
0

Reproducible Web Corpora: Interactive Archiving with
Automatic Quality Assessment

JOHANNES KIESEL, Bauhaus-Universität Weimar, Germany
FLORIAN KNEIST, Ulm University, Germany
MILAD ALSHOMARY, Paderborn University, Germany
BENNO STEIN, Bauhaus-Universität Weimar, Germany
MATTHIAS HAGEN, Martin-Luther-Universität Halle-Wittenberg, Germany
MARTIN POTTHAST, Leipzig University, Germany

CCS Concepts: • Information systems→ Information storage systems; Digital libraries and archives; Web
mining; Data mining; Information retrieval; • Software and its engineering→ Software notations and tools;

ACM Reference Format:
Johannes Kiesel, Florian Kneist, Milad Alshomary, Benno Stein, Matthias Hagen, and Martin Potthast. 2018.
Reproducible Web Corpora: Interactive Archiving with Automatic Quality Assessment. ACM J. Data Inform.
Quality 0, 0, Article 0 (August 2018), 23 pages.
https://doi.org/10.1145/3239574

1 INTRODUCTION
The World Wide Web compiles the most complete collection of mankind’s knowledge that has ever
been created. It also includes extensive information about all kinds of human interactions, as well as
about the traits and states of mind of individuals who share about themselves, increasingly allowing
for studying societies at large. This, and the fact that much of the information can be obtained at
virtually no expense just by downloading it, renders the web an invaluable source of raw data for
various disciplines of science. In particular, many forms of “applied” computer science benefit and
hence rely heavily on web data, such as data mining and machine learning, web science and social
network analysis, computer linguistics and natural language processing, computational social science
and the digital humanities, data science and data journalism, and not least of all, information retrieval.

Meanwhile the web has evolved into a maelstrom of information, constantly published, shared,
revised—and eventually lost. Despite the ease of copying and preserving digital information without
loss of quality, digital media have proven the most volatile of all. Unless some serious effort is
invested in keeping it safe, the web must be considered ephemeral. It is therefore false to think of the
web as an ever growing collection of knowledge. The web is merely a collection of currently needed
knowledge plus leftovers from the past. It stands to reason that many scientific inquiries based on
web data, whose authors did not ensure for that data to be archived, become irreproducible shortly
after their publication.

However, simply downloading a web page’s HTML source is not sufficient to ensure the repro-
ducibility of a web page’s “look and feel.” Still, current web corpora like the ClueWeb09 [40] and
the ClueWeb12 [41] used within TREC employ this strategy. The styles, scripts, and multimedia files
not served inline with the HTML code of a web page are almost entirely missing, and most of them
have long since disappeared from the open web. Viewing a web page without these resources results

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in ACM Journal of Data and Information Quality, https://doi.org/10.1145/3239574.

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.

https://doi.org/10.1145/3239574
https://doi.org/10.1145/3239574


0:2 Kiesel, Kneist, Alshomary, Stein, Hagen, Potthast

in a wholly different experience than its authors intended, which has a detrimental effect on human
perception when reviewing and judging pages from these corpora [18], jeopardizing the validity
of TREC’s evaluation results. Yet, even downloading externalized resources may not be sufficient.
Nowadays, many web pages are a piece of software, composed of resources from several web servers,
compiled and executed just in time in the browser when the user loads it, and dynamically modified
and updated with additional content based on user interaction. This is becoming more and more the
standard rather than the exception, as evidenced by the usage of JavaScript libraries in more than 70%
of all websites [46], and the fact that Google has started rendering web pages during crawling [17].
Reproducing web pages, as in showing an archived page in a browser that looks and behaves like the
original page at the time of archiving, has hence become increasingly difficult.

With this paper, we contribute the Webis Web Archiver, which implements (1) a flexible archiving
tool based on scriptable user-page interactions, and (2) a component for the reproduction of archived
web pages within a browser, replaying the interactions and thereby allowing for reproducible
experiments based on such replays. To evaluate our tool, we construct the Webis Web Archive 17, an
exemplary corpus of 10,000 archived web pages. The archived pages have been manually reviewed
and annotated with regard to reproduction quality, recruiting 9 judges for each page via crowdsourcing
to compare a reproduction to its original page. This marks the first systematic evaluation of the
archiving quality of a web archiving tool and might serve as an example for future evaluations.

Despite our corpus being available for download including all annotations, it will be outdated
before long, since the original web pages on which it is based will change or disappear, and since web
technology continues to evolve. A reevaluation of an updated version of our tool, or the evaluation of
a new tool, will hence require the renewed, costly annotation of a new corpus from scratch, rendering
the results obtained only superficially comparable to ours. Nevertheless, we attempt to overcome
this limitation of web archiving research by sidestepping it: we introduce the new task of immediate
automatic reproduction quality assessment for web page archiving, where, given a recently archived
web page, the task is to assess its reproduction quality compared to its original under a pre-defined
user-page interaction. For this task, we evaluate three quality assessment approaches—the third of
which an original contribution—, which resort to (1) estimating the number of missing resources
and their impact on the web page’s utility, (2) the pixel-wise visual difference between archived web
page and original, and (3) deep learning on the visual differences. With this task, we disentangle the
development of archiving technology from its evaluation, and our corpus may yet serve as a reference
for future approaches to quality assessment, even after the original web pages have disappeared.

Altogether, after reviewing related work in Section 2, this paper presents the following four
contributions:

(1) The Webis Web Archiver, a new and freely available web page archiving tool that incorporates
browser automation, modern browsers, and web archive proxies to create standard WARC web
archives, and to reproduce the archived pages (Section 3).

(2) The Webis Web Archive 17, a publicly available dataset of 10,000 carefully sampled, archived
web pages, annotated for reproduction quality via crowdsourcing (Section 4), and constituting
the first benchmark dataset for

(3) the new task of immediate automatic reproduction quality assessment, which helps to overcome
the inherent irreproducibility of web archiving tool evaluations (Section 5).

(4) The first in-depth analysis of web page reproduction quality, comparing reproduction software
and human quality annotations with three approaches to measure reproduction quality that
are based on missing resources, screenshot differences, and learned screenshot comparisons,
where the latter constitutes a novel application of deep learning (Section 6).

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



Reproducible Web Corpora 0:3

2 RELATED WORK
Web corpora are frequently used for scientific evaluations. However, the currently available ones
have been criticized for not allowing the reproduction of web pages collected, undermining human
annotation and user studies [18]. These issues have not been resolved until today. The two most
widely used corpora for evaluating information retrieval systems, the ClueWeb09 [40] and the
ClueWeb12 [41], contain only HTML files (excluding style sheets, scripts, and images), many of
which are truncated to save space. For the TREC Web Tracks alone, more than 125,000 ClueWeb
pages have been manually annotated, whereas most of them will not have been displayed as originally
intended. Moreover, any algorithm (e.g., for main content extraction) relying on analyzing the
appearance of a page and employed as part of a retrieval pipeline by a Web Track participant may as
well not have worked as intended. Though it has been tried to fix existing web corpora by identifying,
downloading, and extracting information from missing resources [31], this post hoc improvement
suffers from the fact that most of the original web pages have since disappeared. The Common
Crawl [36] is also missing many of such resources. Other small web corpora only contain plain text
without reference to the original web pages [8] or HTML files without associated resources [24].

Outside science, however, web archiving has been a focus of many initiatives for a long time [5, 16].
Most prominently, the Internet Archive works since 1996 on archiving as much of the web (and
the greater Internet) as possible, with the goal of building a comprehensive library of the web. The
Internet Archive’s well-known Wayback Machine is a web service allowing to access and browse
past versions of all web pages archived, with an emphasis on actually maintaining their look and feel.
This service is frequently used [2]. Both the Internet Archive and Perma.cc allow its users to create
snapshots of web pages on demand, e.g., so that one can prove at a later time how a given web page
looked like at the time of archiving. As of recent, Wikipedia makes use of these services to archive
linked sources [12] in an attempt to fight link rot [44]. Much of the tooling developed by the Internet
Archive has been shared open source, forming the basis for our tool.

Typical web archiving tools comprise two components, one for archiving a web page in a web
archive file (WARC), the de facto standard for web archives, and another for reproducing an archived
web page. Regarding the former, they feature the ability to store streaming data [20], to tailor the
archiving to certain websites [15], and to simulate basic user interactions [3, 37, 38]. We build upon
these efforts, using the Internet Archive’s man-in-the-middle archiving proxy warcprox [39] within
our archiving tool. Several approaches exist to reproduce an archived web page. The Memento
framework [42] is available as a browser plugin and uses an approach comparable to HTTP content
negotiation to access a past snapshot of a requested resource. The Memento protocol provides a
common interface for tools that reproduce web pages from an archive, and is implemented by the two
most widespread such tools, OpenWayback [11] and Python WayBack [25]. Both allow to access
archived web pages, either via specific URLs, or by acting as a proxy server serving responses from
the archive file instead of from the web. Besides the Wayback Machine, other tools to browse web
archives have also been developed for specific user groups, such as Warcbase [28] for historians.

Only few studies have dealt with assessing archiving quality so far. Even though the Web Curator
tool exists for manual assessment [29], it has not been used to construct web corpora. Regarding
automatic assessment, the CLEAR method tries to predict how well an entire website could be
archived based on its accessibility, compliance with standards, cohesion, and use of metadata [6, 7].
Brunelle et al. [9] score the archiving quality after archiving, considering the estimated importance
of missing images, multimedia objects, and style sheets. They find that quality estimation can be
improved by differentiating the importance of missing resources (e.g., based on image size) instead
of treating each missing resource the same. We reimplement this approach for our evaluation to
compare it with our own approaches.

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



0:4 Kiesel, Kneist, Alshomary, Stein, Hagen, Potthast

Not directly related to web archiving, automated web page rendering is also used to detect changes
in web pages to optimize the crawling process. Pagelyzer [43] renders a web page, segments it, and
compares these segments to the segments of other web pages. Such tools are designed to enhance the
crawling or archiving process. While change detection is not in the focus of this work, the Webis
Web Archiver that this paper presents offers the flexibility to integrate change detection algorithms
as part of a user simulation script.

3 THE WEBIS WEB ARCHIVER
This section presents the Webis Web Archiver in terms of its envisioned use cases, a requirements
analysis derived from that, its software architecture, and details on user-page simulations and fuzzy
request-response matching during reproduction plus a number of other technical challenges. Our
web archiver is available as a readily executable Docker image,1 and open source.2

3.1 Target Use Cases
Reproducible Web Corpora. A key use case of our archiver is the construction of reproducible web
corpora, where each web page archived can be reproduced as close to its original as possible. This has
two benefits: human inspection and annotation of web pages is not harmed, rendering conclusions
drawn more realistic and hence experimental results based on them more valid. At the same time,
algorithms can be developed against a static, yet close-to-realistic source of raw data. In particular,
information can be extracted from all of a web page’s resources, including features extracted from a
web page’s visual representation, e.g., when relying on recent advances in deep learning for computer
vision. Even if the page appearance is not used in the development of some algorithm based on web
data, one should not discard the supposed overhead, since new ideas at solving the algorithm’s task
may emerge at a time when it is too late to re-crawl the previously omitted data.

Reproducible User Experience. In laboratory user studies, participants often have to accomplish
a task that involves using a web service (e.g., a search engine) and web browsing (e.g., browsing
search results). For instance, one may wish to analyze the reaction of different users to a specific
situation without explicitly spoiling it to participants. Since using live web services and live web
pages may allow for high variation, it has been technically challenging to ensure that participants will
independently experience the situation in question exactly the same, while not changing the general
user experience they are used to (e.g., the web browser). Hence, another use case for our archiver is
the creation of a reproducible user experience by allowing to manually or automatically pre-record
the usage of web services as well as web browsing all in one web archive, including alternative
predicted user behaviors. This way, participants of a user study may not notice a difference when
actually running through an experiment, and the experiment itself can be repeated any time, even
when the original web services and web pages involved have changed or vanished.

Reproducible User Behavior. In observational user studies, participants have to accomplish a task
on their own, usually with as little guidance as necessary to set them in the right state of mind. It
may even be the case that participants are asked to use a web service in any way they please (e.g., an
entertainment system). In cases where the degrees of freedom for users are too large to be anticipated
in advance, user sessions can be archived using standard tools (optionally including clickstream
logging [30]). With our tool, the recorded sessions can be algorithmically revisited for an analysis
at any time after the study, even when the web service or web pages underlying the study have
meanwhile changed.
1Docker image: https://hub.docker.com/r/webis/web-archive-environment
2Instructions, binaries, code: https://github.com/webis-de/webis-web-archiver

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.

https://hub.docker.com/r/webis/web-archive-environment
https://github.com/webis-de/webis-web-archiver


Reproducible Web Corpora 0:5

Reproducible User Simulation. The simulation of users has gained significant interest in infor-
mation retrieval as of recent [4], where users of search engines are simulated to avoid the costs of
collecting click data from real users. While recorded user sessions may serve as training data for
user simulation, the simulations themselves become increasingly more sophisticated and dynamic.
Conceivably, a simulated user may be envisioned which reacts to content it “sees” on a web page,
so that the capability to reproduce the look and feel of a web page becomes important. Here, an
additional use case for our archiver is to record user simulation runs, rendering them reproducible.

3.2 Requirements Analysis
Based on its target use cases as well as our review of related work, we derive the following key
requirements for our web archiver:

(1) Scriptable user-page interactions. Users of our archiver want to be able to easily specify the
user-page interactions that happen during the archiving or reproduction of web pages. This
includes taking screenshots, manipulating and exporting a web page’s DOM tree, firing any
kind of event that occurs when a user interacts with a web page, such as click, tap, scroll, etc.,
entering text into and submitting forms, and so on.

(2) Scalable archiving and reproduction. Since web corpora nowadays contain millions or even
billions of pages, parallel archiving and reproduction are mandatory. The archiving and
reproduction of an individual page must be seamless, not blocking human user interaction, and
not taking longer than loading the original web page did.

(3) Long-term reproducibility. To enable reproducible science on web pages, the reproduction of
the web pages must not change over time. For example the rendering of a web page can change
with newer browser versions, which has a negative impact on the reproducibility.

(4) Adjustable level of archive granularity. Web archivers typically store pages in archive files,
each collecting hundreds of pages. This makes handling individual pages difficult, which is
a requirement when constructing small, focused web corpora for specific research questions.
The level of archive granularity must be adjustable, the lower boundary being exactly one page.
This also makes splitting web corpora into sets for training and testing easier.

(5) Local execution and storage. One must be able to create and store web archives locally,
without reliance on third parties. Possible reasons include that to-be-archived web pages are
not accessible from the open web, privacy issues, or that experiments demand to process and
manipulate the web pages before the reproduction.

(6) Compatibility with other web archiving software. Given the buzzing web archiving ecosystem,
the web archives created by our web archiver must be compatible to be processed with third
party tools. In this regard, the web archive file format (WARC) is the proper choice to ensure
compatibility.

(7) Sustainability. The software stack of our web archiver must be maintainable, and easily
adjustable by everyone, also when the original authors are unable to provide support. This is in
fact a requirement for all of software development in science. Hence, the dependencies of our
web archiver must be chosen to ensure long-term support, proprietary dependencies should be
avoided, and slick APIs must be defined to integrate and orchestrate third party components.

The Webis Web Archiver is designed to meet all of these requirements. Below, we overview its
software architecture.

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



0:6 Kiesel, Kneist, Alshomary, Stein, Hagen, Potthast

Fig. 1. Software architecture of the Webis Web Archiver. Depicted are the building blocks, dependent
libraries, and communications between them (a) for archiving and (b) for reproduction. Libraries are
shown as rectangles, files and directories as cylinders. The components originally created for the
Webis Web Archiver are highlighted in italics.

3.3 Software Architecture
Web archiving software typically comprises two major components, one for archiving a web page,
and another for reproducing a web page from a pre-recorded archive. Figure 1 overviews the two
components, and the respective processes for archiving and reproduction they implement.

The Webis Web Archiver depends on a number of carefully selected software libraries. A readily
executable configuration of the archiver is encapsulated in a Docker image [14]. Docker allows to
robustly run our archiver in parallel on any host where Docker is installed. It helps to separate the
configuration and orchestration of our archiver’s dependencies without affecting, or being affected by
other software that may be installed on a given host. Docker also ensures the reproducibility of our
archiver’s execution environment by fixing the versions of each software library and especially the
browser. Moreover, all of 2 GB worth of fonts available to Ubuntu are installed in the Docker image,
which ensures that virtually all characters are properly displayed when taking screenshots, regardless
the language. This way, using our archiver boils down to executing a Docker command with a small
number of parameters. To avoid caching effects, a new docker container is started for each URL.
Also, Unix shell scripts are provided to allow for easy execution of our archiver outside Docker.

The virtual screen software xvfb [47] is used to run the browser without requiring a physical
screen, thus allowing for server-side execution. Apart from two exceptions, the archiving process and

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



Reproducible Web Corpora 0:7

Algorithm 1: Built-in user simulation script
Data: Browser browser , start URL url , output directory directory
Result: Screenshot and HTML snapshot of web page at url in directory
begin

window = browser .openWindowWithUrl(url)
// Scroll down to load all content
for i ∈ {1, ..., 25} do

if ¬window .canScrollDown() then break
window .scrollDown(window .viewport.height)
browser .WaitForNetworkTrafficToStop()

// Resize browser viewport to page size for screenshot
window .scrollTo(window .page.top)
window .resizeViewportHeight(window .page.height)
browser .WaitForNetworkTrafficToStop()
// Save current state to output directory
window .saveHTMLSnapshotTo (directory)
window .saveScreenshotTo (directory)

the reproduction process are exactly the same: a user simulation script is read from disk and started.
The Selenium browser automation software [32] serves as an interface between the script and the
browser. As browser, we employ a current version of Google Chromium, but others are supported as
well. During reproduction, the FakeTime Preload library [48] is used to pretend to the browser that it
runs at the time of archiving, which affects all JavaScript calls that use the current date. The browser
is set up to communicate with an instance of BrowserMob Proxy [27], which is used by the script to
learn when network traffic ceases. During archiving, the BrowserMob Proxy communicates with the
Internet via an instance of the warcprox proxy [39], which stores all requests and the corresponding
responses that pass through it in a standard WARC archive file. During reproduction, a local server is
started that pretends to be a proxy, but actually attempts to retrieve the previously recorded responses
to requests made by a to-be-reproduced web page from its WARC files.

Important parameters include the start URL for the user simulation script, the script itself, the
output directory, whether to archive or to reproduce, and where WARC files are to be stored or
located. For debugging purposes, an extra mode allows for applying user simulation scripts to the
live web without archiving. The following sections detail two key features of our archiver, namely its
unique user simulation scripts and fuzzy request-response matching.

3.4 User Simulation Scripts
A key feature of the Webis Web Archiver is its capability of controlling the browser during archiving
and reproduction using the Java-based API. Among other things, the scripts API allows to load
any URL into the browser, to scroll, to resize the browser window, to manipulate the DOM, to
click on elements, to print elements, to take screenshots, to wait for network traffic to stop, and to
execute JavaScript code. Instead of implementing this kind of browser automation ourselves, we
rely on Selenium [32], a software-testing framework for web applications. Selenium has been under
development since 2004, and has since risen to become the single most important testing framework
of its kind, integrating all major web browsers. Despite its obvious usefulness for web archiving tools,
Selenium has never been considered for this purpose until now. Rather, most of the existing solutions

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



0:8 Kiesel, Kneist, Alshomary, Stein, Hagen, Potthast

employ PhantomJS [19], a comparably limited scriptable browser which has not been updated for
months at the time of writing. The interface between Selenium and the web browser will become the
W3C WebDriver standard [35], further increasing the cross-browser compatibility of Selenium and,
consequently, our archiver.

We call the code used during archiving user simulation scripts, since they can be thought of
as modeling a real user’s behavior. Nevertheless, more can be accomplished within the use cases
outlined above; for example, a user’s behavior may be influenced in real-time by changing a web
page while the user uses it in a recorded session, a walk on the link graph can be implemented, the
web page may be classified, or information extracted from it. Our archiver ships with the built-in
user simulation script shown in Algorithm 1: it simulates a user who wants to reach the bottom of a
page, but gives up after a predefined maximum number of page down scrolls. During the process, a
screenshot of the original page as well as its HTML source are stored. Any user simulation script
used during archiving can be used without change during reproduction so as to allow a web page
served out of an archive to reach the same state as its original did.

Parameters of a user simulation script are a browser object, a start URL, and an output directory
where any extraneous script output can be stored (e.g., a screenshot). The browser object allows
opening new browser windows. By default, browser windows have a size of 1366x768, which is the
most widespread screen resolution for desktops as of 2018 [34, 45]. Selenium also allows to emulate
mobile devices, but this functionality is not mature enough as of yet. Additionally, user simulation
scripts have access to the directory in which their source code resides for accessing resources like
dictionaries or machine learning models if needed. Our user simulation scripts are currently limited
to Java, but Selenium offers more language bindings, and we plan on following suit in the future.

3.5 Fuzzy Request-Response Matching
Although archiving and reproducing web pages the way described above may seem straightforward,
the devil is in the details, and reproducing web pages from an archive is prone to errors. It is
important to understand that a web page is not just a collection of static plain text files that only
need to be systematically found and copied. Rather, it is a distributed piece of software with a
client-server architecture. What is displayed in a browser is the user interface of such a software,
which is assembled and executed just in time as the user visits a page. In this regard, web archiving
is essentially the same as taking snapshots of the states of the user interface, hoping that the user
simulation script visits all, or at least the important states of a page a real user can reach. As this view
on web pages shows, archiving and reproducing a web page is a non-trivial task.

During our developments, we identified and tackled many technical challenges related to technolo-
gies used at client side, at server side, and in-between. For brevity, this section describes only one of
the more interesting solutions: fuzzy request-response matching. When reproducing a web page, all
requests sent by the archived web page must be answered with the same responses that have been
captured during archiving. However, the requests sent during reproduction may differ in subtle ways
from the ones originally sent, requiring a fuzzy match between request and response. For example,
requests made via JavaScript that involve random numbers or that are based on the current time will
be dissimilar from their original. Furthermore, requests can change the server’s state, so that other
requests result in different responses depending on whether they are issued before or afterwards. As
the server is essentially a black box to the archiving process, no information exists on which requests
have effects on responses, or which responses are affected. Furthermore, as requests are usually sent
in parallel by the browser, race conditions will occur. The order in which requests are issued can
drastically vary between two runs of the same user simulation script as this order often depends on
which responses are received first. For illustration, Figure 2 shows an example where the screenshots
taken by our archiver differ as a result of failed matches between requests and responses.

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



Reproducible Web Corpora 0:9

(a) (b) (c)

Fig. 2. Screenshots of a web page archived under the user simulation script of Algorithm 1 (a) during
archiving (i.e., the original page) and (b) during reproduction, as well as (c) highlighting differences
between (a) and (b). The web page has been selected to show typical errors, namely visually shifted
content due to missing advertisements and missing recommendations for further reading.

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



0:10 Kiesel, Kneist, Alshomary, Stein, Hagen, Potthast

Our archiver currently allows to choose from three different tools for reproducing web pages
(the “web page reproduction server” in Figure 1): warcprox, Python WayBack (pywb), and an
implementation of our own. Warcprox [39] focuses mainly on archiving and implements only a
very basic request-response matcher based on URL normalization.3 It serves as our baseline. Python
WayBack [25] is one of the two most widely known web page reproduction tools available.4 It
implements a rule-based matcher, engineered specifically for this task, which aims at resolving
differences in requests that likely occur in a reproduction scenario, for example, by ignoring strings
that resemble session IDs. In addition, Python WayBack offers support for organizing multiple
archives and handling repeated archiving of the same page, which is not needed in the research
scenarios we consider. However, by default, Python WayBack injects code into reproduced web
pages, for example, to change the time reported by JavaScript to the time of archiving. We deemed
code injection problematic for our purposes—since injected code may interfere with user simulation
scripts—as well as for maintaining integrity of the archived data, so we disabled this feature. In
preliminary tests, we noticed that some images are missing in the reproduction of Python WayBack
without obvious reason. For an easier analysis, we thus implemented a custom request-response
matching cascade that tries to find a request match by identity checking including URL normalization,
then by partial matching ignoring headers, and if that also fails, by rules very similar to those used in
Python WayBack. We apply these three reproduction tools to the Webis Web Archive 17, which is
presented next, to analyze how well web pages are reproduced with the current state-of-the-art.

4 CROWDSOURCED EVALUATION OF WEB ARCHIVING TOOLS AND
DATASET FOR AUTOMATIC REPRODUCTION QUALITY ASSESSMENT

This section serves three purposes at once: it presents the results of a comprehensive evaluation of the
Webis Web Archiver; it introduces for the first time the methodology to evaluate web archiving tools
by means of crowdsourcing; and it presents the dataset compiled, the Webis Web Archive 17,5 which
lays the foundation for the novel downstream task of automatic reproduction quality assessment.

Unlike traditional evaluation setups, the evaluation of web archiving tools cannot rely on bench-
mark datasets or corpora: compiling a dataset of static web pages is insufficient, since an archiving
tool requires a functional web server that hosts web pages in order to archive them. Even if a suffi-
ciently large set of web servers hosting a sufficiently large number of different web pages, each built
with a diversity of web technologies, were conserved and made available, the rapid pace at which
web technology evolves would soon render this resource outdated and evaluation results gained from
it irrelevant. Therefore, direct comparative evaluations of web archiving tools that are developed by
different parties at different points in time are virtually impossible at reasonable costs.

A potential solution to this problem can be found in a standardized, manual evaluation procedure to
be followed minutely by independent parties that develop web archiving tools. The operationalization
of sensible notions of web archiving and reproduction quality criteria, however, has its own pitfalls
as outlined below. Further, the comparability of such evaluations conducted at different points in
time is weaker than with a direct comparative evaluation. Nevertheless, at least scale can be attained
via crowdsourcing, which is how we were able to conduct a large-scale evaluation the Webis Web
Archiver, demonstrating the use of Amazon’s Mechanical Turk for this purpose for the first time.

We compiled the web pages archived with our tool and the human annotations collected as part of
our evaluation into the Webis Web Archive 17, which is publicly available. While this dataset, too,
will soon be technology-wise outdated, it may still serve as a basis for the development of automatic
3Reproduction in warcprox was buggy when we first tried it for this purpose, but we helped resolve this issue.
4Since the most prolific contributors to Python WayBack and OpenWayback are the same people, but the development of
Python WayBack is more active, we do not expect Open Wayback to achieve a higher reproduction quality.
5The dataset is publicly available at https://doi.org/10.5281/zenodo.1002203.

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.

https://doi.org/10.5281/zenodo.1002203


Reproducible Web Corpora 0:11

reproduction quality assessment technology. Instead of manually reevaluating each web archiving
tool (or each version of a web archiving tool), the quality criteria underlying the human assessment
of reproduction quality may be learned with machine learning based on this dataset. If sufficiently
successful, the resulting reproduction quality model may be applied in real time as a web archiving
tool is deployed, used, and developed, allowing for severely shorter turnaround time and significant
cost-savings compared to a manual evaluation.

After sampling web pages for our evaluation from a carefully selected mixture of high-ranked
and low-ranked websites (Section 4.1), we used our tool to create the Webis Web Archive 17,
comprising 10,000 archived web pages. We then defined our operationalization of reproduction
quality assessment criteria (Section 4.2), and proceeded to conduct a corresponding crowdsourced
quality annotation of our dataset (Section 4.3). This formed the basis both for the direct evaluation of
the Webis Web Archiver, as well as for our experimental setup for the task of automatic reproduction
quality assessment in Sections 5 and 6.

4.1 Sampling of Web Pages
To build a solid benchmark dataset for web reproduction quality assessment, we carefully sampled
web pages with the goal of representing a wide cross-section of the different types and genres of web
pages found on the web. As a population of web pages to draw a sample from, we resort to the recent
billion-page Common Crawl 2017-04 [36]. From there, we primarily sampled pages from most of
the well-known sites—as defined by the website’s Alexa traffic rank [1]6—to ensure that our sample
encompasses pages using the most recent web technologies and design standards. Moreover, pages
from a number of less well-known sites have been included. Altogether, the Webis Web Archive 17
comprises 10,000 web pages.

We drew a stratified sample of web pages from websites listed in the Alexa ranking according to
the following restrictions: To avoid overrepresentation of organizations that host similar pages under
several domains, we disregard pages from sites that are different-language versions or subdomains of
higher-ranked sites.7 Further, the sampling is restricted to yield exactly 50 pages from each of the
top 50 sites, 10 pages from each of the next 100 sites in the ranking, 5 pages from each of the next
500 sites, and finally, 1 page from each of the next 1000 sites. In total, we thus sample 7000 web
pages from the top 1650 sites. If the Common Crawl did not contain enough pages for a site, this site
was skipped altogether and the next site in the ranking was used instead.8 Not all web pages from
the Common Crawl still exist, so we continued to archive pages of a site until the desired amount of
web pages could be archived successfully. However, as the sample for a website would be hardly
representative of the site when most web pages fail archiving, we again skip the website if twice the
amount of required web pages have been tried without yielding the desired amount of successes. In
total, 429 websites have been skipped. To also include pages from a sample of less-known sites in
the dataset, we include an additional random sample of 3000 pages from the remainder of sites.

The final sample of pages was re-crawled and archived using the Webis Web Archiver presented in
Section 3, employing the user simulation script given in Algorithm 1. On average, it took 86 seconds
to archive a web page using this script. Reproduction was a bit faster, taking 67 seconds on average
with only minor differences between the different reproduction approaches described in Section 3.5.
For each page, the dataset contains on average 10.4 MB of data: 4.3 MB for the archive, 5.4 MB
for screenshots (one screenshot of the live page as seen during archiving, and one when using each
reproduction approach), and 0.7 MB for HTML snapshots (distributed like the screenshots).
6Ranking as of March 29th, 2017
7For example, files.wordpress.com is subordinate to wordpress.com.
8By manual analysis, we found that top-ranked sites with an insufficient amount of pages have either very restrictive crawling
conditions (e.g., tmall.com), are link services (e.g., t.co), or are related to advertisement (e.g., onclkds.com).

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.

files.wordpress.com
wordpress.com
tmall.com
t.co
onclkds.com


0:12 Kiesel, Kneist, Alshomary, Stein, Hagen, Potthast

Table 1. Number of sites and pages in each category and their most frequent sub-categories according
to the Alexa Web Information Service. Sites and pages can be in multiple (sub-)categories.

Category Sites Pages Most frequent site sub-categories Most frequent page sub-categories

Adult 40 129 Computers (25), Image_Galleries (8),
Society (2)

Computers (94), Image_Galleries (27),
Society (3)

Arts 187 471 Television (59), Movies (19), Music (18) Television (152), Movies (75), People
(50)

Business 229 489 Financial_Services (39),
News_and_Media (24),
Arts_and_Entertainment (22)

Financial_Services (116),
News_and_Media (84),
Arts_and_Entertainment (43)

Computers 444 1502 Internet (184), Software (143),
Companies (60)

Internet (821), Software (371),
Companies (261)

Games 58 150 Video_Games (48), Gambling (6),
Board_Games (1)

Video_Games (139), Gambling (6),
Puzzles (2)

Health 28 36 Medicine (15), Conditions_and_Diseases
(7), Nursing (5)

Medicine (21), Nursing (11),
Conditions_and_Diseases (7)

Home 42 88 Consumer_Information (19), Cooking
(9), Personal_Finance (7)

Consumer_Information (44), Cooking
(17), Personal_Finance (15)

Kids_and_Teens 55 99 School_Time (21), Games (13),
Computers (7)

School_Time (43), Games (28),
Computers (10)

News 149 303 Newspapers (77), Breaking_News (13),
Magazines_and_E-zines (8)

Newspapers (110), Headline_Links (55),
Weather (24)

Recreation 70 106 Travel (32), Autos (8), Humor (5) Travel (63), Autos (10), Pets (7)
Reference 164 275 Education (105), Dictionaries (25),

Libraries (21)
Education (128), Ask_an_Expert (51),
Dictionaries (47)

Regional 605 1182 North_America (395), Europe (112),
Asia (78)

North_America (829), Europe (240),
Asia (144)

Science 74 116 Technology (19), Social_Sciences (16),
Biology (12)

Technology (34), Social_Sciences (27),
Biology (20)

Shopping 182 413 General_Merchandise (30), Clothing
(26), Entertainment (16)

Entertainment (108),
General_Merchandise (105), Auctions
(51)

Society 100 125 Issues (20), Religion_and_Spirituality
(15), Government (12)

Issues (27), Religion_and_Spirituality
(18), Government (16)

Sports 73 123 Resources (18), Soccer (9), Baseball (6) Resources (48), Soccer (16), Cricket (10)
World 1453 3437 Chinese_Simplified_CN (305), Russian

(245), Deutsch (213)
Chinese_Simplified_CN (866), Russian
(731), Deutsch (593)

For each page’s site in the dataset, we queried the Alexa Web Information Service API to retrieve
it’s category and dominant language. Table 1 shows the distribution of categories of the websites
and their corresponding web pages. All categories are present in the dataset and no single genre
is dominating. Indeed, the categories with the most sites are “World” (which can be considered a
“miscellaneous”-category), “Regional,” and “Computers,” all of which are rather generic categories
enclosing several sub-topics. As Figure 3 illustrates, English is the dominant language in the dataset:
about 70% of the pages for which the Alexa Web Information Service API returned site-wise language
information are English, followed by Chinese (13%) and Russian (4%). While the dominance of
English pages is unsurprising, the dataset still covers a reasonable variety of languages.

4.2 Defining Reproduction Quality
Intuitively, if a reproduced version of a web page looks and reacts exactly as the original one did at
the time of archiving, the reproduction quality is maximal. But quantifying how much an archived
web page differs from this ideal is far from trivial. Operationalizing the notions of “looking” and

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



Reproducible Web Corpora 0:13

en zh ru ja de es fr it tr pt ko id pl cs nl ar th et no ro sh da fi sv

Site language

N
u
m

b
e
r 

o
f 
p
a
g
e
s

4541

839

284 154 133 109 92 51 42 39 34 33 29 23 19 12 8 7 7 7 7 5 5 5

Fig. 3. Number of web pages by their website’s language as determined by the Alexa Web Information
Service (successful for 6,495 out of 10,000 pages). Languages with at least 5 pages are shown.

“reacting” the same or similarly is where the difficulties arise, especially when some differences in
look or reaction might be negligible (e.g., a missing advertisement) while others render a reproduction
unusable (e.g., a missing image in a web comic). Furthermore, the importance of any given difference
depends on the context of a web page. For example, missing an image advertisement for a pair of
shoes on a discussion board only marginally degrades its reproduction quality, whereas missing the
same image on a shoe shopping site degrades its quality more significantly. For another difficulty, as
the number of possible interactions with a web page can be enormous, it is infeasible to include all
possible interactions in a quality assessment measure, let alone weighing the relative importance of
each interaction, which would require a prediction of the likelihood of each interaction.

In this paper we therefore adopt a pragmatic definition of reproduction quality based on our basic
scroll-down user model (as in Algorithm 1) and on visual differences between an original page and
its reproduction. We chose this user model as scrolling down results in a single image for a web page,
whereas other interactions (such as clicking links or buttons) results in a more complex, multi-state
representation. Extensions to this user model are straightforward to implement with the Webis Web
Archiver, but require a separate investigation into typical or “worst-case” user behavior. Under the
scroll-down user model, we define the quality of a web page reproduction as follows:

The more individual users that scroll down a web page are affected in their perception
or use of the web page by visual differences between the original web page and its
reproduction, the smaller the reproduction quality for that web page.

4.3 Human Annotation of Reproduction Quality
Employing the above definition of reproduction quality, we recruited human annotators to manually
assess the 6,348 of the 10,000 pages in the Webis Web Archive 17 with reproduction errors, which
were identified by comparing the screenshot taken during archiving with the ones taken during
reproduction. For every web page where no reproduction screenshot matches the archiving screenshot
perfectly, we asked humans to annotate the reproduction quality. Only the reproduction screenshot
with the smallest pixel-based difference9 to the archiving screenshot has been annotated. To match the
scroll-down user model, annotators were shown the screenshots of the web page with the possibility
to scroll down to the bottom of the page. To enable annotators to assess the effect of visual differences
on their perception, the archiving and reproduction screenshots were shown side by side, while
9As measured by ImageMagick’s RMSE, see Section 5.

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



0:14 Kiesel, Kneist, Alshomary, Stein, Hagen, Potthast

Fig. 4. Interface used by the human annotators to judge the reproduction quality of five web pages in
a row, showing one at a time.

synchronizing their scrolling behavior and thus allowing for visual content matching. As some
differences were rather small and might otherwise have been overlooked during annotation, the
annotators were able to highlight the differences between the screenshots. The reproduction quality
was assessed on a 5-point Likert scale to account for different levels of perceived severity, ranked
from no effect (score 1) to unusable reproduction (score 5). The interface provided annotators with
a short textual description and one example for each of the five quality scores. Figure 4 shows the
annotation interface with activated highlighting.

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



Reproducible Web Corpora 0:15

Table 2. Number of times each median reproduction quality score occurs in the final annotation, rang-
ing from no effect on visitor (1) to useless as a reproduction (5), when considering only reproductions
annotated by humans (Annotated), and including the ones with no difference in the screenshots (All).

Reproductions Score
∑

1 2 3 4 5

Annotated 1942 (30.6%) 3307 (52.1%) 422 (6.7%) 318 (5.0%) 359 (5.7%) 6348
All 5594 (55.9%) 3307 (33.1%) 422 (4.2%) 318 (3.2%) 359 (3.6%) 10000

To annotate each web page, we hired 9 annotators at Amazon’s Mechanical Turk. The annotators
received their tasks in batches of five web pages; each annotator could work on several batches, but
not on the same one twice. To avoid order biases, we randomized the order of pages within a batch
as well as whether scores (and examples) are in ascending or descending order. However, to not
confuse annotators who annotate several batches, we used the annotator’s Mechanical Turk ID to
seed the random number generator, essentially causing the order to be fixed across batches for each
worker. We manually reviewed all web pages where not all 9 annotators agreed on a score within one
point of the median score for that web page. Annotation batches for which a score clearly does not
fit the screenshot differences as per the provided example for the score were rejected. Overall, we
rejected 1234 of 11,430 batches (10.8%). In order to assess the annotation, we calculated the majority
agreement among the annotators. In 81% of the cases, more than half of the accepted annotators
agreed on a score. Due to this high annotator agreement, we deem the annotations reliable. To derive
a ground truth annotation from the set of individual annotations for each page, we use the median of
the scores that were assigned to a reproduction, which is a stable measure for such a small number of
annotations as well as robust against outliers.

As high-quality annotations are very important for benchmark datasets, we then manually curated
the web pages where the Mechanical Turk annotators disagreed (regarding only approved batches).
Specifically, we took another look at all web pages where annotators gave at least one 1 and one 5, or
where at least one annotator gave a score with an absolute difference of 3 from the median score
of all annotators (e.g., score 4 for a median of 1). We found these web pages to be difficult cases
that were not fully covered by the examples we provided. For example, these pages included videos
or assets that were seemingly still loading in the reproduction screenshot (which we count as not
reproduced), missing promotions for related products on shopping pages (which we count as content,
not advertisement), or missing overlays that ask to accept cookies (which we count as a small effect
as they can usually be dismissed easily). Additionally, we looked at all web pages from domains
with many similar pages, and ensured that the quality is judged consistently across these pages. In
total, this manual curation changed the ground-truth score for 717 of the 6348 reproductions (11%).
For an overview, Table 2 gives the distribution of final scores, while Figure 5 shows one typical
reproduction example for each score. As the table shows, the vast majority of all web pages (89.0%)
were reproduced with a score of 1 or 2, demonstrating a sufficiently high reproduction quality for
many applications. For example, in main content extraction, a quality score of 2 (small effect on
few users) is likely sufficient. Nevertheless, reproduction is still far from perfect. To facilitate faster
improvements to reproduction technology at development time, in what follows, we analyze methods
for an automatic assessment of reproduction quality in real time, thus allowing for the immediate
quantification and assessment of software improvements without having to repeat manual assessment.

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



0:16 Kiesel, Kneist, Alshomary, Stein, Hagen, Potthast

Fig. 5. Typical screenshots (or parts thereof) taken during archiving (left) and reproduction (right) for
each of the five available quality scores from 1 (top) to 5 (bottom): (1) an animated button in a different
state; (2) missing advertisements; (3) missing links to related pages and missing social media buttons;
(4) missing additional content further down the page; and (5) missing main video.

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



Reproducible Web Corpora 0:17

5 AUTOMATIC REPRODUCTION QUALITY ASSESSMENT
The new task of automatic reproduction quality assessment aims at facilitating the fast debugging,
quality assurance, and improvement of web archiving and reproduction technologies. The goal of
solving this task it to integrate into existing archiving tools a feature that automatically evaluates the
reproduction quality after archiving a web page, providing immediate feedback to the tool’s user and
developer. This section introduces three different approaches suitable for this task, one from related
work, one standard measure, and one based on neural networks which is our own contribution.

Brunelle15. As a first measure of reproduction quality, we use the heuristic damage rating proposed
by Brunelle et al. [9] for measuring the impact of missing resources. The impact of a missing resource
is determined by it’s importance for a page. For example, a large missing image has usually a greater
impact than a small missing image. Different to the quality assessment setting in this paper, the
authors consider the more general case where the archived page is the only available resource for the
assessment. The approach calculates the damage for a web page as normalized value between 0 (no
missing resource) and 1 (all resources are missing), where a resource is an image, a multimedia
object, or a style sheet. The approach weighs resources according to a heuristically determined
importance, which is based on image or multimedia object size or on the number of HTML classes
that are not referenced by any of the retrieved style sheets. With the help of the original authors, we
reimplemented the damage rating calculation as a user simulation script for our web archiver, which
first scrolls down the page just like the script we used for creating the Webis Web Archive 17, and
then calculates the damage using the current web page state in the browser. Since this measure is
restricted to the archived page and exploits no information how the page looked when all resources
where retrieved, we expect it to perform worse than the other measures. Also, the heuristics do not
account for script files, which can have serious impact on the look and feel of a web page.

RMSE. The second measure uses the screenshots taken during archiving and reproduction, computes
the squared color difference for each pair of corresponding pixels, and then uses the root of the mean
as reproduction quality score.10 Specifically, we use the corresponding option of ImageMagick [21]
to calculate the difference, and then employ the normalized RMSE values that range from 0 (identical
images) to 1 (for each pair of pixels in the two images with the same coordinates, one pixel is purely
white and the other one purely black). If one screenshot is smaller than the other one, it is enlarged by
adding white pixels at the bottom of the image so that pixels can be directly matched by their image
coordinates. Note that all screenshots in the dataset have already the same width as they were taken
using the same browser viewport width. While we expect some correlation with the ground-truth
reproduction quality, RMSE does not consider the position of pixels nor the context of neighboring
pixels. These features are useful for a quality analysis, as main content is often placed mid-screen.
However, the shape of coherent regions of deviating pixels hint at what kind of content is missing.
Furthermore, a single missing advertisement banner at the top of the page can shift up the entire web
page, causing the RMSE to become unjustifiably high (see Figure 2 for an example).

Neural Network. The final measure uses machine learning to predict the reproduction quality from
the screenshot differences. As the first machine learning approach applied to this task, we see this
measure as a baseline for similar and more sophisticated measures that are yet to be developed. As a
direct conclusion from the drawbacks of RMSE, we decided to employ a machine learning model
that has been applied successfully to different image classification tasks, namely deep convolutional
neural networks [26]. Since, however, fine-tuning a network to a new task is a research topic in its
own right, we use the widespread and straightforward VGGNet network [33] instead. As it was
shown that the fully connected layers at the end do not contribute to the performance [22], however,
10RMSE is the abbreviation for “root of the mean of the squared error”.

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



0:18 Kiesel, Kneist, Alshomary, Stein, Hagen, Potthast

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

Brunelle15

H
u

m
a

n

0.0 0.2 0.4 0.6

1

2

3

4

5

RMSE

H
u

m
a

n

1 2 3 4 5

1

2

3

4

5

Neural network

H
u

m
a

n

Fig. 6. Scatter plots of human reproduction quality annotations over scores computed by the three
automatic measures for each annotated reproduction in the Webis Web Archive 17. A small jitter
is applied for human annotations and neural network scores to provide a better impression on the
number of dots at each coordinate. The straight lines correspond to fitted linear models; the closer
they are to the main diagonal, the better the quality measures.

we omit them. The network structure and some implementation details are further described in
Appendix A. As input images to the network, we create a single two-channel image, where one
channel corresponds to the screenshot taken during archiving (in greyscale) and the other channel
corresponds to the screenshot taken during reproduction (in greyscale). As the structure of VGGNet
can only be trained and applied to images of a single size, we scaled down all created images to
384×128 pixels. For this size, icons with the usual width of 32 pixels are scaled down to a width of
3 pixels, which matches exactly the receptive field of the neurons in the convolutional layers of the
network. In order to avoid skewing the images, we extended or cropped all screenshots to a height of
4098 pixels before the scaling. This height was chosen as the closest multiple of the image width
(the currently most common browser window width of 1366 pixels) to the average image height of
the archive images (4388 pixels). We converted all images to greyscale, since we do not expect color
to play a major role for reproduction quality assessment, and found this to be indeed the case in our
preliminary tests. We use the network in a 10-fold cross validation setting including all web pages11

and using the annotations gathered in Section 4.3 as labels for both training and evaluation.

6 EVALUATION
We discussed three different web page reproduction approaches—one of which we created for this
publication—in Section 3.5, and we introduced three measures for automatic reproduction quality
assessment in Section 5. Next in this section, we evaluate their performance.

6.1 Comparison of Reproduction Quality Measures
The main goal of an automatic measure of reproduction quality is to compute quality scores that
correlate with the true reproduction quality as per human assessment. The higher the correlation of
automatic scores and true quality, the better the measure. Therefore, to test the three measures de-
scribed above, we analyze their correlation with the human annotations on the Webis Web Archive 17.
Figure 6 gives a visual impression of the correlation. For a quantitative result, we also calculate the
Pearson correlation r with the human annotations for each of the three measures. As shown by the
horizontal line for the linear model in Figure 6, the Brunelle15 measure is uncorrelated with the
human annotations (r = 0.00). We believe that the main reason for the low r is that the measure
11We also include the web pages without differences in the screenshots for training

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



Reproducible Web Corpora 0:19

Table 3. Left: Confusion matrix of predicted and ground-truth reproduction quality scores for the neural
network. Right: Effectiveness of the neural network quality measure for identifying not acceptable
reproductions depending on what scores are considered to be minimally acceptable. Effectiveness is
measured as accuracy (Acc.), precision (Prec.), recall (Rec.), and the F-Measure (F1). All values are
calculated from the left-hand confusion matrix (including the 3,652 trivial cases for accuracy).

Truth Estimated reproduction quality
∑

1 2 3 4 5

1 1707 230 1 0 4 1942
2 535 2762 0 5 5 3307
3 62 294 55 2 9 422
4 33 183 0 95 7 318
5 57 218 1 4 79 359∑

2394 3687 57 106 104 6348

Min. Quality Acc. Prec. Rec. F1

1 90.8% 94.1% 84.4% 89.0%
2 91.4% 94.4% 22.9% 36.9%
3 94.8% 88.1% 27.3% 41.7%
4 97.0% 76.0% 22.0% 34.1%

was developed for a setting at which no information on how the web page originally looked is
available, restricting the measure to guessing the importance of resources on mere hints. Also, the
employed heuristics may suffer from genre dependence, where single heuristics that work well for
all genres of web pages might just not exist. For comparison, the conceptually much simpler RMSE,
which uses information on visual changes for the reproduction, achieves a much stronger correlation
of r = 0.48. Given the aforementioned restrictions on what RMSE considers, this good result is
somewhat surprising. Therefore, the extent to which pixels changed in a reproduction seems to be
a strong feature for reproduction quality, and the cases in which the changes are misleading (e.g.,
due to content shifting up, which leads to a lot of pixel changes) seem to be in the minority. Finally,
the best correlation is achieved by the neural network (r = 0.57). This is not surprising, as it also
incorporates the most information on the web page visuals, and since it employs labeled data and
learning theory to reach an empirical understanding of reproduction quality.

Table 3 (left) provides a more detailed look at the effectiveness of the neural network measure,
showing the scores underlying the respective scatter plot in Figure 6. For 4,698 of the 6,348 annotated
reproductions of the Webis Web Archive 17, the measure agrees on the annotated score. This
corresponds to a classification accuracy of 74.0%. For comparison, classifying all reproductions
with the majority score (score 2, cf. Table 2) would yield an accuracy of 52.1%. Moreover, if not
correct, the measure is most of the time very close to the human annotation: only for 578 pages
(9.1% of reproductions) the estimated score is more than one off of the ground-truth. Note that these
calculations already omit the trivial cases without a difference in the screenshots. If the 3,652 trivial
cases are included, the accuracy, for example, increases from 74.0% to 83.5%.

For an application of the neural network for immediate automatic reproduction quality assessment,
also the trivial cases are relevant, but usually only two classes exist: the reproduction quality is
still acceptable or not. Which score is still acceptable, however, depends on the specific application.
Table 3 (right) shows the achieved effectiveness as measured by standard metrics for different choices
of a minimum desired quality. For debugging and fast improvement of the reproduction approach, the
recall—percentage of all not acceptable reproductions that were identified—is the most important
metric. A high recall (84.4%) is only achieved for the case of separating quality-1 reproductions from
others. Thus the neural network can be employed for debugging reproduction approaches that aim at
this quality—which are probably most if not all approaches. On the other hand, the good precision
values indicate that the neural network can be used to automatically detect which web pages fail to
be reproduced with acceptable quality, which is important for generating large-scale web archives.

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



0:20 Kiesel, Kneist, Alshomary, Stein, Hagen, Potthast

custom

pywb

warcprox

Pages

0 2000 4000 6000 8000 10000

1 2 3 4 5

5867

5212

5609

3825

4459

4087

Fig. 7. Distribution of reproduction quality scores for each of the tested reproduction approaches as
assessed by the neural network measure.

6.2 Comparison of Reproduction Approaches Using the Quality Measures
As described in Section 3.5, we noticed differences in the reproduction quality of the existing
reproduction approaches. In order to substantiate this impression, we used the reproduction quality
measures to automatically assess the reproduction approaches over the entire Webis Web Archive 17.
Since the neural network reproduction quality measure performed best, we used it for the quality
assessment, demonstrating its usefulness for a comparative evaluation of alternative web archiving
and reproduction approaches. While the use of the still less-than-optimal model may introduce
some bias, we believe that all three reproduction approaches are similarly affected, yielding a fair
comparison. This saves us significant resources, since otherwise we would have had to repeat the
crowdsourcing assessment for each of the three alternative reproduction approaches in question.

Figure 7 shows the distribution of the quality scores for each reproduction approach. The achieved
quality of the three approaches is rather similar with the custom approach reproducing the most pages
with the best score. This visual impression is confirmed by the average scores that the reproduction
approaches achieve: 1.48 (custom), 1.51 (warcprox) and 1.55 (pywb). While this result does not
suggest that a single reproduction approach is clearly preferable over the others, it allows for future
analyses to pinpoint the common and different problems of these approaches.

7 CONCLUSION
Many branches of computer science rely heavily on web data, but the ephemeral nature of the web
poses a challenge to the reproducibility of insights gained from such data. While tools for web
archiving exist, they are not tailored to the needs of scientists, nor has their effectiveness been
systematically evaluated to date. We develop a new archiving tool, define a new quality assessment
task, provide a tailored dataset for it, and introduce an automatic evaluation measure.

The new Webis Web Archiver can be used to construct reproducible web corpora and user
study setups, to replay recorded user behavior, and to run user simulations in a reproducible and
authentic manner. However, as our analysis on 10,000 carefully sampled web pages shows, the
reproduction of web pages from archives is far from perfect. To facilitate improvements in this
regard, we cast the problem of assessing the effectiveness of web page reproduction software into the
new task of immediate automatic reproduction quality assessment, where screenshots taken from
the original web page and its reproduced version are used to judge the reproduction quality. With
the Webis Web Archive 17, we provide the first benchmark dataset for this task, compare three
measures for a respective automatic evaluation, and show that a neural network-based measure is
able to automatically detect low reproduction quality, while achieving a high correlation with human
annotations (Pearson’s r = 0.57), and while reaching a recall between 22% and 84% as well as a
precision between 76% and 94%, dependent on the desired reproduction quality threshold.

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.



Reproducible Web Corpora 0:21

Even though the accurate archiving and reproduction of web pages has made impressive progress,
the state of the art for scientific corpus construction is still simply downloading the HTML source
code of a page. Archiving and reproduction both face several challenges that need to be addressed
by future software engineering and research. For example, during archiving, some web content is
tailored toward an assumed location of the client, so this location should be another parameter for
an archiving tool. Some websites block clients that perform unusual request patterns (also across
websites) in an attempt to avoid bots, which can be problematic for large-scale archiving. However,
using proxy servers to address these two problems is a double-edged sword, as some websites block
known proxy servers by default. As another improvement, popovers or splash screens should usually
not be part of the archive, which could be handled by adding (possibly reactive) simulated interactions
to the user simulation script that dismiss these overlays during reproduction. Furthermore, as content
vanishes, archiving software should include a technique for detecting error pages that do not send the
appropriate error code and alert the user if they are attempting to archive such an error page.

Current problems for reproduction that can be tackled by software engineering are data streaming
based on HTTP range requests (necessary for videos), where ranges during archiving and reproduction
may differ; and reproduction of server-sent events (known as HTTP push), where the web server
sends additional information without a request from the client. Additionally, the approaches to
fuzzy request-response matching need improvements, for example, by employing better heuristics,
specifically tailored request-similarity measures, machine learning to classify which parts of a request
are important, or a mixture of all these. Moreover, the off-the-shelf neural network used for automatic
reproduction quality assessment—which presents a strong baseline—should be tailored more to the
task. For example, extending and cropping the screenshots might not be optimal for the assessment.
Instead, more sophisticated approaches that use recurrent networks after the convolutional layer to
handle inputs of arbitrary size might be a better fit [13]. Finally, it may be worthwhile to fine-tune
the number of layers and their parameters.

A further improvement to the Webis Web Archiver would be the capability to capture the screen
during archiving and to store the screen capture as a video. Such videos would add a new preservation
element that enriches the archive files. Furthermore, such videos would assist users in writing and
debugging user simulation scripts. Regarding the analysis of our tool, more detailed case studies
for the different web page genres within our dataset will probably yield new insights into the
difficulties and problems of current archive and reproduction technologies. While the automatic
quality assessment is a solid first step towards an improvement of these technologies, an in-depth error
analysis is needed to pinpoint the current flaws. However, as long as web technology continues to
evolve, new challenges for web page archiving and reproduction will arise, demanding a continuous
development of the tools and techniques that aim to create reproducible web corpora.

REFERENCES
[1] Alexa Internet, Inc. The top 500 sites on the web, 2017. https://www.alexa.com/topsites.
[2] Y. Alnoamany, A. Alsum, M. C. Weigle, and M. L. Nelson. Who and what links to the internet archive. In Proceedings

of TPDL 2013, pages 346–357.
[3] B. R. Ayala, M. E. Phillips, and L. Ko. Current quality assurance practices in web archiving. Technical report, University

of North Texas Libraries, Aug. 2014.
[4] L. Azzopardi. Simulation of Interaction: A Tutorial on Modelling and Simulating User Interaction and Search Behaviour.

In Proceedings of SIGIR 2016, pages 1227–1230.
[5] J. Bailey, A. Grotke, E. McCain, C. Moffatt, and N. Taylor. Web archiving in the United States: A 2016 survey. National

Digital Stewardship Alliance, 2017.
[6] V. Banos, Y. Kim, S. Ross, and Y. Manolopoulos. CLEAR: A credible method to evaluate website archivability.

Proceedings of iPRES 2013).
[7] V. Banos and Y. Manolopoulos. A quantitative approach to evaluate website archivability using the CLEAR+ method.

International Journal on Digital Libraries, 17(2):119–141, June 2016.

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.

https://www.alexa.com/topsites


0:22 Kiesel, Kneist, Alshomary, Stein, Hagen, Potthast

[8] M. Baroni, F. Chantree, A. Kilgarriff, and S. Sharoff. CLEANEVAL: A competition for cleaning web pages. In
Proceedings of LREC 2008.

[9] J. Brunelle, M. Kelly, H. SalahEldeen, M. C. Weigle, and M. L. Nelson. Not all mementos are created equal: Measuring
the impact of missing resources. International Journal on Digital Libraries, 16(3–4):283–301, May 2015.

[10] F. Chollet et al. Keras. https://github.com/fchollet/keras, 2015.
[11] I. I. P. Consortium. OpenWayback, 2017. http://netpreserve.org/web-archiving/openwayback.
[12] cyberpower678. InternetArchiveBot, 2017. https://meta.wikimedia.org/wiki/InternetArchiveBot.
[13] Y. Deng, A. Kanervisto, and A. M. Rush. What you get is what you see: A visual markup decompiler. CoRR,

abs/1609.04938, 2016.
[14] Docker Inc. Docker – build, ship, and run any app, anywhere, 2017. https://www.docker.com.
[15] M. Faheem. Intelligent crawling of web applications for web archiving. In Proceedings of WWW 2012 (Companion),

pages 127–132.
[16] D. Gomes, J. Miranda, and M. Costa. A survey on web archiving initiatives. In Proceedings of TPDL 2011, pages

408–420.
[17] Google Webmaster Central Blog. Deprecating our AJAX crawling scheme, 2015. https://webmasters.googleblog.com/

2015/10/deprecating-our-ajax-crawling-scheme.html.
[18] K. Gyllstrom, C. Eickhoff, A. P. de Vries, and M.-F. Moens. The downside of markup: Examining the harmful effects of

CSS and JavaScript on indexing today’s web. In Proceedings of CIKM 2012, pages 1990–1994.
[19] A. Hidayat. PhantomJS - scriptable headless webkit, 2017. https://github.com/ariya/phantomjs.
[20] H. Hockx-Yu, L. Crawford, R. Coram, and S. Johnson. Capturing and replaying streaming media in a web archive—A

British Library case study. Proceedings of iPRES 2010).
[21] ImageMagick Studio. Convert, edit, or compose bitmap images @ ImageMagick, 2017. https://www.imagemagick.org.
[22] A. Karpathy. CS231n Convolutional Neural Networks for Visual Recognition, 2017. http://cs231n.github.io/

convolutional-networks.
[23] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.
[24] C. Kohlschütter, P. Fankhauser, and W. Nejdl. Boilerplate detection using shallow text features. In Proceedings of

WSDM 2010, pages 441–450.
[25] I. Kreymer. Python WayBack for web archive replay and URL-rewriting HTTP/S web proxy, 2017. https://github.com/

ikreymer/pywb.
[26] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied

to handwritten zip code recognition. Neural Computing, 1(4):541–551, Dec. 1989.
[27] P. Lightbody. Browsermob proxy: A free utility to help web developers watch and manipulate network traffic from their

AJAX applications, 2017. https://github.com/lightbody/browsermob-proxy.
[28] J. Lin, I. Milligan, J. Wiebe, and A. Zhou. Warcbase: Scalable analytics infrastructure for exploring web archives.

Journal on Computing and Cultural Heritage, 10(4):22:1–22:30, July 2017.
[29] National Library of New Zealand and British Library. Web Curator Tool Project, 2014. http://webcurator.sourceforge.net/.
[30] H. Obendorf, H. Weinreich, E. Herder, and M. Mayer. Web page revisitation revisited: Implications of a long-term

click-stream study of browser usage. In Proceedings of CHI 2007, pages 597–606.
[31] P. Schaer and M. Neumann. Enriching existing test collections with OXPath. In Proceedings of CLEF 2017, pages

152–158.
[32] Selenium Contributors. SeleniumHQ Browser Automation, 2017. http://www.seleniumhq.org.
[33] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.
[34] StatCounter. Screen resolution stats worldwide, June 2018. http://gs.statcounter.com/screen-resolution-stats.
[35] S. Stewart, D. Burns, and Mozilla. WebDriver W3C Candidate Recommendation, 05 June 2018. https://www.w3.org/

TR/webdriver.
[36] The Common Crawl team. January 2017 Common Crawl archive, 2017. http://commoncrawl.org/2017/02/

january-2017-crawl-archive-now-available.
[37] The Internet Archive. Brozzler, 2017. https://github.com/internetarchive/brozzler.
[38] The Internet Archive. Umbra, 2017. https://github.com/internetarchive/umbra.
[39] The Internet Archive. Warcprox – WARC writing MITM HTTP/S proxy, 2017. https://github.com/internetarchive/

warcprox.
[40] The Lemur Project. The ClueWeb09 Dataset, 2009. http://lemurproject.org/clueweb09/.
[41] The Lemur Project. The ClueWeb12 Dataset, 2012. http://lemurproject.org/clueweb12/.
[42] The Memento Development Group. About the Memento project, 2017. http://mementoweb.org/about, RFC 7089.
[43] The Open Preserve Foundation. Pagelyzer, 2014. https://github.com/openpreserve/pagelyzer.

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.

https://github.com/fchollet/keras
http://netpreserve.org/web-archiving/openwayback
https://meta.wikimedia.org/wiki/InternetArchiveBot
https://www.docker.com
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://github.com/ariya/phantomjs
https://www.imagemagick.org
http://cs231n.github.io/convolutional-networks
http://cs231n.github.io/convolutional-networks
https://github.com/ikreymer/pywb
https://github.com/ikreymer/pywb
https://github.com/lightbody/browsermob-proxy
http://webcurator.sourceforge.net/
http://www.seleniumhq.org
http://gs.statcounter.com/screen-resolution-stats
https://www.w3.org/TR/webdriver
https://www.w3.org/TR/webdriver
http://commoncrawl.org/2017/02/january-2017-crawl-archive-now-available
http://commoncrawl.org/2017/02/january-2017-crawl-archive-now-available
https://github.com/internetarchive/brozzler
https://github.com/internetarchive/umbra
https://github.com/internetarchive/warcprox
https://github.com/internetarchive/warcprox
http://lemurproject.org/clueweb09/
http://lemurproject.org/clueweb12/
http://mementoweb.org/about
https://www.rfc-editor.org/rfc/rfc7089.txt
https://github.com/openpreserve/pagelyzer


Reproducible Web Corpora 0:23

[44] P. Tzekou, S. Stamou, N. Kirtsis, and N. Zotos. Quality assessment of Wikipedia external links. In Proceedings of
WEBIST 2011, pages 248–254.

[45] W3schools.com. Browser Display Statistics, 2018. https://www.w3schools.com/browsers/browsers_display.asp.
[46] W3Techs. Usage of JavaScript libraries for websites, October 2017. https://w3techs.com/technologies/overview/

javascript_library/all.
[47] D. P. Wiggins and The Open Group, Inc. Xvfb - virtual framebuffer X server for X Version 11, 2017. https://www.x.org/

releases/X11R7.7/doc/man/man1/Xvfb.1.xhtml.
[48] wolfcw. libfaketime (FakeTime Preload Library) - report faked system time to programs without having to change the

system-wide time, 2014. http://www.code-wizards.com/projects/libfaketime/.

A NEURAL NETWORK ARCHITECTURE
As described in Section 5, we employ a neural network architecture based on VGGNet with 16 weight
layers [33], but with the fully connected layers removed [22]. Table 4 lists all layers of the network,
their parameters, and output sizes. All convolutional layers use a zero padding of 1 to preserve the
output size. We train the model in 100 iterations with Keras [10], using the Adam optimizer [23] with
default parameters and categorical cross-entropy as the loss function. In addition to the pre-processing
described in Section 5, we normalize each image by subtracting the mean value and dividing by the
standard deviation.

Table 4. Neural network architecture used for automatic estimation of reproduction quality.

Layer Layer parameters Activation Output size
Extent Stride Filters

Input 1×128×128
Convolutional 3×3 1×1 64 Rectified Linear Unit 64×128×128
Convolutional 3×3 1×1 64 Rectified Linear Unit 64×128×128
Max Pooling 2×2 2×2 64×64×64
Convolutional 3×3 1×1 128 Rectified Linear Unit 128×64×64
Convolutional 3×3 1×1 128 Rectified Linear Unit 128×64×64
Max Pooling 2×2 2×2 128×32×32
Convolutional 3×3 1×1 256 Rectified Linear Unit 256×32×32
Convolutional 3×3 1×1 256 Rectified Linear Unit 256×32×32
Convolutional 3×3 1×1 256 Rectified Linear Unit 256×32×32
Max Pooling 2×2 2×2 256×16×16
Convolutional 3×3 1×1 512 Rectified Linear Unit 512×16×16
Convolutional 3×3 1×1 512 Rectified Linear Unit 512×16×16
Convolutional 3×3 1×1 512 Rectified Linear Unit 512×16×16
Max Pooling 2×2 2×2 512×8×8
Convolutional 3×3 1×1 512 Rectified Linear Unit 512×8×8
Convolutional 3×3 1×1 512 Rectified Linear Unit 512×8×8
Convolutional 3×3 1×1 512 Rectified Linear Unit 512×8×8
Max Pooling 2×2 2×2 512×4×4
Output Softmax 5

ACM Journal of Data and Information Quality, Vol. 0, No. 0, Article 0. Publication date: August 2018.

https://www.w3schools.com/browsers/browsers_display.asp
https://w3techs.com/technologies/overview/javascript_library/all
https://w3techs.com/technologies/overview/javascript_library/all
https://www.x.org/releases/X11R7.7/doc/man/man1/Xvfb.1.xhtml
https://www.x.org/releases/X11R7.7/doc/man/man1/Xvfb.1.xhtml
http://www.code-wizards.com/projects/libfaketime/

	1 Introduction
	2 Related Work
	3 The Webis Web Archiver
	3.1 Target Use Cases
	3.2 Requirements Analysis
	3.3 Software Architecture
	3.4 User Simulation Scripts
	3.5 Fuzzy Request-Response Matching

	4 Crowdsourced Evaluation of Web Archiving Tools and Dataset for Automatic Reproduction Quality Assessment
	4.1 Sampling of Web Pages
	4.2 Defining Reproduction Quality
	4.3 Human Annotation of Reproduction Quality

	5 Automatic Reproduction Quality Assessment
	6 Evaluation
	6.1 Comparison of Reproduction Quality Measures
	6.2 Comparison of Reproduction Approaches Using the Quality Measures

	7 Conclusion
	References
	A Neural Network Architecture

