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ABSTRACT
Causal knowledge is seen as one of the key ingredients to advance
artificial intelligence. Yet, few knowledge bases comprise causal
knowledge to date, possibly due to significant efforts required for
validation. Notwithstanding this challenge, we compile CauseNet,1
a large-scale knowledge base of claimed causal relations between
causal concepts. By extraction from different semi- and unstruc-
tured web sources, we collect more than 11 million causal relations
with an estimated extraction precision of 83% and construct the
first large-scale and open-domain causality graph. We analyze the
graph to gain insights about causal beliefs expressed on the web
and we demonstrate its benefits in basic causal question answering.
Future work may use the graph for causal reasoning, computational
argumentation, multi-hop question answering, and more.
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1 INTRODUCTION
The nature of cause and effect is subject to inquiry in many scien-
tific fields, including the natural sciences, philosophy, the social
sciences and the humanities, and not least computer science and ar-
tificial intelligence. Since ancient times, theories of causation have
been proposed and discussed, yet none have met with universal
acceptance [17]. The basic statement “A causes B” for two events A
and B can be interpreted under various causal models [16]. The
unifying meta-model of causation of Judea Pearl distinguishes three
levels of abstraction [31]: (1) association, i.e., the occurrence of A
correlates with the occurrence B; (2) intervention, i.e., an action
that affects A changes the probability of B; and (3) counterfactuals,
i.e., if some action had been taken affecting A, it would have pre-
dictably changed the probability of B. The first level can be reached
1https://causenet.org

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3412763

Table 1: Overview of causal relations in knowledge bases.

Knowledge Base Relations Concepts Acquisition Source

CauseNet (83% prec.) 11,609,890 12,186,310 extracted web+wikip.
CauseNet (96% prec.) 197,806 80,223 extracted web+wikip.

Freebase 128,766 52,487 crowdsourced volunteers
ConceptNet Multilingual 114,308 57,561 crowdsourced volunteers
Wikidata 95,335 88,233 crowdsourced volunteers
ConceptNet English 21,485 16,432 crowdsourced volunteers
DBpedia Live 8,025 7,691 extracted wikipedia
Berenberg and Bagrow [5] 1,329 394 crowdsourced paid
YAGO 3 0 0 extracted wikipedia

through passive observation, the second through active experimen-
tation, and the third through understanding (e.g., a law of nature).
Obtaining causal knowledge about the world is at the heart of the
scientific method in particular, and learning in general.

Outside of science, however, in everyday life, hardly anyone
has sufficient scientific training to validate a claimed causal rela-
tion between two events. Still, virtually everyone (from as young
an age as three [7]), learns causal relations as a matter of course.
The sources of one’s personal stock of causal beliefs are twofold:
(1) learning from personal experience at all levels of Pearl’s model,
and, (2) learning from other people, i.e., by observing them, talking
to them, or reading their texts. Neither of these sources is flawless.
Even within the scientific literature, many claims of causal relations
are not sufficiently justified by the evidence supplied to support
them. People casually communicate their beliefs about causal rela-
tions with and without supplying justification, based on guesswork
and speculation. Consequently, only a subset of one’s causal beliefs
can be called causal knowledge, as in: justified true beliefs.

Compiling an actual causal knowledge base requires expert coun-
cil for any involved domain, so that doing so at scale is a Herculean
task. This is perhaps the reason why not many causal knowledge
bases have been compiled to date (see Table 1 for an overview).
The intermediate step of compiling a knowledge base of claimed
causal relations appears more feasible. Similar to how humans ob-
tain causal beliefs, causal relations can be extracted at scale from
natural language texts on the web. Even though such a knowledge
base might not be suitable for all use cases, (1) it could serve as a
testing ground for corresponding algorithms, (2) may be part of
an information system, e.g., for question answering, and (3) could
provide invaluable insights into the state of our society’s causal
beliefs at large, enabling applications in the computational social
sciences and artificial intelligence, e.g., to assess the acceptance of
certain views or to reason in automated decision making.
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In this paper, we construct, analyze, and apply CauseNet, a large-
scale knowledge base of claimed causal relations extracted from the
web. We implement a number of information extraction algorithms
for causal relations and tune them to high precision in order to
collect over 11 million causal relations from the ClueWeb12 cor-
pus as well as from Wikipedia. Going beyond previous work, we
reconcile the extracted causal concepts to a coherent knowledge
graph. The causal relations and the resulting causal network are
subject to a number of analyses to explore the data, its origins, and
its properties. Finally, we demonstrate the potential and practical
applicability of CauseNet in a question answering experiment.

In what follows, we briefly review related work (Section 2). In
Section 3, we define causality graphs and describe how we extract
causal relations from natural language texts. Section 4 gives key
statistics about our graph. Section 5 evaluates the graph in terms of
precision and recall as part of a manual analysis, and demonstrates
its application for causal question answering. Section 6 discusses
strengths and weaknesses of our approach.

2 RELATEDWORK
Causality Graphs. To our knowledge, no dedicated causality graph
is available to date. Perhaps most related to our work, Berenberg
and Bagrow [5] crowdsourced a small causality graph which is not
publicly available. While causality graphs can be seen as special
cases of knowledge graphs, existing knowledge graphs contain
few causal relations and hardly suffice to answer common causal
questions. Our graph contributes orders of magnitude more causal
relations. Knowledge graphs can be categorized by their construc-
tion methodology, degree of normalization, and domain specificity:
Wikidata [38] and ConceptNet [37] are constructed manually by the
crowd, DBpedia [3] and YAGO [24] automatically from Wikipedia.
We adopt an automatic construction approach for better scalabil-
ity. While Wikidata, DBpedia, and YAGO are strongly normalized
with a strict notion of entities, WordNet [26], BabelNet [29], and
ConceptNet [37] are weakly normalized with nodes representing
lexemes rather than entities. Lacking a controlled set of causal en-
tities and avoiding information loss in the normalization process,
we adopt weak normalization. All the aforementioned knowledge
graphs are open-domain, but there are also domain-specific ones,
e.g., for genes [21] or news [33]. CauseNet is open-domain, captur-
ing claimed causal relations on the web.

Causal Relation Sources.Hashimoto [13] extracts causal relations
from Wikipedia; Radinsky et al. [33] extract causal relations from
the New York Times, BBC, and WikiNews; Ittoo and Bouma [18]
from domain-specific documents, such as customer complaints.
Other causality extraction approaches such as Hendrickx et al. [15],
Li et al. [23], and Li and Mao [22] do not extract real-world relations
at all and stick to small-scale benchmarking datasets. To the best
of our knowledge, web crawls, such as the ClueWeb crawls, have
not been considered for causality extraction so far. Semi-structured
sources for causal relations, such as Wikipedia infoboxes and lists
which yield relations with a high precision, have been largely ne-
glected, too (except for infoboxes by Hashimoto [13]). Although
Wikipedia’s infoboxes are one of the main sources of knowledge for
DBpedia [3] and YAGO [24], neither of them contains many causal
relations, possibly because most of this information was added to
Wikipedia only recently.

Causal Relation Extraction. Existing works for extracting rela-
tions from natural language texts follow two paradigms: bootstrap-
ping and supervised machine learning. The relation extraction ap-
proaches Snowball [1] and DIRPE [6] are bootstrapping approaches,
which form the basis of our approach for causal relations: Starting
with a small number of seed pairs of entities in a desired relation,
sentences are identified that contain those entities. Analyzing these
sentences for linguistic patterns expressing the relation, new enti-
ties are identified enabling iterative repetition. Supervised machine
learning either requires fully annotated training texts, which are
currently unavailable for causal relations and expensive to create,
or distant supervision sources: Mintz et al. [27] propose a generic
distant supervision training approach to train a classifier based on
entities and relations from an existing knowledge base. However,
in a pilot experiment, we found causal knowledge to be too sparse
and too specific in existing knowledge bases (e.g., more than 80%
of Wikidata’s causal relations refer to people’s causes of death).

Extraction approaches can also be distinguished by their learn-
ing mechanism, namely, surface patterns [11, 20], dependency
trees [18, 19], and neural networks [10, 22, 23]. While surface pat-
terns are based on literal strings between entities, dependency trees
consider the linguistic dependencies of tokens (e.g., as generated by
the Stanford NLP parser). When trained from scratch, neural net-
works require large amounts of training data, which are currently
unavailable; hence, we employ dependency trees.

Hassanzadeh et al. [14] extract causal relations fromnews articles
andHashimoto [13] develops an approach to extract causal relations
between Wikipedia entities (described by pages). Neither of them
make their extracted causal relations available and both provide
little insights on them. Li and Mao [22], Li et al. [23] extract causal
relations with neural network architectures, such as BiLSTMs and
CNNs. However, they train and evaluate their approach only on
small benchmarking datasets, e.g., data from a SemEval challenge on
relation classification [15]. In contrast, we extract causal relations
at scale from the web. Moreover, the SemEval dataset was created
for relation classification given two entities, not for identifying
the entities themselves. Each entity annotation consists of a single
token only, and while Li et al. [23] suggest better ones, their dataset
is not publicly available. We thus compile new training data for
causal entity recognition on the web.

Causal Question Answering. Girju [11] were one of the first to
extract causal relations for question answering. However, their
approach uses a small set of 50 questions only. Sharp et al. [35] use
a larger set of 3,031 questions that were semi-automatically selected
from Yahoo Answers with linguistic patterns. We consider search
engine questions with a focus on causal questions instead bymining
them from Microsoft’s MSMARCO question answering dataset [4],
which comprises over one million questions from Bing’s search
logs. Its high-quality ground truth answers were obtained by human
crowdworkers, who were presented with text passages obtained
by Bing’s passage retrieval system, and who wrote new answers in
their own words. In cases where the provided passages contained
no answer, annotators marked the question as unanswerable. While
Hassanzadeh et al. [14] aim to answer binary causal questions, they
artificially transform causal relations to binary causal questions
instead of answering real questions, e.g., by search engine users.



3 CAUSALITY GRAPH CONSTRUCTION
For the construction of CauseNet, two sources of causal relations are
tapped, namely the web in general in the form of a large crawl, and
Wikipedia in particular. This section describes our construction
pipeline with regard to these two sources, and how they were
merged to form a coherent causal knowledge graph. Our graph and
source code is publicly available under permissive CC BY-SA 4.0
and MIT licenses.2

3.1 Operationalization
Causal relations are modeled as relations between causal concepts
in the form of lexemes, i.e., words and noun phrases: Two causal
concepts C and E, where C takes the role of a cause and E that of
an effect, are claimed to be causally related if C may have or might
have had a causal effect on E, according to some web sources. The
causal effect between C and E can be claimed to be direct or indi-
rect, and we model causal relations independent of any conditions
required to activate the causality. Modeling causality as a directed
relation between concepts enables the construction of a structured
knowledge graph K , which stores knowledge about the world as
subject-predicate-object triples (s,p,o) ∈ K . At present, only the
predicate p = mayCause is employed, which allows for an easy
integration into existing knowledge graphs. For each relation, we
store comprehensive provenance data.

3.2 Causal Relation Extraction from the Web
To extract causal relations from the web at scale, we analyze the
ClueWeb12 web crawl, which comprises about 733,019,372 English
web pages crawled between February and May 2012.3 We chose this
crawl over more recent ones, such as the Common Crawl, since it is
heavily used as part of many TREC evaluation tracks, thus fostering
synergies in future research. Our extraction approach is precision-
oriented, and given the scale requirements of the ClueWeb12, we
resort to a minimally supervised bootstrapping approach [1, 6, 18]
that only requires a few initial training samples.

The bootstrapping process starts with a small set of well-known
causal relations as seeds (A→B stands for “A causes B”):

smoking→cancer; earthquake→tsunami; rainfall→flooding; rain→flood;
radiation→cancer; dehydration→death; poison→death; HIV→AIDS

Using the seeds, sentences in a corpus of text are sought that contain
both the cause and effect of a given seed. From these sentences,
linguistic patterns are mined that capture how causal relations
are expressed in natural language. The linguistic patterns enable
the extraction of previously unseen causal relations from the text
corpus. This process is iteratively performed two times, augmenting
the set of seed relations with the new ones found after each iteration.

Not all newfound patterns and causal relations qualify as addi-
tional seeds for the next iteration. They are selected based on a
support criterion (adapted from [1]): Pattern support is measured by
the number of unique seeds that led to its identification. Similarly,
seed support is measured by the number of unique patterns that
extract the seed’s causal relation. The support criterion relies on the
redundancy of causal relations on the web: The more unique ways a
2https://github.com/causenet-org/CIKM-20 https://doi.org/10.5281/zenodo.3876154
3https://lemurproject.org/clueweb12/

Table 2: Top 10 patterns of causal relations: cause/N and ef-
fect/N refer to nouns within causal concepts, joined in a sen-
tence fulfilling the respective pattern’s dependencies.

Linguistic Pattern Relations

Cause dependency Token/POS Effect dependency |E|

cause/N -nsubj cause/VB +dobj effect/N 904,385
cause/N -nmod:with associated/VBN -acl effect/N 892,908
cause/N -nsubj lead/VB +nmod:to effect/N 783,860
cause/N -nsubj led/VBD +nmod:to effect/N 724,978
cause/N -nsubjpass associated/VBN +nmod:with effect/N 692,666
cause/N -nmod:by caused/VBN -acl effect/N 598,639
cause/N -nsubj result/VB +nmod:in effect/N 552,352
cause/N -nsubj causes/VBZ +dobj effect/N 496,426
cause/N -nsubj leads/VBZ +nmod:to effect/N 491,340
cause/N -nsubj resulted/VBD +nmod:in effect/N 473,298

causal relation is expressed in, the higher its support. While support
is not the only heuristic described in the literature [12], our pilot
studies showed it to work well and more robust at a large-scale than
other heuristics, such as confidence [1] and reliability [18, 30]. For
our high-recall version of CauseNet (83% precision), we include all
extracted relations; for our high-precision version (96% precision),
the support is at least 2 (cf., Section 5).

The linguistic patterns are mined based on the shortest path
between nouns signifying cause and effect within the dependency
graph of a sentence [8, 9, 18], which was implemented using the
so-called enhanced dependency graphs from the Stanford NLP
Parser [34]. To obtain linguistic patterns for causality extraction
with high precision, we apply two bootstrapping iterations to Wiki-
pedia. In each iteration, the number of selected seeds is increased
by 10, the number of patterns by 25, merging them with those
obtained in the previous iteration. For example, merging the 25 pat-
terns after the first iteration with the 50 patterns after the second
iteration yields 53 unique patterns. The top 10 patterns are shown
in Table 2. In a pilot study, we experimented with varying numbers
of iterations, patterns, and seeds. Increasing the number of itera-
tions increases recall at the cost of precision, whereas varying the
number of seeds and patterns had little effect and yielded similar
results. Having obtained the 53 linguistic patterns from Wikipedia,
we apply them to the entire ClueWeb12 crawl. Typical indicators
for causal statements include “cause(d)”, “lead(s)/led”, “result(ed)”,
and “associated with”.

The linguistic patterns presume each causal concept (i.e., each
cause and effect) to contain a noun. As a concept can be composed
of multiple words (e.g., “global warming”, “human activity”, or “lack
of exercise”), we determine the exact start and end of a causal
concept in a sentence using the following concept spotter: First,
the sentences are tokenized and part-of-speech-tagged using the
Stanford Parser [32]. Modeling concept spotting as a sequence
tagging problem similar to Li et al. [23], we tag each token with an
inside, outside, beginning tag using the IOB2 format, where the first
token of a causal concept is tagged as beginning, other tokens of the
same concept as inside, and other words as outside. As a sequence
tagger, we use the state-of-the-art BiLSTM-CRF model based on
Flair embeddings [2].

https://github.com/causenet-org/CIKM-20
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To train the sequence tagger, we heuristically identified Wiki-
pedia articles that potentially contain causal relations, reviewed
their sentences, and tagged them manually: By searching for causal
headings in their table of contents (e.g., “cause(s)”, “effect(s)”, “risk
factor(s)”, “symptom(s)”, and “signs and symptoms”), we found
8,974 articles with causal headings from which we randomly sam-
pled 100. Of these, 87 contained 832 overall sentences with at
least one cause and one effect. These sentences express a total
1,572 causal relations between causal concepts, suggesting that
some sentences contain multiple causal relations. Using 80% of the
data for training, 10% for development, and 10% as test set, we
achieved an F1-score of 0.65 with 0.62 precision and 0.67 recall
on the test set. We extract causal concepts from all sentences re-
trieved from the ClueWeb12 using the linguistic patterns. In cases
the tagger failed, we disregarded the causal concepts.

3.3 Causal Relation Extraction fromWikipedia
During our investigation of Wikipedia to bootstrap causal relation
extraction on the web, we found that Wikipedia itself comprises as
of yet untapped sources of causal relations: infoboxes and listings.

Infoboxes. An infobox in a Wikipedia article presents informa-
tion as key-value pairs with keys being predefined by templates.
For example, the infobox about “lung cancer” contains a key “risk
factors” with value “tobacco smoking, genetic factors, [. . .]” and
is derived from the template “medical condition”.4 Although in-
foboxes have been successfully used as a source for knowledge
graph construction, particularly for DBpedia [3] and YAGO [24],
the many causal relations in infoboxes are not reflected in either of
them: YAGO’s ontology entirely lacks causal properties and even
DBpedia Live [28] misses many causal relations as of August 2020.

To reconstruct causal relations as subject-predicate-object triples
from infoboxes, their titles serve as subject (or their articles’ titles
in case an infobox has none), their causality-related infobox keys
(e.g., “cause”, “causes”, “symptoms” and “risks”) serve as unified
predicate mayCause (or its inverse), and their respective values are
used as objects. While the infobox keys are a controlled vocabulary,
their values are arbitrary unstructured text and frequently contain
lists of causal concepts (for instance, consider the aforementioned
example from the infobox about lung cancer). To spot individual
causal concepts from these lists, we retrain the aforementioned
sequence tagger for infobox values. Trained on 179 randomly se-
lected and manually annotated infobox values, the sequence tagger
achieves an F1-score of 0.95 with 0.95 precision and 0.96 recall. We
further determine a relation’s direction based on the infobox and
its predicate. For example, extracting “tobacco smoking” from the
infobox about lung cancer, we define the relation (tobacco smoking,
mayCause, lung cancer), because the “risks” predicate is inverse to
mayCause. To reduce noise, we exclude keys from templates which
are used in less than 10 articles. Moreover, keys from six infobox
templates are omitted that express causal relations only indirectly
related to the topic of an article.5

4https://en.wikipedia.org/wiki/Lung_cancer
5For example, given an article about a person and a key “cause of death”, neither holds
that any cause of death causes the person, nor that the person causes a cause of death.
The causality rather refers to “death” than the “person”.

Table 3: (a) Overview of CauseNet and its subgraphs due
to ClueWeb12’s pages (CW pages) and Wikipedia’s articles’
plain texts (WP texts), lists, and infoboxes (ibxs.), where V
denotes the set of nodes in the formof causal concepts, and E
the set of edges in the form of causal relations between the
concepts. (b) Overlap of causal relations between the sub-
graphs. (c) Overview of the sources of causal relations.
(a)
CauseNet |V | |E |

Joint graph 12,186,310 11,609,890
CW pages 11,368,371 10,872,313
WP texts 1,070,686 793,593
WP lists 8,295 10,612
WP infoboxes 7,201 7,880

(b)
E1 E2 |E1∩E2|

pages texts 72,937
pages ibxs. 939
pages lists 506
texts ibxs. 209
lists ibxs. 93
texts lists 70

(c)
Source Pages / Articles

CW pages 733,019,372
w/ causality 12,111,758

WP articles 5,208,098
w/ caus. in texts 427,893
w/ caus. in ibxs. 2,725
w/ caus. in lists 1,194

Listings. Besides infoboxes,Wikipedia articles often contain item-
ized lists that represent causal relations. Because lists are made of
only one kind of causal concept (i.e., either causes or effects), the
respective other concept needs to be derived from the remainder of
an article. We do so based on the hierarchical structure of an article
and its title: extracting causal relations from lists appearing within
one of the special top-level sections “cause(s)”, “symptom(s)”, “signs
and symptoms”, and “risk factor(s)”,6 and assuming the missing
concept to be an article’s title. Like for infoboxes, we determine a
relation’s direction with a simple hand-coded lookup rule based on
the section title. Since each list item itself can contain a (comma-
separated) list of causal concepts, we again retrain our sequence
tagger for them, focusing on short list items that do not constitute
full sentences7 and that do not start with the word “see”, which
points to a special kind of list used directly after section headings to
link to articles with more details. Trained on 358 randomly selected
and manually annotated list values, the sequence tagger achieves
an F1-score of 0.92 with 0.92 precision and 0.91 recall. List items
consisting of full sentences are processed as described in Section 3.2.

3.4 Causality Graph Induction
To induce a coherent causality graph from the aforementioned three
sets of causal relations, the causal concepts must be reconciled: First,
all causal concepts are post-processed by discarding determiners,
coordinating conjunctions, personal and possessive pronouns, and
punctuation at both ends of a causal concept. Then, concepts are
merged into a single graph node if their lower-case representations
are equal. The resulting causality graph consists of unique causal
relations between normalized concepts similar to ConceptNet [37].

For each relation in the causality graph, we store provenance
information about its source: If the relation was extracted from
a Wikipedia or ClueWeb12 sentence, we document the sentence
and the path pattern that extracted the relation as well as a URL to
the original source. Source information further allows us to adjust
precision and recall of the causality graph, for example by filtering
the graph for different sources and patterns.
6We exclude lists in the “effect(s)” sections. They are often used for sound effects rather
than for causal relations.
7This is determined by the verb POS tags “VB”, “VBD”, “VBG”, “VBN”, “VBP”, “VBZ”.

https://en.wikipedia.org/wiki/Lung_cancer


Table 4: Source analysis: The upper row shows the top sources of causal relations from ClueWeb12 in terms of (a) hostname,
(b) domain, (c) top-level domain, and (d) DMOZ category, ordered by number of causal relations. The lower row shows sources
of causal relations inWikipedia: (e) infobox templates, and articles with causal relations in (f) infoboxes, (g) lists, and (h) texts.

(a)
Hostname Category |E |

sdbonline.org Science 26,517
bionewsonline.com Science 25,212
jci.org Science 16,081
sec.gov Regional 13,907
plosone.org Science 12,722
molvis.org Science 9,544
neurotransmitter.net Reference 8,842
diseaseinformation.info Reference 8,829
leninist.biz Reference 8,033
lansbury.bwh.harvard.edu Science 7,828

(b)
Domain Category Subdomains |E |

researchtoday.net Science 302 125,728
wordpress.com Society 6,835 91,230
typepad.com Society 5,687 72,357
hubpages.com Society 4,370 40,473
nih.gov Regional 368 40,280
deviantart.com Arts 20,365 40,064
about.com Reference 828 36,363
tripod.com Society 1,877 31,131
sdbonline.org Science 1 26,517
bionewsonline.com Science 1 25,212

(c)
TLD |E |

.com 5,597,297

.org 2,590,683

.net 793,937

.edu 766,731

.gov 320,263

.co.uk 229,834

.ca 185,661

.info 138,519

.org.uk 111,697

.ac.uk 85,304

(d)
Category Domains |E |

Science 121 296,330
Reference 118 240,033
Health 84 147,851
Society 80 129,058
Regional 34 76,754
Business 21 43,900
News 11 33,906
Computers 18 27,319
Shopping 9 14,078
Arts 3 8,017

(e)
Infobox Template Articles |E |

medical condition (new) 820 4,923
civil conflict 579 1,339
rail accident 452 530
event 380 495
wildfire 257 306
news event 146 170
oil spill 35 36
military conflict 23 32
birth control 13 26
bus accident 20 23

(f)
Wikipedia article title (ibxs.) |E |

2013 Romanian protests (. . .) 23
Shock (circulatory) 19
Breast cancer 18
Constipation 17
Intracerebral hemorrhage 17
Protests against Donald Trump 17
Heat stroke 16
Scombroid food poisoning 16
Acute lymphoblastic leukemia 15
Bowel obstruction 15

(g)
Wikipedia article title (lists) |E |

Flushing (physiology) 58
Mast cell activation syndrome 56
Coarse facial features 50
Hypotonia 47
Autistic catatonia 46
Livedo reticularis 46
Pallor 43
Delayed puberty 42
Eosinophilic myocarditis 42
Intraparenchymal hemorrhage 42

(h)
Wikipedia article title (texts) |E |

Effects of global warming on human health 98
Hepatitis 79
Horse colic 77
Safety of electronic cigarettes 72
Nutritional neuroscience 71
Causes of cancer pain 70
Dog health 69
Long-term effects of alcohol consumption 69
Famine 67
Progeroid syndromes 60

4 ANALYSIS OF CAUSENET
The joint causality graph CauseNet consists of 11,609,890 causal
relations (Table 3a). To the best of our knowledge, it represents
the largest general-purpose causality graph to date. This section
reports first results of a cursory exploratory analysis to investigate
how and what kinds of causal relations are discussed on the web,
and what is the structure of the causality graph built from them.

4.1 Source Analysis
Most of CauseNet’s relations originate from natural language texts,
10,872,313 from the ClueWeb12, and 793,593 from the plain texts
of Wikipedia articles (Table 3a). A smaller fraction of 10,612 and
7,880 originates from Wikipedia lists and infoboxes, respectively.
Table 3b shows the overlap of the causality graphs from these
sources. Compared to the respective subgraphs’ overall sizes, their
overlaps are relatively small. Despite the fact that the same linguistic
patterns were applied to extract causal relations from the ClueWeb
and the plain text of Wikipedia’s articles, only about 73,000 causal
relations out of 11million fromClueWeb overlapwith the 0.8million
fromWikipedia. Similarly, the overlap between infoboxes, lists, and
texts is small. This suggests that the different sources of causal
relations complement each other. Causal relations are found in
about 1.7% of all pages from ClueWeb12, and 8.2% of Wikipedia’s
articles (Table 3c), where the higher prevalence of causal relations
in Wikipedia can be explained by the fact that it is an encyclopedia.

ClueWeb12. The 11 million causal relations of CauseNet that orig-
inate from ClueWeb12 are distributed across 12 million web pages.
To get an idea of the types of pages in which causal relations can
be found, we grouped them by hostname, domain name, top-level
domain, and DMOZ category. Table 4 shows the respective top 10
of each. Causal relations appear on 842,698 hosts with 18 relations
per host on average. Among the top 10 hostnames (Table 4a), all

but two sites cover biological or medical information. The remain-
der are sec.gov and leninist.biz. When grouping by domain, causal
relations appear on 635,861 domains with an average of 22 relations
per domain. Table 4b shows that particularly blog providers are
among the top sources. Grouping by top-level domain (TLD), causal
relations are found on 1,181 TLDs at an average of 10,206 relations
per TLD. Table 4c shows that ”.edu” and ”.gov” are among the top
sources, following the three most frequently used TLDs.

For a better understanding of the abstract topics of the websites
from which causal relations have been extracted, the top 500 host-
names as per their contribution of causal relations were manually
categorized into the 10 top-level categories of DMOZ, a widely-
studied web directory [36]. Table 4d shows that the “science”, “ref-
erence”, and “health” categories contribute the largest amounts
of causal relations. Causal relations can also often be found on
law-related sites, here categorized as “society”. Altogether, the pri-
mary sources of causal relations appear to be more often scientific,
educational, health-related, and law-related websites.

Wikipedia.Wikipedia represents the single most important web-
site for causality on the web: 793,593 causal relations were ex-
tracted from 427,893 Wikipedia articles (Tables 3a and 3c).8 More-
over, 2,725 articles contained infoboxes and 1,194 lists with causal
information. Although infoboxes with causal relations are more
prevalent than lists with such relations, the causal graph induced
by lists is larger. Regarding infoboxes, 10 templates feature causal
information (Table 4e). The top template “infobox medical condi-
tions (new)” describes causes, symptoms, and risk factors of medical
conditions and represents 4,923 causal relations from 820 articles.
In addition to medical causes, infoboxes often describe causes of
civil and military conflicts as well as technical and natural disas-
ters. Tables 4f-h show the Wikipedia articles with the most causal
8Wikipedia was omitted from the ClueWeb12 in favor of a direct dump.



Table 5: Graph Analysis: The upper row shows the 10 most central nodes according to degree centrality (Cent.) in subgraphs
extracted from (a) ClueWeb12 sentences, and Wikipedia (b) infoboxes, (c) lists, and (d) texts. The lower row shows 10 paths of
(e) length 1, (f) 2 and (g) 3, ordered by rounded path support (Sup.), i.e., the geometric mean of edge support. We do not show
paths with cycles and we only present node-disjoint paths to give a broader overview.

(a)
Concept Out In Cent.

problems 8,077 64,355 0.006
death 4,485 44,144 0.004
damage 3,890 28,301 0.003
pain 3,668 23,046 0.002
disease 11,198 15,175 0.002
injury 6,681 14,733 0.002
stress 10,114 9,077 0.002
changes 9,155 9,459 0.002
problem 2,608 15,975 0.002
symptoms 2,720 14,415 0.002

(b)
Concept Out In Cent.

unknown 117 0 0.016
fever 4 103 0.015
lightning 80 0 0.011
family history 73 0 0.010
under investigation 68 0 0.009
vomiting 1 56 0.008
obesity 49 3 0.007
shortness of breath 0 52 0.007
arson 47 0 0.007
smoking 46 0 0.006

(c)
Concept Out In Cent.

fatigue 3 66 0.008
nausea 0 68 0.008
vomiting 1 59 0.007
flushing (physiology) 0 58 0.007
mast cell activation syndrome 56 0 0.007
fever 5 50 0.007
hypotonia 1 53 0.007
tachycardia 4 50 0.007
coarse facial features 0 50 0.006
anxiety 35 14 0.006

(d)
Concept Out In Cent.

death 689 4,054 0.004
problems 412 2,519 0.003
damage 340 1,953 0.002
controversy 427 1,729 0.002
disease 831 1,019 0.002
events 1,625 220 0.002
accident 778 1,064 0.002
incident 1,465 309 0.002
deaths 113 1,361 0.001
success 811 632 0.001

(e)
Cause Effect Support

accident death 38
drought famine 31
injury pain 31
disease deaths 30
smoking lung cancer 30
stress illness 30
depression suicide 28
anxiety insomnia 27
bacteria infection 27
diarrhea dehydration 27

(f)
Cause Mediator Effect Support

stress illness death 33
accident injury pain 31
exposure disease deaths 28
bacteria infection inflammation 26
obesity diabetes blindness 24
anxiety depression suicide 24
global warming drought famine 24
diarrhea dehydration headaches 23
lightning fire damage 22
negligence injuries disability 21

(g)
Cause Mediator 1 Mediator 2 Effect Support

negligence accident injury death 29
bacteria infection disease deaths 27
inflammation pain depression suicide 26
fear stress illness disability 23
greenhouse gases global warming drought famine 23
lack of exercise obesity diabetes blindness 23
lightning fire damage cancer 20
virus diarrhea dehydration headaches 20
anemia fatigue accidents injuries 19
alcohol problems anxiety insomnia 19

relations extracted from texts, lists, and infoboxes, revealing topic
differences: Causality in infoboxes refers to medical conditions and
political protests; lists focus on medical conditions; article texts are
more diverse, discussing societal issues such as global warming,
medical conditions, safety of electrical cigarettes, as well as famine.

4.2 Graph Analysis
To gain first insights into the nature of large causality graphs, we
analyze centrality, known unknowns, and causal paths.

Central Causal Concepts. To determine the most central concepts,
we assess their degree centrality, i.e., the number of their incident
(incoming and outgoing) edges normalized by the number of nodes
in the graph except the node itself. The higher the degree centrality,
the more likely causal information “flows” through the concept in
question. Table 5 overviews the most central causal concepts with
respect to the subgraphs from (a) ClueWeb texts, and Wikipedia
(b) infoboxes, (c) lists, and (d) texts. The central concepts largely
differ between subgraphs, except for “death”, “problems”, and “dam-
age”, which are shared among Wikipedia texts and ClueWeb12
pages. This variety is due to the aforementioned complementary
nature of these sources of causal relations. Nevertheless, a topic
shared among the central concepts of all subgraphs is medicine, e.g.,
“nausea”, “fatigue”, “death”, and “pain”. But causal relations from the
web also include “economic inequality”, “corruption”, “problems”,
“success”, “war”, “storm”, and “lightning”.

The degree centrality gives further insights into the roles of
concepts in causal relations: If the out-degree of a node is greater
than its in-degree, the concept is more often used as cause, and
vice versa. For example, the node “nausea” in the list graph only
appears as effect. Most nodes in the infobox graph act either as
cause or as effect. Only “fever”, “vomiting”, and “obesity” act as

both. Such clear usage gets blurred, the larger the causality graphs
are. However, some concepts still tend to be used more as cause or
effect; for instance, “death” is rarely used as cause of something.

Known Unknowns. For targeted knowledge acquisition, knowing
what is not, as of yet, known is important: In this regard, infoboxes
frequently report known unknowns using the value “unknown”,
which even represents the most central node in the infobox sub-
graph. Spot checks show that known unknowns are hardly ex-
pressed in lists and texts. While our extraction pipeline focuses
on noun phrases, we found that known unknowns in texts are of-
ten expressed in terms of adjectives. We leave it to future work to
extract known unknowns from texts, too.

Causal Relations and Causal Paths. The causal relations in
CauseNet originate from many different web pages, whereas in-
ducing a graph among them creates causal paths none of which
have been explicitly claimed in any of the individual sources. To
gain further insights into these paths, Tables 5e-g show paths of
length 1-3. Paths of length 1 are ordered by their support, and paths
of lengths 2 and 3 by the average support of their individual rela-
tions as per their geometric mean. We present only node-disjoint
paths, neglecting cycles, for a broader overview. Apparently, medi-
cal paths dominate. Moreover, most causal paths refer to negative
events, including accidents, diseases, or death. These findings might
corroborate and explain previous studies on “Cyberchondria” [39],
where it was found that people searching for medical symptoms
on the web often assume the worst. Despite the apparent domi-
nance of negative connotations, our causality graph also comprises
examples of positive causal relations, such as love→happiness and
teamwork→success. Future work could utilize our causality graph
to analyze not only the sentiment of causal relations or causal paths
but also the influence of causality on sentiment in sentences.



5 EVALUATION AND APPLICATION
To evaluate our causality graph, we estimate its precision manually,
and its recall within a question-answering benchmark application.

5.1 Estimating Precision Manually
We assess the precision of the causal relation extraction as follows:
From each combination of CauseNet subgraph and support level
shown in Table 6a, 100 causal relations are sampled for manual
review. For texts, we consider a causal relation correctly extracted, if
the relation is correctly extracted from at least two of three different,
randomly selected sentences. If less than three different sentences
are available, we consider only one randomly selected sentence to
avoid draws. For infoboxes and lists, we manually double check the
extracted relationwith its single source. For relationswith support 1,
we achieve a precision between 0.74 and 0.79 for ClueWeb12 and
Wikipedia. A support of 2 increases precision to over 0.95, more
support yields a precision of 0.97 or more. Thus, increasing support
allows for trading recall for precision. For lists and infoboxes, a
generally high precision between 0.96 and 0.97 is achieved.

5.2 Estimating Recall via Question Answering
We were wondering whether the scale of causal relations compiled
would allow for answering real-world causal questions, and how
many. To address this question, we relied on the MSMARCO ma-
chine reading comprehension dataset [4]. Among its one million
questions submitted to Bing, many causal ones can be found, plus
answers as an independent ground truth. We focus on the subset of
basic binary causal questions of the form “can A cause B”, where A
and B are causal concepts.9 For instance, the question “Can global
warming cause an ice age?” is then answered by looking up the
relation (global warming, mayCause, ice age). Out of 4,287 such
questions in MSMARCO, 2,169 have a ground truth answer. To link
the questions’ causal concepts to the available knowledge bases,
we employ exact string matching for CauseNet and ConceptNet,
DBpedia Spotlight [25] for DBpedia, and DBpedia’s interwiki-links
for Wikidata. For the latter two, only 1,423 and 1,331 questions
could be linked, respectively.

Table 6b shows the results for our causality graph and its sub-
graphs compared to ConceptNet, DBpedia, and Wikidata. Out of
1829 questions answered with “Yes” in the ground truth, CauseNet
(based primarily on its ClueWeb12 subgraph) provides the same an-
swer in 487 cases, while contradicting the ground truth answer “No”
in 53 out of 340 cases. This yields a “Yes”-precision and recall of 0.9
and 0.27, respectively. The performance of all other subgraphs and
knowledge bases is negligible in comparison. These results show
that our sample of causal relations extracted from the ClueWeb12 re-
call a quarter of those present in the much larger Bing crawl, since
MSMARCO’s ground truth answers indicate whether retrieved
documents answered the question as judged by a crowd worker.
9Variants of the pattern replace “can” with “do/does/did/is/are/will/would”, and “cause”
with “causes/caused/causing”. For simplicity, we exclude complex causal concepts
with coordinating conjunctions, prepositions, and subordinating conjunctions, to-
prepositions, Wh-determiners, Wh-adverbs, and Wh-pronouns as determined with
the Stanford part-of-speech tagger [32], and then discard leading determiners and
possessive pronouns of the remainder. The MSMARCO answers are reduced to “yes”
or “no”, excluding questions with multiple contradictory answers.

Table 6: CauseNet evaluation: (a) Manual precision estima-
tion; (b) automatic recall estimation via question answering.
(a)
CauseNet Sup. Relations Prec.

Complete 1-38 11,609,890 0.83
High-Prec. 2-38 197,806 0.96

CW pages 1 10,700,845 0.74
CW pages 2 116,912 0.95
CW pages 3-37 54,556 0.97

WP texts 1 789,381 0.79
WP texts 2 3,237 0.96
WP texts 3-21 975 0.98

WP lists n/a 10,612 0.97
WP ibxs. n/a 7,880 0.96

(b)

Truth: Yes No Total

Prediction: Yes No Yes No

CauseNet 487 1,342 53 287 2,169
CW pages 480 1,349 52 288 2,169
WP texts 51 1,778 8 332 2,169
WP lists 8 1,821 0 340 2,169
WP ibxs. 9 1,820 1 339 2,169

ConceptNet 1 1,828 0 340 2,169
DBpedia Live 11 1,179 2 231 1,423
Wikidata 10 1,098 0 223 1,331

6 DISCUSSION AND LIMITATIONS
Causal Relation Extraction. We extract causal relations expressed
within single sentences with 53 linguistic patterns. Besides, causal
relations might be expressed (1) implicitly rather than explicitly,
(2) across sentences, (3) differently across domains, or (4) using
negation. In this regard, our collection is biased towards domains
where causal relations are discussed explicitly and concisely, such
as scientific, health, and law-related topics. But even within sci-
ence, causal relations are not always made explicit: For example,
the Wikipedia article on “Free Fall” never explicitly mentions that
gravity causes objects to fall. Similarly, if causal relations are ex-
pressed across sentences, coreferences might need to be resolved
first. While we excluded sentences containing the common nega-
tions “no”, “not”, “doesn’t” and “didn’t”, more work is required to
properly process sentences like “The film features scientists and
others who are skeptical that global warming is caused by human
activity.” Likewise, explicit statements of the absence of causality
are of interest.

Modeling Causality. Our causal relations comprise causes and
effects in the form of noun phrases, similar to ConceptNet and
WordNet. An alternative approach might be to model causality in
terms of entities, as is done by Wikidata and DBpedia. Of course,
entity linkers could be employed to link our concepts to knowledge
base entities. However, entities alone are insufficient at present. For
example, the entities “artery” and “stroke” cannot express the fact
that only a blocked artery can cause a stroke and data models are
required that take conditional information into account.

We model causality with a single predicate mayCause allowing
data consumers to easily use our graph. A more fine-grained distinc-
tion with respect to different kinds of causation such as “producing”,
“increasing” or “decreasing” are conceivable. Also, temporal aspects
of causation could be modeled for applications like news event
prediction [33]. Incorporating the probability of a cause having an
effect would benefit causal reasoning applications.

Causal relations can be expressed on different levels of abstrac-
tion, omitting intermediate steps in a causal chain. For instance,
stress might not be a direct cause of cancer, but might make peo-
ple smoke more. Smoking, in turn, might not be a direct cause of
cancer, either, but gene mutations triggered by the interaction of
smoke with lung cells. Capturing causal relations at different levels
of abstraction may be done within a hierarchical graph.



Confidence in Causal Relations. We extract causal relations from
web sources and our graph reflects how (parts of) our society (cur-
rently) thinks about causality. This includes claims that HIV is
caused by homosexuality or that autism is caused by vaccination.
We include detailed provenance information for all causal relations.
Just as today’s search engines and question answering systems
deliver results without guarantees, they are still useful at large.

7 CONCLUSION
The quest to unravel causality is as old as human civilization itself.
Ever since ancient times, humanity has tried, and will continue
to try to learn as much about the environment as possible in or-
der to predict its behavior and to affect change, big and small, in
desirable directions. If an artificial intelligence with any form of
agency accompanies us in the future, it will have to learn causal
relations, too, or else be the unwitting subject to the whims of
its environment. Faced with a quest of such epic proportions, we
stand awestruck by what has already been accomplished, and how
much still remains to be done. Although collecting all beliefs and
separating fact from fiction is still far beyond current technological
capabilities, we expect that further unraveling causality will be sup-
ported by the current stock of causal beliefs. In this paper, we have
started to scale the technology that already works. With CauseNet,
we provide a causality graph with about 200,000 relations at 96%
precision, along with a high-recall variant with 11.6M relations
at 83% precision. While we have exemplified its benefit for causal
question answering, future work may utilize it in the context of
explainable AI, automated decision making, and much more.
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