improvement, as can be seen from the possible performance
given an optimally re-ranked top-k result set—for this ex-
periment, the optimal nDCG @10 is close to 1.0 on average.

4.2 Impact of the Different Axioms

To gain further insights into the influence of the different
axioms on the re-ranking, we analyze the ClueWeb09 exper-
iment in more detail. In particular, we investigate the per-
formance of different axiom subsets, and how often they are
applied and actually change the ranking decisions compared
to the ORIG axiom that does not change the basis model’s
ranking. Further, we analyze the overlap of the different
retrieval models’ top-k results to account for the more ho-
mogenous performance of the different retrieval models after
axiomatic re-ranking.

Axiom subsets.
We study the individual axioms’ influence in a follow-up
on the ClueWeb09 experiment with interesting subsets of the

Table 4: Improvements in nDCG @10 on the Web
track 2012 topics for different axiom sub-groups.
The second column shows the number of retrieval
models (out of 16) whose performance is improved
on average across the test set topics. The last col-
umn shows the average difference in nDCG Q10 across
retrieval models.

Axiom Group Improved Avg. Diff.

Term frequency axioms only 5 -0.80%
Document length axioms only 1 -0.02%
Lower bound axioms only 2 -7.79%
Query aspects axioms only 0 -15.62%
Semantic similarity axioms only 0 -14.70%
Term proximity axioms only 6 +1.37%
All without term frequency 5 -1.78%
All without document length 10 +4.54%
All without lower bound 1 -6.55%
All without query aspects 1 -11.57%
All without semantic similarity 6 -1.24%
All without term proximity 2 -5.98%

axioms. We run the same experimental process (learning the
aggregation function on the training set topics, testing on
the topics of 2012) for individual groups of axioms and for
the set of all axioms without each group (the ORIG axiom
is always included). A summary of the results is shown in
Table 4.

Of the six axiom subsets—document length, lower bound,
query aspects, semantic similarity, term frequency, and
proximity—query aspects and semantic similarity don’t im-
prove any of the retrieval models by themselves. The other
four groups improve at least one model on their own, with
the term proximity axioms improving the largest number of
basis retrieval models, albeit by a small percentage.

A further observation can be made about subsets con-
taining all axioms except one of the groups. Without the
lower bound axioms, without the query aspects axioms, and
without the proximity axioms, the fewest improvements are
possible. This hints at the relative importance of these ax-
ioms. Without document length, 10 improvements are still
possible. For all of the axiom subsets, the relative improve-
ments in nDCG @10 are much smaller than for the full set.
This hints at a rather complex interplay between the differ-
ent axioms in achieving a better top-10 ranking.

The subset experiments show large differences in the im-
portance of individual axioms that we further examine by
analyzing the impact of the different axioms in the prefer-
ence aggregation function, and to how many document pairs
the different axioms could be applied.

Axiom importance, usage and rank differences.

In order to examine the different axioms’ importance,
we study how much they contribute to the performance of
the learned preference aggregation functions. Table 5 ex-
emplifies the mean decrease in model accuracy for the ax-
iom preference aggregation functions of the best- and worst-
performing basis retrieval models. For each axiom, the cor-
responding value in the table shows by what percentage the
aggregation model’s accuracy would decrease without that
variable. The contributions of the different axioms tend to
be fairly similar across retrieval models, but there are some
key differences: The contribution of the ORIG axiom de-



Table 5: Feature importance for a selection of ax-
ioms in the axiom preference aggregation function
for the best- and worst-performing base retrieval
model.

Mean Decrease Acc.

Axiom DPH Hiemstra LM
TFC1 19.21 10.53
TFC2 9.70 1.97
TDC 0.15 1.99
LNC1 3.18 3.93
TF-LNC 1.44 0.00
LB1 33.22 26.04
LB2 5.54 3.73
REG 21.33 20.31
DIV 27.71 24.85
STMC1 31.18 27.32
STMC2 15.25 15.16
PROX1 19.41 18.64
PROX2 16.61 12.96
PROX3 25.08 18.59
PROX4 17.76 17.84
PROX5 17.60 15.66
P-RANK 18.77 12.79
ORIG 23.54 14.82

creases with the performance of the basis retrieval model.
While certain axioms, such as TDC, TF-LNC and LB2
never have a large impact on the aggregation functions,
there is at least one high-impact axiom in each of the axiom
groups. The exception to this are the document length ax-
ioms, which never contribute more than five percent of the
aggregation accuracy.

In a similar avenue, we examine how many ranking pref-
erences of d; >4 d2 each individual axiom A specifies in the
ClueWeb09 experiment—i.e., how often its preconditions are
met. The distributions are quite similar for the different re-
trieval models. Interestingly, STMC1 (semantic similarity)
is applied most frequently by far, but as can be seen from
the axiom subsets experiment, it probably draws non-useful
conclusions often. The axioms PROX2 and LB1 are the
second most commonly applied, followed by the other prox-
imity axioms, then TFC1, TFC2 and LNC1; LNC2, TFC3
and TF-LNC are used very rarely.

To underpin this investigation, we study the difference
in the top-10 results caused by individual axioms. Again,
STMC1 alone would yield the highest difference, but it does
not have a high impact in any of the learned aggregation
functions. The term proximity axioms, as well as TFC1 and
LB1, change about 50% of the top-10 result sets. Given
the high impact of especially PROX3 and LB1 and the re-
sults of the axiom subsets, this indicates that their share of
the improved re-ranked performance is the highest. The ax-
ioms LNC1, TF-LNC, TDC, and LB2 alone will hardly ever
change a top-10 ranking. Along with their lower impact,
this indicates that they are the least important among our
selection.

Result overlap of the basis models.

An unexpected finding of our axiomatic re-ranking results
is that the performances of different basis retrieval models
are more similar after re-ranking. A large overlap between

the top-k result sets of the different retrieval models would
explain not just this effect, but also the rather similar axiom
impact across retrieval models.

To analyze the overlap, we measure the Jaccard coeffi-
cient between any two basis models’ top-50 results. The
average Jaccard coefficient of the 7200 possible pairs is 0.6,
underpinning our hypothesis of a large overlap. Further-
more, limiting the analysis to the documents with a TREC
judgment of 2 or more (i.e., at least highly relevant), the
average overlap increases to 0.8. When such documents are
re-ranked to the top of a ranking, the nDCG @10 is sig-
nificantly improved. Since these highly relevant documents
are treated the same way for the individual basis retrieval
models by the similarly aggregated axiom combinations, the
leveled performance effect is explained.

5. CONCLUSION

We introduce an axiom-based framework to re-rank a ba-
sis retrieval model’s top-k results. This way, we exploit all
the findings from the last decade on axiomatic IR in a unified
setup. For the first time, we demonstrate how a variety of
axioms can be used in a practical setting. Our experimen-
tal analyses show the axiom-based re-ranking to improve
retrieval performance for almost all the basis models—often
with a medium effect size. Still, our experiments also showed
that there is room for further improvements since the pos-
sible optimal re-rankings of the top-k results could achieve
much higher retrieval scores. The inclusion of more sophis-
ticated axiomatic ideas as part of the re-ranking thus is a
very promising direction for future research.

Potentially to-be-included axioms comprise the axioms on
query aspects that we could not restate to fit our axiomatic
scheme, but also axioms on document readability or near du-
plicates in the results. The formulation of such practically
applicable axioms might increase the possible performance
improvements since such facets of relevance are not yet cov-
ered by any of our current axioms.

Another branch of interesting future work is the efficiency
of the re-ranking process. In this paper, our goal was to
show the possible effectiveness by improvements of retrieval
performance. However, the currently achieved performance
of about 2 seconds for the re-ranking of the top-50 results of
a single query are far from being acceptable in a live system.
Still, our current experimental setup is not yet optimized
for speed such that the necessary efficiency gains to reach
practical applicability should be tractable.

6. REFERENCES

[1] N. Ailon, M. Charikar, and A. Newman. Aggregating
inconsistent information: Ranking and clustering. J.
ACM, 55(5), 2008.

[2] A. Altman and M. Tennenholtz. Ranking systems: the
pagerank axioms. In EC 2005, pp. 1-8.

[3] E. Amigd, J. Gonzalo, and F. Verdejo. A general
evaluation measure for document organization tasks.
In SIGIR 2013, pp. 643-652.

[4] P. Bruza and T. W. C. Huibers. Investigating
aboutness axioms using information fields. In
SIGIR 1994, pp. 112-121.

[5] L. Busin and S. Mizzaro. Axiometrics: An axiomatic
approach to information retrieval effectiveness metrics.
In ICTIR 20183, paper 8.



[6]

[9]

[10]

[11]

[15]

[16]

[17]

[18]

[19]

[25]

[26]

Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning
to rank: from pairwise approach to listwise approach.
In ICML 2007, pp. 129-136.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A
short introduction to computational social choice. In
SOFSEM 2007, pp. 51-69.

C. L. A. Clarke, K. Collins-Thompson, P. Bennett,

F. Diaz, and E. M. Voorhees. Overview of the TREC
2013 web track. In TREC 2013.

S. Clinchant and E. Gaussier. A document frequency
constraint for pseudo-relevance feedback models. In
CORIA 2011, pp. 73-88.

S. Clinchant and E. Gaussier. A theoretical analysis of
pseudo-relevance feedback models. In ICTIR 2013,
paper 6.

R. Cummins and C. O’Riordan. An axiomatic
comparison of learned term-weighting schemes in
information retrieval: clarifications and extensions.
Artif. Intell. Rev., 28(1):51-68, 2007.

R. Cummins and C. O’Riordan. Analysing ranking
functions in information retrieval using constraints.
Information Extraction from the Internet, 2009.

R. Cummins and C. O’Riordan. A constraint to
automatically regulate document-length
normalisation. In CIKM 2012, pp. 2443-2446.

F. Ding and B. Wang. An axiomatic approach to
exploit term dependencies in language model. In
AIRS 2008, pp. 586-591.

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar.
Rank aggregation methods for the web. In

WWW 2001, pp. 613-622.

H. Fang. A re-examination of query expansion using
lexical resources. In ACL 2008, pp. 139-147.

H. Fang, T. Tao, and C. Zhai. A formal study of
information retrieval heuristics. In SIGIR 2004, pp.
49-56.

H. Fang, T. Tao, and C. Zhai. Diagnostic evaluation of
information retrieval models. ACM Trans. Inf. Syst.,
29(2):7, 2011.

H. Fang and C. Zhai. An exploration of axiomatic
approaches to information retrieval. In SIGIR 2005,
pp- 480-487.

H. Fang and C. Zhai. Semantic term matching in
axiomatic approaches to information retrieval. In
SIGIR 2006, pp. 115-122.

S. Gerani, C. Zhai, and F. Crestani. Score
transformation in linear combination for multi-criteria
relevance ranking. In FCIR 2012, pp. 256—267.

S. Gollapudi and A. Sharma. An axiomatic approach
for result diversification. In WWW 2009, pp. 381-390.
E. Hemaspaandra, H. Spakowski, and J. Vogel. The
complexity of Kemeny elections. Theor. Comput. Sci.,
349(3):382-391, 2005.

M. Karimzadehgan and C. Zhai. Axiomatic analysis of
translation language model for information retrieval.
In ECIR 2012, pp. 268-280.

J. G. Kemeny. Mathematics without numbers.
Dacedalus, 88(4):577-591, 1959.

J. Li and R. R. Rhinehart. Heuristic random
optimization. Computers € Chemical Engineering,
22(3):427-444, 1998.

27]

(31]

32]

(33]

(34]

(35]

(36]

37]

T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3(3):225-331, 2009.

Y. Lv and C. Zhai. Lower-bounding term frequency
normalization. In CIKM 2011, pp. 7-16.

Y. Lv and C. Zhai. A log-logistic model-based
interpretation of ¢f normalization of BM25. In

ECIR 2012, pp. 244-255.

B. P. McCune, R. M. Tong, J. S. Dean, and D. G.
Shapiro. RUBRIC: A system for rule-based
information retrieval. IEEE Trans. Software Eng.,
11(9):939-945, 1985.

C. Meghini, F. Sebastiani, U. Straccia, and

C. Thanos. A model of information retrieval based on
a terminological logic. In SIGIR 1993, pp. 298-307.
S. Na, I. Kang, and J. Lee. Improving term frequency
normalization for multi-topical documents and
application to language modeling approaches. In
ECIR 2008, pp. 382-393.

I. Ounis, G. Amati, V. Plachouras, B. He,

C. Macdonald, and C. Lioma. Terrier: A high
performance and scalable information retrieval
platform. In OSIR 2006 Workshop, pp. 18-25.

F. Radlinski and T. Joachims. Query chains: Learning
to rank from implicit feedback. In KDD 2005, pp.
239-248.

R. Rahimi, A. Shakery, and I. King. Axiomatic
analysis of cross-language information retrieval. In
CIKM 2014, pp. 1875-1878.

F. J. Solis and R. J.-B. Wets. Minimization by
random search techniques. Mathematics of Operations
Research, 6(1):19-30, 1981.

T. Tao and C. Zhai. An exploration of proximity
measures in information retrieval. In SIGIR 2007, pp.
295-302.

A. Veloso, H. M. de Almeida, M. A. Gongalves, and
W. M. Jr. Learning to rank at query-time using
association rules. In SIGIR 2008, pp. 267-274.

H. Wu and H. Fang. Relation based term weighting
regularization. In FCIR 2012, pp. 109-120.

J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. In SIGIR 2007, pp. 391-398.
D. Zhang, R. Mao, H. Li, and J. Mao. How to count
thumb-ups and thumb-downs: User-rating based
ranking of items from an axiomatic perspective. In
ICTIR 2011, pp. 238-249.

W. Zheng and H. Fang. Query aspect based term
weighting regularization in information retrieval. In
ECIR 2010, pp. 344-356.



	Introduction
	Related Work
	Axioms for Information Retrieval
	Learning to Rank

	Axiomatic Re-Ranking
	Requirements on Axioms
	Existing Axioms And Modifications
	Our New Term Proximity Axioms
	Rank-aggregation
	Learning Axiom Preference Aggregation

	Evaluation
	Axiomatic Web Track Performance
	Impact of the Different Axioms

	Conclusion
	References

