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ABSTRACT
We report on the Wikidata vandalism detection task at the WSDM
Cup 2017. The task received five submissions for which this pa-
per describes their evaluation and a comparison to state of the art
baselines. Unlike previous work, we recast Wikidata vandalism
detection as an online learning problem, requiring participant soft-
ware to predict vandalism in near real-time. The best-performing
approach achieves a ROCAUC of 0.947 at a PRAUC of 0.458. In
particular, this task was organized as a software submission task: to
maximize reproducibility as well as to foster future research and
development on this task, the participants were asked to submit their
working software to the TIRA experimentation platform along with
the source code for open source release.

1. INTRODUCTION
Knowledge is increasingly gathered by the crowd. One of the

most prominent examples in this regard is Wikidata, the knowledge
base of the Wikimedia Foundation. Wikidata stores knowledge (bet-
ter: facts) in structured form as subject-predicate-object statements
that can be edited by anyone. Most of the volunteers’ contributions
to Wikidata are of high quality; however, there are, just like in Wiki-
pedia, some “editors” who vandalize and damage the knowledge
base. The impact of these few can be severe: since Wikidata is, to an
increasing extent, integrated into information systems such as search
engines and question-answering systems, the risk of spreading false
information to all their users increases as well. It is obvious that this
threat cannot be countered by human inspection alone: currently,
Wikidata gets millions of contributions every month; the effort of re-
viewing them manually will exceed the resources of the community,
especially as Wikidata further grows.

Encouraged by the success of algorithmic vandalism detection
on Wikipedia, we started a comparable endeavor for Wikidata two
years ago: we carefully compiled a corpus based on Wikidata’s
revision history [6] and went on by developing the first machine
learning-based Wikidata vandalism detector [7]. Compared with the
quality of the best vandalism detectors for Wikipedia, our results
may be considered as a first step toward a practical solution.

We are working on new detection approaches ourselves but we
see that progress can be made at a much faster pace if independent
researchers work in parallel, generating a diversity of ideas. While
research communities often form around problems of interest, this
has not been the case for vandalism detection in knowledge bases—
perhaps due to the novelty of the task. We hence took a proactive
stance by organizing a shared task event as part of the WSDM
Cup 2017 [8]. Shared tasks have proven successful as catalysts for
forming communities on a number of occasions before, in particular
for vandalism detection on Wikipedia: on the basis of two shared
tasks, considerable interest from researchers worldwide resulted in
dozens of approaches to date [14, 16].

The goal of our shared task at the WSDM Cup 2017 is to develop
an effective vandalism detection model for Wikidata:

Given a Wikidata revision, the task is to compute a
quality score denoting the likelihood of this revision
being vandalism (or, similarly, damaging).

The revisions had to be scored in near real-time as soon as they
arrived, allowing for immediate action upon potential vandalism.
Moreover, a model (detector) should hint at vandalism across a wide
range of precision-recall-points to enable use cases such as (1) fully
automatic reversion of damaging edits at high precision, as well as
(2) pre-filtering and ranking of revisions with respect to importance
of being reviewed at high recall. As our main evaluation metric we
employ the area under curve of the receiver operating characteristic.

Our contributions to the WSDM Cup 2017 are as follows:
• Compilation of the Wikidata Vandalism Corpus 2016, an up-

dated version of our previous corpus, enlarged and retrofitted
for the setup of the shared task.

• Survey of the participant approaches with regard to features
and model variants.

• Comparison of the participant approaches to the state of the
art under a number of settings beyond the main task.

• Analysis of the combined performance of all models (de-
tectors) as an ensemble in order to estimate the achievable
performance when integrating all approaches.

• Release of an open source repository of the entire evaluation
framework of the shared task, as well as release of most of
the participants’ code bases by courtesy of the participants.

In what follows, Section 2 briefly reviews the aforementioned
related work, Section 3 introduces the developed evaluation frame-
work including the new edition of the Wikidata vandalism corpus,
Section 4 surveys the submitted approaches, and Section 5 reports on
their evaluation. Finally, Section 6 reflects on the lessons learned.

2. RELATED WORK
The section gives a comprehensive overview of the literature on

vandalism detection. The two subsections detail the approaches re-
garding dataset construction and detection technology respectively.

2.1 Corpus Construction
There are basically three strategies to construct vandalism corpora

for Wiki-style projects [9], namely, (1) based on independent manual
review of edits, (2) based on exploiting community feedback about
edits, and (3) based on comparing item states. As expected, there



is a trade-off between corpus size, label quality, and annotation
costs. Below, we review state-of-the art approaches for constructing
vandalism corpora under each strategy.

Annotation Based on Independent Manual Review.
The most reliable approach to construct a vandalism corpus is to

manually review and annotate its edits. When facing millions of
edits, however, the costs for a manual review become prohibitive,
thus severely limiting corpus size. The largest manually annotated
vandalism corpus to date is the PAN Wikipedia Vandalism Cor-
pus 2010 and 2011, comprising a sample of 30,000 edits each of
which having manually been annotated via crowdsourcing using
Amazon’s Mechanical Turk [13]. About 7% of the edits have been
found to be vandalism. This approach, however, is probably not
suited to Wikidata: an average worker on Mechanical Turk is much
less familiar with Wikidata, and the expected ratio of vandalism
in a random sample of Wikidata edits is about 0.2% (compared
with 7% in Wikipedia), so that a significantly higher number of edits
would have to be reviewed in order to obtain a sensible number of
vandalism cases for training a model.

Annotation Based on Community Feedback.
A more scalable approach to construct a vandalism corpus is to

rely on feedback about edits provided by the community for an-
notations. However, not all edits made to Wikidata are currently
reviewed by the community, thus limiting the recall in a sample of
edits to the amount of vandalism that is actually caught, and, not
all edits that are rolled back are true vandalism. Nevertheless, for
its simplicity, this approach was adopted to construct the Wikidata
Vandalism Corpus (WDVC) 2015 [6] and 2016, whereas the latter
was employed as evaluation corpus at the WSDM Cup 2017. Both
corpus versions are freely available for download.1 The corpus con-
struction is straightforward: based on the portion of the Wikidata
dump with manually created revisions, those revisions that have
been reverted via Wikidata’s rollback facility are labeled vandalism.
The rollback facility is a special instrument to revert vandalism; it is
accessible to privileged Wikidata editors only. This makes our cor-
pus robust against manipulation by non-privileged and, in particular,
anonymous Wikidata editors. As a result, we obtain a large-scale
vandalism corpus comprised of more than 82 million manual revi-
sions that were made between October 2012 and June 2016. About
200,000 revisions have been rolled back in this time (and hence are
labeled vandalism). By a manual analysis we got evidence that 86%
of the revisions labeled vandalism are indeed vandalism as per Wiki-
data’s definition [6].2 Recently, vandalism corpora for Wikipedia
have also been constructed based on community feedback.

Tran and Christen [21, 22] and Tran et al. [23] label all revi-
sions with certain keywords in the revision comment as vandalism,
e.g., ‘vandal’ or ‘rvv’ (revert due to vandalism), based on Kittur
et al.’s [10] approach to identify vandalism. These keywords do
not work for Wikidata, since revision comments are almost always
automatically generated and cannot be changed by editors.

Annotation Based on Item State.
An alternative (and still scalable) approach to build a vandalism

corpus is to analyze recurring item states in order to identify so-
called item ”reverts” to previous states in the respective item history.
In addition to community feedback this approach does also consider
all other events that may have caused an item state to reappear, e.g.,
in case that someone just fixes an error without noticing that the
1See http://www.wsdm-cup-2017.org/vandalism-detection.html
2https://www.wikidata.org/wiki/Wikidata:Vandalism

error was due to vandalism. As a consequence, a higher recall can
be achieved whereas, however, a lower precision must be expected.
Sarabadani et al. [19] adopted this approach, and, in order to in-
crease precision, they suggested a set of rules to annotate an edit as
vandalism if and only if (1) it is a manual edit, (2) it has been re-
verted, (3) it does not originate from a pre-defined privileged editor
group,3 (4) it has not been propagated from a dependent Wikipedia
project, and (5) it does not merge two Wikidata items. For unknown
reasons, not all edits of Wikidata’s history are annotated this way
but only a subset of 500,000 in 2015, yielding altogether only about
20,000 vandalism edits. While the authors claim superiority of the
design of their corpus over ours, their self-reported precision values
are not convincing: while only 68% of the edits labeled vandalism
are in fact vandalism (86% in our corpus), 92% of the edits are
reported to be at least "damaging” to a greater or lesser extent. The
authors have reviewed only 100 edits to substantiate these numbers
(we have reviewed 1,000 edits), so that these numbers must be taken
with a grain of salt.

Altogether, both corpora are suboptimal with regard to recall:
within both corpora, about 1% of the edits are wrongly labeled non-
vandalism, which currently amounts to an estimated 800,000 missed
vandalism edits over Wikidata’s entire history. A machine learning
approach to vandalism detection must hence be especially robust
against false negatives in the training dataset.

Tan et al. [20] compiled a dataset of low-quality triples in Free-
base according to the following heuristics: Additions that have been
deleted within 4 weeks after their submission are considered low-
quality, as well as removals that have not been reinserted within
4 weeks. The manual investigation of 200 triples revealed a preci-
sion of about 89%. However, the usefulness of the Freebase data
set is restricted by the fact that Google has shut down Freebase; the
Freebase data is currently being transferred to Wikidata [12].

2.2 Vandalism Detection
The detection of vandalism and damaging edits in structured

knowledge bases such as triple stores is a new research area. Hence,
only three approaches have been published before the WSDM
Cup 2017, which represent the state of the art [7, 19, 20]. All
employ machine learning, using features derived from both an edit’s
content and its context. In what follows, we briefly review them.

The most effective approach to Wikidata vandalism detection,
WDVD, was proposed by Heindorf et al. [7]. It implements 47 fea-
tures, from which 27 encode an edit’s content and 20 an edit’s
context. The content-based features cover character level features,
word level features, and sentence-level features, all are computed
from the automatically generated revision comment. In addition,
WDVD employs features to capture predicates and objects of subject-
predicate-object triples. Context-based features include user repu-
tation, user geolocation, item reputation, and the meta data of an
edit. As classification algorithm random forests along with multiple-
instance learning is employed. Multiple-instance learning is applied
to consecutive edits by the same user on the same item, so-called
editing sessions. Typically, editing sessions are closely related, so
that multiple-instance learning has a significant positive effect on
the classification performance.

The second-most effective approach has been deployed within
Wikimedia’s Objective Revision Evaluation Service, ORES [19].
ORES operationalizes 14 features (see Table 3), most of which
were introduced with WDVD, since the WDVD developers shared
with Wikimedia a detailed feature list. Meanwhile, certain features
have been discarded from WDVD due to overfitting but are still
3These include the groups sysop, checkuser, flood, ipblock-exempt, oversight, prop-
erty-creator, rollbacker, steward, sysop, translationadmin, and wikidata-staff.



found in the ORES system. Altogether, the effectiveness reported by
Sarabadani et al. is significantly worse compared with WDVD [7].

Tan et al. [20] developed a classifier to detect low-quality con-
tributions to Freebase. The only content-based features are the
predicates of subject-predicate-object triples, which are used to pre-
dict low-quality contributions. Regarding context-based features,
the developers employ user history features including numbers of
past edits (total, correct, incorrect) and the age of the user account.
Also user expertise is captured by representing users in a topic space
based on their past contributions: a new contribution is mapped into
the topic space and compared to the user’s past revisions using the
dot product, the cosine similarity, and the Jaccard index. None of
the existing approaches has evaluated so far user expertise features
for Wikidata.

The three approaches above build upon previous work on Wiki-
pedia vandalism detection, whereas the first machine learning-based
approach for this task was proposed by Potthast et al. [15]. It
was based on 16 features, primarily focusing on content, detecting
nonsense character sequences and vulgarity. In subsequent work,
and as a result of two shared task competitions at PAN 2010 and
PAN 2011 [14, 16], the original feature set was substantially ex-
tended; Adler et al. [2] integrated many of them. From the large set
of approaches that have been proposed since then, those of Wang
and McKeown [24] and Ramaswamy et al. [18] stick out: they are
based on search engines to check the correctness of Wikipedia edits,
achieving a better performance than previous approaches. On the
downside, their approaches have only been evaluated on a small
dataset and cannot be easily scaled-up to hundreds of millions of
edits. To improve the context-based analysis it was proposed to
measure user reputation [1] as well as spatio-temporal user informa-
tion [25]. Again, Kumar et al. [11] stick out since they do not try to
detect damaging edits but vandalizing users via their behavior. Many
of these features have been transferred to Wikidata vandalism de-
tection; however, more work will be necessary to achieve detection
performance comparable to Wikipedia vandalism detectors.

3. EVALUATION FRAMEWORK
This section introduces the knowledge base Wikidata in brief,4 the

Wikidata vandalism corpus derived from it, the evaluation platform,
the used performance measures, as well as the baselines.

3.1 Wikidata
Wikidata is organized around items. Each item describes a co-

herent concept from the real world, such as a person, a city, an
event, etc. An item in turn can be divided into an item head and
an item body. The item head consists of human-readable labels,
descriptions, and aliases, provided for up to 375 supported language
codes. The item body consists of structured statements, such as the
date of birth of a person, as well as sitelinks to Wikipedia pages that
cover the same topic as the item. Each time a user edits an item, a
new revision is created within the item’s revision history. We refer
to consecutive revisions from the same user on the same item as an
“editing session”.

3.2 Wikidata Vandalism Corpus 2016
For the shared task we built the Wikidata Vandalism Corpus 2016

(short: WDVC-20165), which is an updated version of the WDVC-
2015 corpus [6]. The corpus consists of 82 million user-contributed
revisions made between October 2012 to June 2016 (excluding revi-
sions from bots) alongside 198,147 vandalism annotations on those
revisions that have been reverted via the administrative rollback fea-
4See https://www.wikidata.org/wiki/Help:Contents for a comprehensive overview.
5Corpus available at http://www.wsdm-cup-2017.org/vandalism-detection.html.

Table 1: Datasets for training, validation, and test in terms of
time period covered, vandalism revisions, total revisions, ses-
sions, items, and users. Numbers are given in thousands.

Dataset From To Vand. Rev. Sessions Items Users

Training Oct 1, 2012 Feb 29, 2016 176 65,010 36,552 12,401 471
Validation Mar 1, 2016 Apr 30, 2016 11 7,225 3,827 3,116 43

Test May 1, 2016 Jun 30, 2016 11 10,445 3,122 2,661 41

Table 2: The Wikidata Vandalism Corpus WDVC-2016 in
terms of total unique users, items, sessions, and revisions with
a breakdown by item part and by vandal(ism) status (Vand.).
Numbers are given in thousands.

Entire corpus Item head Item body
Total Vand. Regular Total Vand. Regular Total Vand. Regular

Revisions 82,680 198 82,482 16,602 100 16,502 59,699 92 59,606
Sessions 43,254 119 43,142 9,835 71 9,765 33,955 49 33,908
Items 14,049 85 14,049 6,268 54 6,254 12,744 39 12,741
Users 518 96 431 247 65 186 310 35 279

ture; the feature is employed at Wikidata with the purpose to revert
vandalism and similarly damaging contributions. Moreover, our
corpus provides meta information that is not readily available from
Wikidata, such as geolocation data of all anonymous edits as well
as Wikidata revision tags originating from both the Wikidata Abuse
Filter and semi-automatic editing tools. Table 1 gives an overview
of the corpus: participants of the shared task were provided training
data and validation data, while the test data was held back until after
the final evaluation.

Table 2 gives an overview about the corpus in terms of content
type (head vs. body) as well as revisions, sessions, items, and users.
Figure 1 plots the development of the corpus over time. While the
number of revisions per month is increasing (top), the number of
vandalism revisions per month varies without a clear trend (bottom).
We attribute the observed variations to the fast pace at which Wiki-
data is developed, both in terms of data acquisition and frontend
development. For example, the drop in vandalism affecting item
heads around April 2015 is probably related to the redesign of Wiki-
data’s user interface around this time: with the new user interface it
is less obvious to edit labels, descriptions, and aliases which might
deter many drive-by vandals.6

3.3 Evaluation Platform
Our evaluation platform has been built to ensure (1) reproducibil-

ity of results, (2) blind evaluation, (3) ground truth protection, and,
(4) to implement a realistic scenario of vandalism detection where
revisions are scored in near real-time as they arrive. Reproducibility
is ensured by inviting participants to submit their software instead of
just its run output, employing the evaluation-as-a-service platform
TIRA [17]. TIRA implements a cloud-based evaluation system,
where each participant gets assigned a virtual machine in which a
working version of their approach is to be deployed. The virtual
machines along with the deployed softwares are remote-controlled
via TIRA’s web interface. Once participants manage to run their
software on the test dataset hosted on TIRA, the virtual machine can
be archived for later re-evaluation. In addition, TIRA ensures that
participants do not get direct access to the test datasets, giving rise
to blind evaluation, where the to-be-evaluated software’s authors
have never observed the test datasets directly.

For following reasons the task of vandalism detection in Wikis is
intrinsically difficult to be organized as a shared task: the ground
truth is publicly available via Wikimedia’s data dumps, and the van-
6https://lists.wikimedia.org/pipermail/wikidata/2015-March/005703.html
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Figure 1: Overview of the Wikidata Vandalism Corpus 2016 by
content type: Number of all revisions by content type (top) and
number of vandalism revisions by content type (bottom).

dalism occurring at some point in the revision history of a Wikidata
item will eventually be undone manually via the rollback facility,
which we also use to create our ground truth. Handing out a test
dataset spanning a long time frame would therefore effectively re-
veal the ground truth to participants. At the same time, in practice, it
would be rather an unusual task to be handed a large set of consecu-
tive revisions to be classified as vandalism or no, when in fact, every
revision should be reviewed as it arrives. We therefore opted for a
streaming-based setup where the participant software was supposed
to connect to a data server,7 which initiates a stream of revisions
in chronological order (by increasing revision IDs), but waits send-
ing new ones unless the software has returned vandalism scores
for those already sent. This way, a software cannot easily exploit
information gleaned from revisions occurring after a to-be-classified
revision. However, we did not expect synchronous classification,
but allowed for a backpressure window of k = 16 revisions, so that
revision i+ k is sent as soon as the score for i-th revision has been
reported. This allows for concurrent processing of data and the anal-
ysis, while preventing a deep look-ahead into the future of a revision.
At k = 16, no more than 0.003% of the ground truth was revealed
within the backpressure window (283 regular revisions and 76 van-
dalism revisions). However, as reported by participants, vandalism
scores were based on previous revisions, while the backpressure
window was unanimously used to gain computational speedup, and
not to exploit ground truth or editing sessions.

3.4 Performance Measures
We employ the same performance measures as in our previous

work [7]: area under curve of the receiver operating characteristic,
ROCAUC, and area under the precision-recall curve, PRAUC. Both
ROCAUC and PRAUC cover a wide range of operating points, empha-
sizing different characteristics. Given the large class imbalance of
vandalism to non-vandalism, ROCAUC emphasizes performance in
the high recall range, while PRAUC emphasizes performance in the
high precision range. I.e., ROCAUC is probably more meaningful
7https://github.com/wsdm-cup-2017/wsdmcup17-data-server

for a semi-automatic operation of a vandalism detector, pre-filtering
revisions likely to be vandalism and leaving the final judgment to
human reviewers. PRAUC addresses scenarios where vandalism shall
be reverted fully automatically without any human intervention. The
winner of the WSDM Cup was determined based on ROCAUC.

For informational purposes, we also report the typical classifier
performance measures for the operating point at the threshold 0.5:
accuracy (ACC), precision (P), recall (R), F1 measure (F).

3.5 Baselines and Meta Approach
WDVD. We employ the Wikidata Vandalism Detector, WDVD[7],

as (strong) state-of-the-art baseline. The underlying model consists
of 47 features and employs multiple-instance learning on top of
bagging and random forests. The model was trained on training data
ranging from May 1, 2013, to April 30, 2016. We used the same
hyperparameters for this model as reported in our previous work [7]:
16 random forests, each build on 1/16 of the training dataset with the
forests consisting of 8 trees, each having a maximal depth of 32 with
two features per split and using the default Gini split criterion. In
order to adjust WDVD to the new evaluation setup where revisions
arrive constantly in a stream, we adjusted the multiple-instance
learning to consider only those revisions of a session up until the
current revision.

FILTER. As a second baseline, we employ so-called revision
tags, which are created on Wikidata due to two main mechanisms:
(1) The Wikidata Abuse Filter automatically tags revisions according
to a collection of human-generated rules. (2) Revisions created by
semi-automatic editing tools such as the Wikidata Game are tagged
with the authentication method used by the semi-automatic editing
tool. In general, tags assigned by the abuse filter are a strong signal
for vandalism while tags from semi-automatic editing tools are a
signal for non-vandalism. We trained a random forest with scikit-
learn’s default hyperparameters on the training data from May 1,
2013 to April 30, 2016. The revision tags were provided to all
participants as part of the meta data. This baseline has also been
incorporated into WDVD as feature revisionTags.

ORES. We reimplemented the ORES approach [19] developed
for Wikidata vandalism detection by the Wikimedia Foundation and
we apply it to the Wikidata Vandalism Corpus 2016.8 Essentially,
this approach consists of a subset of WDVD’s features plus some
additional features that were previously found to overfit [7]. It uses
a random forest and was trained on the training data ranging from
May 1, 2013 to April 30, 2016. We use the original hyperparameters
by Sarabadani et al.:9 80 decision trees considering ‘log2’ features
per split using the ‘entropy’ criterion.10 While Sarabadani et al. [19]
experimented with balancing the weights of the training examples,
we do not do so for the ORES baseline since it has no effect on
performance in terms of ROCAUC and decreases performance in
terms of PRAUC.

META. Given the vandalism scores returned by participant ap-
proaches and our baselines, the question arises what the detection
performance would be if all these approaches were combined into
one. To get an estimation of the possible performance, we employ a
simple meta approach whose score for each to-be-classified revision
corresponds to the mean of all 8 approaches. As it turns out, the
meta approach slightly outperforms the other approaches.
8Compared with our previous paper [7], we employ an updated version of ORES that
was recently published by Sarabadani et al. [19].
9https://github.com/wiki-ai/wb-vandalism/blob/sample_subsets/Makefile

10The difference in performance of our reimplementation of ORES compared with
Sarabadani et al. [19] is explained by the different datasets and evaluation metrics:
while we split the dataset by time, Sarabadani et al. split the dataset randomly, causing
revisions from the same editing session to appear both in the training as well as test
dataset.



Table 3: Overview of feature groups, features, and their usage by WSDM Cup participants. Features that were newly introduced by
participants and not previously used as part of WDVD are marked with an astersik (*). Features computed in the same way as for
WDVD as well as new features are marked with 3, features computed similarly to WDVD are marked with (3), features for which it
is unclear from their respective paper whether they are included are marked with ?, and features not utilized are marked with –.

Feature group Feature Submitted Approach Baseline

Buffa
loberr

y [3]

Conkerb
err

y [5]

Honeyberr
y [26]

Logan
berr

y [28]

Riberr
y [27]

W
DVD

[7]

FILTER [7]

ORES [19]

C
on

te
nt

fe
at

ur
es

Character features lowerCaseRatio 3 – 3 3 3 3 – –
upperCaseRatio 3 – 3 3 3 3 – –
nonLatinRatio 3 – 3 3 3 3 – –
latinRatio 3 – 3 3 3 3 – –
alphanumericRatio 3 – 3 3 3 3 – –
digitRatio 3 – 3 3 3 3 – –
punctuationRatio 3 – 3 3 3 3 – –
whitespaceRatio 3 – 3 3 3 3 – –
longestCharacterSequence 3 – 3 3 3 3 – –
asciiRatio – – – 3 3 3 – –
bracketRatio 3 – – 3 3 3 – –
misc features from WDVD – – – – 3 – – –
symbolRatio * 3 – – – – – – –
mainAlphabet * 3 – – – – – – –

Word features languageWordRatio 3 – 3 3 3 3 – –
containsLanguageWord 3 – 3 3 3 3 – –
lowerCaseWordRatio 3 – 3 3 3 3 – –
longestWord 3 – 3 3 3 3 – –
containsURL 3 – 3 3 3 3 – –
badWordRatio 3 – – 3 3 3 – –
proportionOfQidAdded – – – ? – 3 – 3
upperCaseWordRatio 3 – 3 3 3 3 – –
proportionOfLinksAdded – – – ? – 3 – 3
proportionOfLanguageAdded – – – – – – – 3
misc features from WDVD – – – – 3 – – –
bagOfWords * – 3 – – – – – –

Sentence features commentTailLength 3 – – 3 3 3 – –
commentSitelinkSimilarity (3) – – 3 3 3 – –
commentLabelSimilarity (3) – – 3 3 3 – –
commentCommentSimilarity – – – ? – 3 – –
languageMatchProb * 3 – – – – – – –
hasIdentifierChanged – – – – – – – 3

Statement features propertyFrequency – (3) – 3 3 3 – (3)
itemValueFrequency – (3) – 3 3 3 – –
literalValueFrequency – (3) – 3 3 3 – –

C
on

te
xt

fe
at

ur
es

User features userCountry 3 3 3 – 3 3 – –
userTimeZone 3 3 3 – 3 3 – –
userCity 3 3 3 – 3 3 – –
userCounty 3 3 3 – 3 3 – –
userRegion 3 3 3 – 3 3 – –
cumUserUniqueItems – – – – 3 3 – –
userContinent 3 3 3 – 3 3 – –
isRegisteredUser 3 3 3 3 3 3 – 3
userFrequency 3 3 – – 3 3 – –
isPrivilegedUser 3 – – 3 3 3 – (3)
misc features from WDVD – – – – 3 – – –
userIPSubnets * – 3 – – – – – –
userVandalismFraction * – – – 3 3 – – –
userVandalismCount * – – – 3 – – – –
userUniqueItems * – – – – 3 – – –
userAge – – – – – – – 3

Item features logCumItemUniqueUsers – – – – – 3 – –
logItemFrequency – – – – – 3 – –
isHuman – – – – – – – 3
isLivingPerson – – – – – – – 3
misc features from WDVD – – – – 3 – – –
itemFrequency * 3 (3) – – 3 – – –
itemVandalismFraction * – – – 3 3 – – –
itemVandalismCount * – – – 3 – – – –
itemUniqueUsers * – – – – 3 – – –

Revision features revisionTags (3) 3 3 ? 3 3 3 –
revisionLanguage (3) 3 3 3 3 3 – –
revisionAction 3 3 3 3 3 3 – (3)
commentLength – – 3 3 3 3 – –
isLatinLanguage – – 3 3 3 3 – –
revisionPrevAction – – – ? – 3 – –
revisionSubaction 3 3 3 3 3 3 – (3)
positionWithinSession – – – ? – 3 – –
numberOfIdentifiersChanged – – – – – – – 3
misc features from WDVD – – – – 3 – – –
isMinorRevision * 3 – – – 3 – – –
changeCount * 3 3 – – 3 – – (3)
superItem * 3 – – – 3 – – –
revisionSize * 3 – – – 3 – – –
hourOfDay * 3 – – – – – – –
dayOfWeek * – – – – 3 – – –
revisionPrevUser * 3 – – – – – – –
hashTag * – 3 (3) – – – – –
isSpecialRevision * – – 3 – – – – –



4. SURVEY OF SUBMISSIONS
This section surveys the features and learning algorithms em-

ployed by the participants. All of them chose to build their own
model—which eventually are based on our WDVD approach [7],
whose code base had been published to ensure reproducibility. On
the one hand, the availability of this code base leveled the playing
field among participants since it enabled everyone to achieve at least
state-of-the-art performance. On the other hand, the availability may
have stifled creativity and innovation among participants since all
approaches follow a similar direction, and no one investigated dif-
ferent classification paradigms. However, all participants attempted
to improve over our approach (which was one of the baselines) by
developing new features and experimenting with learning variants.

4.1 Features
Table 3 gives a comprehensive overview of the features used in

the submitted approaches. The feature set is complete; in particular,
it unifies those features that are the same or closely related across
participants. The table divides the features into two main groups,
content features and context features. The content features in turn
are subdivided regarding the granularity level at which character-
istics are quantified, whereas the context features are subdivided
regarding contextual entities in connection with a to-be-classified
revision. Since the features have been extensively described in our
previous work and the participant notebooks we omit a detailed
description here. Instead, the feature names have been chosen to
convey their intended semantics and are in accordance with the cor-
responding implementations found in our code base. For in-depth
information we refer to our paper covering WDVD [7], the FILTER
baseline, our reimplementation of ORES, as well as the notebook
papers submitted by the participants [3, 5, 26, 27, 28].

We would like to point out certain observations that can be gained
from the overview: Buffaloberry [3] used many of the WDVD
features but also contributed a number of additional features on top
of that. Conkerberry [5] used an interesting bag of words model that
basically consists of the feature values computed by many of the
WDVD features, all taken as words. Loganberry [28] did not exploit
the information we provided as meta data, such as geolocation,
etc. With two exceptions, Honeyberry [26] used almost exclusively
WDVD features. Riberry [27] used on top of the WDVD features
those that we previously found to overfit (denoted as “misc. features
from WDVD” in the table), which may explain their poor overall
performance, corroborating our previous results.

4.2 Learning Algorithms
Table 4 overviews the employed learning algorithms and orga-

nizes them wrt. achieved performance. The best-performing ap-
proach by Buffaloberry employs XGBoost and multiple-instance
learning. The second-best approach by Conkerberry employs a lin-
ear SVM, encoding all WDVD features as a bag of words model.
This results in an effectiveness comparable to the WDVD baseline in
terms of ROCAUC, but not in terms of PRAUC. The third approach by
Loganberry also employs XGBoost, however, in contrast to the first
approach, no multiple-instance learning was conducted. The fourth
approach, Honeyberry, created an ensemble of various algorithms
following a stacking strategy. In contrast to the first approach, the
authors put less emphasis on feature engineering. Their final sub-
mission contained a bug reducing the performance of their approach,
which was fixed only after the submission deadline. The bugfix
caused their performance to jump to an ROCAUC of 0.928, thus virtu-
ally achieving the third place in the competition. The fifth approach
of Riberry performed poorly, probably due to overfitting features.
The baselines employ a parameter-optimized random forest.

Table 4: Overview of the employed learning algorithms per
submission. The rows are sorted wrt. the achieved evaluation
scores, starting with the best.

Submission Learning Algorithms

XGBoost

Linear
SVM

Logist
ic

Regres
sio

n

Ran
dom

Fores
t

Extra
Tree

s

GBT
Neu

ral
Netw

orks

Multip
le-

Insta
nce

META 3 3 3 3 3 3 3 3
Buffaloberry 3 – – – – – – 3
Conkerberry – 3 – – – – – –
WDVD (baseline) – – – 3 – – – 3
Honeyberry – – 3 3 3 3 3 –
Loganberry 3 – – – – – – –
Riberry – – – 3 – 3 – –
ORES (baseline) – – – 3 – – – –
FILTER (baseline) – – – 3 – – – –

5. EVALUATION
This section presents an in-depth evaluation of the submitted ap-

proaches, including overall performance and performance achieved
regarding different data subsets, such as head content vs. body
content, registered users vs. unregistered users, and performance
variation over time. Furthermore, we combine the five submitted
approaches within an ensemble to get a first idea about the perfor-
mance that could be achieved if these approaches were integrated.

5.1 Official Competition Ranking
The competition phase of the WSDM Cup 2017 officially ended

on December 30, 2016, resulting in the following ranking:

1. Buffaloberry by Crescenzi et al. [3]

2. Conkerberry by Grigorev [5]

3. Loganberry by Zhu et al. [28]

4. Honeyberry by Yamazaki et al. [26]

5. Riberry by Yu et al. [27]

We congratulate the winners! Working versions of these ap-
proaches have been successfully deployed within TIRA and evalu-
ated using our aforementioned evaluation framework; three partici-
pants also shared their code bases as open source.11

To provide a realistic overview of the state of the art at the time of
writing, we report the results that were most recently achieved. This
is particularly relevant for the authors of the Honeyberry vandalism
detector, who found and fixed an error in their approach shortly after
the deadline, moving their approach up one rank. Moreover, we
include the performances achieved by our own approach as well as
that of our two baselines and of the meta approach. The following
ranking hence slightly differs from the official one.

5.2 Evaluation Results
Table 5 and Figure 2 give an overview of the evaluation results of

the vandalism detection task at WSDM Cup 2017.

5.2.1 Overall Performance
The evaluation results shown in Table 5 are ordered by ROCAUC.

The meta approach (ROCAUC 0.950) outperforms all other ap-
proaches, followed by the winner Buffaloberry (ROCAUC 0.947).
The least effective approach in terms of ROCAUC is the FILTER

11https://github.com/wsdm-cup-2017



Table 5: Evaluation results of the WSDM Cup 2017 on the test dataset. Performance values are reported in terms of accuracy (Acc),
precision (P), recall (R), F-measure, area under the precision-recall curve (PRAUC), and area under curve of the receiver operating
characteristic (ROCAUC), as well as with regard to the four data subsets. The darker a cell, the better the performance.

Approach Overall performance Item head Item body Registered user Unregistered user
Acc P R F PRAUC ROCAUC PRAUC ROCAUC PRAUC ROCAUC PRAUC ROCAUC PRAUC ROCAUC

META 0.9991 0.668 0.339 0.450 0.475 0.950 0.648 0.996 0.387 0.926 0.082 0.829 0.627 0.944
Buffaloberry 0.9991 0.682 0.264 0.380 0.458 0.947 0.634 0.997 0.364 0.921 0.053 0.820 0.613 0.938
Conkerberry 0.9990 0.675 0.099 0.173 0.352 0.937 0.512 0.989 0.281 0.911 0.004 0.789 0.538 0.915
WDVD (baseline) 0.9991 0.779 0.147 0.248 0.486 0.932 0.668 0.996 0.388 0.900 0.086 0.767 0.641 0.943
Honeyberry 0.7778 0.004 0.854 0.008 0.206 0.928 0.364 0.993 0.101 0.893 0.002 0.760 0.308 0.819
Loganberry 0.9285 0.011 0.767 0.022 0.337 0.920 0.429 0.961 0.289 0.892 0.020 0.758 0.487 0.895
Riberry 0.9950 0.103 0.483 0.170 0.174 0.894 0.328 0.932 0.113 0.878 0.002 0.771 0.378 0.795
ORES (baseline) 0.9990 0.577 0.199 0.296 0.347 0.884 0.448 0.973 0.298 0.836 0.026 0.627 0.481 0.897
FILTER (baseline) 0.9990 0.664 0.073 0.131 0.227 0.869 0.249 0.908 0.182 0.840 0.021 0.644 0.387 0.771
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Figure 2: ROC and precision recall curves approaches.

baseline, achieving 0.869. Note that in our previous work [7] we
reported higher values for ROCAUC, which, however, were obtained
with a previous version of the dataset. We discuss the apparent
differences below.

The PRAUC scores are lower and more diverse than the ROCAUC

scores, which is a consequence of the extreme class imbalance. The
WDVD baseline outperforms all approaches in terms of PRAUC,
including the meta classifier; the ORES baseline outperforms all
but two participants. The ranking among the participants changes
only slightly: Loganberry and Honeyberry switch places. The main
reason for high PRAUC scores are features that can signal vandalism
with a pretty high precision. For example, WDVD, Buffaloberry,
Conkerberry, ORES, and Loganbery are all able to pick up on bad
words (badWordRatio and bagOfWords) or contain detailed user
information (userFrequency, userAge, userVandalismFrac-
tion, userVandalismCount), whereas FILTER and Honeyberry
lack the respective features. The performance of Riberry can be
explained by the inclusion of features that have previously been
found to overfit [7].

While PRAUC and ROCAUC are computed on continuous scores,
we also computed accuracy, precision, recall, and F-measure on
binary scores at a threshold of 0.5. Honeyberry and Loganberry
achieve poorest precision but highest recall. Conkerberry and FIL-
TER achieve poorest recall but high precision. The META ap-

proach and Buffaloberry manage the best trade-off in terms of the
F-measure. WDVD achieves highest precision at a non-negligible
recall. Accuracy correlates with precision due to the high class
imbalance. Recall that, since the winner of the competition was
determined based on ROCAUC, the teams had only little incentive to
optimize the other scores. For a real-world applications of classifiers
it might be beneficial to calibrate the raw scores to represent more
accurate probability estimates and to set the threshold depending on
the use case, i.e., adjusting Acc, P, R, and the F-measure.

5.2.2 Head Content vs. Body Content
Table 5 contrasts the approaches’ performances on different con-

tent types, namely, item heads vs. item bodies. Regardless of the
metric, all approaches perform significantly better on item heads.
We explain this by the fact that vandalism on item heads typically
happens at the lexical level (and hence can be detected more easily),
e.g., by inserting bad words or wrong capitalization, whereas vandal-
ism on item bodies typically happens at the semantic level, e.g., by
inserting wrong facts. In particular, the character and word features
focus on textual content as is found in the item head, but there are
not many features for structural content. Future work might focus
on transferring techniques that are used for the Google knowledge
vault [4] to Wikidata, such as link prediction techniques to check the
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Figure 3: Performance over time on the test dataset.

correctness of links between items, and Gaussian mixture models to
check the correctness of attribute values.

5.2.3 Registered Users vs. Unregistered Users
Table 5 also contrasts the approaches’ performances regarding

revisions originated from registered users vs. revisions from un-
registered users. All approaches perform significantly better on
revisions from unregistered users, which is in particular reflected
by the PRAUC scores. Spot-checks suggest that vandalism of unreg-
istered users appears to be rather obvious, whereas vandalism of
registered users appears to be more sophisticated and elusive. More-
over, some reverted edits of registered users may also be considered
honest mistakes. Telling apart honest mistakes from a (detected)
vandalism attempt may be difficult.

5.2.4 Performance over Time
Figure 3 shows the performance of the approaches on the test set

over time. Over the first seven weeks (calendar weeks 19 to 25) the
approaches’ performances remain relatively stable. All approaches
were only trained with data obtained up until calendar week 18.
Since no drop in the performances is observed, no major changes in
the kinds of vandalism seem to have happened in this time frame.
However, in calendar week 26 a major performance drop can be
observed. The outlier is caused by a single, highly reputable user
using some automatic editing tool on June 19, 2016, to create 1,287
slightly incorrect edits (which were rollback-reverted later). Since
only 11,043 edits were labeled vandalism in the entire test set of
two months, these 1,287 edits within a short time period have a
significant impact on the overall performance.

We were curious to learn about the impact of this data artifact and
recomputed the detection performances, leaving out the series of
erroneous edits from the user in question. Table 6 shows the overall
performance the approaches would have achieved then: while the
absolute performance increases, the ranking among the participants
is not affected.

Probably one cannot anticipate such an artifact in the test data,
but, with hindsight, we consider it a blessing rather than a curse:
it points to the important question of how to deal with such cases
in practice. Machine learning-based vandalism detectors become
unreliable when the characteristics of the stream of revisions to
be classified suddenly changes—errors in both directions, false
positives and false negatives, can be the consequence. Ideally, the
developers of detectors envision possible exceptional circumstances
and provide a kind of exception handling; e.g., flagging a user with
suspicious behavior by default for review, regardless whether the
respective series of edits is considered damaging or not.

Table 6: Evaluation results of the WSDM Cup 2017 on the test
dataset without the erroneous edits.
Approach Overall performance

Acc P R F PRAUC ROCAUC

META 0.9992 0.668 0.384 0.487 0.536 0.988
Buffaloberry 0.9992 0.682 0.298 0.415 0.517 0.988
WDVD (baseline) 0.9992 0.779 0.167 0.274 0.548 0.980
Conkerberry 0.9991 0.675 0.113 0.193 0.398 0.980
Honeyberry 0.7779 0.004 0.967 0.008 0.233 0.972
Loganberry 0.9286 0.011 0.867 0.022 0.383 0.939
FILTER (baseline) 0.9991 0.664 0.082 0.146 0.257 0.938
ORES (baseline) 0.9991 0.577 0.225 0.324 0.392 0.935
Riberry 0.9951 0.103 0.546 0.173 0.196 0.902

6. REFLECTIONS ON THE WSDM CUP
The WSDM Cup 2017 had two tasks for which a total of

140 teams registered, 95 of which ticked the box for participation
in the vandalism detection task (multiple selections allowed). This
is a rather high number compared with other shared task events.
We attribute this success to the facts that the WSDM conference is
an A-ranked conference, giving the WSDM Cup a high visibility,
that the vandalism detection task was featured on Slashdot,12 and
that we attracted sponsorship from Adobe, which allowed us to
award cash prizes to the three winning participants of each task.
However, only 35 registered participants actually engaged when
being asked for their operating system preferences for their virtual
machine on TIRA, 14 of which managed to produce at least one run,
whereas the remainder never used their assigned virtual machines at
all. In the end, five teams made a successful submission by running
their software without errors on the test dataset.

Why did so many participants decided to drop out on this task?
We believe that the comparably huge size of the dataset as well as
difficulties in setting up their approach in our evaluation platform
are part of the reason: each approach had to process gigabytes of
data by implementing a client-server architecture, and all of that
had to be deployed on a remote virtual machine. The requirement
to submit working software, however, may not have been the very
main cause since the retention rate of our companion task was much
higher. Rather, the combination of dataset size, real-time client-
server processing environment, and remote deployment is a likely
cause. Note that the vandalism detection task itself demanded for
this scale of operations, since otherwise it would have been easy to
cheat, which is particularly a problem when cash prizes are involved.
Finally, the provided baseline systems were already competitive, so
that the failure to improve upon them may have caused additional
dropouts.

The WSDM Cup taught us an important lesson about the opportu-
nities and limitations of shared tasks in general and about evaluation
platforms and rule enforcement in particular. On the one hand, com-
petitions like ours are important to rally followers for a given task
and to create standardized benchmarks. On the other hand, shared
tasks are constrained to a relatively short period of time and create a
competitive environment between teams. I.e., it becomes important
to implement a good trade-off in the evaluation setup in order to
prevent potential cheating and data leaks, while, at the same time,
placing low hurdles on the submission procedure. A means towards
this end might be standardized evaluation platforms that are widely
used for a large number of shared tasks. While there are already
platforms like TIRA or Kaggle, we are not aware of a widely used
evaluation platform for time series data, serving teams with one
test example after the other and providing a sandboxing mechanism

12https://developers.slashdot.org/story/16/09/10/1811237



of the submitted softwares to prevent data leaks. Moreover, there
definitely is a trade-off between enforcing strict rules on the one side
and scientific progress on the other. For example, only two teams
had made a successful submission by the original deadline, while
other teams were still struggling with running their approaches. In
this case, we erred on the side of scientific progress by additional
submissions in favor of overly strict rules and gave all teams a short
deadline extension of 8 days, accepting some discussion about the
deadline’s extensions fairness.

7. CONCLUSION AND OUTLOOK
This paper gives an overview of the five vandalism detection

approaches submitted to the WSDM Cup 2017. The approaches
were evaluated on the new Wikidata Vandalism Corpus 2016, which
has been specifically compiled for the competition. Under a semi-
automatic detection scenario, where newly arriving revisions are
ranked for manual review, the winning approach from Buffaloberry
Crescenzi et al. [3] performs best. Under a fully automatic detection
scenario, where the decision whether or not to revert a given revision
is left with the classifier, the baseline approach WDVD by Heindorf
et al. [7] still performs best. Combining all approaches within a
meta classifier yields a small improvement; however, the feature set
seems to be the performance-limiting factor.

All approaches build upon the WDVD baseline, proposing only
few additional features. I.e., for the future it is interesting to develop
and explore fundamentally different feature sets. E.g., building upon
the work on knowledge graphs, technology for link prediction and
value range prediction should be investigated. Building upon the
work of other user-generated content, also psychologically moti-
vated features capturing a user’s personality and state of mind appear
promising.

Acknowledgments
We thank Adobe for sponsoring the WSDM Cup, and Wikimedia
Germany for supporting our task. Our special thanks go to all
participants for their devoted work.

References
[1] B. Adler, L. de Alfaro, and I. Pye. Detecting Wikipedia

Vandalism using WikiTrust. In CLEF, pages 22–23, 2010.
[2] B. T. Adler, L. de Alfaro, S. M. Mola-Velasco, P. Rosso, and

A. G. West. Wikipedia Vandalism Detection: Combining Natural
Language, Metadata, and Reputation Features. In CICLing,
pages 277–288, 2011.

[3] R. Crescenzi, M. Fernandez, F. A. G. Calabria, P. Albani,
D. Tauziet, A. Baravalle, and A. S. D’Ambrosio. A Production
Oriented Approach for Vandalism Detection in Wikidata—The
Buffaloberry Vandalism Detector at WSDM Cup 2017. In
WSDM Cup, 2017.

[4] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang. Knowledge Vault: A
Web-scale Approach to Probabilistic Knowledge Fusion. In
KDD, pages 601–610. ACM, 2014.

[5] A. Grigorev. Large-Scale Vandalism Detection with Linear
Classifiers— The Conkerberry Vandalism Detector at WSDM
Cup 2017. In WSDM Cup, 2017.

[6] S. Heindorf, M. Potthast, B. Stein, and G. Engels. Towards
Vandalism Detection in Knowledge Bases: Corpus Construction
and Analysis. In SIGIR, pages 831–834. ACM, 2015.

[7] S. Heindorf, M. Potthast, B. Stein, and G. Engels. Vandalism
Detection in Wikidata. In CIKM, pages 327–336. ACM, 2016.

[8] S. Heindorf, M. Potthast, H. Bast, B. Buchhold, and
E. Haussmann. WSDM Cup 2017: Vandalism Detection and
Triple Scoring. In WSDM, pages 827–828. ACM, 2017.

[9] J. Kiesel, M. Potthast, M. Hagen, and B. Stein. Spatio-Temporal
Analysis of Reverted Wikipedia Edits. In ICWSM, pages
122–131. AAAI Press, 2017.

[10] A. Kittur, B. Suh, B. A. Pendleton, and E. H. Chi. He Says, She
Says: Conflict and Coordination in Wikipedia. In CHI, pages
453–462. ACM, 2007.

[11] S. Kumar, F. Spezzano, and V. S. Subrahmanian. VEWS: A
Wikipedia Vandal Early Warning System. In KDD, pages
607–616. ACM, 2015.

[12] T. Pellissier Tanon, D. Vrandečić, S. Schaffert, T. Steiner, and
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