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Abstract We propose a framework for deterministic simulation of user behavior
that allows to analyze the cost-gain-based performance on single result lists or
whole search sessions. The ideal user representing optimal behavior (i.e., most
gain with lowest effort) is contrasted with more “average” users that employ the
spreading activation model from cognitive theory. On TREC Session Track data,
the ideal user achieves about double the gain of real users at the same costs while
the average gain of our different simulated users correlates well with the session-
DCG metric—another argument for that metric in session-based evaluation.

1 Introduction

Analyzing search logs is a common way to study users and their information needs and also
for evaluating search systems in for instance A/B tests—assuming that users more likely
click on relevant documents. However, such evaluations require huge user populations that
the commercial web search engines certainly have but that are lacking in many other settings
(e.g., enterprise search or academic research). To overcome this problem of scarce user data,
simulating user behavior got more prominent over the last years [14,15]. We propose a
framework to deterministically simulate user behavior over search sessions in cost-gain-
based scenarios. Our focus is on the click and result list switching behavior leaving the
integration of simulated query formulation for future work. One contribution is the ideal
user with optimal behavior (e.g., clicking on only those results that lead to some gain). In
contrast, we also contribute more “average” users who employ a cognitive model to base
click decisions on the shown result snippets. Furthermore, given pre-defined queries of a
search session, the user models also decide when to switch to the next query. Each session
is restricted by a predefined cost budget (e.g., time-based), every action (clicking, querying,
reading) comes with some costs. Therefore, the simulated users assess each decision not only
by its potential benefits in form of information gain, but also according to the accompanying
costs. We compare the simulated users to real users on TREC session track data and show
that the average information gain of our models highly correlates with the session-DCG
measure often used in evaluation. Interestingly, the ideal user achieves about double the
performance of real users at the same costs.

2 Related Work

We briefly review the literature on search evaluation and user modeling; more references
follow in the sections detailing our approach.

Search Evaluation Over time, the measures for evaluating search results have changed
from precision and recall to more rank-oriented metrics. One first example is MAP (mean
average precision): the precision is measured at the ranks of the relevant results. The under-
lying assumption of MAP in form of a user model would be that the user clicks on only the
relevant results and stops when all relevant documents have been visited—a scheme we will
use in our simulated ideal user. Alternatives to MAP are normalized discounted cumulative
gain (nDCG) [24] where results have different relevance levels (i.e., information gain) and



lower ranked results are less likely to be seen (i.e., discounted gain) or expected reciprocal
rank (ERR) [16] following a cascading model where the probability that a user views a re-
sult depends on its rank position and a stopping criterion. In order to evaluate whole search
sessions, Jarvelin et al. also introduced a session-variant of nDCG [25] with the results of
later queries having discounted gains. In our simulation framework we employ a cascading
scheme with cost-based stopping criteria but instead of discounting gain for lower ranks—
except that we assume no gain from showing the same or similar results again—, we take
the higher costs for viewing lower-ranked results into account.

Over the last years, several user studies found that MAP has a weak correlation with real
user performance [41], that the information gain of real users correlates with the precision
overall [37], and that the preference for some ranking strongly correlates with its nDCG and
ERR score [34]. Although the experimentation setup usually does not resemble the process
of areal web search, many studies agree that evaluation metrics like ERR resemble the users’
performance in general, but they also claim that Cranfield-style evaluation metrics lack re-
alism and sound user models [36]. As a more realistic metric, simulation-based time-biased
gain (TBG) was recently proposed [36]. Each user action (view summary or document, save
document) comes with a time-based cost in a semi-Markov model (initialized with data from
48 real users who solved some pre-defined tasks within 10 minutes). The simulation is then
used to estimate the information gain for different time limits and rankings and the perfor-
mance variance. This idea very much inspired our scheme but instead of non-deterministic
users we simulate more “general” deterministic user types reflecting the ideas of existing
standard evaluation metrics. Our framework allows to compare an optimal or average deter-
ministic user (i.e., perfect or average decisions) to a real user and to measure the spread of
the gain differences of optimal and average behavior.

User Modeling User modeling deals with predicting and explaining user behavior and in-
tentions. For instance, O’Brien and Keane [31] compare clicks predicted by the SNIF-ACT
spreading activation model of information scent [21] to real users. They show that a cas-
cading threshold strategy (top-down assessment of search results, clicking if result is above
some threshold) is more common among users and that it is favorable to a comparative strat-
egy (first assessing all snippets, then clicking on the most relevant). We will employ both,
thresholding and spreading activation, in two of our user models. But in addition to O’Brien
and Keane’s model we also take switching to another query into account. User click models
describe the click behavior while interacting with a search engine. Such models can be used
to infer document preferences from the click-through rates in query logs [17]. In contrast,
Zhang et. al claim that user behavior is related to the information task as a whole and there-
fore, the click behavior depends on previous queries and clicks for the same information
task [42]. Consequently, task-centric click models use the complete search session in order
to infer the relevance of results (e.g., duplicate results are less likely to be clicked again)—an
idea we adopt for our simulation. Still, probabilistic click models are not really applicable
in our scarce-user scenario since they typically rely on the availability of huge search logs
and we aim for deterministic models instead.

3 Our General User Model

An information-seeking user approaches a search engine to satisfy an information need. For
non-trivial tasks, the user typically submits several queries, scans their results and clicks on
the ones whose snippets appear to be relevant—forming a search session. In this section, we
propose a general user model that represents the space of all interaction sequences (we call
them paths) a user might follow in a search session. Typically, search sessions are charac-
terized by the respective query reformulations [22]. Note however, that we will concentrate
on how users navigate through the result lists of a search session and we will not simulate
query (re-)formulation.



3.1 The Framework

Basic assumption of our general ( :
Start Query Snippet scan

user model is that a user wants to
gain information in order to sat-
isfy an information need against
a retrieval system. The respecitve
interactions come with certain
costs (usually time but it could
also be monetary charges for API
querying etc.). The user has to
find a trade-off between costs and
benefits since the total “budget” 1
for a search session typically is
limited; leading to cost-driven be-
havior [3,4,7,8]. Our set of possible actions is similar to the elementary action types of
Baskaya et al. [10]. Each session .S consists of at least an initial query q1, and a potentially
empty list of subsequent queries g2 to ¢n. Each query ¢ has an associated cost costq(|g|) that
depends on the length of the query (assumption: longer queries require more “effort”). After
a query is submitted, the retrieval system returns a ranked result list with short snippets. The
user starts scanning those snippets from top to bottom. Each scan of a snippet s has an asso-
ciated cost cost s that we assume to be a constant (assuming snippets of about equal length
but non-constant length-dependence is also possible). In our model, at least one snippet is
scanned following a query before another action can be performed. From scanning a snippet,
the user estimates the result’s relevance. If the result appears to be relevant, the user clicks on
it. Each click c has some cost cost.; that we also assume to be constant (variable cost again
is not difficult). A click leads to an information gain corresponding to the result’s relevance
level rel (i.e., the total gain is achieved with just one click assuming the whole document to
be “read” at once) with one exception: no gain from a second click on the same or a similar
result (cosine similarity). Consequently, relevance and thus click decisions not only depend
on snippet relevance assessment but also on the previous clicks. After each snippet scan and
after each click, the user decides if they proceed with scanning the next snippet or if they
submit a new query. A search session ends when there are no further queries necessary or a
given cost budget is reached—of course, the budget should suffice for at least submitting all
pre-defined queries. Following others [11,30,38], Figure 1 depicts an abstract flowchart of
our general user model including three kinds of decisions: (1) whether to click on a result,
(2) whether to submit a new query, and (3) whether to end the session. Our simulated users
instantiate schemes for those three decisions.
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Figure 1. Flowchart of our general user model.

3.2 Restrictions of the General Model

Our general user model forms an abstraction of complex cognitive processes that might
differ from user to user; consequently, not all possible search behavior can be expressed
within our general model. For instance, the only way to cumulate information gain in our
model is to click on a new result after a snippet scan. However, the user may already find
the desired information in the snippet—a case we do not include in the current abstraction.
We also assume a top-down processing of the result lists, starting with the first item in the
result list. Through eye-tracking studies, Klockner et al. found that this depth-first strategy
is used by a majority of users [28]. Still, our user model does not represent the other around
15% of users. Furthermore, in our general model the users assess a document’s relevance
right after scanning its snippet and click on it if the relevance exceeds some threshold. This
is in line with studies of O’Brien et al. who show that thresholding is the most common
user strategy [31] but the information foraging theory, for instance, states that users might



also first assess all results and then decide to click on the one with the most gain [32]—a
strategy that we do not model. Finally, we assume a cascading scheme where the user does
not go back to a previous result list. The only way to see the results again would be to
submit the same query (at the same costs). Such back-and-forth switching at lower costs is
an interesting future simulation direction—also for query suggestion evaluation.

4 The Ideal User

First, we propose to simulate an ideal user: accumulating the most information gain for
a certain cost “budget.” Given the interaction costs and a search session with result lists
and relevance judgments, the task is to find an optimal sequence of interactions within our
general model. We call an interaction sequence a path through the state space formed by a
session. A state is characterized by the lowest click or snippet scan in the different result
lists and by the result currently in focus. Possible interactions form the edges connecting
such states. The path of the ideal user shows how deep in the individual result lists a perfect
behavior would scan snippets and which results should be clicked.

According to our general user model, three kinds of decisions have to be instantiated:
clicking, switching to the next query, and ending the search session. Remember that we do
not model query formulation but require pre-defined queries. The knowledge of the query
sequence is used for the stopping criterion. We assume that each query of the sequence is
submitted such that the user can only finish a session on that last query. Since the ideal user
only clicks on results that lead to some gain, the crucial point of modeling the ideal user
is the decision of when to change to a new query result list—very recently, independent of
our investigations, optimal switching has also been investigated by Smucker and Clarke in a
slightly different context [35].

Let ! denote the rank in the result list R at which the ideal user stops scanning and
switches to the next query (e.g., I = 10 means scanning the first 10 snippets). Whenever
the ideal user encounters a result 7 € R not similar to a previously clicked document with a
relevance level rel(r) above a relevance threshold 7., a click on the result is performed at
the click cost cost,;. The document is then added to the list Clicked of clicked documents.
The accumulated cost Cost(l, q, Rq) and gain Gain(l, q, Rq) for a query ¢ and its result
list Ry with limit [ is

1
Cost(l,q, Rq) = costq(|q|) + Zcost(ri), where

i=1

cost(r;) =

costse + coste, if rel(r;) > Tre; and r; not similar to sth. in Clicked,
coStse, otherwise.

!
Gain(l,q, Rq) = Zgain(ri), where
i=1
{rel(ri), if rel(r;) > Trer and 7; not similar to sth. in Clicked,

ain(r;) =
gain(r:) 0 otherwise.

Determining the ideal search behavior forms a multiple-choice knapsack problem. For
each result list R, of each query ¢ in the session S, we have to choose a limit [, such that
the total cumulated information gain is maximized and a given cost budget costm,qq is not
exceeded.

q,Rq€S q,Rq€S
maximize Z Gain(l,q, Rq) while Z Cost(l,q, Rq) < coStmax



Multiple-choice knapsack is NP-hard [27]. In order to prune the problem space, we omit
dominated states that can never be part of an optimal solution: For result list R4 of query g,
a limit [ is dominated by a limit I’ # [ iff either Cost(l,q, Rq) > Cost(l',q, Rq) and
Gain(l,q, Rq) < Gain(l', q, Rq) or Cost(l,q, Rg) > Cost(l', q, Rq) and Gain(l, q, Rq)
< Gain(l', q, Ry). For a sample result list with the relevant entries at ranks 1, 3, and 6, these
ranks form the dominating limits. A limit at rank 2 is dominated by the limit at rank 1 since
both lead to the same information gain but the limit at rank 2 has higher costs. Limits at
ranks 4 or 5 are dominated by the limit at rank 3, etc. For determining the click behavior
of the ideal user, each relevant result not similar to something clicked before represents a
dominating limit.

In order to derive an optimal interaction sequence (i.e., ideal behavior), we have to
choose from each result list in the session the limit that leads to an optimal gain for the
whole session (i.e., the highest information gain possible for a given cost budget). There are
several algorithmic solutions for such a multiple-choice knapsack problem like a dynamic
programming approach [33] or a branch-and-bound strategy [20]. However, we cannot ap-
ply these approaches since we do not allow for clicking a relevant document if something
similar has been clicked before. Hence, each click has a potential influence on the informa-
tion gain of later results. If the user clicks on a relevant result in the current list, similar
entries are no longer relevant in the next lists. In other words, we cannot treat the result lists
independently but every combination of dominating states has to be checked for finding an
optimal sequence. Let a path P =< [, ... l, > through a search session S be a list of limits
for every result list. We call P a d-path, if only dominating limits are included. Let P be the
family of all possible d-paths. In order to find a d-path that represents ideal user behavior,
we derive the total cost Cost(P, S) and gain Gain(P, S) for every d-path P € P as

lq€EP, lq€EP,
a.Rq€S q,Rq€5S
Cost(P,S) = Z Cost(lg,q, Rq) and Gain(P,S) = Z Gain(lg, q, Ry).

From the d-path family we algorithmically choose a d-path that does not exceed the cost
limit and that has the highest gain as follows. The dominating limits in every result list in
the session are set to the ranks of the relevant results. All the combinations of all dominating
limits of every result list then form the family /P of possible d-paths. From this family, an
ideal d-path P;gcq; for a cost budget costmaqs is derived by first removing from P all d-
paths that exceed the cost limit and then choosing one d-path with the highest gain. Note
that clicks on similar results will not be part of such a path as long as the budget is not
too high (since they do not yield any gain in our scenario) and that he resulting path is an
optimal sequence of interactions given the cost budget—the ideal user behavior.

5 Spreading Activation Users

To simulate ideal click behavior, relevance judgments have to be “known” to the user. When
no relevance information is available, we need another strategy for deterministic click deci-
sions. We propose a cognitive approach employing the task description and shown snippets
to this end.

5.1 Cognitive Modeling and Spreading Activation

Cognitive models explain basic cognitive processes (e.g., learning and decision making) and
their interactions in more complex processes. Their big advantage over statistical models is
that instead of inferring a posterior description from generated data, explanations for cogni-
tive processes can be found in an inductive way [13]. One example of cognitive modeling
is Pirolli and Card’s information foraging theory [32] stating that users searching for infor-
mation are faced with traces of navigational cues (e.g., links) emitting information scent



and that the cue with the most information scent will be followed. This rational behavior
aims for an effective trade-off between cost and benefit and matches our general user model.
However, we will not employ the costly comparison strategy of the original model but only
use the cognitive SNIF-ACT architecture [21]; calculating information scent with the help
of the spreading activation model.

Fu and Pirolli use the spreading activation model to estimate the utility of navigational
choices [21]. The neuronal structure of the brain is modeled as an associative network con-
sisting of interconnected concepts with different association strengths as in Anderson et al.’s
cognitive architecture ACT-R [1]. When the user reads a document or a snippet, some of
the concepts in the associative network are activated. This activation then spreads through
the network and may activate other concepts depending on the associative strength. In our
context, two regions in the associative network are important for the snippet relevance as-
sessment: the region that is activated by reading the snippet (the perception), and the region
that represents the user’s focus and intention (i.e., the topic description in TREC scenarios).
While scanning a snippet, the user model encounters the concepts in the snippet and these
network nodes are activated and spread through the network to eventually activate topic
description concepts. The relevance is then assessed according to the total activation level
of the description concepts; if the activation is above a certain threshold, the document is
perceived as relevant and a click is performed.

Concept Extraction The head-noun phrase extractor [9] is used to identify concepts in
task descriptions and snippets. On average, document snippets contain fewer terms than a
TREC task description (34 vs. 42) but both have similar number of concepts (8 vs. 10). We
also removed some more “instructional” concepts like find information contained in
many TREC descriptions.

Spreading Activation Calculation The concepts extracted from the topic descriptions
and the document snippets form the nodes of a network. As for the edges (i.e., the ac-
tivation strength), we simplify the relevance assessment situation to a bipartite directed
graph. The concepts extracted from a scanned snippet form one node subset (the percep-
tion) and the concepts from the task description form the other (the focus). We assume
that all snippet concepts are connected to all description concepts and omit any activa-
tions that may spread between concepts of one side. Based on this simplified network, we
compute the total activation level A of the task concepts Cr that spread from the snip-
pet concepts C's. The activation level of a snippet is modeled as the sum of the atten-
tional weighted association strength of every concept in C and every concept in Cg as
A(Cs,Cr) = > icc, 2jec, association(i, j) - attention(j) [21]. The formula in-
cludes a length normalization preventing unbounded activations and includes a temporal
decay of activation following the assumption that a user spends more attention on the first
concepts of a snippet. We follow Fu and Pirolli [21] using the exponential decay function
attention(j) = a - %7 and setting the scaling parameter a = 1 and the decay parame-
ter b = —0.1. As for the association strength association(i, j) between two concepts, we
?,

pz()i()pj(;' )
abilities p(¢, ), p(7) and p(j) with the normalized document frequencies df /N from the
English Wikipedia, where NNV is the total number of Wikipedia articles. In a study comparing
PMI to (generalized) latent semantic analysis as measures for association strength, Budiu
et al. found that PMI is the most efficient method for identifying semantic similarities [12].
Following their suggestion, we use a window of 16 terms to derive the document frequen-
cies df (i, 7).

Relevance Thresholding The total activation level A indicates how relevant a result ap-
pears to the user after the snippet scan. To distinguish between relevant results that should
be clicked and non-relevant results that should not be clicked, an activation threshold 7, is

use the pointwise mutual information (PMI) [18] of log approximating the prob-



part of the spreading activation model. We set the binary relevance of a snippet S and a task
description 1" to

1 ifA(Cs CT) > Tact
rel(Cs,Cr) = 2’ = ’
(Cs,Cr) {0 otherwise,
and propose two ways for setting the threshold 74c¢: a static constant extracted from user
interaction logs and a dynamic variant adapted to the rank bias favoring clicks on the first
ranks.

Static Threshold To determine a static threshold, we use the TREC 2012 Session track logs.
We compute the activation level of every result snippet and let the relevance judgments > 2
form the relevant class. The mean activations of relevant and non-relevant results then are
significantly different (22.8 vs. 12.8, p < 0.01 for a t-test). To choose a thresholding strat-
egy, we compare the F-scores of a maximum a posteriori estimation (MAP) threshold, a like-
lihood comparison variant of MAP ignoring the prior probabilities, and an oracle threshold
chosen to yield the best possible F-score. Due to the big difference of the prior probabil-
ities (only 20% of the results are relevant), the conservative MAP estimation had a lot of
false negatives (F-score of 0.19) such that we choose the likelihood estimation as our static
threshold that comes pretty close to the artificial best possible F-score method in our pilots
(F-score of 0.47 vs. 0.48).

Dynamic Threshold The underlying assumption of our dynamic threshold is a rank bias on
the user side meaning that the users get more and more “skeptical” at lower ranks requiring
a higher activation for a click. We model this assumption as follows. The user starts with a
fixed activation threshold for the first rank that may very well represent rank bias by setting
the initial 74c¢ = O resulting in a blindfold click on the first rank. Every further result
on a lower rank must have a higher activation level than the last clicked result; hence, the
activation 74 is monotonically growing. This dynamic thresholding is inspired by findings
of Kean and O’Brien on users’ rank bias [26] but in our cost-based model also resembles the
fact that a mediocre result accessible at low costs may still be more appealing than a result
with high relevance at a low rank. Hence, dynamic thresholding also models the satisficing
behavior, meaning that the user prefers a fast and sufficient decision over evaluating all
possible actions in order to find the optimum [29].

6 Our Analyzed User Models

Our general user model requires two components: (1) the click behavior of when to click on
a result, and (2) the stopping strategy of when to switch to the next query and when to end
the session.

6.1 Click Behavior

We propose three kinds of click behavior. First, the optimal click behavior of users who only
click on relevant results—like the ideal user introduced in Section 4. Second, activation-
based click behavior inspired by the spreading activation model introduced in Section 5—
potentially leading to non-optimal clicks on non-relevant results. Third, a simple click all
approach whose click decisions are independent of the relevance of a result: every result
that is scanned is also clicked. This click behavior probably is the least cost efficient one,
since clicking every result means also clicking every non-relevant result among the scanned
results.

6.2 Stopping Strategies

We propose four simple stopping strategies following previous research. Zhang et al. ob-
served that users tend to click more at the end of a session [42]. Their explanation is that



with every query reformulation the user improves the quality of the query and eventually
ends up with a “best” query. The user probably scans some of the results in earlier queries
but invests most of their budget for the last results. Our respective prefer-last stopping
strategy is formally defined as follows. Let a path P consist of a list of limits /1 ...,
that represent the lowest rank the user views in each result list. A path P is a prefer-last
path iff [; < ;41,7 = 1,...,n — 1. In contrast to the findings of Zhang et al., the user
model of the session-nDCG metric is based on the assumption that results of reformulated
queries are less valuable since the user has to invest more effort [25]. According to this
model, the user would prefer results of the first queries—yielding a prefer-first stopping
strategy. A path P is a prefer-first path iff [; > l;41,79 = 1,...,n — 1. To model the
stopping strategy of the ideal user, we propose the highest-gain strategy. A user following
this strategy views as many documents that appear to be relevant as possible for a given
cost budget. A user model with optimal clicking behavior and highest gain strategy repre-
sents the ideal user. Let P be the family of all possible paths for a given cost limit and
search session and let gain(P) the accumulated information gain of a path P. A path P
is a highest-gain path iff gain(P) = maz{gain(P’) : P’ € P}. Similarly, to model
more “average” users, we also propose a median-gain strategy where the user accumu-
lates an information gain that represents the median of all information gains of all possible
paths through a search session for a given cost limit. A path P is a median-gain path iff
gain(P) = median{gain(P’) : P’ € P}.

6.3 Combining Clicking and Stopping

In order to simulate a certain click behavior and stopping strategy for a given search session,
we identify paths through the search session that do not exceed the cost budget and that
represent the stopping strategy. Finding such a path involves three steps. (1) For each result,
determine whether it is clicked based on the click behavior. (2) Determine the family of
all paths that do not exceed the cost budget. (3) From the path family, choose a path that
matches the stopping strategy and has the highest information gain. From the 16 possible
combinations, we further investigate all combinations with the highest-gain strategy (the
ideal user with optimal clicks, the dynamic/static activation clicks, and the click-all user),
the median user with optimal click behavior and median-gain strategy, and the prefer-first/-
last users with clicking-all behavior and prefer-first/-last strategies. While the prefer-first/-
last users represent assumptions from the literature, the median user somewhat represents
an “average” user and the ideal user represents experts with perfect judgments from reading
a snippet. The activation user models represent users without perfect click decisions and
they can even be simulated in scenarios without relevance judgments. Although the click-
all user seems very trivial, we include it in our considerations since it somewhat represents
the envisioned user of a perfect retrieval systems. If the click-all user achieves the same
information gain at the same costs as the ideal user, the ranking of the result list is perfect.

6.4 The TREC Session Track User

In the course of the TREC Session Track, logged interactions of real users were provided
for several topics. We compare our simulated models to these users by modeling the TREC
user whose behavior follows the originally logged data. In general, we expect the TREC
user’s performance to differ a lot from the ideal user in terms of information gain since a
human user will not be able to optimally assess relevance from snippets, will have a rank
bias, and will not make perfect stopping decisions. We instantiate the TREC user model for
each search session in the TREC Session Track data as if they were produced following our
general user model framework. This assumes top-down scanning, at least one snippet scan
per result list, scans of all snippets of ranks above clicked results, etc.



Table 1. Average accumulated gain on the TREC Session Track 2011-2013 data.
Ideal Median Act.St. Clickall TREC Act.Dyn. Pref First Pref. Last

mean 2.7 1.9 1.5 1.5 1.4 1.2 1.2 1.0
med 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
std 2.5 1.4 1.5 1.9 1.8 1.3 1.2 1.2
max 18.0 9.0 9.0 16.0 15.0 5.0 4.0 6.0

7 Evaluation

We conduct experiments on data from the TREC Session Track 2011-2013 comparing our
models with respect to information gain and cost usage, and analyzing the relation to tradi-
tional effectiveness metrics.

7.1 Accumulated Information Gain

The budget for a session is set to the time the original user’s interactions would need in our
general model setup. Following observations of Tran and Fuhr [39] we assume 2 seconds
for a snippet scan and 15 seconds for a click, and following observations of Arif and Stuer-
zlinger [2] a query costs 1 second per term. The original TREC data consists of 288 search
sessions for 160 topics. However, for 188 sessions none of the models (including the original
TREC user) can achieve any information gain given the budget (i.e., no relevant results at all
or too low in the lists). For our evaluation, we use the remaining 110 sessions and assume
the gain per clicked result to correspond to the relevance score in the TREC Session Track
judgments.

Table 1 shows the characteristics of the accumulated information gain distribution. The
ideal user performs best, followed by the median user. The click-all user, the static activation
user and the TREC user have about the same average performance. Interestingly, the ideal
user almost doubles the performance of the original TREC user at the same cost. The prefer-
first user is significantly better than the prefer-last user: the TREC search sessions seem to
have more relevant documents in the first result lists.

To identify correlating user models, we compute the Spearman’s rank correlation coef-
ficient for each of the 136 possible pairs among the TREC user and the 16 different user
models possible from our four click behaviors and four stopping strategies. The user models
with the same click behavior correlate more than user models with the same stopping strat-
egy and the choice of the click behavior has a higher impact on the user model’s performance
than the choice of the stopping strategy. The user models with the highest correlation to the
TREC user are the model with dynamic activation clicks and prefer-first stopping strategy
(Spearman’s rank correlation test p = 0.65, p < 0.01) and the dynamic activation user
model with highest gain strategy (p = 0.62, p < 0.01). This again reflects the rank bias of
real users (dynamic thresholds) and supports the model underlying the session-nDCG metric
(prefer-first).

7.2 Cost Usage

Figure 2 shows the distribution of the cost spent by the TREC user as a portion of the
“maximum cost,” the cost needed to click on all relevant documents in a session (including
scanning all previous snippets). On average, the TREC user used 71% of the maximum cost;
for half of the sessions the user invested 61% of the maximum cost reflecting the satisficing
theory we briefly discussed in the thresholding part. However, in 19% of the sessions, the
TREC user invests even more effort than necessary; mostly in sessions where few relevant
results are found but more are clicked.

In order to compare how the user models use the cost budget, we also analyze the inter-
actions for which some cost is spent. All user models spend the most cost on clicking but the
ideal user and the median user invest approximately equal amounts for the different interac-
tions; they scan way more results than they click. He and Wang [23] and Tran and Fuhr [40]



Table 2. Transition probabilities between query g, click ¢, snippet scan s, and end e.
TREC Ideal Median Act.St. Act.Dyn. Clickall Pref. First Pref. Last

q—s 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
s —q 0.03 0.09 0.12 0.07 0.01 0.02 0.03 0.03
s—s 0.56 0.52 0.51 0.30 0.35 0.03 0.00 0.02
s —=c 0.39 0.34 0.31 0.59 0.61 0.93 0.93 0.93
c—s 0.55 0.47 0.34 0.57 0.45 0.58 0.50 0.47
c—q 0.25 0.28 0.35 0.25 0.31 0.23 0.28 0.28
s —e 0.02 0.05 0.07 0.05 0.02 0.02 0.04 0.02
c—e 0.20 0.26 0.32 0.19 0.24 0.19 0.22 0.25

also suggest Markov models to investigate search behavior. A Markov model consists of a
set of states and transition probabilities with the assumption that the probability of transi-
tioning to the next state is only dependent on the current state. The transition probability
between a state a and a state b is p(a — b) given by the relative occurrence frequency.
Table 2 shows the transition 14
probabilities of our user models 1]
and the TREC user. The user mod-
els differ the most in the proba-
bility p(s — ') of transition-
ing from one snippet scan to the
next snippet scan and the probabil-
ity p(s — ¢) of transitioning from
a snippet scan to a click. For the " 0s 10 1s 20 25
ideal user, the median user, and Cost Limit as Portion of Maximum Cost
the TREC user it is more likely to  Figure 2. Cost limits of the logged users in the TREC data.
continue with the next snippet scan, for the other user models it is more likely that they will
click.

1.0

0.8 4
°
a
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7.3 Simulated Users and Evaluation

We compare the average estimated information gain of our simulated users to the “tradi-
tional” metrics session-discounted cumulative gain (sDCG), expected reciprocal rank (ERR)
and MAP on the sessions of the TREC Session Track.

The behavior of our simulated user models is cost-driven such that we can describe
the accumulated information gain on a search session as a function Gain(costmaz) of
the cost budget. In order to give an estimate on how much information gain a user model
will accumulate, we need to take into account how the users choose their cost limit. Let
f(costmaz) be a probability density function that represents the likelihood of choosing a
cost limit. This cost limit likelihood function is normalized such that the integral between
the minimum and the maximum of the function equals 1. Smucker and Clarke [36] proposed
to use such a function f in order to estimate the accumulated information gain E of a
session S as E(S) = [ Gain(S, costmaz) - f(costmaz) dcostmaz. The probability
density function we obtain is the curve in Figure 2 approximated using a kernel density
estimation. The cost budget is normalized with the maximum cost (i.e., the cost needed to
click all relevant results in a session S): maxcost(S) = costscan - |D|+ costerick | Drel| *

Zill costquery - |gi|, where | D| is the number of results in the session and | D,.¢;| is the
number of relevant results.

In order to calculate the estimated information gain for a user model and a session,
we sum the gain and the likelihood of the cost budgets between 0 and an upper bound.
We set this upper bound to 2.5 - maxcost(S) since this is the highest cost limit any real
user has spend in any session (cf. Figure 2). As an increment ¢ncr for the budgets we

use the cost it takes to scan one snippet and perform one click. The estimated gain E



of a session S then can be calculated as E(S) = > ., Gain(S,incr(i)) - F(i), where
F(i) = f.mcr(z) 1 f(costmaz) dcostmaz and incr(i) = i - (costerick + €OStscan ). The

wner(t—

rectangle mettgod can be used to calculate an efficient approximation of the integral of the
cost limit likelihood function F' in one incrementation step ¢. We derive the estimated infor-
mation gain of each of our seven simulated user models for the TREC Session Track 2011-
2013 data and compute the correlation with the sum of the individual ERR values of the
result lists, the mean of the summed average precisions of the result lists (MAP), and the
session-DCG. Among the individual pairs, the highest correlation of 0.91 is between the
average estimated information gain of our deterministic user simulations and session-DCG.
The MAP metric correlates the least with the other metrics and our simulations (0.73). These
correlations show that based on user simulations, the session-DCG metric is very reasonable.
An interesting future metric could be formed by the difference of the ideal user to the more
average median or activation users. If system A has better ideal user gains than system B but
lower average/activation user gains, real users behaving more “average” and probably using
snippet activation of some kind in their click decisions would prefer system B—which also
is another argument for working on highly informative snippets giving a clue on actual result
relevance.

8 Conclusion

We propose a framework to simulate deterministic user models with different stopping strate-
gies and click behaviors. The goal is to use the simulations to better understand and evaluate
user behavior in search sessions or query suggestion scenarios without requiring a huge on-
line user population. We measure the effort of a simulated user by assigning costs to every
interaction and contrast that with the achieved information gain. One of models is the ideal
user with optimal click behavior and a high-information gain stopping strategy representing
the perfect trade-off between cost and gain (i.e., the highest information gain possible for
a given cost budget). More “average” variants are the median user with decisions towards
achieving a median possible gain or the more cognitive activation-based users whose click
behavior employs the spreading activation model during snippet scans. Comparing the deter-
ministic simulations to real TREC users (interaction logs of the TREC Session Track), the
“real” TREC user achieved only about half of the gain the ideal user would manage with the
same cost budget. The TREC user correlates the most with an activation user having a dy-
namic click threshold. Using Markov model analysis, we show that the TREC users and our
user models with optimal click behavior click less than other models. The estimated average
gain of the simulated users correlates very well with the session-DCG metric. Though all
proposed models are deterministic, our framework allows to include probabilistic decisions
as well. An interesting application could be estimating the information gain with the help of
large populations of simulated users in scenarios where no huge logs of millions of users are
available (e.g., enterprise search). A metric based on simulation would be very transparent
since for every instance of a user the achieved information gain is reproducible. The effect of
changes in the ranking or the UI (that also influences cost) can be directly tested on different
instances of simulated users. Different cost models also form a promising future direction
since costs heavily influence search behavior [6]. Scanning a list of ten results is more costly
on a phone than on a desktop while talking to a device could make queries cheaper. With
variable costs, different environments can be simulated. Finally, a very important addition
would be the extension of our framework such that also query (re-)formulations are sim-
ulated. Possible steps could be simulating known-item queries (clicked documents as the
known item) or query simulation based on anchor texts [5,19]. This would allow the simula-
tion of complete sessions based on a search task description without relying on the queries
of the TREC Session tracks or similar datasets.
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