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1 Introduction

Configuration is the process of composing a technical system from a predefined set of objects.
The result of such a process is called configuration too and has to fulfill a set of constraints given.
Aside from technical restrictions a customer’s demands constitute a large part of these constraints
[6], [12], [13].

There exist a lot of methodologies that describe in which way configuration problems can
be tackled. Their adequacy depends on the configuration task, the domain, and, of course, the
description of the single configuration objects, called components. The type of the component
description plays a key role in configuration since it determines both the quality of knowledge
acquisition and the efficiency of knowledge processing.

In this place we deal with configuration problems where the components involved are char-
acterized by simplified functional dependencies—so-called resource-based descriptions. We will
discuss the philosophy of resource-based descriptions as well as their efficient processing.

The paper is organized as follows. Section 2 introduces structure-based and resource-based
descriptions in configuration and elaborates on the related advantages and drawbacks. Section 3
presents concepts and methods of how a straightforward algorithm for resource-based configura-
tion can be speedup decisively.

2 Structure-based versus Resource-based Descriptions

In a nutshell the mentioned types of component description can be characterized as follows. Let
O denote the set of components from which a desired system is to be configured. Then, structure-
based descriptions define taxonomic and compositional relations on particular subsets of O.1 By
contrast, resource-based descriptions are local to each component; they model the properties of
the elements in O.

In the following both approaches are outlined.
1Sometimes, these relations are referred to as is-a and has-parts relations respectively.



2 STRUCTURE-BASED VERSUS RESOURCE-BASED DESCRIPTIONS 2

Structure-based Descriptions

A structure-based description defines a (de)composition tree, that is, the skeleton of the system
to be configured. It is convenient to represent the skeletal structure by means of an and-or-graph
[8]. The and-nodes realize compositional descriptions while the or-nodes are suitable to realize
taxonomic descriptions. Such a combined taxonomic/compositional hierarchy explicitly repre-
sents parts of the configuration problem’s search space. Figure 1 shows a system that on its first
layer is composed of the objects o1 . . . o3, where o1 and o3 in turn can be realized by alternative
subcomponents.

System

o1 o2 o3

o4 o5 o6

o7 o8

o4 o5

o o

o
o o

o
And node:

Or node:

Figure 1: A system’s and-or-graph defines the possible configurations

A basic method to process structure-based component descriptions is skeletal configuration.
Among others it has been operationalized in the configuration systems WIST [5], PLAKON [1],
[2], and R1/XCON [9]. Skeleton configuration can be put into practice by two main strategies:

1. Top-Down. Starting with the root node, each node v is processed as follows. If v represents
an and-node, all direct follow-up nodes of v are marked. If v represents an or-node, exactly
one of its follow-up nodes is marked according to some rule. Each marked node that is a
leaf is included in the configured system; inner nodes are processed further in a recursive
manner. The configuration process is completed if all marked nodes are either of leaf-node
type or expanded.

2. Bottom-Up. If there is information about particular components that must be part of a con-
figuration, the corresponding leaf nodes are initially marked. Secondly, all nodes sharing an
and-relation with nodes already marked are also marked within a recursive bottom-up pro-
cess. Thirdly, a top down refinement according to strategy 1 is invoked, which additionally
considers all previously marked nodes.

Resource-Based Descriptions

Resource-based descriptions model a component’s properties; properties are realized by means of
“resources”. Example: One property of power supply units is their power output; one property of
plug-in cards is their power input. These properties can be modeled using the resource “power”:
A power supply unit supplies some power value, while each plug-in card demands some power
value. I.e., for every interesting property of a component some resource f has to be defined, which
is either supplied or demanded at a particular amount. In figure 2 resource-based component
descriptions are depicted graphically.

Such a dependency network represents a simplified functional model of the domain. Actually,
configuration means the instantiation and simulation of this functional model.

Kleine Büning, Curatolo, Stein
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Figure 2: Resource-based component descriptions

Resource-based descriptions are suitable for a configuration problem if the following condi-
tions are fulfilled: (i) Structural information plays a minor role only, (ii) the components can be
characterized by simple resources that are supplied or demanded, and (iii) the components’ prop-
erties have to be combined in order to provide the system’s entire functionality.

Balance processing is a basic configuration method for resource-based component descrip-
tions. It has been operationalized in the configuration systems COSMOS, CCSC, AKON, and
MOKON [3], [7], [13], [10].

Balance processing operationalizes a generate-and-test strategy. The generate part, controlled
by propose-and-revise heuristics, is responsible for selecting both an unsatisfied resource f and a
set of objects that supply f . The test part simulates a balance.

Simplifying matters configuration works as follows. Initially all demanded resources are writ-
ten on the demand side of the balance. Then, for an unsatisfied f , an object set is generated and the
supplies and demands of these objects are also written on the corresponding sides of the balance.
Identical resources are accumulated according to some rule, e.g. the algebraic “+”-operation. In
a next step each resource on the balance is checked (e.g. via a “≤”-comparison) whether the de-
manded value can be satisfied by the supplied one or not. Figure 3 depicts the generate and the
test phase of this configuration method.
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Figure 3: The main phases of balance processing

If all demands are fulfilled, the associated object set will represent a solution of the con-
figuration problem. If not, the unsatisfied demands will form the input for the next step. The
generate-and-test cycle is repeated until either a solution is found or no further object set can be
generated.
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Example

In order to understand some complexity problems bound up with resource-based component de-
scriptions, it is useful to take a closer look at balance processing. Let us consider that we had to
solve a simple configuration problem, where an initial demand of 6 × f1 is given. Two compo-
nents, o1 and o2, can be used to fulfill this demand; they are defined in the following table:

Supplies Demands
o1 2 × f1, 1 × f2, -
o2 4 × f1 1 × f2

Initially no node of the search space is still explored. The first balance contains only one entry:

Supplies Demands
6 f1

Now the configuration algorithm has to choose a component that fulfills the unsatisfied demand
at property f1. If we assume that component o2 is chosen, the balance and the actually explored
search space will look as depicted in figure 4.

f1

f1 f2

o1 o2

...
o1 o2

...

...

DemandsSupplies
f1 4 f16

f21

Figure 4: Configuration situation after the first decision

Given the configuration situation of figure 4, not only a decision regarding the component
selection has to be made, but also the following question has to be answered: Which demand
shall be satisfied next? A solution of our configuration example is given by a component set that
contains o1 once and o2 once. Note that a set comprised of three components o1, for example,
establishes a solution too.

Discussion

From the standpoint of knowledge representation, structure-based descriptions define a global
view on the system to be configured while resource-based descriptions rely on local connections
only. From the standpoint of knowledge processing, structure-based descriptions form an explicit
definition of the configuration process while resource-based descriptions constrain the configura-
tion process implicitly.

Kleine Büning, Curatolo, Stein
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Processing structure-based descriptions is efficient because of the semantics of compositional
and taxonomic relationships (remember the top-down and the bottom-up strategy previously de-
scribed). Nevertheless, knowledge acquisition is not easy since the modification, the exchange, or
the addition of a component will affect the component’s entire sub-skeleton. Moreover, structure-
based descriptions establish no causal dependencies. Hence the configuration knowledge cannot
be used easily to generate explanations of configuration steps.

Within resource-based descriptions the components’ local properties are used to derive the
necessary compositional and taxonomic dependencies. Compared to the structure-based approach,
the configuration process exploits deeper dependencies of the domain. Note that configuration
knowledge can be acquired and maintained easily here: Modification, exchange, and addition of
components does not affect other parts (components, relations) of the configuration knowledge.
Also expressive explanations of configuration decisions can be generated, since the configuration
process’s underlying model is functional, what’s to say, causal.

These advantages are bought with a considerable increase in knowledge processing costs.
Compared to the structural component models, a larger search space has to be processed. The
reason for this is that no explicit configuration decisions, which would guide the configuration
process, are predefined. Rather the configuration process is constrained implicitly by the local
component descriptions that must form a correctly working global model when put together.

Loosely speaking, there is a tradeoff between knowledge processing cost on the one hand and
knowledge acquisition cost on the other. When realizing a resource-based component description
instead of a structure-based one, the benefit of efficient knowledge processing is given up for
the—often more desirable—benefit of user-friendly knowledge acquisition. Figure 5 illustrates
this tradeoff qualitatively.

Knowledge
acquisition cost

Knowledge
processing cost

global local

Computational
cost

‘‘Locality’’ of a
component’s description

Figure 5: Tradeoff between knowledge processing and knowledge acquisition cost

3 Speeding Up Balance Processing

In the course of balance processing a lot of backtracking usually takes place. When selecting an
unsatisfied property f , or when selecting components that supply f , several alternatives stand to
reason. However, in order to find an optimum solution the entire search space must be investi-
gated. Since the computational complexity of chronological backtracking is exponential we need
techniques that explore the search space more intelligent [11].

Aside from standard techniques regarding efficient tree search, this section presents prepro-
cessing techniques that we have developed to speedup balance processing. These considerations
are not of a purely theoretical nature but have been operationalized within the configuration system
AKON [4].

Kleine Büning, Curatolo, Stein
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Balance Processing and Efficient Tree Search

Cutting Subtrees. In order to prune parts of the search space, a measure for the evaluation of
expanded nodes is required. In connection with configuration tasks, a useful criterion is the cost
of the single components and, consequently, the cost of a readily configured system. Note that
due to the nature of configuration, the cost of a partially configured system will monotonically
increase during the search.2 Thus the minimum cost of all solutions found defines the bound for
the subtrees to be cut.

As the following consideration shows, this procedure can be refined. If a property is unsatis-
fied, at least one additional component is needed. Hence, the value c∗ − min{co | o ∈ O} estab-
lishes the actual upper bound at which backtracking must be invoked; c∗ denotes the minimum
cost of all solutions found up until that point, co denotes the cost of component o.

Preventing Multiple Investigation of Nodes. Different nodes in the search space may designate
the same partial configuration. Put another way, there are different paths by which a node can
be reached, i.e. a configuration can be constructed.3 Consequently the nodes already investigated
need to be marked.

It is useful to realize such a visited-flag by an entry in a hash table. For efficiency reasons,
the hash function must be able to incrementally adapt hash keys: When a component is added and
removed respectively from a partial configuration C ′, the new hash key should be computed on
the base of the hash key that corresponds to C ′. The configuration system AKON operationalizes
this idea with a hash algorithm that is based upon an array of random numbers: Dependent on
the component type and its frequency in a partial configuration, random numbers are chosen and
computed by means of the XOR-operation.

Preprocessing

Preprocessing of configuration knowledge addresses the two indeterministic selection steps of
balance processing: property selection and component selection. Property selection is related to
the search space’s total depth in the first place; component selection affects the effort necessary for
backtracking. An “intelligent” decision strategy within these selection steps is the major engine
of efficient balance processing. Experience has shown that a simple local optimization is not
sufficient here.

Note that the techniques subsequently presented establish domain-independent concepts. They
can be improved and refined by additional domain knowledge, of course.

Property Selection Consider the component-property graph in figure 6. A demand at property f

should be processed only if all components of the system that also need f are already determined.
E.g., since component o3 supplies nothing it should be selected first while o1 demands nothing
and should be selected last.

Obviously a component’s occurrence in a configuration can be finally determined, if its out-
degree in the component-property graph is zero (on condition that components selected and func-

2On condition that no backtracking is invoked, of course.
3The search space is rather represented by a directed acyclic graph instead of by a tree.

Kleine Büning, Curatolo, Stein
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Figure 6: Component-property graph

tionalities processed are deleted in the graph). The sequence of nodes that we obtain by suc-
cessively deleting nodes whose out-degree is zero constitutes a reversed topological sorting of
the component-property graph. Note that a directed graph’s topological sorting is not necessarily
definite; it may not define a sufficient condition for a selection order of the properties.

Component Selection An example for a local optimization strategy regarding component se-
lection is the following: “To satisfy an open demand at property f , select from all components
which supply f the cost minimum one.”

In fact, such a local strategy is often too shortsighted. What we are looking for is an estimation
function that has global configuration knowledge compiled in. Ideally such a function should
compute for each node of the search space a reliable estimation of the follow-up costs bound up
with the selection of a particular component. In practice, for reasons of time and space complexity,
such a function cannot be computed exactly.

The following simplifications are a reasonable compromise when constructing an estimation
function: (i) A configuration situation shall solely be characterized by those resources that are
actually unsatisfied, (ii) a resource shall only be satisfied by components of the same type, and
(iii) components shall be regarded as suppliers of a single resource.

Remarks. Point (i) neglects that unused resources in a partial configuration may be exploited in
a further course of the configuration process. Point (ii) neglects that a combination of different
components may constitute a more adequate solution for an unfulfilled resource than a set of
components of the same type. Point (iii) neglects that a component may supply several resources
each of which is demanded in the partial configuration.

Based on the above simplifications we now construct an estimation function h(o, f, n) for the
computation of follow-up costs. f denotes the demanded resource, n denotes the amount to which
f shall be demanded, and o denotes a component that supplies f and that shall be used to satisfy
the open demand. We will construct h within three steps:

1. Each component o has some “local” cost c(o) but also causes particular follow-up costs.
Together they make up a component’s total cost ct.

2. A component’s follow-up costs result from its demands. More precisely: Let o be a compo-
nent and d(o) the demanded properties of o. Then, of course, we would like each demand
vd(o, g) of component o at property g ∈ d(o) to be satisfied at minimum costs. Note that all
components that will be selected to satisfy g entail follow-up costs on their turn.

I.e., if we selected a component o in order to satisfy a required demand f , we would expect

Kleine Büning, Curatolo, Stein
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the following total cost ct:

ct(o, f) := c(o) +
∑

g∈d(o)

min
ω∈o(g)

{ct(ω, g)} ,

where
c(o) ∈ R

+ local cost of component o

d(o) demanded resources of o

o(f) components that supply f

Note that the term for ct assumes that each required demand can be satisfied by exactly one
component. This shortcoming is addressed within the next step.

3. A component o may require the resource f to an arbitrary amount vs(o, f) ∈ R
+. Hence

we need a term that computes for a given amount n at resource f the number of components
o that are necessary to satisfy f :

⌈

n

vs(o, f)

⌉

Now solely the composition of the above terms remains to be done. As a result, we obtain the
following estimation function h that computes for a component o and a demand f at the amount
of n the total costs:

h(o, f, n) :=

⌈

n

vs(o, f)

⌉

·



c(o) +
∑

g∈d(o)

min
ω∈o(g)

{h(ω, g, vd(o, g))}



 ,

where
c(o) ∈ R

+ local cost of component o

d(o) demanded resources of o

o(f) components that supply f

vs(o, f) ∈ R
+ supply at resource f of component o

vd(o, f) ∈ R
+ demand at resource f of component o

The rationale of h is summed up as follows. The function h considers both a component’s
local cost and its follow-up costs. Thus it ensures the mathematical expectation of the search
effort—which is equivalent to the estimation function’s quality—being reasonable.

Example

The process of balancing and the effect of the estimation function h is illustrated now. Remember
the example of section 2. We presented a simple knowledge base containing two components, o1

and o2, and two resources, f1 and f2. In this place we will elaborate on the same example. Notice
that the table below defines aside from the components’ supplies and demands also their costs.

Supplies Demands Cost
o1 2 × f1, 1 × f2, - 100
o2 4 × f1 1 × f2 10

Kleine Büning, Curatolo, Stein



3 SPEEDING UP BALANCE PROCESSING 9

According to the formula derived above, the function h is defined as follows:

h(o1, f1, n) =
⌈

n
2

⌉

· 100 (no follow-up costs)
h(o1, f2, n) = n · 100 (no follow-up costs)
h(o2, f1, n) =

⌈

n
4

⌉

· (10 + 100) (follow-up costs for f2)
h(o2, f2, n) = ∞ (f2 can never be satisfied by o2)

The demands on the system searched for shall be 6 × f1. The resulting search tree is depicted
in figure 7.

Balance

Property selection

Component selection

(300) (220)

(200) (110) (100) (110)

(100) (110) (200)

(100)
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C=220
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o1 o2 o1

o1

f1 f2 f1
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xx  2   2f1, f2 xx  4 −1f1, f2

xx  6   0f1, f2

xx  0   3f1, f2

Initial demands:

*C  =110

Figure 7: Search space of the configuration example

The search tree is two-layered and consists of two types of nodes:

• Filled. Nodes of this type establish choice points regarding the resource to be satisfied next.
The related balance is shown framed above the node.

◦ Outlined. Nodes of this type establish choice points regarding the component to be selected
next.

The edges of the search tree are labeled with the configuration decisions. Below the actually
selected components, put in parentheses, the estimation function’s values are annotated.

The search tree shows in which way the information of h comes to effect: The global optimum
is found without backtracking, i.e. by a minimum search effort.

Kleine Büning, Curatolo, Stein
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Discussion

The formerly introduced estimation function h should not be seen as an absolute search control
for balance processing. Rather it establishes a useful heuristic that is based on the following
assumptions: (i) a component’s occurrence in a configuration is not bound to a fixed number,
(ii) there are no restrictions between the components other than their supplies and demands, and
(iii) no user-defined constraints need to be considered.

Dependent on an actual problem or domain, h can be improved or constructed according to
other paradigms:

• Aside from a preprocessing that first selects a resource f and then decides which of the
components o is suited best, a combined consideration of f and o is conceivable.

• Instead of computing an optimum estimation function with respect to single resources it
might be useful to simultaneously consider particular combinations of several resources.

However, a total computation of the simplified estimation function h introduced above is
hardly possible; even for rather small knowledge bases, which contain about hundred components,
a few millions of values had to be recorded. To further complicate matters, for each situation char-
acterized by o, f , and n, the determination of h(o, f, n) requires a complete search.

There are two possibilities of how the computational effort regarding the evaluation of h can
be decreased:

1. The step function h(o, f, n) can be evaluated for a few n only. For all other values h is
approximated via some interpolation method. This will bound the number of functions
ho,f (n) to be computed and recorded by |O| · |F |, where O (F ) is a set comprised of all
objects (resources) of the configuration problem.

2. The search space’s total depth can be bound by some number k. If a search depth of k is
reached while the balance is still unsatisfied, an approximate value estimating the remaining
cost can be assumed. Also, dependent on the domain, it might be useful to predefine par-
ticular “obligatory” resources that need to be satisfied in any case. Note that early pruning
may lead to the same problems as local optimization does.

4 Summary

In many configuration systems a taxonomic and a compositional hierarchy of the domain form
the basis for the process of configuration. Such a modeling approach is no longer adequate if
functional connections make up the major part of the domain knowledge.

One possibility to operationalize functional dependencies is resource-based modeling. The
components are characterized by properties that are realized with supplied and demanded re-
sources.

We pointed out that a resource-based modeling approach is superior to a structure-based one
with respect to maintenance and acquisition of configuration knowledge. However, since the nec-
essary structural dependencies have to be derived from the components’ local properties, process-
ing resource-based descriptions requires greater computational effort.

Kleine Büning, Curatolo, Stein
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This additional computation effort can be mastered using techniques for efficient tree search
and, in particular, through a preprocessing of configuration knowledge. We developed the idea of
preprocessing related to resource-based configuration problems and showed in which way it is put
into practice.
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