
Vandalism Detection in Wikidata

Stefan Heindorf1 Martin Potthast2 Benno Stein2 Gregor Engels1

1Paderborn University
<last name>@uni-paderborn.de

2Bauhaus-Universität Weimar
<first name>.<last name>@uni-weimar.de

ABSTRACT
Wikidata is the new, large-scale knowledge base of the Wikimedia
Foundation. Its knowledge is increasingly used within Wikipedia
itself and various other kinds of information systems, imposing high
demands on its integrity. Wikidata can be edited by anyone and,
unfortunately, it frequently gets vandalized, exposing all information
systems using it to the risk of spreading vandalized and falsified
information. In this paper, we present a new machine learning-based
approach to detect vandalism in Wikidata. We propose a set of
47 features that exploit both content and context information, and
we report on 4 classifiers of increasing effectiveness tailored to this
learning task. Our approach is evaluated on the recently published
Wikidata Vandalism Corpus WDVC-2015 and it achieves an area
under curve value of the receiver operating characteristic, ROCAUC,
of 0.991. It significantly outperforms the state of the art represented
by the rule-based Wikidata Abuse Filter (0.865 ROCAUC) and a
prototypical vandalism detector recently introduced by Wikimedia
within the Objective Revision Evaluation Service (0.859 ROCAUC).

General Terms: Design, Experimentation, Evaluation
Keywords: Knowledge Base; Vandalism; Data Quality; Trust

1. INTRODUCTION
Crowdsourcing is a well-established paradigm to acquire knowl-

edge. Many projects have emerged that invite their users to con-
tribute, collect, and curate knowledge with the goal of building pub-
lic knowledge bases. Famous examples include Wikipedia, Stack-
Exchange, Freebase, and Wikidata. Most of today’s crowdsourced
knowledge bases are unstructured, i.e., their content is encoded
in natural language, rendering these resources hardly usable for
machine processing and inference. Besides the (error-prone) auto-
matic extraction from unstructured knowledge bases, a trend toward
crowdsourcing structured knowledge directly can be observed: one
of the most prominent examples used to be Freebase [5], which was
recently shut down and is now superseded by Wikidata [28, 33], the
knowledge base of the Wikimedia Foundation. Despite its recent
launch in 2012, Wikidata has already become the largest structured
crowdsourced knowledge base on the web.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24-28, 2016, Indianapolis, IN, USA

© 2016 ACM. ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983740

Crowdsourcing knowledge at scale and in a reasonable time frame
requires large crowds. This renders it impossible to rely only on
experts, to vet every volunteer, or to manually review individual
contributions, unless other volunteers do so. Inviting the crowd
therefore means trusting them. Wikipedia and all other projects
of the Wikimedia Foundation prove that the crowd can be trusted
to build and maintain reliable knowledge bases under the freedom
that anyone can edit anything. Despite the success of the freedom-
to-edit model, all knowledge bases that rely on it are plagued by
vandalism, namely “deliberate attempts to damage or compromise
[their] integrity.”1 Vandalism has been around ever since knowledge
crowdsourcing emerged. Its impact on unstructured knowledge
bases can be severe, spreading false information or nonsense to
anyone accessing a vandalized article. But given their importance to
modern information systems, the impact of vandalism on structured
knowledge bases can be disproportionately more so: integrating
Wikidata into other information systems such as search engines and
question-answering systems bears the risk of spreading vandalism to
all their users. Reaching such a wide audience imposes significantly
higher demands on the integrity of structured knowledge bases
compared to unstructured ones.

Reviewing millions of contributions every month imposes a high
workload on the community of a knowledge base. In this paper, we
contribute a new machine learning-based approach for vandalism
detection in Wikidata, thus freeing valuable time of volunteers and
allowing them to focus their efforts on adding new content rather
than on detecting and reverting damaging edits by vandals. We
develop and carefully analyze features suitable for Wikidata, taking
into account both content and context information of a Wikidata re-
vision. On top of the features, we apply advanced machine-learning
algorithms to obtain our final classifier: starting from a default ran-
dom forest, we optimize its parameters, apply bagging, and for the
first time multiple-instance learning, which exploits the dependence
of consecutive edits by the same user on the same item (i.e., within
an editing session). For evaluation, we use the Wikidata Vandalism
Corpus WDVC-2015 [14], which comprises 24 million revisions.
Our approach achieves an area under curve of the receiver operating
characteristic (ROCAUC) of 0.991 and therefore outperforms the state
of the art in the form of the Wikidata Abuse Filter (0.865 ROCAUC)
and the recently introduced vandalism detector within Wikimedia’s
Objective Revision Evaluation Service, ORES (0.859 ROCAUC).

In what follows, Section 2 reviews related work, Section 3 intro-
duces our vandalism model for structured knowledge bases, Sec-
tion 4 overviews the data set underlying our evaluation, and Sec-
tion 5 reports on the optimization of our model as well as on its
evaluation. Finally, Section 6 discusses practical implications.
1https://www.wikidata.org/wiki/Wikidata:Vandalism

2. RELATED WORK
This section reviews the state of the art related to detecting vandal-

ism and low-quality contributions to (un)structured knowledge bases
(e.g., Freebase, OpenStreetMap, Wikipedia, and StackOverflow).

2.1 Structured Knowledge Bases
To the best of our knowledge, there are only two papers to date

that specifically address the detection of low-quality contributions
to structured knowledge bases: Tan et al. [27] present a machine
learning approach for Freebase and Neis et al. [22] present a rule-
based approach for OpenStreetMap.

Tan et al.’s approach employs two categories of features: (1) con-
tent features for triples, and (2) context features for user history and
user expertise. The content features basically consist of a single
categorical feature, encoded as a Boolean feature vector, which
denotes the predicate of the affected subject-predicate-object triple.
Interestingly, Tan et al. show that this feature has a higher effective-
ness than all context features combined. The user history features
include numbers of past (total, correct, incorrect) edits, and the age
of the user account. Expertise is captured by representing users in a
topic space based on their past contributions: a new contribution is
mapped into the topic space, computing its similarity to the user’s
past revisions using the dot product, the cosine similarity, and the
Jaccard index, which serve as features. Our model incorporates
Tan et al.’s best-performing features, but we omit the past number
of “incorrect” edits (i.e., vandalism in our case) as well as the user
expertise feature: we found the former to overfit and Tan et al.’s
analysis shows the latter to perform worse than the triple features.
Going beyond Tan et al. features, we include triple features for sub-
ject and object that were neglected, and we employ spatio-temporal
features by geolocating a user’s IP address.

Neis et al. [22] propose a rule-based approach to detect vandalism
in OpenStreetMap. Their “vandalism score” incorporates content
and context information measured as (1) edit reputation, and (2) user
reputation, respectively. The edit reputation measure depends on the
type of action (create, modify, delete) and a set of additional rules
specific to OpenStreetMap (for example, whether a geographical
object was moved more than 11 meters), and the user reputation mea-
sure is basically derived from the number of geographical objects a
user has created. Our model, too, incorporates features to estimate
user reputation, whereas the content rules cannot be transferred.

2.2 Unstructured Knowledge Bases
A different category of related work concerns the detection of low-

quality contributions to unstructured knowledge bases. In particular,
detecting vandalism in Wikipedia was studied previously. The first
machine learning-based approach was proposed by Potthast et al.
[24]. It was based on 16 features, primarily focusing on content,
detecting nonsense character sequences and vulgarity. In subse-
quent work, the set of content-based features was extended [21],
and context features were proposed to measure user reputation [1]
and spatio-temporal user information [36]. Wu et al. [37] added
text-stability features. Adler et al. [2] combined most of the afore-
mentioned features into a single model. We have reviewed all the
features employed for Wikipedia vandalism to date and transfer
those applicable to structured knowledge bases into our model. Re-
garding classifiers, the most effective approach [2] uses random
forests which we use as starting point for our optimizations. None
of the authors have experimented with multiple-instance learning,
which significantly improved our model’s performance.

Besides traditional feature engineering approaches, Itakura and
Clarke [16] propose to detect vandalism solely based on edit com-
pressibility. Wang and McKeown [34] and Ramaswamy et al. [25]

utilize search engines to check the correctness of Wikipedia edits,
achieving a better performance than previous approaches. However,
their approaches have only been evaluated on a small dataset, and
do not seem to scale well to hundreds of millions of edits. All of the
approaches described so far are tailored to the English Wikipedia,
whereas West and Lee [35] propose a set of language-independent
features, and Tran and Christen [29] attempt transfer learning be-
tween languages (see also [31, 30]). This seems to be particularly
promising when training on one of Wikipedia’s large language edi-
tions and applying the classifier on a small language edition. While
most of the detection approaches focus on immediate vandalism de-
tection once a new edit arrives, Adler et al. [2] also consider historic
vandalism detection, taking into account information that emerges
long after an edit was made. Wikidata comprises multilingual con-
tent, so that language-independent features are of interest for our
model, whereas our focus is on immediate vandalism detection.

Besides Wikis, question and answer sites such as StackOver-
flow, Yahoo Answers, and Quora comprise unstructured knowledge,
too. Agichtein et al. [3] were the first to develop machine learn-
ing features to distinguish high-quality from low-quality content
on question and answer sites. Other approaches predict the quality
of questions [18] and answers [26]. Most of the features used for
these tasks are similar to those employed for Wikipedia vandalism
detection; the remainder are specific to question and answer sites.

3. WIKIDATA VANDALISM MODEL
Our goal is to develop an effective vandalism detection model

for Wikidata to determine whether newly arriving revisions are
vandalism or not. Our model shall hint at vandalism across a wide
range of precision-recall points to enable different use cases, e.g.,
fully automatic reversion of vandalism at high precision, but also
prefiltering revisions in need of manual review at high recall.

Our model is based on a total of 47 features that quantify the char-
acteristics of Wikidata vandalism, as well as Wikidata edits in gen-
eral. Table 1 lists all features by category. We present features both
for Wikidata’s actual content as well as contextual meta-information.
The features were developed and selected in a rigorous evaluation
setup involving datasets for training, validation, and test, whereas
the test dataset was only used once at the end. We also briefly report
on features that failed to perform in our experiments and have hence
been omitted from the final model. Before going into details, we
briefly review Wikidata’s terminology and its underlying data model
as a prerequisite to understand many of our features.

3.1 Wikidata Terminology and Data Model
Figure 1 gives an overview of how Wikidata is constructed. At

its core, Wikidata is organized around items. Each item represents
one coherent concept, e.g., a person, a city, or a chemical element.
The content of an item divides into head and body parts. The head
of an item consists of labels, descriptions, and groups of aliases
(i.e., variations on the label), all of which may be present in up to
291 supported languages. Although the fields allowed have a clear
surface structure, the field values can be any plain text and they are
not treated as structured statements.

The body of an item consists of statements and so-called sitelinks.
Statements encode all of the structured knowledge of Wikidata, and
they basically are subject-predicate-object triples, where, as per
Wikidata’s terminology, an item corresponds to the subject, a prop-
erty to the predicate, and a value to the object. Property-value-pairs
are called claim. Statements are grouped by property (e.g., “instance
of” and “position held” in Figure 1). The set of supported proper-
ties is a controlled vocabulary, where additions and removals are
discussed within the community; at the time of writing, Wikidata

*

value

1

1..*
{ordered}

*

created

1

1
1..*

{o
rdered}

1..*

{o
rdered}

1

0..*

0..*

0..*

0..*

0..*

Sitelink

siteId: SiteId
title: String
badge: Badge [0..*]

ItemValue

LiteralValue

value: String

Value

Statement

rank: Rank
qual: Qualifier [0..*]
ref: Reference [0..*]

StatementGroup

property: Property

Alias

alias: String

AliasGroup

lang: Language

Description

lang: Language
descr: String

lang: Language
label: String

Label

User

nameOrIp: String
botUser: Boolean

Content

Revision

ts: TimeStamp
comment: String

Item

UML model of Wikidata (simplified)

arامابوأ كاراب

(31 entries)Wikiquote

Catégorie:Barack Obamafr

Категория:Барак Обамаru

(2 entries)Wikinews

(0 entries)Wikibooks

eo Barack Obama

Barack Obamaen

Barack Obamaes

Barack Obamaace

Барақ Обамаab

(215 entries)Wikipedia

...

Illinoiselectoral district

United States Senator

Virtual International Authority Filestated in

Simple English Wikipediaimported from

2 references

44series ordinal

Presidency of Barack Obamasubject of

George W. Bushreplaces

20 January 2009start time

President of the United States of Americaposition held

2 references

humaninstance of

Statements

Also known asDescriptionLabelLanguage

Barack Hussein Obama, Jr.
Obama
Barack Hussein Obama
Barack H. Obama
Barack Hussein Obama II

44. Präsident der Vereinigten
Staaten

Barack ObamaGerman

In more languages

Barack Hussein Obama II | Barack Obama II | Barack Hussein Obama | Barry Obama | Obama
44th President of the United States

(Q76)Barack Obama
Wikidata item page view (excerpt)

H
ea

d
B

od
y

Figure 1: Wikidata at a glance. Example of a Wikidata item page2 with commonly found content elements (left), and Wikidata’s data
model as UML class diagram (right). Wikidata items divide into head (top, light gray classes) and body (bottom, dark gray classes).

supports 2126 properties. The value of a statement can be plain text,
but more often it refers to another item (e.g., “human”, “President
of the United States of America”, and “United States Senator” in
Figure 1), thereby inducing a knowledge graph. Statements may
have one of a three-valued rank: normal is the default, preferred
should be assigned to statements that comprise the most current
information, and deprecated to statements with erroneous or out-
dated information. To date, however, ranks other than normal are
seldom used. A statement may contain supplementary information
called qualifiers and references, where the former encode additional
information about a statement, and the latter refer to its source.
Both are essentially nested statements: for example, in Figure 1 the
statement s = (“Barack Obama”, “position held”, “President of the
United States of America”) is the subject of qualifier q = (s, “start
time”, “20 January 2009”). The property vocabulary for qualifiers
and references, and the range of possible values are the same as for
statements, whereas some properties and values are more often used
for qualifiers than others and vice versa. Lastly, a sitelink is a special
kind of statement that refers to other Wikimedia sites which deal
with the item in question. For display, sitelinks are grouped by site
ID (e.g., “Wikipedia”, “Wikibooks”, etc. in Figure 1). Wikidata also
shows site-specific badges that indicate outstanding articles (i.e.,
good articles get a silver badge , featured articles gold badge).
2Link to the item page at Wikidata: https://www.wikidata.org/wiki/Q76

Items are edited by users, which are identified either by their
user name or, in case of anonymous edits, by their IP address at
the time of editing. Every submitted edit results in a new revision
that is immediately displayed to end users and stored in the item’s
revision history. For each revision, a time stamp and a comment
are recorded. In almost all cases, the comment is automatically
generated to summarize the changes made as follows:

comment ::== <action> <subaction>? <param>+ <tail>,

where <action> is one of 24 actions of the Wikidata API (e.g., “set
claim” or “set label”), <subaction>? is optionally one of “add”,
“update”, and “remove”, <param>+ is a list of required parameters,
and <tail> states the particular change made (e.g., “instance of
(P31): human (Q5)” when creating a new claim, or “Barack Obama”
when adding a label). As per Wikidata’s web interface, a revision
usually contains only one edited content element compared to its
previous revision, rendering comments short and specific. The only
exceptions to this rule include revisions that undo previous edits
(i.e., called undo, restore, and rollback), and a small number of
edits that have been submitted directly via the Wikidata API. As a
result, the homogeneity and informativeness of comments allows
for computing many features directly from them.

3.2 Content Features
To quantify vandalism in an item’s head, namely labels, descrip-

tions, and aliases, we employ 24 features at the level of characters,
words, and sentences (see Table 1).

Character level features. At character level, vandalism typi-
cally includes unexpected character sequences, such as random
keystrokes, character repetitions, wrong or excessive capitalization,
missing spaces, and the use of special characters (e.g., for emoti-
cons). To quantify character usage, we compute the ratio of ten char-
acter classes to all characters within the comment tail of a revision,
each serving as one feature: upperCaseRatio, lowerCaseRatio,
alphanumericRatio, digitRatio, punctuationRatio, brac-
ketRatio, asciiRatio, whitespaceRatio, latinRatio, non-
LatinRatio.3 In addition, the longestCharacterSequence of
the same character serves as a feature. Features that did not make
it into our final model include the ratio of character classes for spe-
cific alphabets, such as Arabic, Cyrillic, Han, and Hindi, as well as
character n-grams for n in [2, 4] as bag-of-words feature, because
their contribution to overall detection performance was negligible.

Word level features. At word level, vandalism typically includes
wrong capitalization, URLs, profane or offensive words. Other
damage originates from unaccustomed users who misunderstand
the suggestion “enter a description in English” in Wikidata’s web
interface and submit the word “English.” To quantify word usage,
we compute the ratio of four word classes to all words within the
comment tail of a revision, each serving as one feature: lowerCase-
WordRatio, upperCaseWordRatio, badWordRatio, language-
WordRatio. Regarding the former two, the ratio of words starting
with a lower case or upper case letter are computed, respectively.
Regarding the latter two, the badWordRatio is based on a dictionary
of 1383 offensive English words [32], and the languageWord-

Ratio on a list of regular expressions for language names and
variations thereof [38]. Despite seeming redundant, incorporating
the Boolean feature containsLanguageWord is beneficial. The
Boolean feature containsURL checks for URLs using a regular
expression, and one feature encodes the length of the longestWord.
Furthermore, we include two word level features from the ORES
baseline that compute the proportion of item IDs (i.e., Q-IDs) and
that of links to all IDs and links present in the previous revision of an
item: proportionOfQidAdded and proportionOfLinksAdded.
These features encode whether adding a new item ID or a new URL
is rather an exception than the rule. We further experimented with a
basic bag-of-words model, but in conjunction with our other features,
its contribution to overall detection performance was negligible.

Sentence level features. The comment tail can be considered a
“sentence” and at this level, vandalism typically includes changes
of suspicious lengths (encoded in commentTailLength), as well
as the addition of labels, descriptions, and aliases unrelated to the
current item. Given Wikidata’s multilingual nature, we observe
that labels and sitelinks often share similarities. To some extent,
this even applies across languages, since named entities are often
spelled similarly in families of languages that share an alphabet.
We hence compute the Jaro-Winkler distance of the comment tail
to the English label, to the English sitelink, and to the comment
tail of the previous revision (i.e., commentLabelSimilarity, com-
mentSitelinkSimilarity, and commentCommentSimilarity).
The former two features quantify the similarity of new labels and
sitelinks to those already present, and the latter feature quantifies
the current revision’s similarity to its predecessor. We refrained
from using the entire comment tail as a categorical feature for its
negligible contribution to overall detection performance.
3These self-explanatory names are used consistently throughout the paper as well as
the accompanying source code.

Table 1: Overview of feature groups, features, and their effec-
tiveness in terms of area under curve of the receiver operating
characteristic (ROCAUC) and area under the precision-recall
curve (PRAUC) using the default scikit-learn random forest. To
the best of our knowledge, only 7 of the 47 features have been
previously evaluated for Wikidata.
Feature group Test dataset

Feature Reference Wikidata ROCAUC PRAUC

Content features – 0.735 0.141
Character features – 0.840 0.088
lowerCaseRatio – 0.873 0.042
upperCaseRatio [2] – 0.852 0.036
nonLatinRatio – 0.870 0.020
latinRatio – 0.865 0.020
alphanumericRatio [2] – 0.847 0.020
digitRatio [2] – 0.833 0.018
punctuationRatio – 0.859 0.012
whitespaceRatio – 0.854 0.011
longestCharacterSequence [2] – 0.767 0.010
asciiRatio – 0.547 0.004
bracketRatio – 0.516 0.003

Word features – 0.811 0.140
languageWordRatio – 0.575 0.104
containsLanguageWord – 0.558 0.101
lowerCaseWordRatio [30] – 0.763 0.019
longestWord [2] – 0.814 0.018
containsURL – 0.508 0.012
badWordRatio [2] – 0.514 0.005
proportionOfQidAdded [17] × 0.643 0.003
upperCaseWordRatio [30] – 0.549 0.003
proportionOfLinksAdded [17] × 0.560 0.002

Sentence features – 0.686 0.025
commentTailLength – 0.844 0.030
commentSitelinkSimilarity – 0.736 0.006
commentLabelSimilarity – 0.770 0.006
commentCommentSimilarity – 0.730 0.005

Statement features – 0.807 0.005
propertyFrequency [17, 27] × 0.793 0.005
itemValueFrequency – 0.670 0.003
literalValueFrequency – 0.533 0.002

Contextual features – 0.870 0.289
User features – 0.909 0.156
userCountry [2] – 0.911 0.212
userTimeZone – 0.911 0.192
userCity – 0.901 0.186
userCounty – 0.909 0.145
userRegion – 0.909 0.115
cumUserUniqueItems – 0.933 0.113
userContinent – 0.843 0.107
isRegisteredUser [2, 17] × 0.915 0.073
userFrequency [27] – 0.952 0.043
isPrivilegedUser [36] – 0.611 0.003

Item features – 0.674 0.009
logCumItemUniqueUsers – 0.678 0.009
logItemFrequency – 0.665 0.007

Revision features – 0.798 0.187
revisionTag – 0.865 0.265
revisionLanguage [17] × 0.888 0.052
revisionAction [17] × 0.896 0.018
commentLength [2] – 0.827 0.016
isLatinLanguage – 0.820 0.014
revisionPrevAction – 0.764 0.007
revisionSubaction [17] × 0.799 0.005
positionWithinSession – 0.557 0.004

Statement features. To quantify vandalism in an item’s body,
namely statements and sitelinks, we include three features in our
model. For a given statement that is affected by an edit, these
features compute the frequency with which its property has been
used within Wikidata, and that of its value, distinguishing item val-
ues and literal values (see Figure 1): propertyFrequency, item-
ValueFrequency, and literalValueFrequency. These features
basically quantify the “accumulated popularity” of properties and
values within Wikidata, and while they do not pinpoint vandalism by
themselves, they help doing so in combination with other features.
Sitelinks are already covered by the features described above. The
site ID is represented by the language parameter (i.e., by the feature
revisionLanguage) and the sitelink’s title appears in the comment
tail and thus is subject to our character, word, and sentence features.

We further experimented with more elaborate statement features:
for example, abstracting from item values by computing their super-
item according to the item hierarchy induced by the instance-of
property and using that as a categorical feature, and, computing con-
ditional probabilities of pairs of item, super-item, property, and value
as features, such as P (property|item), P (property|super-item), and
P (value|property). The intuition of these features was to catch
cases where properties or values are supplied in statements that are
unexpected in comparable contexts (e.g., with a few exceptions, the
gender property should only have the values “male” or “female”).
However, neither of these features improved the effectiveness of our
model, which can be attributed to the fact that Wikidata’s knowl-
edge graph is still only loosely connected. Also, features based on
qualifiers, references, ranks, and badges had only a negligible effect.
They, too, are not widely used, yet. Nevertheless, the above features
may gain importance in the future.

3.3 Context Features
As much as the content of an edit may reveal its nature with

respect to being vandalism, the context of an edit helps a lot as well:
context features include features that quantify users, the edited item,
and their respective histories.

User features. To quantify Wikidata’s users, our features cap-
ture user status, user experience, and user location. User status is
encoded as Boolean feature isRegisteredUser which indicates
whether a user is registered or anonymous. User experience is
captured by the number of revisions a user has contributed to the
training dataset (userFrequency), the cumulated number of unique
items a user has edited up until the revision in question (cumUser-
UniqueItems), and the Boolean feature isPrivilegedUser that
indicates whether or not a user has administrative privileges. These
features are perhaps most predictive for well-intentioned users rather
than vandals, since the latter more often remain anonymous and
contribute little to nothing before engaging in vandalism. The IP ad-
dress of anonymous users at the time of editing is recorded, which
allows for their geolocation; using a geolocation database [15], we
derive the features userContinent, userCountry, userRegion,
userCounty, userCity, and userTimeZone. For registered users,
whose IP addresses are withheld by Wikimedia for privacy reasons,
these features are set to a non-existent location. Features that had a
negligible effect and did not make it into our final model include the
time difference since the last revision of a user, the average number
of bytes added by a user per revision, and the number of edits a user
has made on item heads vs. item bodies.

Item features. To inform our vandalism detection model about
the item being edited, we devise features to characterize and quan-
tify item popularity. We compute the number of revisions an item
has (logItemFrequency), and the number of unique users that
have created them (logCumItemUniqueUsers). To avoid overfit-
ting, we apply a log transformation on both features and round the
result. Since 70% of vandalism cases are the only ones in their
item’s entire revision history [14], pinpointing frequently vandal-
ized items is infeasible. Features that did not make it into our final
model therefore include basic item statistics such as numbers of
labels, descriptions, aliases, statements, and sitelinks an item has, as
well as the Boolean feature indicating whether an item describes a
human (which forms part of ORES baseline). These features overfit,
whereas a log transformation did not help, either.

Revision features. Further features encode meta data about a
revision, namely revision type, revision language, revision context,
and revision tags. Based on the automatically generated comment
of a revision, its revision type can be derived from the comment’s
<action> and <subaction> as features revisionAction and

revisionSubaction, which encode content types affected (e.g.,
label, description, alias, statement, sitelink) and change type (insert,
add, remove). The affected language revisionLanguage can be
derived from the parameters <param>+. The feature isLatinLang-
uage indicates whether or not the language is usually written in
Latin alphabet [38]. Some obvious damaging edits insert, for exam-
ple, Chinese characters as an English label or the other way around.
Revision context is encoded using the revisionPrevAction and
positionWithinSession. The former denotes the content type
changed in the previous revision on the same item, and the latter
denotes this revision’s position within a session of consecutive re-
visions by the same user on the same item. Moreover, rule-based
scripts on Wikidata assign revision tags to revisions. We found
26 different tags which can be divided into two groups, namely
tags originating from the Wikidata Abuse Filter [38], and tags orig-
inating from semi-automatic editing tools such as the “Wikidata
Game” and the “Visual Editor.” The tags are encoded in the feature
revisionTag. Features that did not make it into our final model
include revision size and revision time in the form of hour of day,
day of week, and day of month. Despite trying different scaling and
discretization techniques, these features were prone to overfitting.

4. EVALUATION DATA
To evaluate our Wikidata vandalism model, we employ a sig-

nificant portion of Wikidata’s revision history: our evaluation is
based on the recently published Wikidata Vandalism Corpus WDVC-
2015 [14]. This section briefly describes the corpus and gives rele-
vant corpus statistics, discusses its division into datasets for training,
validation, and test, and reports statistics on selected features.

4.1 Wikidata Vandalism Corpus WDVC-2015
The Wikidata Vandalism Corpus WDVC-2015 [14] is currently

the only large-scale vandalism corpus for crowdsourced structured
knowledge bases available. It contains all of about 24 million re-
visions that were manually created between October 2012 (when
Wikidata went operational) and October 2014, disregarding revi-
sions created automatically by bots. A total of 103,205 revisions
were labeled as vandalism if they were reverted using Wikidata’s
rollback function—an administrative tool dedicated to revert vandal-
ism [40]. A manual investigation shows that 86% of the revisions
labeled as vandalism are indeed vandalism and only about 1% of
the revisions labeled non-vandalism are in fact vandalism that has
either been reverted manually, or not at all.

Table 2 gives an overview of key figures of the corpus. Regarding
the entire corpus (first column), the 24 million revisions were created
by 299,000 unique users editing about 7 million different items in
about 14 million work sessions. About 18% of users have vandalized
at least once and 1% of items were targeted at least once. Comparing
item parts, there are about 4 times more revisions on item bodies
than on item heads. However, the majority of vandalism occurs on
the latter. Similarly, there are about 2.7 times more users vandalizing
item heads than bodies, and the vandalism of about 2 times as many
vandalized items can be found within its head. We hypothesize
that vandals are drawn more to an item’s head since it is rendered
at the top of the page. Also, item heads are currently used for
search suggestions on Wikipedia and mobile devices, thus being
visible to a large audience. However, the focus of vandals will likely
shift towards item bodies as Wikidata’s integration into third party
information systems progresses. Altogether, we are dealing with
an unbalanced learning task, where 0.4% of all revisions are the
to-be-detected vandalism. Considering item heads, the imbalance
is 1.3%, whereas it is 0.2% for item bodies.

Table 2: The Wikidata Vandalism Corpus WDVC-2015 in
terms of total unique users, items, sessions, and revisions with
a breakdown by item part and by vandal(ism) status (Vand.).
Numbers are given in thousands.

Entire corpus Item head Item body
Total Vand. Regular Total Vand. Regular Total Vand. Regular

Revisions 24,004 103 23,901 4,297 59 4,238 17,202 41 17,160
Sessions 14,041 63 13,980 2,693 44 2,650 11,313 20 11,294
Items 6,665 51 6,665 1,805 37 1,789 5,981 18 5,978
Users 299 55 249 157 41 118 164 15 151

Table 3: Evaluation datasets for training, validation, and test
in terms of time period covered, revisions, sessions, items, and
users. Numbers are given in thousands.
Dataset From To Revisions Sessions Items Users

Training May 1, 2013 Jun 30, 2014 12,758 7,399 4,401 208
Validation Jul 1, 2014 Aug 31, 2014 4,094 2,799 2,327 41
Test Sep 1, 2014 Oct 31, 2014 3,975 2,666 2,200 40

4.2 Datasets for Training, Validation, and Test
The Wikidata Vandalism Corpus has not been split into datasets

for training, validation, and test. Simply doing so at random would
be false, since unrealistic situations might occur where an item’s
later revisions are used to train a classifier to classify its earlier revi-
sions, and, where some revisions of a user’s work session end up in
different datasets. Given that a significant amount of vandalism oc-
curs within work sessions that result in more than one revision, this
renders the latter likely. This and the fact that a vandalism detector
has to deal with a stream of revisions in the order in which they are
created, we found it appropriate to split the corpus by time. Table 3
gives an overview of how the corpus was split into datasets for train-
ing, validation, and test. Although the corpus comprises revisions
that date back to October 2012, we omit all of the revisions up to
May 2013, since beforehand Wikidata’s data model and serialization
format was relatively unstable. In our experiments, we performed
all feature selection and hyperparameter tuning solely based on the
validation dataset. Only after our four models were optimized on
the validation dataset, we ran them on the test dataset to evaluate
their effectiveness in comparison to that of our two baselines.

4.3 Statistics on Selected Features
During feature engineering and selection, we analyzed each indi-

vidual feature against the training dataset in order to gain insights
into their nature; Table 4 reports analyses for selected features. The
best-performing feature is revisionTag, which has not been evalu-
ated before. Revision tags divide into two categories: tags by the
Wikidata Abuse Filter and tags by semi-automatic editing tools, such
as the Wikidata Game. The former provide a signal for vandalism
while the latter provide a signal for regular edits. The feature revi-
sionLanguage reveals that while only one third of Wikidata’s con-
tent is language-dependent it still attracts about 90% of all vandalism.
In particular, we found 11.51% of revisions affecting Hindi content
to contain vandalism, whereas only 2.43% of revisions affecting En-
glish do so. Likewise, regarding userCountry, 35.29% of revisions
by unregistered users from India contain vandalism, significantly
more often than from other countries. Finally as outlined above,
revisions that contain language names (languageWordRatio) have
an empirical probability of 6.61% to be considered damaging and
being rolled back. These findings suggest new opportunities to study
cultural differences in crowdsourcing knowledge, but they also hint
at ways to improve Wikidata’s interfaces.

Table 4: Statistics on selected features (revisionTag, lang-
uageWordRatio, revisionLanguage, and userCountry). The
tables show the number of vandalism revisions, total revisions,
and the empirical vandalism probability. Rows are ordered by
vandalism revisions. Numbers are given in thousands.
revisionTag Vand. Total Prob.

Rev. with tags 52 8,619 0.60%
By abuse filter 49 122 39.90%
By editing tools 3 8,496 0.03%

Rev. w/o tags 52 15,386 0.34%

revisionLang. Vand. Total Prob.

Rev. with lang. 92 8,747 1.05%
English 40 1,664 2.43%
Spanish 4 370 1.11%
Hindi 3 28 11.51%
German 3 865 0.31%
French 2 623 0.38%
Other languages 39 5,196 0.75%

Rev. w/o lang. 12 15,258 0.08%

lang.Word.Ratio Vand. Total Prob.

Rev. with comment 102 23,304 0.44%
Ratio equals 0 79 22,955 0.34%
Ratio greater than 0 23 349 6.61%

Rev. w/o comment 1 700 0.21%

userCountry Vand. Total Prob.

Rev. by unreg. users 88 705 12.42%
USA 13 65 20.85%
India 11 31 35.29%
Japan 5 46 11.39%
United Kingdom 3 20 14.60%
Germany 3 45 6.09%
Other countries 52 498 10.49%

Rev. by reg. users 16 23,299 0.07%

5. MODEL OPTIMIZATION AND EVALUATION
This section reports on a series of experiments to optimize the de-

tection performance of our Wikidata vandalism model, comparing it
with two state-of-the-art baselines. Besides parameter optimization,
we utilize bagging and multiple-instance learning to almost double
our model’s performance. To cut a long story short, Table 5 shows
the evaluation results for all approaches and their optimizations,
and Figure 2 shows the corresponding precision-recall curves. We
further investigate our model’s performance against the baselines
in an online learning scenario, analyzing performance fluctuation
over time. In all experiments, our model outperforms the baselines
by factors ranging from 2 to 3.

5.1 Experimental Setup and Reproducibility
Baselines. Our baselines are the Wikidata Abuse Filter (FIL-

TER) [38] and the Wikidata vandalism detector recently deployed
within the Objective Revision Evaluation Service (ORES) [39]. The
Abuse Filter implements 89 rules that, when triggered, create tags
on revisions for later review. Our model incorporates the rules
within our revisionTag feature. Though the Abuse Filter has long
been operational, its performance has never been publicly evalu-
ated. ORES is poised to detect quality problems across Wikimedia’s
projects. The component to detect Wikidata vandalism was recently
released as a “birthday gift.”4 Since ORES is tightly integrated with
Wikidata’s backend, we reimplemented the vandalism detection
component, reproduced its detection performance as reported by its
authors,5 and used the reimplementation within our experiments.

Performance measures. To assess detection performance, we
employ two performance measures, namely the area under curve of
the receiver operating characteristic (ROCAUC), and the area under
the precision-recall curve (PRAUC). Regarding their advantages
and disadvantages for imbalanced datasets, we refer to Davis and
Goadrich [10] and He and Garcia [13]: while ROCAUC is the de-
facto standard for machine learning evaluation, we report PRAUC as
well for a more differentiated view with respect to the imbalance
of our learning task. PRAUC is essentially equivalent to average
precision (AP), a common measure for ranking tasks [19].

Preprocessing. For some features, we performed additional pre-
processing, e.g., to fill in missing values by the median, and to
determine the value range of categorical features. For validation,
preprocessing is based on data from October 2012 to June 2014
(incl.), for testing from October 2012 to August 2014 (incl.).
4https://www.wikidata.org/wiki/Wikidata:Third_Birthday/Presents/ORES
5https://github.com/wiki-ai/wb-vandalism/tree/master/tuning_reports

Table 5: Evaluation results of the Wikidata vandalism detec-
tor, WDVD, proposed in this paper, and that of two baselines
FILTER and ORES. Performance measures are the area un-
der curve of the receiver operating characteristic (ROCAUC),
and the area under the precision-recall curve (PRAUC). Perfor-
mance values are reported for the entire test dataset, divided
by item part. The darker a cell, the better the performance.
Classifier Item head Item body Entire item

Optimization ROCAUC PRAUC ROCAUC PRAUC ROCAUC PRAUC

WDVD (our approach)
Multiple-instance 0.985 0.575 0.981 0.216 0.991 0.491
Bagging 0.980 0.521 0.879 0.175 0.960 0.430
Optimized random forest 0.980 0.487 0.942 0.171 0.978 0.406
Default random forest 0.922 0.451 0.800 0.087 0.894 0.342

FILTER (baseline)
Multiple-instance 0.819 0.345 0.893 0.020 0.900 0.218
Bagging 0.768 0.297 0.816 0.014 0.865 0.201
Optimized random forest 0.770 0.351 0.816 0.015 0.865 0.257
Default random forest* 0.770 0.358 0.816 0.015 0.865 0.265

ORES (baseline)
Multiple-instance 0.962 0.269 0.946 0.132 0.975 0.228
Bagging 0.956 0.197 0.900 0.124 0.960 0.169
Optimized random forest 0.953 0.214 0.896 0.111 0.960 0.182
Default random forest* 0.882 0.176 0.749 0.058 0.859 0.135

*These approaches represent the state of the art; to the best of our knowledge, the
outlined optimizations have not been tried with ORES and FILTER until now.

Learning algorithm. In a series of pilot experiments, we deter-
mined which learning algorithm is best suited for our task. The
random forest [8] algorithm outperformed all others tested, includ-
ing logistic regression and naive Bayes with different hyperparam-
eters. This finding is corroborated by the fact that random forest
has also been found to perform best for vandalism detection on
Wikipedia [2, 31], and that it is the algorithm of choice for the
ORES baseline. For brevity, and due to space constraints, we omit a
detailed report of the performance of other classification algorithms.

Reproducibility. To ensure the reproducibility of our experi-
ments, the code base underlying our research is published alongside
this paper.6 It enables those who wish to follow up on our work to
replicate the plots and performance values reported. Our feature
extraction implementation is in Java and depends on the Wikidata
Toolkit,7 our experiments are implemented in Python and depend on
the scikit-learn library, version 0.17.1 [23], and, PRAUC is computed
with the AUCCalculator, version 0.2 by Davis and Goadrich [10].

5.2 Random Forest Parameter Optimization
Table 5 (rows “Default random forest”) shows the detection per-

formance of our Wikidata vandalism detector, WDVD, and that
of the baselines FILTER and ORES when employing the scikit-
learn random forest implementation with default parameters. To
improve our model, we first optimized the parameters maximal tree
depth, number of trees, and number of features per split in a grid
search against the validation dataset. Figure 3 (top) shows the ran-
dom forest’s performance depending on the maximal depth of the
trees (fixing the other parameters at their defaults). The best PRAUC

of 0.493 on the validation dataset can be achieved with a maximal
depth of 8, whereas for the baselines FILTER and ORES the opti-
mal maximal depth is at 16. Likewise, we optimized the number
of trees and the number of features per split: slight improvements
were achieved by, simultaneously, increasing the number of trees,
increasing the maximal depth, and decreasing the number of features
per split. However, increasing the number trees linearly increases
runtime at marginal performance improvements. For WDVD, we
6http://www.heindorf.me/wdvd
7https://www.mediawiki.org/wiki/Wikidata_Toolkit

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

Multiple-Instance
Bagging

O
ptim

ized RF

Default RF
M

ultiple-Instance

B
ag

gi
ng

O
ptim

ized R
F

Default RF
M

ultiple-Instance

B
agging

O
ptim

ized R
F

D
efault R

F

WDVD

ORES

FILTER

Figure 2: Precision-recall curves corresponding to the ap-
proaches listed in Table 5 on the test dataset.

hence stick to the default number of trees (10), the default number
of features per split (‘sqrt’) and use a maximal depth of 8. For
ORES and FILTER, we do so, too, except for a maximal depth
of 16. Table 5 (rows “Optimized random forest”) shows the result-
ing performance on the test dataset; Figure 2 the corresponding
precision-recall curves. Both ROCAUC and PRAUC of WDVD and
ORES significantly improve: WDVD by 19% (from 0.342 PRAUC

to 0.406 PRAUC), and ORES by 35%. FILTER did not improve.

5.3 Training Dataset Size and Bagging
Given the size of our training dataset (see Table 3), we investi-

gated how much training data is actually required to achieve the
performance of our model, which ultimately lead us to consider
bagging as another means of optimization. Figure 3 (bottom) shows
the performance of our model when taking random samples of the
training data. The performance varies relatively little with sample
size, possibly due to redundant or related revisions in the training
dataset, such as users adding “instance of human” in bulk to many
different items in a coordinated effort. Manual spot checks also
showed items having a life cycle where, e.g., labels and sitelinks
are inserted before specialized properties. But we did not further
investigate this observation and leave it for future work.

These findings made us wonder whether it would help to create
an ensemble of models, each trained on a subset of the training
dataset. We experimented with bagging [7] and performed another
grid search to determine good random forest parameters: 16 random
forests, each build on 1/16 of the training dataset with the forests con-
sisting of 8 trees, each having a maximal depth of 32 with 2 features
per split. It should be noted, though, that detection performance
varied only slightly for different hyperparameters and reasonable
performance values could be achieved across a wide range of param-
eter settings. Indeed, bagging increased the detection performance
on our validation dataset to PRAUC 0.517. Table 5 (rows “Bag-
ging”) shows detection performance when applying bagging with
optimized parameters on the test dataset; Figure 2 shows the corre-
sponding precision-recall curves: bagging yields a 6% improvement
for WDVD over the optimized random forest (from 0.406 PRAUC to
0.430 PRAUC), but ROCAUC suffers. The baselines hardly improve.

WDVD

FILTER

ORES

1/1024 1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1
Sampling ratio

0.0

0.1

0.2

0.3

0.4

0.5

P
R

A
U

C

FILTER

ORES

WDVD

1 2 4 8 16 32 64
Maximal depth

∞
0.0

0.1

0.2

0.3

0.4

0.5
P

R
A

U
C

Figure 3: Top: validation performance dependent on maximal
depth in a random forest. Bottom: validation performance de-
pendent on random samples of training data using a default
random forest, averaged over ten repetitions with different ran-
dom seeds for sampling and for the random forest.

5.4 Multiple-Instance Learning
Since the user interface of Wikidata makes users submit each

change individually, this may result in many consecutive revisions
by the same user on the same item, which we call a work session.
Until now, we have considered every revision of an item in isola-
tion, disregarding sessions. This is unjustified, since one case of
vandalism calls into question all other revisions created in the same
session, and 60% of revisions are part of a session consisting of at
least two revisions. To improve our model further, we exploit work
sessions via multiple-instance learning and experiment with two
such techniques, namely single-instance learning (SIL) and simple
multiple-instance learning (Simple MI) [4, 12].

SIL is a so-called instance space method which works as follows:
first, a classifier is applied on single revisions without considering
sessions. Second, each revision in a session is assigned the same
classification score, namely the average of the classification scores
of a session’s revisions.

Simple MI is a so-called embedded space method, where the
vectors representing revisions in a session are embedded into a
new space: a session comprises, say, d revisions represented as
n-dimensional feature vectors, where xi = (xi

1, ..., x
i
n) denotes the

i-th vector for i ∈ [1, d]. For such a session, a new 2n-dimensional
feature vector x̄ = (a1, ..., an, b1, ..., bn) is computed, where aj =
maxi∈[1,d] x

i
j and bj = mini∈[1,d] x

i
j for j ∈ [1, n]. In plain words,

a session is represented by a vector comprising the minimal and the
maximal vector components of its constituent revision vectors. We
compute the classification scores for each session and assign these
scores to each individual revision of its session in much the same
way as the aforementioned SIL method does.

For both, SIL and Simple MI, we employ the bagging ran-
dom forest introduced above, whereas the aforementioned default
and optimized random forest performed worse. Using SIL, we
achieve 0.553 PRAUC on the validation dataset, and using Simple MI,
0.546 PRAUC. Lastly, we combine SIL and Simple MI by taking the
arithmetic mean of their respective classification scores for a given
revision, yielding 0.568 PRAUC on the validation dataset.

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

0 0.2 0.4 0.6 0.8 1
Recall

0 0.2 0.4 0.6 0.8 1
Recall

BothContext

Content

WDVD default random forest

Both
Context

Content

WDVD optimized random forest

Both

Context

C
ontent

WDVD bagging

Both
ContextContent

WDVD multiple-instance

Figure 4: Precision-recall curves for content features, context
features, and both combined on the test dataset by classifier.

Table 5 (rows “Multiple-instance”) shows detection performance
when applying our combination of multiple-instance learning tech-
niques on top of our optimized bagging random forest on the test
dataset; Figure 2 shows the corresponding precision-recall curves:
this classifier achieves the best overall detection performance of an
astounding 0.991 ROCAUC at 0.491 PRAUC, improving significantly
over the optimized bagging random forest. The ORES baseline also
benefits from multiple-instance learning, achieving 0.975 ROCAUC,
but only at 0.228 PRAUC. The FILTER baseline does not seem to
benefit from multiple-instance learning. On a practical note, em-
ploying multiple-instance learning brings about a minor limitation,
namely that revisions cannot be classified immediately upon arrival,
but only after a work session is concluded (i.e., after a timeout).

5.5 Content Features vs. Context Features
In all of the above optimizations, our model incorporates all the

features listed in Table 1. Nevertheless, it is interesting to study the
performance differences with regard to the feature subsets of content
features vs. context features when applying the aforementioned
optimizations. Figure 4 shows the results: we observe that content
features particularly contribute to a high precision, whereas context
features contribute to a high recall. Regardless of the classifier,
combining both feature groups yields better performance than any
single feature group alone (except for a small range of recall values
for “Optimized random forest”). Both feature groups benefit from
more advanced machine-learning algorithms than the default random
forest, whereas the benefits for content features are larger. The best
performance of both content and context features can be achieved
with multiple-instance learning.

5.6 Online Learning
Vandalism detection can be viewed as an online learning problem

since new revisions arrive at Wikidata in a steady stream, allowing
for instant classifier updates once new vandalism cases are identi-
fied. In an initial experiment, we employed four online learning
algorithms from scikit-learn: stochastic gradient decent with log
loss, stochastic gradient decent with modified Huber loss, multino-
mial naive Bayes, and Bernoulli naive Bayes. All of them perform
significantly worse than the random forest in a batch setting.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

V
an

da
lis

m
 fr

ac
tio

n

07 & 08
2013

09 & 10
2013

11 & 12
2013

01 & 02
2014

03 & 04
2014

05 & 06
2014

07 & 08
2014

validation
dataset

09 & 10
2014

actual test
datasetPseudo-test dataset (months)

WDVD

FILTER

ORES

Vandalism fraction

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

R
A

U
C

Semi-automatic
editing tools emerge

Figure 5: Effectiveness over time (black line plots) and vandal-
ism fraction over time (blue line plot). The former are based on
our best vandalism detection model (multiple-instance) and the
two state-of-the-art baselines. Test datasets were varied while
using all preceding revisions as training dataset.

Resorting to our best-performing classifier instead, we conducted
another experiment to measure performance over time by using all
revisions of two consecutive months as pseudo-test dataset, and
all preceding revisions for training. This way, the training dataset
grows as the pseudo-test dataset approaches the present, whereas the
penultimate test dataset corresponds to our validation dataset, and
the final test dataset to the actual one used in the above experiments
(it still has never been used for training or optimization). The black
line-plots in Figure 5 contrast the detection performance of our
model to that of the two baselines. Our model’s performance varies
between a minimum of 0.46 PRAUC in July & August 2013, and
a maximum of 0.69 PRAUC in March & April 2014. The FILTER
baseline remains relatively constant over time, except for November
& December 2013, where its performance plunges. The ORES base-
line steadily declines over time, except for two time periods (July
& August 2013 and January & February 2014). The rise and fall
of detection performance over time raises the question why this is
happening. A partial explanation may be found in the variance of
class imbalance over time: the blue line-plot in Figure 5 shows the
class imbalance in terms of fraction of vandalism in the pseudo-test
datasets, and this curve correlates to some extent with that of our
model. The main reason for the decreasing fraction of vandalism
within more recent months is not a decrease of vandalism but an in-
crease of non-vandalism which in turn coincides with the emergence
of semi-automatic editing tools, such as the Wikidata Game. We fur-
ther suspect that new forms of vandalism may have appeared which
are not sufficiently represented in the training dataset, emphasizing
that a vandalism detector needs to be updated regularly.

6. DISCUSSION
Item head vs. item body. In our experiments, we differentiate

detection performance on item heads vs. its bodies (see Table 5).
While significantly outperforming the baselines on both item parts,
on head content, the detection performance of our model is higher.
For PRAUC, part of this difference can be explained by head content
having a smaller class imbalance than body content (see Section 4.1)
and PRAUC varying with class imbalance [10, 6]. ROCAUC, in turn,
is independent of class imbalance [11]. Having reviewed a large
sample of vandalism cases, we believe another important reason
for this to be that vandalism in body content is more sophisticated:
here, vandalism often attempts to introduce false facts that still
appear alright so that it must be tackled at a semantic level. This
hypothesis is also supported by the fact that most vandalism in item
heads is done by unregistered or inexperienced users, whereas most

Crowdsourced
knowledge base
(e.g., Wikidata)

Wikipedia

Information
systems

(e.g., search engines,
QA systems)

Editing & Vandalism

Figure 6: Data consumers of knowledge bases in general, and
Wikidata in particular. Information systems provide the knowl-
edge directly to its users, who in turn have the ability to edit the
underlying knowledge base.

vandalism in item bodies is done by registered users [14]. We leave
it to future work to develop features that work better on item bodies,
which may possibly involve external data sources such as other
databases and web search engines to double-check information.
Nevertheless, the labels, descriptions, and aliases found in item
heads are widely visible across various Wikimedia projects, e.g., in
Wikipedia search suggestions and Wikipedia infoboxes, requiring
constant maintenance to ensure their integrity.

Practical applicability. We develop a model to automatically
detect vandalism in Wikidata which achieves 0.991 ROCAUC at
0.49 PRAUC. Our model can be applied in two ways by setting up
two classifiers with different performance characteristics, namely
one with a high precision and one with a high recall. Up to 30% of
vandalism can be detected and reverted fully automatically (see Fig-
ure 2). Considering cases where the classifier is less confident in its
decision, they can still be ranked according to classifier confidence
so as to allow for a focused review from likely to less likely van-
dalism. Altogether, it is possible to reduce the number of revisions
that human reviewers have to review by a factor of ten while still
identifying over 98.8% of all vandalism.8

Besides aiding Wikidata’s community in its maintenance, the con-
fidence scores returned by our classifier can be directly integrated
into information systems so that they can avoid showing vandalized
information (see Figure 6). Currently, Wikidata’s most prominent
data consumers are the different language editions of Wikipedia.
For example, Wikipedia infoboxes (e.g., about genes [9, 20]) are
populated from Wikidata, and Wikipedias which do not have an
article about a certain topic (in particular smaller language editions)
automatically generate article stubs from Wikidata containing the
most important information.9 It is foreseeable that many third party
information systems will rely on Wikidata. Maybe the most no-
table use of Wikidata is its inclusion in major search engines, like
Freebase in Google. Many factual queries can directly be answered
without having to go through the search results. Moreover, ques-
tion answering systems (e.g., Wolfram Alpha or IBM Watson) and
personal assistants (e.g., Siri, Google Now, Cortana) may rely on
semantic data from Wikidata. While most of them will rely on a
multitude of data sources, having a vandalism score for Wikidata
will help to better estimate the data’s trustworthiness and to choose
the most appropriate source.

Lastly, our current features do not impose high demands on com-
putational power. For 24 million revisions, they can be computed
on a standard workstation (16 cores and 64 GB RAM) in less than
2 hours. This results in a throughput of more than 3,000 revisions per
second. Training a model takes about 10 minutes, and classifying a
revision a fraction of a second.
8This number is derived from the ROC curve which is omitted due to space constraints:
the true positive rate is 98.8% at a false positive rate of 9%; the latter implies that less
than 10% of revisions are predicted to be vandalism (due to class imbalance).
9https://www.mediawiki.org/wiki/Extension:ArticlePlaceholder

7. CONCLUSION AND OUTLOOK
In this paper, we develop a new machine learning-based approach

for the automatic detection of vandalism in the structured knowledge
base Wikidata. Our vandalism detection model is based on a total of
47 features and a rigorous optimization using a variety of advanced
machine learning techniques. As far as features are concerned, both
content and context features are important. The best classification
results have been obtained with a parameter-optimized random for-
est in combination with bagging and multiple-instance learning.
Altogether, our classifier achieves 0.99 ROCAUC at 0.49 PRAUC and
it thereby significantly outperforms the state of the art by a factor
of 3 in case of the Objective Revision Evaluation Service (ORES),
and by a factor of 2 in case of the Wikidata Abuse Filter.

As future work, we plan to further improve detection performance
by implementing a retrieval-based vandalism detector that double-
checks facts in external databases and web search engines. Further-
more, vandalism detection can be cast as a one-class classification
problem, which opens interesting directions for the application of
corresponding machine learning algorithms, as does deep learning
which has not been applied to vandalism detection before. Another
promising direction, which has not been explored for vandalism de-
tection, could be to provide user-friendly explanations why a given
revision is classified as vandalism, in order to improve and speed up
manual review as well as to improve retention of new users in case
their edits are reverted.

Acknowledgement
This work was supported by the German Research Foundation
(DFG) within the Collaborative Research Center “On-The-Fly Com-
puting” (CRC 901).

References
[1] B. Adler, L. de Alfaro, and I. Pye. Detecting Wikipedia Vandalism

Using WikiTrust. CLEF Notebooks 2010.
[2] B. Adler, L. de Alfaro, S. M. Mola-Velasco, P. Rosso, and A. G. West.

Wikipedia Vandalism Detection: Combining Natural Language,
Metadata, and Reputation Features. CICLing 2011.

[3] E. Agichtein, C. Castillo, D. Donato, A. Gionis, and G. Mishne.
Finding High-Quality Content in Social Media. WSDM 2008.

[4] J. Amores. Multiple instance classification: Review, taxonomy and
comparative study. Artificial Intelligence, 201:81–105, Aug. 2013.

[5] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase:
A Collaboratively Created Graph Database for Structuring Human
Knowledge. SIGMOD 2008.

[6] K. Boyd, V. Santos Costa, J. Davis, C. D. Page. Unachievable Region
in Precision-Recall Space and Its Effect on Empirical Evaluation.
ICML 2012.

[7] L. Breiman. Bagging Predictors. Machine learning, 24(2):123–140,
1996.

[8] L. Breiman. Random Forests. Machine Learning, 45(1):5–32, Oct.
2001.

[9] S. Burgstaller-Muehlbacher, A. Waagmeester, E. Mitraka, J. Turner,
T. E. Putman, J. Leong, P. Pavlidis, L. Schriml, B. M. Good, and A. I.
Su. Wikidata as a Semantic Framework for the Gene Wiki Initiative.
bioRxiv 032144, 2015.

[10] J. Davis and M. Goadrich. The relationship between Precision-Recall
and ROC curves. ICML 2006.

[11] T. Fawcett. An introduction to ROC analysis. Pattern recognition
letters, 27(8):861-874, 2006.

[12] T. Gärtner, P. Flach, A. Kowalczyk, and A. Smola. Multi-Instance
Kernels. ICML 2002.

[13] H. He and E. Garcia. Learning from Imbalanced Data. IEEE
Transactions on Knowledge and Data Engineering, 21(9):1263–1284,
Sept. 2009.

[14] S. Heindorf, M. Potthast, B. Stein, and G. Engels. Towards Vandalism
Detection in Knowledge Bases: Corpus Construction and Analysis.
SIGIR 2015.

[15] IPligence. Ipligence. http://www.ipligence.com, 2014.
[16] K. Y. Itakura and C. L. A. Clarke. Using Dynamic Markov

Compression to Detect Vandalism in the Wikipedia. SIGIR 2009.
[17] A. Ladsgroup and A. Halfaker. Wikidata features.

https://github.com/wiki-ai/wb-vandalism/
blob/31d74f8a50a8c43dd446d41cafee89ada5a051f8/wb_vandalism/
feature_lists/wikidata.py.

[18] B. Li, T. Jin, M. R. Lyu, I. King, and B. Mak. Analyzing and
predicting question quality in community question answering services.
WWW 2012.

[19] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[20] E. Mitraka, A. Waagmeester, S. Burgstaller-Muehlbacher, L. M.
Schriml, A. I. Su, and B. M. Good. Wikidata: A platform for data
integration and dissemination for the life sciences and beyond.
bioRxiv 031971, 2015.

[21] S. M. Mola-Velasco. Wikipedia Vandalism Detection Through
Machine Learning: Feature Review and New Proposals: Lab Report
for PAN at CLEF 2010. CLEF Notebooks 2010.

[22] P. Neis, M. Goetz, and A. Zipf. Towards Automatic Vandalism
Detection in OpenStreetMap. ISPRS International Journal of
Geo-Information, 2012.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[24] M. Potthast, B. Stein, and R. Gerling. Automatic Vandalism Detection
in Wikipedia. ECIR 2008.

[25] L. Ramaswamy, R. Tummalapenta, K. Li, and C. Pu. A
Content-Context-Centric Approach for Detecting Vandalism in
Wikipedia. Collaboratecom 2013.

[26] C. Shah and J. Pomerantz. Evaluating and Predicting Answer Quality
in Community QA. SIGIR 2010.

[27] C. H. Tan, E. Agichtein, P. Ipeirotis, and E. Gabrilovich. Trust, but
Verify: Predicting Contribution Quality for Knowledge Base
Construction and Curation. WSDM 2014.

[28] T. P. Tanon, D. Vrandecic, S. Schaffert, T. Steiner, and L. Pintscher.
From Freebase to Wikidata: The Great Migration. WWW 2016.

[29] K.-N. Tran and P. Christen. Cross Language Prediction of Vandalism
on Wikipedia Using Article Views and Revisions. PAKDD 2013.

[30] K.-N. Tran and P. Christen. Cross-Language Learning from Bots and
Users to Detect Vandalism on Wikipedia. IEEE Transactions on
Knowledge and Data Engineering, 27(3):673–685, Mar. 2015.

[31] K.-N. Tran, P. Christen, S. Sanner, and L. Xie. Context-Aware
Detection of Sneaky Vandalism on Wikipedia Across Multiple
Languages. PAKDD 2015.

[32] L. von Ahn. Offensive/Profane Word List.
http://www.cs.cmu.edu/~biglou/resources/, 2009.

[33] D. Vrandečić and M. Krötzsch. Wikidata: A Free Collaborative
Knowledgebase. Communications of the ACM, 2014.

[34] W. Y. Wang and K. R. McKeown. "Got You!": Automatic Vandalism
Detection in Wikipedia with Web-based Shallow Syntactic-semantic
Modeling. COLING 2010.

[35] A. West and I. Lee. Multilingual Vandalism Detection Using
Language-Independent & Ex Post Facto Evidence. CLEF Notebooks
2011.

[36] A. G. West, S. Kannan, and I. Lee. Detecting Wikipedia Vandalism
via Spatio-temporal Analysis of Revision Metadata. EUROSEC 2010.

[37] Q. Wu, D. Irani, C. Pu, and L. Ramaswamy. Elusive Vandalism
Detection in Wikipedia: A Text Stability-based Approach. CIKM
2010.

[38] Wikimedia Foundation. Wikidata Abuse Filter.
https://www.wikidata.org/wiki/Special:AbuseFilter, 2015.

[39] Wikimedia Foundation. Objective Revision Evaluation Service. https:
//meta.wikimedia.org/wiki/Objective_Revision_Evaluation_Service,
2016.

[40] Wikimedia Foundation. Wikidata:Rollbackers.
https://www.wikidata.org/wiki/Wikidata:Rollbackers, 2016.

