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ABSTRACT
Each web page can be segmented into semantically coherent units
that fulfill specific purposes. Though the task of automatic web
page segmentation was introduced two decades ago, along with
several applications in web content analysis, its foundations are
still lacking. Specifically, the developed evaluation methods and
datasets presume a certain downstream task, which led to a variety
of incompatible datasets and evaluation methods. To address this
shortcoming, we contribute two resources: (1) An evaluation frame-
work which can be adjusted to downstream tasks by measuring the
segmentation similarity regarding visual, structural, and textual
elements, and which includes measures for annotator agreement,
segmentation quality, and an algorithm for segmentation fusion.
(2) The Webis-WebSeg-20 dataset, comprising 42,450 crowdsourced
segmentations for 8,490 web pages, outranging existing sources
by an order of magnitude. Our results help to better understand
the “mental segmentation model” of human annotators: Among
other things we find that annotators mostly agree on segmentations
for all kinds of web page elements (visual, structural, and textual).
Disagreement exists mostly regarding the right level of granularity,
indicating a general agreement on the visual structure of web pages.
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1 INTRODUCTION
Web page layout is the arrangement of content elements as seman-
tic units which appear sensible to the human observer; web page
segmentation is the inverse operation andmeans to identify these se-
mantic units. Automatic web page segmentation is straightforward
if all semantic units are prescribed explicitly in the source code. In
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practice, however, semantic coherence can often be inferred from
the layout only, and leading approaches to web page segmentation
thus employ visual features to reach an acceptable performance.

Web page segmentation has been applied for various purposes
throughout the information retrieval pipeline and beyond: Our re-
view of related work in Section 2—as well as the reviews of Fernan-
des et al. [16], Akpinar and Yesilada [1], and Bing et al. [5]—show
that web page segmentation is used to improve crawling (template,
duplicate, and change detection), information extraction (indexing,
snippet generation, summarization, main content extraction, en-
tity mining), page analysis (link analysis, design mining), and page
synthesis (mobile screen adaptation, screen reading).

But despite the many publications that employ web page seg-
mentation, the segmentation approaches have hardly been evalu-
ated. Rather, the approaches have been judged “implicitly” by the
increased performance induced in some downstream task that em-
ploys segmentation. Similarly, most segmentation algorithms have
not been compared directly, and, in particular, no recent evaluations
are at hand despite the constant evolution of web layouts. One rea-
son for the missing evaluation is the lack of standard performance
metrics for web page segmentation as well as suitable datasets in
terms of size, diversity, and completeness of resources.

With this paper we lay new foundations for the large-scale eval-
uation of web page segmentation algorithms. Our main contri-
butions are as follows: (1) We present an evaluation framework
for web page segmentation that builds upon a single similarity
measure for segmentations. This measure is applicable for the cal-
culation of annotator agreement, the fusion of segmentations into
a ground truth, and the evaluation of a segmentation against such
a ground truth. The framework can be adapted to specific down-
stream tasks and is publicly available.1 (2) Based on a reference
dataset of 8,490 archived web pages we construct the Webis Web
Segmentation Corpus 2020 (Webis-WebSeg-20), a publicly avail-
able dataset of 42,450 manually created web page segmentations
(five per page), via crowdsourcing.2 This dataset outranges prior
resources by an order of magnitude while being more objective at
the same time through the use of five independent segmentations.

In what follows, Section 2 reviews the related work. Section 3 in-
troduces the concept of web page segments. Section 4 develops our
framework for web page segmentation from this concept. Building
upon these foundations, Section 5 presents our dataset including
its crowdsourcing, derivation of ground truth, and analysis.
1Code: https://github.com/webis-de/CIKM-20
2Data: https://doi.org/10.5281/zenodo.3354902
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2 RELATEDWORK
Research on web page segmentation goes back almost two decades.
First defined by Kovacevic et al. [23], similar problems have even
been tackled beforehand in information extraction (e.g., cf. [15]).
Still, the community has not agreed on evaluation procedures, nor
created commonly used benchmarks, as we detail below.

Algorithms for Web Page Segmentation. Algorithms use
structural features based on the DOM tree and the textual con-
tent, and visual features extracted from renderings of individual
nodes as well as the entire web page. Most algorithms use the DOM
tree structure in some way, for example to identify headings [26],
block nodes [1, 6], or regularities [16], and to compute the tree
depth [24] or the tree distance [18] of nodes. Other algorithms use
the text density [22] or visual appearance of DOM nodes when
rendered (e.g., their size or color; Baluja [4], Zeleny et al. [37]).
Few algorithms exclusively exploit visual cues, e.g., using edge de-
tection on screenshots [8, 12]. Indeed, recent publications argue
that only visual features provide for the necessary robustness for a
generalizable algorithm [12, 37], but this claim has not been veri-
fied. Our dataset provides the resources required by all the various
approaches, enabling a fair and comprehensive comparison. Al-
though a hierarchical segmentation of a web page is conceivable,
and although some algorithms hierarchically split a web page into
smaller segments (e.g., [4–6]), all proposed algorithms output a
single segmentation per page. We therefore adopt this view, and
leave hierarchical segmentation for future work.

Datasets for Web Page Segmentation. Several datasets have
been created for web page segmentation, but none has become a
standard benchmark. Instead, most algorithms come with a new
dataset for their evaluation (cf. Table 1). Issues that prevent the
reuse of the existing datasets include missing data sources (e.g., no
screenshots), bias due to heuristic annotations, no ground truth
annotations, unavailability, and a non-representative sample (e.g.,
only a few specific websites). None of the previously published
datasets combines completeness, reliability, diversity, and scale.
Even the very large dataset of Fernandes et al. [16] lacks diversity,
since their annotation process presumes all web pages to be homo-
geneous. Regarding tools for manual segmentation, only Sanoja
and Gançarski [31] have proposed one: it allows to create, resize,
and move rectangles on a screenshot to specify segments. Inspired
by their approach, we integrate our version with Mechanical Turk
to enable manaul segmentation at scale via crowdsourcing.3

Evaluation ofWeb Page Segmentation. Previous attempts to
evaluate web page segmentations fall short in some respects or
others. Some resort to a posteriori human judgment of detected
segments (e.g., Cai et al. [6]), which does not scale well and yields
hardly replicable measurements. Others evaluate based on the web
page’s text only, which allows for using existing evaluation mea-
sures for this task (e.g., Kohlschütter and Nejdl [22], Manabe and
Tajima [28]), but restricts the evaluation to text-only segments.
Yet others measure the overlap between an automatic segmenta-
tion and a ground truth [37], or count matching cases (one-to-one,
one-to-many, zero-to-one, etc.; Sanoja and Gançarski [32]). Such
matching measures, however, unfairly handle cases of over- and
3Mechanical Turk features a built-in image segmentation interface, but we found that
an interface tailored to web page segmentation allows for a much quicker annotation.

Table 1: Overview of existing segmentation datasets; their
enclosed data:�HTML code,� resources (CSS, images, etc.),
� screenshot; segment annotations: L manual, � heuris-
tic, or a posteriori judgment; availability: ® publicly, Q on
request, or not anymore as per correspondence with the au-
thors; and the numbers of websites (if given) and web pages.

Author Reference Year Characteristics Sites Pages

Kovacevic et al. [23] 2002 � L n/a 515
Cai et al. [6] 2003 � n/a 140
Vadrevu et al. [36] 2005 � n/a 240
Hattori et al. [18] 2007 � L 100 100
Chakrabarti et al. [9] 2008 � L n/a 105
Kohlschütter and Nejdl [22] 2008 � L 102 111
Cao et al. [8] 2010 � � � n/a 20
Spengler and Gallinari [35] 2010 � � � L 177 604
Fernandes et al. [16] 2011 � � 15 457,542
Pasupathi et al. [30] 2012 � 10 15
Sanoja and Gançarski [31] 2013 � � � L Q n/a 100
Bing et al. [5] 2014 � L n/a 1,000
Kreuzer et al. [24] 2015 � � L ® 59 152
Manabe and Tajima [28] 2015 � � L ® 981 1,219
Sanoja and Gançarski [32] 2015 � L ® 125 125
Cormier et al. [13] 2016 � Q 50 50
Cormier et al. [12] 2017 � Q 100 100
Sanoja and Gançarski [33] 2017 � � � L Q n/a 40
Zeleny et al. [37] 2017 � � � � 5 800
Andrew et al. [3] 2019 � � L Q n/a 50

Webis-WebSeg-20 2020 � � � L ® 4,824 8,490

undersegmentation: The measure proposed by Zeleny et al. [37]
penalizes splitting a ground truth segment into several small ones
more than returning just one of the small segments. The measure
of Sanoja and Gançarski does not penalize splitting a ground truth
segment at all, making it trivial to achieve the maximum score.

While most authors use evaluation measures of some kind to
assess how well an automatic segmentation matches a human one,
the assessment of human segmentations is typically lacking. For
most datasets, each page was annotated by a single annotator only.
While Zeleny et al. [37] employed three annotators per page, they
treat each segmentation as alternative ground truth. Manabe and
Tajima [28] calculated the annotator agreement for a few test pages,
but only for segments that directly correspond to HTML block
elements. An algorithm to fuse annotations of different workers
into a single ground truth segmentation has not been considered.

Segmentation Outside the Web. Beyond web pages, segmen-
tation tasks are studied for scanned print documents and generic
images. Unlike for web pages, typically no semi-structured repre-
sentation like the HTML source is available for either. At ICDAR, a
long-running competition addresses the segmentation of scanned
print documents featuring complex typesetting [11]. However, there
is much less ambiguity about the level of granularity in print docu-
ments and the evaluationmeasures thus focus on segmentmatching.
Generic image segmentation (e.g., of photos) is often cast as an ob-
ject recognition task: images rarely contain text and objects are
rarely rectangular. Unlike for web page segmentation, the evalu-
ation measures employed for generic image segmentation match
boundary pixels [29] or objects directly, using huge datasets of
hundreds of thousands of images like Microsoft COCO [27].



3 CONCEPT FORMATION: PAGE SEGMENT
Nine of the 19 publications listed in Table 1 give—explicitly or
implicitly—a definition of what a web page segment is. The most
common one (though used in only four publications) is that of
a visual “block” with coherent content [9, 24, 26, 37]. Other def-
initions characterize segments by their edges [12, 13], as being
semantically self-contained [16], as distinct [30], or as labeled with
a heading [28]. Only two papers resort to HTML/DOM elements
or sub-trees as segment building blocks [9, 24]. Seven of the nine
definitions require a segment to be cohesive, and two define a seg-
ment as being “different” to other parts of a web page. Most of the
definitions do not include information about the desired level of
granularity, probably because different downstream applications
have different requirements [37].

Altogether, the concept of a segment is not precisely captured:
Does an individual menu item count as a segment, or need all menu
items be combined, or is the entire sidebar to which the menu be-
longs the “true” segment? It is also unclear whether a more precise
specification would be meaningful across web page genres. Note
in this regard that even the terminology to describe granularity
levels is used inconsistently: Kreuzer et al. [24], for instance, dif-
ferentiate between high-level and sub-level segments, while other
authors resort to exemplifying the desired level of granularity, such
as “header”, “left menu”, etc., as in Kovacevic et al. [23].

In light of the ambiguities and limitations of the existing segment
definitions, we refrained from proposed a tenth definition, but opted
instead for a concept formation approach based on crowdsourcing.
For this purpose, each page in our dataset has been annotated by
five annotators, providing us with a rich source of information to
analyze what a human onlooker considers a plausible segment and
granularity level, respectively:

Aweb page segment is a part of a web page containing
those elements that belong together as per agreement
among a majority of viewers.

This concept of a web page segment is grounded on well-known lay-
out patterns (“header”, “main”, “footer”, etc.) and human perception
habits (such as Gestalt principles like proximity [17]). As Section 5.2
shows, we indeed get strong agreement among independent anno-
tators. Our dataset thus allows for the development of web page
segmentation algorithms that operationalize this concept.

4 FRAMEWORK FOR PAGE SEGMENTATIONS
The creation and usage of a dataset that adheres to the concept
of page segments as introduced above requires answers to the
following three questions: How to measure the agreement of users?
How to fuse single segmentations into a coherent ground truth?
How to evaluate this ground truth?

As shown at the end of this section, the answer to all of these
questions boils down to measuring the similarity of two page seg-
mentations. To choose a measure of segmentation similarity, we
cast web page segmentation as a clustering task and draw from the
theoretical foundations of cluster similarity measures. In order to
identify the objects that are to be clustered into clusters correspond-
ing to page segments, we begin by studying alternative candidates
for atomic elements of a web page.

(a) (b) (c)

(d) (e)

Figure 1: Visualization of atomic elements for (a) an exem-
plary page excerpt: (b) fine- and (c) coarse-grained edges;
(d) DOM nodes; and (e) characters (text nodes). Lighter pix-
els indicate more elements at the respective position in (a).
The image for all pixel elements would be completely white.

4.1 Atomic Elements of a Web Page
The first component of our framework is the selection of the
“atomic” elements of a web page—the nature of which is deliberately
left open in our concept of a web page segment. We identify three
alternative sets of atomic elements that can be clustered to form seg-
ments of a web page: (1) pixels, (2) DOM nodes, and (3) characters.
Besides the entire sets, also defined subsets might be considered
dependent on the downstream task; for instance, background pixels
may be considered unimportant. As our dataset is task-agnostic, we
repeat all analyses for a selection of five sets that cover a variety of
intuitions, namely three pixel subsets, and one each of DOM nodes
and characters (see Figure 1 for an illustration):

• Pixels. The three pixel subsets include (1) all pixels of a
web page’s screenshot, and pixels at (2) fine-grained, and
(3) coarse-grained visual edges as per Canny’s edge detection
algorithm [7], which is best-suited for web pages [8]. Fine-
grained edges include the outline of characters at 10pt font
size, and coarse-grained edges only lines of text.4 Edges are
here used as an indicator for the content density of segments.

• DOM nodes. All visible DOM nodes of a web page, i.e., ele-
ment and text nodes. As the DOM is organized hierarchically,
more nodes lie in regions that are more deeply structured.

• Characters. All characters on a web page.
These sets of elements capture intuitive choices for generic image-
based web page segmentations (all pixels, e.g., for design mining),
for specific image-based segmentation where background pixels
are irrelevant (edge pixels, e.g., for mobile screen adaptation), for
structure-based segmentation (visible DOM nodes, e.g., for infor-
mation extraction), and for text-based segmentation (characters,
e.g., for screen reading).
4Both parameter sets have the same radius of 0 and lower percentage of 1. For fine-
grained edges, the upper percentage is 2 and 𝜎 = 1; for coarse-grained edges, the upper
percentage is 16 and 𝜎 = 5 to counteract the increased roughness of edge lines.



4.2 Web Page Segmentation Similarity
Like in clustering, measuring segmentation similarity in our frame-
work is agnostic of the nature of the atomic elements. Given a web
page 𝑝 , let 𝐸 = {𝑒1, . . . , 𝑒𝑛} be the set of its atomic elements. Then
𝑆 = {𝑠1, . . . , 𝑠𝑚} denotes a (possibly partial and/or overlapping)
segmentation of 𝑝 into segments 𝑠𝑖 ⊆ 𝐸. Given two segmenta-
tions 𝑆 and 𝑆∗ of the same page 𝑝 , we identify the extended BCubed
𝐹1-score by Amigó et al. [2], 𝐹𝐵3 , an extrinsic cluster evaluation
measure, as particularly suited to measure segmentation similarity.
Specifically, 𝐹𝐵3 has been shown to fulfill all requirements for a
segmentation similarity measure that we gathered in our literature
review and some more [2]: it handles both partial segmentations
and overlapping—and thus also nested—segments, and is robust
to trivial segmentations (e.g., using every pixel as own segment,
or one segment that covers the entire page). Moreover, as 𝐹𝐵3 is
symmetrical, it can be used as a generic segmentation similarity
measure, too.

Analogous to the well-known 𝐹1-score, 𝐹𝐵3 is the harmonic mean
of the extended BCubed precision (𝑃𝐵3 ) and recall (𝑅𝐵3 ):

𝑃𝐵3 (𝑆, 𝑆∗)= 1��𝐸𝑆 �� ∑
𝑒∈𝐸𝑆

©­­«
1��𝐸𝑆𝑒 �� ∑

𝑒′∈𝐸𝑆
𝑒

©­­«
min

(
|𝑆𝑒 ∩ 𝑆𝑒′ |, |𝑆∗𝑒 ∩ 𝑆∗

𝑒′ |
)

|𝑆𝑒 ∩ 𝑆𝑒′ |
ª®®¬
ª®®¬ ;

𝑅𝐵3 (𝑆, 𝑆∗) = 𝑃𝐵3 (𝑆∗, 𝑆); 𝐹𝐵3 (𝑆, 𝑆∗) =
2 · 𝑃𝐵3 (𝑆, 𝑆∗) · 𝑅𝐵3 (𝑆, 𝑆∗)
𝑃𝐵3 (𝑆, 𝑆∗) + 𝑅𝐵3 (𝑆, 𝑆∗)

;

where 𝑆𝑒 ⊆ 𝑆 is the subset of segments that contain element 𝑒 ,
𝐸𝑆 ⊆ 𝐸 is the subset of elements that are part of at least one segment
in 𝑆 , and 𝐸𝑆𝑒 ⊂ 𝐸 is the subset of elements that accompany element 𝑒
in at least on segment in 𝑆 . Formally, 𝑆𝑒 = {𝑠 | 𝑠 ∈ 𝑆 ∧ 𝑒 ∈ 𝑠},
𝐸𝑆 = {𝑒 | 𝑒 ∈ 𝐸 ∧ 𝑆𝑒 ≠ ∅}, and 𝐸𝑆𝑒 = {𝑒 ′ | 𝑒 ′ ∈ 𝐸 ∧ 𝑆𝑒 ∩ 𝑆𝑒′ ≠ ∅}.
For illustration, consider the case of non-overlapping segments:
|𝑆𝑒 ∩ 𝑆𝑒′ | is 1 if and only if 𝑒 and 𝑒 ′ are in the same segment in 𝑆 ,
whereas min( |𝑆𝑒 ∩ 𝑆𝑒′ |, |𝑆∗𝑒 ∩ 𝑆∗

𝑒′ |) is 1 if and only if they are in the
same segment in both 𝑆 and 𝑆∗.

Precision (𝑃𝐵3 ) and recall (𝑅𝐵3 ) offer helpful insight into the
achieved 𝐹𝐵3 . Specifically, 𝑃𝐵3 ignores errors of strict oversegmen-
tation (i.e., a ground truth segment is split), while 𝑅𝐵3 ignores
errors of strict undersegmentation (i.e., ground truth segments are
merged). Therefore, by comparison with 𝐹𝐵3 , these measures show
the extent of over- and undersegmentation, and can thus directly
inform the parameter optimization of the employed approach.

Optimizations. The number of operations to calculate 𝐹𝐵3

grows quadratically with the number of atomic elements, so we
developed optimizations to speed up the calculation. For pixels as
atomic elements, we determine all largest regions where no seg-
mentation divides these regions. The fraction in the calculation of
𝑃𝐵3 is the same for all elements of such a region. Therefore, we
need to calculate this fraction only once for each pair of regions
and just need to multiply the result by the product of the regions’
areas. Figure 2 shows a toy example to exemplify the calculation.
The same applies when using edges as atomic elements, except for
using only the number of edge pixels in the regions instead of the
area. For characters as atomic elements, we resort to DOM text
nodes weighted by the number of characters within—analogous
to how we use areas instead of pixels. Note that this method is
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Figure 2: Toy example for calculating the BCubed precision
and recall of a segmentation with two segments (colored
frames) compared to a one-segment ground truth (shaded
area) for pixels. The equations are highlighted with the cor-
responding color frames and shades.

an approximation for the very rare segmentation approaches that
could potentially divide up text nodes in segmentation. Unlike in
the images that an edge detector produces, visual edges actually
have no width, which frequently causes the edges of DOM nodes
to appear a bit outside of the nodes’ area in a generated image. To
account for this fact, we grow the regions by two pixels before
counting the number of contained edge pixels, which we tested to
indeed capture nearly all relevant edge pixels.

4.3 Application of the Segmentation Similarity
The measure of segmentation similarity introduced above can be
applied to answer the three questions from the start of this section.
Our released code contains a program for each of them.

Annotator Agreement. To judge whether two or more anno-
tators were able to work consistently, their agreement is measured.
Using 𝐹𝐵3 , we follow the example of popular agreement measures
for text annotations like Krippendorff’s 𝛼 [25] and compute the av-
erage pairwise similarity of the segmentations. Specifically, for a set
of segmentations S of the same web page, we define segmentation
agreement as follows:

Agreement(S) = 1
|S| · ( |S| − 1)

∑
𝑆 ∈ S

∑
𝑆′∈ S\𝑆

𝐹𝐵3 (𝑆, 𝑆 ′)

The agreement of an entire dataset is then calculated as the average
agreement over all web pages.

In order to analyze how much of the quantified disagreement (as
calculated using 𝐹𝐵3 ) is due to different annotation granularities,
𝐹𝐵3 can be replaced by max(𝑃𝐵3 , 𝑅𝐵3 ). As mentioned above, 𝑃𝐵3

and 𝑅𝐵3 ignore errors from strict over- and undersegmentation,
respectively. Therefore, an additional analysis with max(𝑃𝐵3 , 𝑅𝐵3 )
yields insights into whether annotators disagreed on which ele-
ments belong together, and on the level of granularity.

Segmentation Fusion. Our concept of web page segments
stated above is based on themajority agreement, and our framework
employs 𝐹𝐵3 to fuse several segmentations into such a majority
segmentation. Fused segments should contain those atomic ele-
ments which also the majority of annotators put in one segment.
This intuition provides for a similarity of two atomic elements: the
fraction of annotators who put those two elements in one segment.



We then fuse elements and segments with a similarity exceeding
a threshold (𝜃𝑠 ) of one half. This fusion process corresponds to
the well-known family of hierarchical agglomerative clustering
algorithms [19], which relies on the similarities only and does not
need a vector representation of segments. Further following the
principle of majority, we fuse just those atomic elements that are
in segments for a majority of annotators. We analyze the effect of
both 𝜃𝑠 and this annotator threshold for our dataset in Section 5.3.

The choice of a specific hierarchical clustering algorithmmatters
only in the rare case of disagreeing majorities.5 In such cases, the
most basic hierarchical algorithms segment all elements together
(single-link), or arbitrarily choose the segmentation of one majority
(complete-link). Since both is not desirable, we employ the sim-
ple average or UPGMA algorithm [34], which tends toward the
segmentation of the majority that groups more elements together.

Segmentation Evaluation.Analogous to its purpose in cluster-
ing, we use 𝐹𝐵3 as a measure of the quality of some segmentation 𝑆
compared to a ground truth segmentation 𝑆∗ of the same page.

5 THEWEBIS-WEBSEG-20 DATASET
Starting point for the construction of our dataset is the Webis-
Web-Archive-17 [21]. It is a web archive comprising 10,000 pages
from 5,516 sites, obtained via a stratified sample from top-ranked
and low-ranked sites as per their Alexa ranking (alexa.com). Our
dataset has been constructed in three steps: preprocessing, human
annotation, and segmentation fusion.

5.1 Preprocessing and Web Page Analysis
Although the web pages of our dataset are already contained in the
original web archive, not all resources for web page segmentation
are readily available, and not all pages in the archive are suited
for a web page segmentation dataset. Specifically, we reproduced
all pages within a browser and extracted all DOM nodes from
the rendered pages, their textual content, and their locations (i.e.,
bounding boxes) on the accompanying screenshot. In spot checks
on 100 pages, we manually verified that the locations are accurate.

During our review, we identified two problematic cases of web
pages with respect to segmentation, namely simple pages and error
pages. We use “simple” to refer to web pages that do not have
enough content to justify a segmentation, and which we therefore
exclude from our dataset. Similarly, error pages are pages which
clearly miss or have wrong main content. We expect that, in a page
analysis pipeline, such pages will be identified and recrawled ahead
of the segmentation.We thus omitted 866 simple pages and 644 error
pages, which were identified via an analysis of page complexity
outlined below, and a public list of manual error annotations for
the original archive [20], respectively.

To check that the dataset represents a broad sample of web pages,
and to investigate page complexity, we analyze the amount of DOM
nodes and the pixel height.6 Further spot checks confirmed the
intuition that simple pages have only a few DOM nodes, which
allows to adjust the threshold for inclusion in our dataset accord-
ingly: Figure 3a shows a page bordering on simplicity. In Figure 3b
5Given three element sets, 𝐸1 , 𝐸2 , 𝐸3 , let 𝛼 (𝐸𝑖 ) be the fraction of annotators that put
all elements of 𝐸𝑖 in one segment. Then “disagreeing majorities” in its simplest form is
a case where 𝛼 (𝐸1 ∪ 𝐸2) > 0.5, 𝛼 (𝐸2 ∪ 𝐸3) > 0.5, but also 𝛼 (𝐸1 ∪ 𝐸2 ∪ 𝐸3) < 0.5.
6All pages have the same width of 1366 pixels as per the web archiver employed.
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Figure 3: (a) Example page bordering on simplicity; (b,c) page
frequency distribution, and (d) scatter plot over DOM nodes
and pixel height. The page of (a) ismarked as a red star in (d).
The simple pages are within the shaded area and the shaded
bars, respectively, and error pages are depicted orange.

and 3c, we observe a seemingly natural log normal distribution
both for pages across the amount of DOM nodes and pixel heights.
The exceptional high number of pages with a height of 16,384 pixels
is due to infinite scrolling pages, where the archiving tool stopped
scrolling. Error pages follow somewhat the overall distribution of
pages. As one would assume, the correlation of number of DOM
nodes and pixel height (Figure 3d) is fairly strong, as indicated by
the fitted log-linear model (straight line) and Pearson correlation.

5.2 Human Annotation
For humans, segmenting a single web page is fairly straightforward.
As Kreuzer et al. [24] observe: “Human beings are very good at par-
titioning: even if a website is in a language we are not familiar with,
it is clear to us what is an advertisement, what is a menu, and so on.”
In order to scale up such manual segmentation to 8,490 web pages
while avoiding annotator bias (e.g., systematic errors), we employ
crowdsourcing. We used Amazon’s Mechanical Turk and developed
a tailored annotator interface that allows for drawing bounding
boxes on web page screenshots, as well as a reviewer interface
that allows for quality control by visualizing the segmentations.
We further developed a reliable mapping of hand-drawn segments
to their corresponding DOM nodes and assessed the annotation
quality through measuring inter-annotator agreement.

Task Setup. Amazon’s Mechanical Turk is a crowdsourcing
market where requesters, like ourselves, advertise so-called “human
intelligence tasks” (HITs) to workers for a per-task payment upon
successful completion. In pilot experiments, we found that our task
does not require expert workers, so we just required workers to
have at least 100 previously approved HITs—a very low bar.
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Figure 4: Annotator instructions including a GIF animation
which exemplifies the task and annotation process.

To ensure equal workload per HIT despite the vastly different
pixel heights of the screenshots (see Figure 3), we employed a bin-
packing algorithm to distribute the web pages so that every HIT
contained web pages that have a combined pixel height of approxi-
mately 16,384 pixels, the maximum pixel height of the screenshots
in our dataset. On average, a HIT contained five web pages. Dur-
ing our pilot experiments, we determined that workers needed
11.2 minutes per HIT on average. The payment per HIT was set to
$0.75 for an hourly rate of $4, which is 13 times the minimum wage
of India, and 3 times that of the Phillipines,7 the two top countries
of origin of workers from developing countries [14].

Regarding the potential ambiguity in web page segmentation
due to different levels of granularity, and to study this phenomenon,
every web page has been annotated by five independent annotators.
Altogether, with 5,231 assignments, we collected 42,450 segmenta-
tions (encompassing 627,080 segments) for the 8,490 pages, which
took 976 annotator hours at a total cost of about $8,500.

Annotator Interface. Figure 4 shows the instructions given to
the annotators, which include an animation that exemplifies the
creation and adjustment of segments. Below the instructions, the
screenshot was displayed on which the annotators had to draw
segments as translucent blue rectangles just like in the animation.

The design of the annotator interface was optimized in pilot
experiments for simplicity and physical ease. We first used a direct
selection of DOM nodes to specify segments, but this interface re-
quired complex multi-selections and also confused annotators who
lack knowledge in HTML. We hence asked the annotators to draw
free-hand rectangles instead, requiring a subsequent step to resolve
7https://en.wikipedia.org/wiki/List_of_minimum_wages_by_country

Figure 5: Reviewer interface, showing one assignment per
row: annotator ID as image; reference (blue boxes) and an-
notation (red frames) for the test page (rotated and scaled);
number of comments; time taken; buttons to show com-
ments and annotator information, to show annotations for
non-test pages, and to approve or reject the assignment.

inaccuracies from the drawing and to map the annotations to the
DOM. To ease drawing, we employed a click-move-click interaction,
which allows the index finger to remain relaxed almost entirely,
enabling fast work for a prolonged time. Though annotators could
nest rectangles, this happened in less than 3% of annotations.

Reviewer Interface. Figure 5 illustrates the reviewer interface
that we built in order to monitor annotation progress and quality.8
To quickly check up on annotators, we introduced one test page in
each HIT, for which the reviewer interface shows both reference
and annotator segmentation. As test pages, we started with seg-
mentations created by ourselves, and then iteratively integrated
more test pages where annotators largely agreed. If an annotator
segmented the test page badly, we inspected the other annotations
and meta data to judge whether they spent effort on solving the
task. If so, we still excluded the annotation from the dataset, but
paid the annotator for their fair work (“internal rejection”). In order
to gather especially good annotators, all annotators were limited
to ten tasks until we reviewed their tasks, and could only continue
if most were approved. In total, we approved 5,231 assignments,
internally rejected 6,152, and openly rejected 540.

Fitting to DOMNodes. In order to map the inaccurately drawn
segment rectangles to DOM nodes, we treat each DOM node as part
of the segment if at least a fraction 𝜃𝑐 of its visible area overlaps with
the rectangle. We optimize 𝜃𝑐 so that the visible area of all DOM
nodes of a segment—a multi-polygon—best matches the original
rectangle in terms of the area 𝐹1-score (cf. Figure 6a). The recall of
0.79 shows that 1/5 of the rectangles’ area is not part of segments,
which is sensible as (1) annotators tended to draw rectangles that
are a bit larger than necessary for speed, and (2) a multi-polygon
naturally provides a tighter fit to DOM nodes than one rectangle.
The precision, on the other hand, is very high (0.94), indicating only
a few cases where the rectangles were drawn a bit too small. By
adding DOM nodes that were nearly contained in the rectangles,
however, the number of empty segments, which contain no DOM
node and would thus be discarded, drops from from 7% to just 2%.
Figure 6b shows the distribution behind these averages: most multi-
polygons match the drawn rectangle indeed accurately.
8Mechanical Turk does not include sophisticated reviewing interfaces, so that we used
our MTurk Manager (https://github.com/webis-de/mturk-manager), an open-source
project that assists requesters in carrying out large-scale crowdsourcing tasks.

https://en.wikipedia.org/wiki/List_of_minimum_wages_by_country
https://github.com/webis-de/mturk-manager


Annotation Quality Assessment. Table 2 shows the annota-
tion quality in terms of the agreement measure we developed in
Section 4.3. Annotators largely agree which text nodes belong to-
gether, as indicated by the very high 𝐹𝐵3 (0.78) for chars. Indeed,
the rather large difference between pixels (𝐹𝐵3 of 0.65) and edges
(both 0.73) shows that a significant portion of disagreement is due
to a different segmentation of blank space (i.e., background), which
is irrelevant for most downstream applications. Moreover, as a com-
parison of the values using max(𝑃𝐵3 , 𝑅𝐵3 ) highlights, nearly all
disagreement is due to annotators working at different levels of
granularity, and not because of vastly different segmentations. We
thus conclude that our dataset presents a high-quality resource for
web page segmentation, and could even be extended to provide a
hierarchical ground truth segmentation in the future.

5.3 Segmentation Fusion
In order to fully utilize the wisdom of the crowd as well as to allow
for easier evaluation of segmentation algorithms and training of
learning-based ones, we fuse the five segmentations per web page
into a single coherent ground truth as described in Section 4.3. We
use pixels as the atomic elements to be in line with the annotation.

Figure 7 shows that fusing just elements that the majority of
annotators put into segments (threshold of 3) reduces the number of
pixels in the ground truth by 20%, but much less so the edges (6-7%),
nodes (5%), and especially chars (2%). The annotators thus largely
agreed on which elements are in a segment. The larger reduction
for pixels is due to few annotators working at a more coarse level,
for which segments naturally contain more blank space.

Figure 8a and b exemplify the fusion. Figure 8c compares the
number of segments before and after the fusion for various 𝜃𝑠 .
Roughly speaking, for 𝜃𝑠 = 0.9 elements are put together in one
segment if all annotators did so, whereas for 𝜃𝑠 = 0.1 they are put
together if any annotator did so. As is desirable, the figure shows
that the distribution of the employed majority voting (𝜃𝑠 = 0.5) is
also very similar to the original averaged distribution.

6 CONCLUSION
This paper revisits the task of web page segmentation, filling gaps
that hindered the evaluation of generic web page segmentation al-
gorithms. Unlike previous research, our evaluation framework does
not focus on one of the various downstream tasks of web page seg-
mentation. Instead it accounts for the different downstream tasks
through a unified similarity measure for web page segmentations—
well-founded in clustering theory—which can be used for tasks that
focus on visual, structural, or textual elements. Moreover, we show
how this measure can provide the basis for annotator agreement cal-
culation, ground truth fusion, and segmentation quality assessment.
This foundation is used to construct the Webis Web Segmentation
Corpus 2020, a dataset that comprises 42,450 segmentations from
human annotators for 8,490 pages from 4,824 sites. Our evaluation
framework and this dataset allows for the first time to assess web
page segmentation algorithms for different downstream tasks in a
coherent fashion. Such a benchmark of common algorithms will be
the logical next step and provide insight into task-specific strengths
and weaknesses of the algorithms, thereby potentially revealing
common issues of the algorithms and thus guiding future research.
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Figure 6: (a) Overlap of the annotated segments and DOM-
based multi-polygons as well as fraction of non-empty seg-
ments at different thresholds 𝜃𝑐 , and (b) histograms of seg-
ments by the measures at the chosen 𝜃𝑐 of 0.75.

Table 2: Annotator agreement by type of atomic elements
and pairwise measure within the agreement measure.

Agreement measure Atomic page elements

pixels edgesfine edgescoarse nodes chars

𝐹𝐵3 0.65 0.73 0.73 0.74 0.78
max(𝑃𝐵3 , 𝑅𝐵3 ) 0.94 0.96 0.96 0.95 0.97
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Figure 7: Fraction of atomic elements that are part of the
ground truth for different annotator thresholds.

(a)

(b)

0

1000 θs =  0.1

0 10 20 30 40
(average) number of segments

pa
ge

s

0

1000 θs =  0.3

0

1000 θs =  0.5

0

1000 θs =  0.7

0

1000 θs =  0.9

0

1000 before fusion (averaged)

(c)

Figure 8: Segmentations for the web page in Figure 3a, (a) by
the five annotators (one color each), and (b) after fusionwith
𝜃𝑠 = 0.5. (c) Number of pages by the number of segments
before and after fusion for various values of 𝜃𝑠 .



After web page segmentation, many downstream applications
require a labeling of the segments. Therefore, an extension of our
dataset with segment labels is a further step to continue this re-
search. In the spirit of compatibility with as many downstream tasks
as possible, a promising choice of segment labels is the function
they fulfill on the web page [10]. Since such function labels carry a
specific meaning, system developers can match such labels to the
task at hand and then pick the corresponding segments, as well as
evaluate with the extended dataset which algorithm performs best
for segments that have the respective function.
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