Design and Realization of a
Knowledge-based System that Supports the
Setting into Operation of Hydraulic Systems

H. Kleine Biining, Benno Stein

tr-ri-95-166

Design and Realization of a Knowledge-based System
that Supports the Setting into Operation
of Hydraulic Systems

Technical Report
June, 1995

H. Kleine Biining Benno Stein

This work was supported by the DFG

Project number: K1 529/3-1 and KI 529/3-2

|L\l‘ University of Paderborn

Department of Mathematics / Computer Science Report tr-ri-95-166
33095 Paderborn, Germany Series Computer Science
email: kbcsl @uni-paderborn.de August, 1995

Abstract

The task of setting a hydraulic system into operation constitutes some kind of
configuration problem. To be more specific, this task is comprised of several
configuration checking problems placed at different levels of abstraction.
Configuration technology as developed in the past is only partly capable to
cope with these checking problems. The reason for this is that the checking
of a hydraulic system encloses the composition and simulation of behavior
descriptions. By contrast does standard configuration technology usually deal
either with objects that are described at a more abstract level or with systems
whose composition process can be structured in a particular way.

This report describes how the checking of hydraulic systems can be auto-
mated. First, it develops a formal basis for behavior-based configuration
problems, from which the hydraulic checking problem represents an instance.
Grounding in this formal framework the necessary concepts for the represen-
tation and processing of hydraulic knowledge are introduced. A large part of
these concepts has been operationalized in the knowledge-based system deco
, which will be sketched out as well.

The last chapter of this report addresses the diagnosis of hydraulic systems.

Contents

1 Introduction
2 Formal Framework

3 Checking of Hydraulic Systems

3.1 Placement of the Problem

3.2 Analyzing Hydraulic Systems Analysis

3.3 Modeling Hydraulic Systems . . .
3.4 Solving II¢ in Hydraulics

3.5 Preprocessing of Stationary Behavior 00000

4 The deco System
4.1 Graphic Problem Specification . .
4.2 Inference
4.3 Knowledge Acquisition

4.4 Realization

S Diagnosis of Hydraulic Systems
5.1 Introduction

5.2 Model-based Diagnosis

5.3 Conflict Identification Basedonthe ATMS

5.4 A Closer Look at Candidate Generation

5.5 A Constraint System for Diagnosis

References

11
11
14
17
21
25

33
33
35
41
43

47
47
48
51
54
59

63

Chapter 1

Introduction

Overview of the Report

The task of setting a hydraulic system into operation constitutes some kind of configuration
problem. To be more specific, this task is comprised of several configuration checking
problems, placed at different levels of abstraction [25], [26].

Configuration technology as developed in the past is only partly capable to cope with
these checking problems. The reason for this is that the checking of a hydraulic system
encloses the composition and simulation of behavior descriptions. By contrast does stan-
dard configuration technology usually deal either with objects that are described at a more
abstract level or with systems whose composition process can be structured in a particular
way.

Thus, in first place, we need a formal framework that precisely defines what “configu-
ration based on behavior” means. Such a framework is presented in chapter 2. In chapter 3
we then introduce the checking of hydraulic systems as an instance of the generic behavior-
based checking problem, as well as developing the basic principles for an automation of
the hydraulic checking procedure. A large part of our concepts has been operationalized in
the knowledge-based system deco. Chapter 4 outlines the philosophy and some inference
concepts of this system.

Of course, checking the function of a hydraulic system will not result in a simple short
answer, “OK” or “not OK”. Instead, different classes of faults may be detected and indi-
cated, such as an incorrect switching logic or exceeded value ranges. In addition to diag-
nosis information of that simple type, which can be generated when solving the different
checking problems, we investigated the diagnosis of hydraulic systems in more generally
terms; a diagnosis system can provide for additional support when setting a hydraulic sys-
tem into operation. Chapter 5 contributes to this problem field.

The remainder of this chapter shortly reviews the notions of configuration, configu-
ration systems, and knowledge-based systems; configuration tasks are usually problems
knowledge-based systems deal with.

2 CHAPTER 1. INTRODUCTION

Configuration and Configuration Systems

Common definitions for configuration describe it as the process of composing a technical
system from a predefined set of objects. The result of such a process is called configura-
tion too and has to fulfill a set of constraints given. Aside from technical restrictions, a
customer’s demands constitute a large part of these constraints [38], [46].

This informal definition gives a declarative description of the job a configuration system
does; it motivates the configuration process from its result. Figure 1.1 depicts this view:
o, - - -, Q. denote different states of a system being configured, where (), the starting
point, is the empty set, while (); comprises the gualities of the system after configuration
step 7. (). denotes the qualities of the readily configured system. The transformation steps
t; stand for the operations performed by the configuration system within step j.

O

Figure 1.1: Configuration as a sequence of states and transitions

A configuration system can be seen as a program that takes a set of demands D C (@),
as input and computes all information to describe extensionally the configured system. lL.e.,
it generates information about the required objects, their type, number, topology etc. such
that the emerging configuration fulfills all constraints (cf. figure 1.2).

@ —p | Configuration
system

Figure 1.2: The job a configuration system performs

The definition above does not imply information about the complexity of configuration
problems or how to get the hang of them. This should not be surprising, the development
of a configuration system requires the analysis of the domain and the processing of related
problems, more or less. As a consequence, we cannot provide a set of “general purpose
configuration algorithms” nor build a generic configuration platform.

Research in the field of configuration can be divided in the following manner: ap-
proaches that focus on an abstract process of configuration and approaches that aim at
adequate mechanisms to specify configuration knowledge. Clearly, when tackling a real-
world problem, none of these approaches could do a complete job. In the former the knowl-
edge has to be integrated—just as with the latter it has to be processed. Employing domain
knowledge within a configuration system can affect both fields of research.

Knowledge-based Systems

In order to tackle a configuration problem, expertise needs to be operationalized. Thus,
most of the configuration systems developed in the past were called knowledge-based con-
figuration systems or expert systems of configuration. This subsection contains a brief in-
troduction to knowledge-based systems. This information may be useful to clear up the
scepticism that sometimes is associated with knowledge-based systems or related terms.

Highly sophisticated and complex computational methods can be found especially in
engineering domains. However, a set of differential equations describing a physical system
along with the numerical methods solving them should not be called a “knowledge-based
system” or “expert system”. Also the programming techniques that were used to realize a
system, e.g. rule-based or frame-based techniques, are not a useful criterion as to whether
a program is an expert system.

Brown and Chandrasekaran define expert systems as programs where we can find some
kind of computations that underly intelligent behavior and which therefore are discrete,
symbolic, and qualitative [2]. They call this kind of computation problem space exploratory
techniques and characterize them to be “intelligent” in the following sense:

“They explore a problem space, implicitly defined by a problem representa-
tion, using general search strategies which exploit typically qualitative heuris-
tic knowledge about the problem domain.”

Brown & Chandrasekaran, [2], p.4

In fact such computational methods make up an important part of expertise. In a nut-
shell, we will refer to a program as a knowledge-based system if it operationalizes the
knowledge, the experiences, or the procedures of an expert in whole or in part.

The classical view of knowledge-based systems is the following:

knowledge-based system = domain-independent inference engine
+ domain-specific knowledge base
+

problem-specific database

L.e., an important idea of knowledge-based systems is the distinction between domain
knowledge on the one hand and the methods that process this knowledge on the other:
Inference mechanisms are applied to the knowledge in the knowledge base and are intended
to produce a solution of the actual problem. Knowledge base and inference component
may be completed by modules that guide the user, generate explanations, or realize the
specification of new knowledge.

A point of criticism related to this view is the explicit separation of knowledge base and
inference mechanisms. Actually, a large part of an expert’s knowledge needs tailored algo-
rithms determining 2ow the knowledge is to be processed. Bylander and Chandrasekaran
coined the term interaction hypothesis in this context [3].

4 CHAPTER 1. INTRODUCTION

Thus, a knowledge base will not contain merely facts and rules but also algorithms that
realize both the processing and the specification of expertise. This understanding leads to a
view of knowledge-based systems as shown in figure 1.3.

Dialog and explanation module

vt

Problem— Problem .
independent dependent - Ac%mf’ltlon
knowledge knowledge modue
Realization I e e o e
level Object- | Rul Constraint | P iti 1‘ F
‘oriented data‘ ‘ ue ‘ ‘ on}sl ram ‘ ‘ ropositiona ‘ ‘ uzzy ‘ ‘ ‘
processing | | mechanisms| logic logic
‘Structures L] L]
-] . .
- Programming language(s)]

Figure 1.3: Alternative view of a knowledge-based system

Note that the knowledge base is divided into a problem-independent and a problem-
dependent part. The former part models the never changing concepts and theories of a
domain—example: the descriptions and the algorithms that operationalize Kirchhoff’s or
Ohm’s law. The other part can be filled with knowledge less fundamental for the domain
and the problem respectively, i.e., it stores definite situations or new dependencies. The
boxes below the knowledge base designate some exemplary techniques that can be used to
operationalize knowledge. In particular, there is no explicit inference module apart from
the knowledge base.

In order to develop such a system, the mechanisms for knowledge specification and
knowledge processing have to be oriented by the actual problem. Thus, from today’s
point of view, it is hardly possible nor very useful to develop universal, that is, domain-
independent problem solving systems.

Chapter 2

Formal Framework

Behavior-based Configuration

The former section introduced configuration as some kind of selection problem: Given is a
set of objects where the task is to select objects such that the required demands are fulfilled.
Such a view of configuration can be misleading since it neglects additional jobs that may
come up when synthesizing a system.

Suppose e.g., we had to configure a system where the set D of demands contains compli-
cated behavior prescriptions. Selecting and putting together objects such that the resulting
system provides the desired behavior requires (i) the processing of behavior descriptions
that base on physical connections, and (ii) experience and creativity to control the process
of selecting and connecting’.

In this place we give a formal definition of such behavior-based configuration problems.
Notice that presently there exists no general theory of how the creativity that guides a pro-
cess of configuration or design can be operationalized. Thus, later within this section, we
will define the less complex checking problem.

Definition 2.1 (Configuration Problem 11). A configuration problem under a behavior-
based model (I1) is a tuple (O, F, V, B, T\, D) whose elements are defined as follows:

e (O is an arbitrary, finite set of objects. It is called the object set of 1I.

e [is an arbitrary, finite set of functionalities. It is called the functionality set of II.
Each element in /' denotes a (possibly constant) function in the parameter “time”.
For the sake of simplification, we will normally refer to f(¢) € F as f.

e For each functionality f € F there is an arbitrary, possibly infinite set vy, called the
value set of f. The elements of v, are partial functions in the parameter time; i.e.,
they are defined on a subset of R*. V = {v; | f € F'} is comprised of these value
sets.

"Within engineering domains, the process described under (ii) is called model formulation.

6 CHAPTER 2. FORMAL FRAMEWORK

e For each object o € O there is an arbitrary finite set B,, called the set of behavior
constraints. Each behavior constraint b € B, defines a relation on vy, X vp, X ... X
vy, where fy, € F, {b1,bs, ..., b} € {1,2,...,n}, and n = [F|. Such a relation
may be specified by a function or by a possibly infinite set of tuples. B = {B, | 0 €
O} is comprised of the sets of behavior constraints.

Based on the definition of behavior constraints, we agree on following notions:

@) Fy = (foy, fons- - -, fo,) is the tuple of the functionalities associated to the value
sets vy, where b is defined upon.

(ii) A tuple of functions X = (z1,xs,...,2x), T; € Uy, s fo, € F, matches (fulfills)
the behavior constraint b, if X stands in the relation defined by b.

e For each functionality f there is a test ty, which is a partial function ty : vy X vy —
{True, False}. A test t; specifies under what condition a demand (see below) is
fulfilled. 7' = {t; | f € F'} is comprised of all tests.

e D is an arbitrary, finite set of demands. Each demand d € D is a pair (f, z) where
f € Fand x € vy. If x is an invariant function of time, the demand will be called
“stationary”’; otherwise, the demand will be called “dynamic”.

Remarks. For example, if we wanted to design an electrical circuit, typical objects in O
would be resistors, capacitors, etc. The functionalities in /' would specify the typical char-
acteristics of the objects such as electrical resistances or capacities. Behavior constraints in
this example would be Ohm’s law and other electrotechnical regularities defined upon the
functionalities in F'.

Definition 2 2 (Configuration). Let 11 = (O, F,V, B, T, D) be a configuration problem.
A configuration is a triple C' = (F, @, S) where E C O is a set of objects, () is a quality
set with tuples (f,) where f € F'and z € vy, and S is a set of tuples (f, g) with f, g € F.
E specifies those elements, where the configured system is to be realized with. A quality
(f,z) € @ assigns the possibly constant function z to the functionality f. S defines the
structure of C' by means of the functionality-pairs to be unified. Additionally, we claim the
following conditions to hold:

(i) Let Fp = {f | f € Fy,, b € B,, 0o € E} comprise all functionalities of C'. Then,
(2 must be both definite and complete with respect to F, i.e.: For each functionality
f € Fp, there exists exactly one functionality-value-pair (f,) € Q.

@) If(f,x),(g9,y) € Qand (f,g) € Sthenz =y.

(iii) Let B = {b|b € B,, o € E} comprise all behavior constraints of C'. Then, @
must be correct with respect to Bg, i.e., to each b € Bg must apply:
The tuple of functions X = (z1, xs, . . .,), induced by the functionality-value-pairs
(fo., 25) € Q, fo, € Fy, matches (fulfills) the behavior constraint b. Le., X stands in
the relation defined by 0.

Remarks. When solving a configuration problem II under a behavior-based model, aside
from a selection problem, also a structure definition problem, a model formulation prob-
lem, and a model processing problem have to be solved. It has to be determined which
functionalities of the components selected have to be unified in order to achieve a behavior
that fulfills all demands. Such a unification is equivalent to a connection of the objects in a
physical sense and is specified by S: Each element (f, g) € S indicates that the functional-
ity f is to be unified with the functionality g, i.e., f = g.

The conditions (i) — (iii) guarantee the technical correctness of a configuration C, that is
to say, if C can be realized from its topology and its behavior: Condition (i) establishes that
there is a definite specification for all functionalities of C'. Condition (ii) claims each two
functionalities being equal if they are unified. Condition (iii) guarantees that all behavior
constraints of C' can be fulfilled by the functionality-value-pairs in ().

Note that the functional dependencies within II are represented by local constraints and
a list of functionalities to be unified. These constraints and the information about unification
form the input for a model synthesis process? that in turn yields a mathematical description
of the system. In order to compute (), which describes the system’s global behavior, this
mathematical description has to be processed by direct or by iteration methods.

Definition 2.3 (Solution of 11). A configuration C' = (E, (), S) is a solution of a configu-
ration problem II = (O, F, V, B, T, D) if and only if the following conditions hold:

(i) C'isa configuration according to Definition 2 2, i.e., C'is technically correct.

(if) For each demand d = (f,z) € D there exists a quality ¢ = (g,y) € @ such that
f=gandts(z,y) = True.

Remarks. A solution of a configuration problem II specifies which objects have to be se-
lected, how they are parameterized, and how they are connected. Condition (i) claims a
configuration’s correctness while condition (ii) guarantees all demands being fulfilled ac-
cording to the associated test predicates in 7. Usually exists more than one solution of a
configuration problem II.

Example

The following example establishes an instance of the behavior-based configuration problem
I1. Let us consider we had to design a simple electrical circuit. Given are resistors, capac-
itors, and inductive coils. The goal is to select, connect, and parameterize the components
in such a way that we obtain a damped oscillating circuit with a frequency of about 10kHz
and a time constant of 0.2s. Figure 2.1 illustrates the task.

In order to keep this example clear, we refrain from the specification of wires. Even
such a—from the electrotechnical standpoint—simple problem needs more than a complete
enumeration of possible subsets of the components: The design process is guided by the

2We will take up this term in chapter 3.

8 CHAPTER 2. FORMAL FRAMEWORK

i(t)

Tf%

Figure 2.1: Designing a simple circuit

experience and the knowledge about physical connections. A formal specification of II
related to our example is the following:

1. O = {R (= resistor), C (= capacitor), L (= coil)}

2. F = {resistance, Ulg, U2g, ilg, i2g, capacity, Ulc, U2¢, ilc,
iZC, QC7 inductivity, U1L7 UZL, ilL, IZL}

Each element f € F is a real function; f : R* — R.
3. vy = C(R), the set of continuous functionson R, f € F, V = {vs | f € F'}
4. Br = {R-voltage, R-current}

:= {Ulg — U2y = resistance- ilg, ilg =i2r}

B¢ = {C-voltage, C-current, C-charge }

= {Ulc — U2¢ = capacity: Qc, il =i2¢, 22 = il}

B, = {L—voltage L-current}

= {Uly, — U2}, = inductivity- dlL, ily, =i21}

B = {BR7 BCu BL}
5.tr(x,) ¢ lIx — Il £0.1, with f € F, and x, v € vy,
T={ty|ferl}

6. D = {(ilg, e - sin(27-10*-t))}. This definition determines the circuit’s oscillating
frequency and its time constant.

A possible solution of the configuration problem is given in figure 2.2. It determines a
function for each parameter and fulfills both all constraints and all demands.

Remarks. The solution of such a problem can hardly be found by a generate-and-test proce-
dure but needs knowledge about model formulation in electrical engineering. To solve the
above problem, a human expert would perform the following steps:

1. Identification of the circuit’s topology.

L=1mH C=25uF

R =30 Ohm

Figure 2.2: A solution of the example

2. Development of a a global behavior model from the local behavior constraints. The
subsequent differential equation represents a correct model regarding our example:

Li+R-i+5=0

3. Solution of the differential equation and evaluation of the resulting terms for the
frequency and the time constant.

Checking a Configuration’s Behavior

As mentioned above, the creative design process can be automated to a small part only. But,
the complexity of a behavior-based configuration problem will be definitely reduced, if we
restrict ourselves to the checking of a given configuration. Often, even such a checking
problem turns out to be very sophisticated since we have to automate a model formulation
process that founds on physical relations and to process the resulting model. Chapter 3
introduces such a behavior-based checking problem and describes how it can be solved. In
the following, we define the checking problem precisely.

Definition 2 4 (Checking Problem 11°). A checking problem under model M3 (II°) is a
tuple (O, F,V, B, T, D, S) whose elements are defined as in Definition 2.] and in Defini-
tion 2.3 respectively.

Remarks. A checking problem II¢ defines a set of objects, their local behavior concepts,
and how the objects are connected. I.e., a specification of a technical system and a set of
demands are given where the goal is to check whether the system fulfills these demands or
not.

Definition 2 5 (Solution of 11°). A solution of a checking problem I1° = (O, F, V, B, T,
D, S) is a set () containing tuples (f,x) where f € F and x € vy. () is called a solution of
I1¢ if and only if the following conditions hold:

(i) C = (0,Q,S) is a configuration according to Definition 2 2, i.e., C' is technically
correct.

(if) For each demand d = (f,z) € D there exists a quality ¢ = (g,y) € @ such that
f=gandts(z,y) = True.

Remarks. This definition is similar to Definition2 3. As a difference to the above, all
objects of O are used to compose the system to be checked. 11° can be viewed as some kind

10 CHAPTER 2. FORMAL FRAMEWORK

of constraint satisfaction problem: The sets O and S establish a network of nodes where
each node is characterized by a functionality f € F'. B and D define the constraints of this
network and may be of both numerical or symbolic type.

Each set () that is a solution of I1¢ defines a function~ : F' — Jv, v € V:

Q = {(f1,7(f1), (fo.v(f2)), -, (fu,v(fn))}

In other words, solving this constraint satisfaction problem means to determine ~y. If
no such function exists, the checking problem II¢ will be contradictory, i.e., the specified
system does not fulfill the desired demands. A checking problem will be underspecified, if
more than one function -y exists.

Chapter 3

Checking of Hydraulic Systems

The configuration of hydraulic systems founds on deep physical connections, it needs cre-
ativity, and, at the present time, it cannot be automated.

The checking of hydraulic systems founds on the same physical connections; but al-
though it doesn’t need creativity, it cannot be automated straightforward. This chapter
presents a new view of the configuration of hydraulic systems; it illustrates those parts of
the configuration process which make up the checking problem, and it shows how to get a
grip on them.

Section 3.1 provides for introductory information. It becomes clear that an automated
analysis of hydraulic systems will be the major engine when checking hydraulic systems.
Thus, we investigate in section 3.2 the analysis step in more detail. Section 3.3 presents a
generic component model that allows the formulation of hydraulic checking and parameter-
ization problems, and section 3.4 addresses the processing of this component model. Here
we show how the analysis step and, as a consequence, the checking and parameterization
problem in hydraulics can be automated. In addition to the inference concepts in section
3.4, we develop in section 3.5 a preprocessing approach for a particular class of hydraulic
behavior constraints.

3.1 Placement of the Problem

Hydraulic systems are used to perform various kinds of manipulation tasks. Such a task
can be a lifting problem, the actuation of a press, or the realization of a robot’s kinematics.
A hydraulic system consists of hydraulic and, eventually, some mechanical and electronic
components.

Hydraulic Components

Hydraulic components are the building blocks of the hydraulic checking problem. So it
is useful to introduce some of their underlying physical principles to convey an idea of

11

12 CHAPTER 3. CHECKING OF HYDRAULIC SYSTEMS

the configuration process’s complexity. Note that hydraulic engineering is a domain which
cannot be treated in detail here. We refer to [27] and [25] where deeper information relating
hydraulics is provided.

Hydraulic components can be divided into three classes: (i) work components like cylin-
ders, (ii) control components like valves, and (ii7) service components such as pumps, tanks,
and pipes. All components are described by their stationary and their dynamic behavior.

Cylinders are the actuators of a hydraulic system; they transform hydraulic energy into
mechanical energy. Valves in the form of relief valves, throttle valves, proportional valves,
or directional valves control flow and pressure of the hydraulic medium. Pumps provide
the hydraulic energy, i.e., the necessary pressure p and flow (). Figure 3.1 and 3.2 show the
basic structure of a differential cylinder and a proportional valve respectively. Below these
figures a small extract of the related behavior description is given.

AK AR
D f Ay Ag = Piston areas p = Pressure
v, Fom d, = Piston friction Q = Flow
|l Epy= Oil elasticity Vp = Cylinder volume
P4 [I N F = Force v = Velocity
| m = Mass x = Elongation
0 X
Figure 3.1: Basic structure of a differential cylinder
F = pa-Ax —pp-Agp—d, v (stationary force balance)
Qa = Ag-v (continuity condition)
= palt) - — pglt) - —m-v(t)—d, v orce balance
F(t pa(t) - A — pg(t) - Ar t d, t f bal
. EL. .
- __Zoa — .
palt) = AL (Qa(t) — Ax - v(t)) (pressure rise)
Pa P i = Current
>< Ky = Pressure gain
iy ¥ ip p = Pressure
rp Q% prQr Q = Flow
}x—(’)—{ x = Elongation
Figure 3.2: Basic structure of a proportional valve
x = K, (ia—ip) (position of valve piston)
Ry(z) = Ry, -2 (valve resistance)
position = crossed, ifiq <ip (valve position)
QRp = —-Qp (continuity condition)
If crossed . 9
pp = pp+sign(Qp) - Ry - Q% (valve pressure drop)

Note that hydraulic components may have states that determine which part of their
behavior description is actually valid.

3.1. PLACEMENT OF THE PROBLEM 13

The Checking Task

The following situation is the starting point of the problem of setting a system into opera-
tion: We are given a set of demands D and a hydraulic system C, and the task is to check
if there are syntactical, geometrical, or behavioral faults. E.g., to identiy behavioral faults,
the course of the forces and velocities of the cylinders or the admissible pressure values of
crticial components have to be checked. If a fault is detected, the hydraulic system C' must
be modified. L.e., setting C' into operation may constitute a sequence of checking and mid-
ification tasks, where, in turn, the checking task is comprised of the two subtasks analysis
and evaluation. Figure 3.3 illustrates this cycle. Here, B. denotes the expected behavior
that can be derived canonically from D, and B¢ denotes the behavior that is produced by
the configured system C'.

C

lAnalysis

Be

Modification

\

D ~ B

Figure 3.3: An abstract view of setting a system into operation

Let us take a closer look at the procedure of figure 3.3.

Analysis. Main job of the analysis step is the simulation of the hydraulic system C. In
this connection, the engineer decides up to which level of detail the components’ behavior
must be modeled in order to obtain useful simulation results. While the stationary behavior
is investigated always, the dynamic behavior is simulated for sensitive parts of the system
only. Note that both cases are difficult from the mathematical standpoint since equation
systems with non-linear and differential relations must be processed. Moreover, several
assumptions about the components’ states have to be met in order to set up a global behavior
description. If a state assumption is wrong, the whole computation will fail and a new
global description must be set up. Proposing useful assumptions needs both experience and
a thorough investigation of the system’s topology.

Evaluation. Within the evaluation step the analysis results are balanced with the demands
D. Among others, the following questions must be answered: Does the switching logic
realize the desired behavior? Will the piston velocities and forces be as prescribed? Are the
maximum pressure values permissible? Do all geometrical connections fit? Will the veloc-
ity of flow allowed never be exceeded? Are the prescribed security and control measures
considered?

Modification. Input for the modification step is the interpretation of the deviations found
during the evaluation stage. E.g., if a hydraulic system has logical faults, the topology
must be adapted or redesigned. Correcting dimensional faults means to select components
of same type but with a different characteristic: valves, for instance, are exchanged with
respect to their hydraulic resistance, cylinders with respect to their cross-section. After
such a modification all computations have to be performed again.

14 CHAPTER 3. CHECKING OF HYDRAULIC SYSTEMS

Let us again consider the procedure in figure 3.3. An automation of the entire cycle
is not possible because of the creativity that could be needed within the modification step
Be — C. However, this modification step is usually not time-consuming for a human
expert. Put another way, a reduction of just the analysis step’s complexity would lead to a
noticeable simplification of the entire process of setting C' into operation.

Also note that automating the time-consuming checking tasks will allow human experts
more room for creative jobs. Moreover, efficient checking concepts form the base for other
tasks such as parameterization and optimization.

3.2 Analyzing Hydraulic Systems Analysis

As argued in the previous section, an automated analysis of hydraulic systems is the key
for the checking of hydraulic systems. In this place we will investigate the analysis step in
more detail.

From Local Behavior to Global Behavior

Loosely speaking, hydraulic systems analysis takes a circuit diagram as input and produces
a behavior description of the entire circuit. For this, aside from the simulation job, also
some kind of model synthesis problem has to be tackled.

By model synthesis we comprise all steps that are necessary to set up a model which is
both correct in a physical sense and locally unique.

Note that even though a circuit diagram may establish a correct physical model, it is
not locally unique as a rule: Each component of the circuit is defined by a set of behavior
constraints from which the actually relevant ones must be selected. And, verifying the cor-
rectness of a local behavior description needs an expensive simulation of the entire system
in most cases.

The indeterminacy of local behavior descriptions originates from the following reasons:

1. Level of Description. Each hydraulic component can be described at various levels.
To avoid superfluous computational effort, an adequate level of detail, respecting
both the rest of the circuit and the simulation intention, has to be determined for each
component. On the other hand, we have to ensure that all components’ descriptions
fit together.

2. Dynamical Simulation. It must be analyzed which part(s) of the circuit require a
dynamical investigation. For the possible components a stationary and a dynamic
behavior model must be determined.

3. Component States. Most components have different physical states, each coupled
with a particular behavior description. Which state the actually valid is depends on

3.2. ANALYZING HYDRAULIC SYSTEMS ANALYSIS 15

the entire system and the actual input parameters. Example: A pressure relieve valve
may be opened or closed.

4. Topology. A hydraulic system’s topology can change with a component’s state. Ex-
ample: Dependent on its switching position a proportional valve connects different
parts of a hydraulic network.

5. Thresholds. Even for a fixed state the direction or the absolute value of a physical
quantity, which is a-priori unknown, may cause different behaviors of a component.
Example: A turbulent flow is described by another pressure drop law than a laminar
flow.

Tackling point 1 and 2 requires an engineers experience and heuristical knowledge in
the first place. The points 3, 4 and 5 reveal that the analysis step C' — B¢ does also
contain a selection step C' — M, where M denotes a set of behavior descriptions that
are valid in the actual situation of the hydraulic system. Often, an additional cycle of model
selection and model simulation is necessary to get a grip on this selection problem. Figure
3.4 illustrates the situation.

Determination ?‘
description leve

(my, iy oy 1) < Model modification 3Hyd
Model
selection
Mc
Model
simulation

Figure 3.4: What happens during the hydraulic analysis step

Remarks. Let {my, ..., m;} comprise the behavior descriptions, say, models of all com-
ponents at the adequate level according to point 1 and 2. From this set a subset is selected
(= Mc), simulated (= B(), and compared to By, 4, which stands for the universal behavior
laws of hydraulics. In the case that the simulated behavior B is physically contradictory
or undetermined, M must be modified.

This cycle of selection, simulation, evaluation, and modification constitutes an inher-
ently combinatorial problem,; it is solved when the physically correct behavior descriptions
according to the points 3 to 5 and Bp,q are determined.

Note that this model synthesis problem is not treated explicitly in literature on the sub-
ject. Existing simulation tools leave the problem to the user who has to set up the correct
equations and conditions respectively. The next subsection exemplary illustrates this state-
ment.

16 CHAPTER 3. CHECKING OF HYDRAULIC SYSTEMS

Existing Tools

We found special-purpose and standard tools that support the analysis of hydraulic systems,
e.g. MOSIHS [36], OHCS [34], MOBILE [21], or SIMULINK [33]. The majority of these
tools has been developed to envision the dynamical behavior of (hydraulic) systems. So,
typically configurational aspects like different checking or optimization tasks are addressed
to a small part only. Another characteristic of such simulation tools is that they hardly
support model synthesis. Subsequently, the efficiency that comes up with an automated
model synthesis is pointed out at the commonly used simulation tool SIMULINK.

Modeling a system with SIMULINK requires the specification of a directed behavior
graph whose nodes are mathematical functions; in fact, the complex transformation of a hy-
draulic circuit diagram into a mathematical description is left to the user. Figure 3.5 shows
a simple circuit consisting of a cylinder and two hydraulic resistances. Its SIMULINK-
counterpart is depicted in figure 3.6.

Fo

PB/QB LT
Pau I

Figure 3.5: Hydraulic specification of a simple circuit

File Clipboard Edit Options Simulation Style

. |
» @ _ 145 Graph Scope
Gainl Integratgr Integratar
Sum1 E @
Gain2—‘
Graph Scopel

Gaind Product Product2—‘
Gaind Product | pyoqicrg
(k>
StepFond Gainb

«[] +

Step Fen

Step Fon w»@a
Sum Gain

Step Fond Sum3

*

Figure 3.6: Specification of the example in SIMULINK

Remarks. Note that only the simpliest stationary dependencies are modeled in figure 3.6.
Also note that if a user wanted to investigate the same circuit at some deeper level, he would
have to start from scratch with the analysis process.

While the circuit diagram can be understood and created by every engineer, a descrip-
tion level similar to that in figure 3.6 requires a hydraulic specialist. Certainly, the building
blocks of SIMULINK are flexible, but they are too simple to reduce the analysis step’s com-
plexity noticeable.

3.3. MODELING HYDRAULIC SYSTEMS 17

Discussion

An automated analysis step is a necessary condition for all kinds of configuration support
such as automated checking, parameterization or optimization of hydraulic systems. The
difficulty of the analysis step’s automation comes up with the following points:

1. Arbitrary Structures. Hydraulic circuit analysis needs the processing of arbitrary
structures and thus, some kind of model synthesis—that is: determination of the
components’ description level, selection of local behavior descriptions, and composi-
tion of the local descriptions to a global behavior model. By contrast, if all structures
of hydraulic systems were already known, the corresponding global models could be
precalculated.

2. Definable Component Behavior. The behavior of all existing and all components de-
veloped in future cannot be anticipated. Also, there is disagreement of how hydraulic
components behave with respect to particular physical details. Thus, not only a hy-
draulic system’s structure but also the component descriptions must be user-definable
up to a point.

3. Heterogeneous Constraints. Behavior descriptions, user demands, necessary physical
knowledge, heuristic design knowledge, etc. form a set of heterogeneous constraints
that comprises several types of numerical and symbolic relations. These constraints,
enclosed the dependencies between different types of constraints of course, must be
both exactly formulated and processed.

3.3 Modeling Hydraulic Systems

In order to automate the formerly described checking task we need a modeling concept
for hydraulic systems. This section presents a domain-oriented component model for hy-
draulic systems that, in particular, addresses the previously discussed aspects: modeling of
arbitrary hydraulic structures, definable behavior at the component level, and coupling of
heterogeneous constraints. Using this model, we are able to define precisely the hydraulic
checking and parameterization problem.

A Component Model for Hydraulic Configuration

The “classical” approaches of description of technical systems are discussed by deKleer and
Brown [9], Kippe [22], Kuipers [24], Struf} [42], or Voss [45]. Strul’s approach is similar
to that of Kippe’s COMMODEL system. Both approaches are derivatives of deKleers’s and
Brown’s modeling ideas that largely found on the locality-principle and the no-function-
structure-principle! [9].

"Loosely speaking, a component will fulfill the no-function-structure-principle if its description never
depends on its context of use.

18 CHAPTER 3. CHECKING OF HYDRAULIC SYSTEMS

The approaches mentioned have the following concepts in common: (i) They distin-
guish between components that realize the actual behavior and, for connection purposes,
linking-components without behavior. (i) The properties of the medium transported (e.g.
electric current or oil viscosity) are modeled as an integral part of the components. Bound
up with these concepts are some disadvantages concerning the structure and behavior defi-
nition of technical systems [18]. The approach introduced now is more flexible.

The modeling idea grounds on the distinction of objects, gates, unifiers, and the types
of information transported. The unifiers serve as sources or sinks of the information types
in a technical system; the objects are characterized by their behavior constraints and their
gates. Each gate is connected to exactly one unifier. Note that objects will have access
to the information of those unifiers connected to their gates. Also note that objects which
share the same unifiers share the unifiers’ information too.

Objects, gates, and unifiers define a system’s topology and its possible flows of infor-
mation. Figure 3.7 illustrates these dependencies, Definition 3,] formalizes them.

U Object
Gate
O Unifier

Figure 3.7: Building block abstraction of a technical system

Definition 3.1 (Building Block Model). A building block model is a tuple (O, M, U, v, 0)
whose elements are defined as follows.

e O is an arbitrary finite set, it is called the object set.
e M is an arbitrary finite set, it is called the set of information types.

e U is a finite multiset of unifiers. Each u € U denotes an arbitrary subset of M, i.e.,
uC M,uecU.

v : O — N is a function and specifies for each object 0 € O the total number of
gates.

e §: O x N — U is a partially defined function. d(o,n), 0 € O, n € N specifies the
unifier of object o at gate n and is defined for n < (o) only.

Using these concepts, a hydraulic system is modeled as follows.

1. Each component of the system (valve, cylinder, pipe, etc.) is associated one-to-one
with an element in O. (o) defines a component’s number of gates; e.g., if o is
associated with a pipe then v(0) = 2.

2. All physical quantities that have no manifestation within a component (pressure, flow,
force, velocity, etc.) form the set M of information types.

3.3. MODELING HYDRAULIC SYSTEMS 19

3. ¢ is defined implicitly by the system’s topology: For each link between two compo-
nents in the hydraulic system a unifier with an appropriate subset of M is introduced.
Example: If in the real system a certain pipe is connected with a particular valve fit-
ting, in the building block modeling both the pipe’s and the valve’s fitting will share
the same unifier u; u then ought to provide the information types “flow” and “pres-
sure”.

4. Each object is described by a set of behavior constraints that models the behavior of
its associated component. An object’s behavior constraints can refer to that informa-
tion types only (e.g. a pressure or a flow) the object has access to via its gates. Note
that same information types in different unifiers will establish different constraint
parameters.

Figure 3.8 shows an example.

flowl[1]-Ag = velocity[2]

1
Cylinder pressure Pipe B

2

pressure[1] = pressure[2]
flow([1] = flow[2]
Pipe A

U Object m
N - electric

Gate gocntrol w Valve -
O Unifier

Figure 3.8: Modeling a hydraulic circuit with the building block concept

Until now we left open how behavior constraints for the objects in O can be formulated.
This is made up now—we outline the key concepts of a language for behavior constraints
that is tailored to the recently defined building block model.

e Relations, defined over numerical and symbolic parameters, are the basic elements of
our constraint language. A relation may be defined as follows. (i) explicitly, in the
form of a finite set of tuples; (ii) implicitly, in the form of a boolean statement or an
equation, which is composed of numerical or symbolic expressions.

Whereas boolean statements are treated as tests, the semantics of equations is handled
also in a deductional manner: If an unknown parameter constitutes one side of an
equation while the other side can be evaluated, the “="-sign will produce a parameter
assignment. If both sides of an equation can be evaluated, the “="-sign will produce a
boolean test. In all other cases an equation may be transformed according to algebraic
or some other rules allowed for the constraint.

e A behavior constraint is usually associated with a particular object 0. The parameters
the constraint is defined upon refer to the information types at the gates of o and
to the internal properties of o. The exact assignment of a parameter is indicated by
its tag, which is either a gate specifier or the key word “self”. E.g., the following

20

CHAPTER 3. CHECKING OF HYDRAULIC SYSTEMS

algebraic constraint defines the pressure drop of a valve between gate 1 and gate 2
due to Bernoulli:

pressure[l] — pressure[2] = Ry [SELF] - flow[l]2

To each parameter a domain is defined. This domain is either an interval v C R ora
finite set itemizing each single value allowed. Examples:

Uyalve_resistance — [0017 02]7
Uvalve_position = {crossed, blocked, parallel}

The semantics of the latter is that, aside from Unknown, exactly one element of the
specified set is admissible for the parameter valve_position.

Parts of an object’s behavior description need to be activated or deactivated—e.g. to
imitate the different states of a hydraulic component. A universal concept to realize
such model selection constraints are rules. Thus, we allow behavior constraints to be
embedded within rules. The condition part of a rule is a boolean statement composed
of numerical and symbolic expressions; it specifies the conditions under which a be-
havior alternative is valid. The conclusion part defines the behavior constraints of the
alternative and possibly additional rules. The following example shows a simplified
pressure relief valve where the state “activated” is associated with a specific behavior:

IF state[SELF] = activated
THEN Q[1] = —Q[2] AND p[1] — p[2] = Ry[SELF] - \/|Q[1]|
ELSE Q=0 AND Q[21=0

The constraints in the conclusion part will be considered during behavior processing
only if the condition part evaluates to True.

Behavior constraints can be supplied with metaknowledge that specifies hints to be
exploited during the behavior processing. This knowledge may indicate a constraint’s
description level, or whether a constraint contains stationary or dynamic dependen-
cies, or some other processing directive. Table 3.1 gives some examples.

Constraint Metaknowledge

pl1] — p[2] = Ry[SELF] - Q[1]? | level-0 description,

stationary behavior

QI+ Q21+ Q[31=0 level-independent description,

process locally

Table 3.1: Metaknowledge specifications for behavior constraints

Remarks. The building block model of Definition 3.7 along with the outlined behavior
language make up our component model for the configuration of hydraulic systems.

3.4. SOLVING II° IN HYDRAULICS 21

Instances of 11° in Hydraulics

Remember the behavior-based configuration problems defined in chapter 2. Obviously,
the component model above is a device-oriented interpretation of such a behavior-based
model: It represents the engineer’s view of configuration in the sense that it introduces
domain concepts, defines a semantics, and is oriented by knowledge acquisition purposes.

Hence, hydraulic analyzing, checking, and parameterization problems are particular
instances of the generic behavior-based checking problem 11°, defined on page 9.

More precisely—a behavior-based checking problem (I1€) is defined by the tuple (O,
F,V,B,T, D, S). These elements are related to our component model as follows.

e O is equivalent to the objects of the building block model and denotes the hydraulic
components.

e All parameters in the objects’ behavior constraints form the set /' of functionalities.
Each element f € I denotes a (possibly constant) function in the parameter “time”.

e I/ comprises all functionalities’ value sets.

e The set B of behavior constraints comprises the behavior descriptions of the hydraulic
components at some definite level.

e 1" comprises all functionalities’ tests.
e D is the set of demands on the hydraulic system, stated by a customer.

e The pairs in S correspond to the elements in the unifiers u,u € U and define the
structure of a hydraulic system.

Remarks. The checking problem II¢ in hydraulics defines a hydraulic system and a set of
demands. Checking this system means both determining a set) of tuples (f,x), f € F,
x € vy, which are consistent with all behavior constraints, and verifying if none of the
demands is violated.? These jobs are done during the hydraulic analysis and evaluation step
respectively.

Tackling a parameterization problem means to solve the checking problem II° for a
hydraulic system that is underspecified within one constraint or other.

3.4 Solving I1° in Hydraulics

This section introduces the necessary concepts to solve instances of I11I¢ in hydraulics. Fig-
ure 3.9 shows the steps that are performed when analyzing, checking, or parameterizing a
hydraulic system.

2A precise definition is given in section 2, page 9.

22 CHAPTER 3. CHECKING OF HYDRAULIC SYSTEMS

C, D

Determination of
description level

Y

g

v

Synthesis of
behavior model
Formulation Modification
of synthesis of component
restrictions parameters
Simulation of
behavior model | f¢ contradictory physics
C : Hydraulic circuit % o
D: Demands Q If unfulfilled demands

II°: Hydraulic checking problem
Q : Quality set with tuples (f, x)

Figure 3.9: Solving I1¢ in hydraulics

Remarks. Given is a hydraulic system C' for which, in a first step, an adequate description
level has to be determined. Based on this modeling of C' and the set D of demands, an
instance of II¢ can be stated. Within the subsequent synthesis and simulation steps the set
@ of functionality-value pairs, which explicitly envisions the behavior of C, is inferred.)
constitutes a solution of II° if both all behavior constraints and all demands can be fulfilled.

Determination of the Description Level

The components of a hydraulic system can be described at different levels of detail. To
avoid superfluous computational effort, a component’s behavior description should be as
simple as possible—but sufficiently detailed yet to model all necessary relations.

To get a grip on this model formulation problem we developed, together with Lemmen
[28] and Suermann [43], the concept of variable hydraulic modeling levels. In particular,
Lemmen defined a model formulation scheme that, dependent on a component class, distin-
guishes up to five predefined description levels. Given a hydraulic system C', then for each
component the adequate description level can be inferred by means of a knowledge-based
decision procedure that bases on the natural frequencies and gain factors of the components
in C, a user’s simulation intention, and the topology of C'. A detailed description of the
model formulation scheme and the decision procedure can be found in [28] and [43].

Since the determination of the adequate description level is a hydraulic engineering
problem in a high degree it shall not be extended here. Henceforth, we assume all com-
ponents of a hydraulic system described at some definite level; analyzing, checking, or
parameterizing such a system is an instance of I1°.

3.4. SOLVING II° IN HYDRAULICS 23

Synthesis and Simulation of Behavior Models

Given is an instance of II° in hydraulics. 1I° defines a constraint satisfaction problem con-
sisting of numerical and symbolic relations. Actually, II° cannot be solved by a universal
“constraint satisfaction algorithm” but needs the interplay of several computation methods,
and a global control mechanism that separates and triggers sub-jobs, maintains alternatives,
and controls model synthesis.

As argued before, model synthesis is not a deterministic procedure here; there exist
choice points where, dependent on the actual input values, parameter alternatives, or phys-
ical regularities the valid component model must be selected: For each component 0 € O,
O defined by II¢, let M, = {m,,, m,,, ..., m,, } comprise the k, behavior alternatives of
o. If a component o has a locally unique model, say, a pipe for instance, |M,| = 1. Let M«
be the Cartesian product of the M,, 0 € O. Obviously, M comprises the possible global
models of the hydraulic system C' defined by II¢ and thus, M defines the total synthesis
search space.

Before all physical parameters of a hydraulic system C' can be computed, a physically
consistent model Mo € M has to be determined. Conversely, whether a behavior model
M is physically consistent can solely be verified via simulation. To illustrate the search
for a consistent behavior model in M, it is useful to think of the components’ behavior
constraints being divided into model selection constraints (cf. page 20) and behavior con-
straints. The search procedure can be outlined as a cycle comprising the following inference
steps:

1. Component Selection. Select a component with undetermined behavior.
2. Model Selection. Select a behavior alternative for this component.

3. Synthesis. Identify and evaluate active model selection constraints, and synthesize
the emergent behavior model.

4. Simulation. Simulate the synthesized behavior model by evaluating the behavior con-
straints.

5. Model Modification. In case of physical inconsistencies or unfulfilled demands for-
mulate synthesis restrictions and trace back to a choice point.

Figure 3.10 illustrates the search process graphically.

The search comes to an end if either a global, consistent behavior model is found that
fulfills all demands or no further choice point exists.

Remarks. Different components constrain the model synthesis step in a different manner.
Hence, the order by which undetermined components are processed may play a crucial role.

The evaluation of behavior constraints, mentioned in the simulation step of the above
search procedure is a demanding problem: The components’ functional constraints must
be parsed, symbolic relations must be separated from numerical relations, equations have
to be transformed, equation systems have to be formulated in some normal form, rules

24

CHAPTER 3. CHECKING OF HYDRAULIC SYSTEMS

of behavior

Exchange %
alternatives

I

Select component o,
with behavior alternative m;

@.00
\,
\
O.@0

of behavior

¢ Selection
alternatives

modify componento, Select component o,
with behavior alternative m;

Q Set of selected behavior descriptions
Q Consistent simulation of selected behavior descriptions

. Inconsistent simulation

Figure 3.10: Exploring the synthesis search space M ¢

have to be processed, etc. Moreover, through the variety of constraint types and constraint
dependencies, the backtracking mentioned in the model modification step will become a
sophisticated job, too. In this place, we will not go into constraint processing details but
merely give an overview of the inference methods necessary to solve II°.

Necessary Inference Methods

Following numerical sub-jobs must be performed when processing 11 in hydraulics:

e Solving Linear Equation Systems. Input is a linear equation system in the matrix
form A - x + b = 0 where A is regular. Output is the vector z that solves the equation

system.

e Solving Non-Linear Equation Systems. Input is a continuous, non-linear function
f+ R™ — R" and a possibly empty set of restrictions constraining the value ranges
of the solution in m < n dimensions. Output is a vector x that fulfills both the
equation f(x) = 0 and all restrictions.

e Solving Initial Value Problems. Input is a system of ordinary differential equations
y' = f(z,y) where f : G — R™is a continuous function defined on G = [a, b] x R",
and an initial condition & € R™. Output is a function y = wu(z) that solves the
differential equation system and fulfills the initial condition u(a) = a.

Algorithms that process the itemized problems are given in [39]. Aside from meth-
ods coping with numerical problems, we need the following methods for symbolic value

processing:

3.5. PREPROCESSING OF STATIONARY BEHAVIOR 25

e Local Value Propagation. Input are the sets [’ (functionalities), V' (value domains),
B (behavior constraints) as described on page 21, and an initial value assignment
X. Each behavior constraint b € B, defines a relation on vy, X vp, X ... X vp,
where f,, € F, {b1,ba,..., 0} C {1,2,...,n} and n = |F|. X defines a tuple
(x1,2,...,2,), x; € v; U{unknown}, v; € V where some or all elements may be
unknown.

By local value propagation we designate a deduction mechanism that exploits only
one constraint definition in B at the same time to compute values for the unknowns
in X. An example for such a mechanism is the following:

1. Select a behavior constraint b € B where all parameters except one are known.
If no such constraint exists, local propagation comes to an end. Otherwise,
without loss of generality, we assume x; to be the unknown parameter.

2. Determine a value for z; € v; such that the relation defined by 0 is fulfilled and
all behavior constraints also defined on v; stay consistent. If no such z; can
be determined but earlier choice points exist, invoke backtracking. Otherwise,
local propagation terminates and (B, X) is called inconsistent.

3. Continue with 1.

Remarks. The algorithm computes a globally consistent solution if one exists. Never-
theless, dependent on the constraints and the domains they are defined upon, several
approaches for local propagation and consistency definitions exist on which shall not
be elaborated here.

Constraints may be defined extensionally, by a complete enumeration of the relations’
tuples, or implicitly by a set of functions. In the latter case, the power and flexibil-
ity of local propagation depends on the algorithms that realize the evaluation of the
functions. Note that the principle of local constraint evaluation can be applied to any
type of relation.

e Rule Inference. Rule inference in the form of forward chaining is required to evaluate
selection constraints, functional constraints, and demand constraints. Note that not
only plain symbolic relations but also dependencies between different sets of behavior
constraints must be handled.

o Algebraic Transformation. Algebraic transformation capabilities are necessary to
process the implicitly defined constraints and to generate the input forms for the nu-
merical computation methods.

3.5 Preprocessing of Stationary Behavior

Processing stationary behavior constraints requires methods capable of coping with equa-
tion systems, local propagation, and algebraic transformation. The approach presented now
substitutes the computation of local connections with that of global connections. The key
idea is to preprocess the topology of a hydraulic system: global structure information is
“compiled” into local behavior constraints, which are added to the original constraints. The

26 CHAPTER 3. CHECKING OF HYDRAULIC SYSTEMS

resulting component descriptions can be processed by local propagation, which is more
efficient than the solution of equation systems necessary for the original descriptions.

Motivation

A large part of a hydraulic system can be considered as a network consisting of resistances,
sources, and sinks. Pipes and valves establish the hydraulic resistances (/2), while pumps,
tanks, and—of course—cylinders act as sources (s) and sinks () respectively. Figure 3.11
depicts an example.

Cylinder Valve

/ __Pump

K S B

. /Tank

Lt —]

Figure 3.11: An abstract view on a simple circuit

A central task of the hydraulic checking problem II°¢ is the computation of a total flow
distribution and of all pressure drops for such a network. As a difference to electrical
resistors, hydraulic resistances define non-linear connections—more exactly: in most cases
the potential difference p; — p- at a hydraulic resistance is proportional to the quadratic
flow:

p1—p2 = Ry, - sign(Q) - Q°

The previous section introduced local propagation as a method that evaluates single
behavior constraints of components in order to compute unknown functionalities. This
method is very efficient since no global relations are exploited but will terminate, if no
constraint can be found where all parameters except one are known. E.g., if two hydraulic
resistances are connected in parallel, the computation of the flow distribution and the pres-
sure drops often requires the solution of a non-linear equation system. Figure 3.12 gives
examples of structures that may be part of a hydraulic resistance network.

Series Parallel Series—parallel Close

© Connection @ @
— Resistance

Figure 3.12: Possible substructures in a resistance network

The edges denote hydraulic resistances while the points stand for components where all
incident resistances are connected (unified). Such components might be T-connections or
other connections that establish an area of equal potential. Within a context-free modeling,
the only behavior constraint of a connection is the continuity condition:

QN +Q2+...+Q,=0

3.5. PREPROCESSING OF STATIONARY BEHAVIOR 27

Preprocessing means the introduction of additional constraints, called proportion con-
straints here. Proportion constraints are computed from the resistances between a source
and a sink. They are installed in the connections and provide information about how the
flow () is distributed—example:

Qi=c1-Qc N Qr=03-Qc N Q1 +Qa=0Q., c1,c0 € RT

Q. is introduced as a new variable and denotes the entire flow at a connection, ¢; and ¢,
determine how this flow is distributed, and Q). is substituted for); + () in the original
continuity condition. Obviously, by aid of proportion constraints, local value propagation
will be sufficient to distribute the flow at the connections and to compute all related pressure
drops, if at a network source (e.g. at a pump) a flow is given. Of course, proportion con-
straints violate the no-function-in-structure-principle since they are not context-free: They
exploit global information about resistances and the network’s structure.

The following subsections show how those structures of a network that cannot be tack-
led by local propagation are found and how the related proportion constraints are computed.

Finding All Relevant Substructures

In principle, proportion constraints could be computed for a network’s global structure in
a single computation step. But for flexibility reasons, it is much more appropriate to cut
a network into subnetworks and to compute proportion constraints locally for each sub-
structure: The smaller a separated subnetwork is the more flexible the computed proportion
constraints can be used.

Proportion constraints can be computed only for subnetworks of a particular structure.
Now we will define these structures and present methods to identify them as parts of a
global network. We will use the following definitions of graph theory in the standard way:

1. A multigraph G is a triple (V, E, g) where V, E # () are finite sets>, V N E = (), and
g: E — 2V is amapping with 2V = {U|U C V, |U| = 2}. V is called the set of
points, E is called the set of edges, and g is called the incidence map.

2. A graph H = (Vy, Ey, gg) will be called subgraph of G = (V, E., g),if Vg C V,
Ey C FE, and gy is the restriction of g to £/y. A subgraph will be called an induced
subgraph on Vi, it Ey C E contains exactly those edges incident to the points in
V. ForT'C V, G\ T denotes the subgraph induced on V' \ 7T'.

3. Atuple (eq, ..., e,) will be called a walk from v to vy, if g(e;) = {vi_1,v;},v; €V,
i = 1,...,n. G will be called connected, if for each two points v;,v; € V there is
a walk from v; to v;. If G is connected and G \ v is not connected, v establishes an
articulation point.

4. k(G) is called the connectivity of G and is defined as follows: x(G)

= min{|T| :
T C Vand G \ T is not connected}. G is called k-connected, if k(G) > k.

Figure 3.13 illustrates the definitions.

3We restrict ourselves to finite graphs here.

28 CHAPTER 3. CHECKING OF HYDRAULIC SYSTEMS

A multigraph G with articulation point 2 : 1 o<>g@>3

The induced multigraph G \ {3} : 1 O 2

A 2-connected (= biconnected) graph : @<z>

Figure 3.13: Sample graphs

The edges of a multigraph stand for the hydraulic resistances such as pipes and valves,
the points connect the resistors and represent areas of equal potential. We need multigraphs
instead of graphs here since components of a hydraulic system may be connected in parallel.
Moreover, we shall restrict to particular multigraphs, the so-called resistance networks:

Definition 3) (Resistance Network). A resistance network N is a tuple (G, p, s,t) where
G = (V, E,g) is a connected multigraph, p : £ — R™" is a mapping, and s,t € V are
two points. p(e),e € F is called the resistance of e; s, ¢ are called the source and the sink
respectively.

Remarks. In contrast to “flow networks” or “capacitated networks” that define capacity val-
ues for the edges of a graph, p defines resistance values in the physical sense of hydraulics.
Resistance networks and capacitated networks are used in connection with flows. We refrain
from a precise definition of flows but shall point out three important characteristics:

1. A flow defines both a flow value and a flow direction on the edges of a resistance
network.

2. To each point v € V' \ {s,t} applies the continuity condition: The total of all input
flows equals the total of all output flows.

3. All incident edges of s (of ¢) establish output (input) flows only. The total of s’s
output flows equals the total of ¢’s input flows. The latter is a direct consequence of
2.

Note that a flow distribution in a physical sense is nothing to do with a flow mapping un-
der a maximum-capacity interpretation of p. In the former case, a flow distribution depends
on the resistance ratios of all edges. In the latter case, all edges’ capacity values must be
considered as well, but the capacities are independent of their actual context in the graph:
Every edge can be checked locally whether its related flow violates the edge’s capacity.

We are interested in those parts of a network* whose flow distribution can be computed
independently of the rest. For obvious, physical reasons, each subnetwork whose resistance
behavior can be reproduced by a substitute resistance—i.e., by a single edge—constitutes
such a part. Following definitions will be useful:

“Henceforth, we shall refer to a “resistance network” simplified as “network”.

3.5. PREPROCESSING OF STATIONARY BEHAVIOR 29

Definition 3 3 (Independent Subnetwork). Letbe N = (G, p,s,t) a network, H a sub-
graph of G induced on V; C V with |Vy| > 2, and py the restriction of p to Ey. Then,
a network Ny = (H, py, sy, ty) will be called an independent subnetwork of N, if the
following conditions hold:

(i) Every walk from s (from ¢) to a point in contains either sy or ty.
(if) Every walk from a point in G \ Vj to a point in H contains either sy or ¢ 5.

An independent subnetwork Ny, = (Hi, py,, Sy, ty,) Will be called minimum indepen-
dent subnetwork of N, if there exists no independent subnetwork Ny, = (Hs, pr,, Sty, ti,)
where [, is induced on a proper subset of Vi, .

Remarks. Since any two adjacent points establish a source and a sink respectively, we claim
H to be defined on more than two points. Condition (i) guarantees some kind of “dipole
character” of H. Condition (ii) ensures that there are exactly two connections for a substi-
tute resistance. Note that this is not implied by (i) . Also note that proportion constraints
computed for minimum independent subnetworks provide the maximum flexibility in the
course of local propagation.

Before we turn our attention to the question as to how minimum independent subnet-
works are detected, we need a further definition:

Definition 3 4 (Triconnected Component, Biconnecting Points). Let G = (V, E,g) be a
multigraph, |V| > 2, (G) = 2, and {v;,v;} € V two points such that H = G \ {v;,v;}
is not connected. Moreover, let be H; a resulting connected component of / and Vi, C V
the set of points inducing ;.

If no two points {w;, w;} € V can be found such that a resulting connected component
of G \ {w;, w;} is induced on a proper subset of Vy,, then the graph H, induced on Vi, U
{vi,v;} shall be called a triconnected component of G. The points v;, v; shall be called the
biconnecting points of H, related to G.

Figure 3.14 gives an example.

Triconnected components of G

G &
® Biconnecting points % \/

Figure 3.14: Examples for triconnected components and biconnecting points

Lemma 3.5 (Independent Subnetwork). Letbe N = (G, p, s,t) a network and |V | > 2.

1. If k(G) = 1,1et Gy, . .., G, denote the biconnected components of G. Then, if |V;| >
2, there exist two points s;,t; € V; such that N = (G, p;, s;, t;) is an independent
subnetwork of N, i € {1,...,n}.

30 CHAPTER 3. CHECKING OF HYDRAULIC SYSTEMS

2. If k(G) = 2, let denote Gy, . . ., G,, the triconnected components of G and s;, t; the
biconnecting points of G; related to G. Then, N; = (G}, p;, s;, t;) will be a minimum
independent subnetwork of N, if V; \ {s;,t;} N{s,t} =0,i € {1,...,n}.

3. If ks(G) > 2, N will not contain an independent subnetwork.

Proof. (1) Let GG; be a biconnected component. We have to investigate two cases: V;
contains either one or two articulation points of G. Case A: v is the only articulation point
in V;. Then, either sort mustbein V. If s € V;, sets;, = sand ¢, = v;if t € V, set s;, = v
and t; = t. Case B: Let v;, v; be the articulation points in V;. Then, s; = v; and t; = v;. We
can check easily that (G}, p;, s;, t;) fulfills the definition of an independent subnetwork.

(2) Let GG; be a triconnected component. Part one (independent subnetwork): According
to the definition of triconnected components, a walk from any point in G \ G; to a point in
G, contains either s; or ¢; (this is a consequence of the biconnectivity of). Thus, condition
(if) of the independent subnetwork definition is fulfilled. Also, condition (ii) together with
the restriction that V; \ {s;,t;} N {s,¢} = 0 fulfill part (i) of the independent subnetwork
definition. Part two (minimality): We assume /N; not to be minimum. Then, there exists an
independent subnetwork H = (H, py, sy, ty) with H = G;\ T, T C V;. Le., G; cannot be
a triconnected component. This contradicts the condition.

(3) Is obvious since the x(G) < 2is a direct consequence of the independent subnetwork
definition. o

Remarks. The independent subnetworks found for x(G) = 1 are not necessarily minimum.
They might be processed further until the connectivity of their related graph is > 1. The
complexity for the computation of all minimum independent subnetworks of a network NV
with a graph G = (V, E, g) can be estimated with O(|V| - |E|). We outline only the proof
idea. All triconnected components of a graph G with x(G) > 1 can be found as follows. A
point v € V' is selected and the graph H, induced on V' \ {v}, is investigated with regard to
its biconnected components. Obviously, the biconnected components of /1 are triconnected
components of G, if they cannot be extended by v, the point initially removed. For an
articulation point w, found during the biconnected component search, the graph induced on
V' \ {w} needs not to be investigated. In worst case x(G) > 2, and for each v € V the
induced graph is investigated with regard to biconnected components. According to Tarjan,
the biconnected components of a graph GG can be computed in O(|E|) [44].

In practice, the identification of independent subnetworks will be less complex: Often,
there exist particular structures, which can be detected easily, the so-called series-parallel
networks. Also, for physical reasons, the computation of substitute resistances for series-
parallel networks is much easier than for networks relying on close-connected graphs. Hoft-
mann provides a more detailed discussion of this topic [18].

Installing Proportion Constraints

Subsequently, we describe the general installation procedure of proportion constraints in a
network N = (G, p, s, t). Initially, Ny = (G3, pa, S, t2) is a copy of V.

3.5. PREPROCESSING OF STATIONARY BEHAVIOR 31

1. Identify an independent subnetwork Ny = (H, py, Sp,tg) of Ny .
2. Compute the flow distribution of Ny.

3. Install the proportion constraints in the original graph G.

4. Condensate G, i.e., replace H by the new edge ey and redefine ps.

5. Continue with 1 until sy and ¢, are the only points of Gb.

Remarks. Before close connected subgraphs are treated, all series-parallel structures should
be searched and replaced. Note that due to the condensation of G5, new series-parallel and
close connected structures may emerge. Figure 3.15 illustrates the process.

5 : 5 :) [) [2
t ty ty t

Figure 3.15: Condensation of G2 during constraint computation

The computation of substitute resistances and flow distributions for Ny with graph
H = (Vy, Ey, gi) bases on the continuity conditions in V}z and the pressure drop equations
instantiated for each ¢ € E:

e H is Series Connected. N, with graph Gy = (V5, Es, o) is modified as follows.
Vo := Vo \ Vg U{sy,tg}, Es:= FEy\ EgU{en}, go and p, are restricted to F
where pg(@H) = ZpH(ez)a €; € EH

e H is Parallel Connected. N, with graph Gy = (V5, Es, g2) is modified as follows.

Vo := Vo \ Vg U{su,tu}, Eo:= Ey\ EgU{en}, g2 and py is restricted to F
where p,(ey) can be computed from the following equation:

Y P2(€H =2y ¢ € B
In sy and ¢y, the following proportion constraints are installed:
Qi =¢ - Qu, ¢ = \Q/LEH.), e; € By, and Qu = > Q;

pH(e !

pH(e:)

e H is Close Connected. N, with graph Gy = (V4, Es, go) is modified as follows.
Vo := Vo \ Vg U{su,ty}, Ey := Ey\ Ey U{en}, g2 and ps is restricted to
E5 where ps(ey) can be computed from the following connection: The continuity
conditions of all points € Vi \ {sy, ty} along with the pressure drop equations for
each e € Ey and the equation p; — p; = x, x € R™ form a non-linear equation
system. Under the restriction that all pressure drops are positive, it can be shown that
this equation system has a definite solution in the flows @;, i = 1,...,|Ey|. Then,
Ry = > Q;, e;isincident to sy (ty), establishes the total flow through H. As a
result, py(er) := x - Q. Now, a proportion constraint can be formulated for each
flow variable: Q; = ¢; - Qp, e; € Ey where the ¢; are computed from the solutions

32 CHAPTER 3. CHECKING OF HYDRAULIC SYSTEMS

of the equation system: ¢; := Q; - Q3. These proportion constraints and the equation
Qu := > Q;, e;isincidentto sy (to ty) are installed in sy (in tg).

Discussion

The above preprocessing approach focuses on optimization tasks where the structure of
a complex hydraulic system is still defined but several alternative situations need to be
investigated and evaluated. It will not be useful for the investigation of small hydraulic
systems or a single simulation.

Chapter 4

The ‘deco System

decois a system that supports the configuration of hydraulic systems. It operationalizes the
component model and a large part of the concepts presented in the former chapter. Until
now, deco solves several instances of I1¢, that is, the analysis and the checking of hydraulic
systems, and the parameterization of single component parameters [23], [29], [40], [41].

However, solving instances of II° is not enough to support a user in configuring hy-
draulic systems: When supporting configuration in hydraulics, aside from a knowledge
processing task, there is also a problem specification and a knowledge acquisition task to
be tackled.

By the term “problem specification” we denote the procedure of formulating an instance
of II¢ in hydraulics, in other words: How can a user specify his problem in an acceptable
time?—Knowledge acquisition is of equal importance: Configuration support in hydraulics
will be useless, if a user cannot integrate his individual knowledge, his experience in compo-
nent modeling, or specifications of new components. Both aspects were taken into account
when developing deco. Besides efficient inference concepts, deco realizes graphic problem
specification and provides a language to model component behavior.

This chapter introduces the philosophy and some concepts of deco but does not engage
in the details of realizational aspects.

4.1 Graphic Problem Specification

A configuration process that is grounded in behavior descriptions is usually so complex
that its complete automation is not possible. Then, the job of a configuration system is
not to solve but rather to support the creative design process. When given such a behavior-
based configuration problem, technical dependencies might be so complicated that problem
specification, knowledge acquisition, and maintenance can solely be understood on a very
abstract level, e.g., on the level of a technical drawing.

This is the situation when designing hydraulic systems, and at this point the philosophy
of deco comes into play:

33

34 CHAPTER 4. THE deco SYSTEM

The working document of the design process is the circuit diagram. Consequently,
it would be fair to specify hydraulic checking problems at the same level of abstraction.
Graphic symbols should be selected and connected to a circuit—but, in contrast to a CAD
system, aside from the drawing, a functional model of the hydraulic system should be gen-
erated as well.

decorealizes such graphic problem specification: While the circuit diagram of a system
is drawn, a knowledge base containing all necessary physical connections is created. Within
a second step, arbitrary sections of the hydraulic system can be checked concerning individ-
ual demands. I.e., the model composition/formulation process as well as complex physical
dependencies are made transparent: Nearly all information obligatory for the checking and
simulation process is derived from the technical drawing. Brought down to a simple for-
mula, deco is CAD + behavioral semantics.

File Edit Circuit Yiew Options Windows Help

nl={E] (8] =] =] @ [Eeaa@@l (o] [a]»n]

Component library

bl [s | o [[t [@
frdlm) IGw | CIw | Adon | T | Ow | T
SRRV cio decowmbictboworkit BB

f Ik

= Differential cylinder
Name |Cylinder 1

Cross section of

Ring area (10..1000 gmm)
Pistan area (10..1000 gmm) /’:[ZITE{]E}L’*’
Force (10000..10000 N)
Length of Piston (10..1000 mm]
Position [0 | (0.Length)
Mass of piston (-100..100 Kg]

Friction (0..10000 Nmy/s)
velocty [0 | F10.10 mjs)

0K I | Cancel =

Figure 4.1: ‘deco’s application mode

Specifying Hydraulic Problems with deco

There is always a gap between the semantics of a configuration problem on the one hand and
the syntax for its specification on the other. deco addresses this situation by expunging the
gap between the process of drawing and the process of investigating/simulating a technical
system; it can be considered as a visual language to specify a particular class of technical
problems.

Being in deco’s application mode, a user selects hydraulic components from a compo-
nent catalog and arranges them on the working area (cf. figure 4.1).

4.2. INFERENCE 35

While drawing a line between two components’ gates, the appropriate pipes are selected
and instantiated. Among other things, it is checked whether the incident gates are of same
type. The necessary information concerning the topology is generated as well. Within
the circuit diagram, all parameters of the hydraulic system can be predefined, changed, or
supplied with alternative values.

After the inference process is invoked, deco’s inference engine searches for a consistent
parameter assignment. Figure 4.2 shows a circuit where such an assignment has been found.

= art deco ﬂ!
File Edit Circuit Yiew Options Windows Help
Llejaajeley [[a]x] |
clart_deco.wrkictibs-workl.ct

— | —
F=100 — L—SSD

(=31

L,

T

pE0.00
=0.00

Figure 4.2: ‘deco’s application mode

The prototypic use of decohas shown that its philosophy of graphic problem specifica-
tion leads to a decisive reduction of the specification complexity. Maybe, graphic problem
specification as realized here is the only chance to efficiently support complex configuration
tasks in hydraulics.

4.2 Inference

deco takes the graphical description of a hydraulic circuit and investigates the system with
respect to the following faults:

1. syntactical faults like open pipes
2. geometrical faults like wrong connections

3. logical faults like piston movements contradicting to valve positions

36 CHAPTER 4. THE deco SYSTEM

4. dimensional faults like pumps whose power range is exceeded

If none of these faults can be found, all components’ states are determined, and, along
with any unknown velocities, forces, and component parameters an entire distribution of
the flow and the pressure is computed.

The subsequent paragraphs outline the underlying inference process.

Constraint Processing at First Glance

From the standpoint of problem specification and knowledge processing we distinguish
between the following constraint classes in deco:

e Connection Constraints. Connection constraints establish if and how two compo-
nents may be connected. Processing these constraints means to check all connec-
tions’ types and port sizes, the mechanical couplings, and for open pipes. Since this
checking step is both the least demanding one and separable from other constraint
processing jobs it is always performed first.

e Topological Constraints. Topological constraints are given by the circuit diagram
and define the physical structure of the hydraulic system. A correct realization of
this structure is achieved as follows: All local component parameters are replaced by
global variables, which in turn are unified according to the connection information.
This unification step takes place before the functional constraints are processed.

e Behavior Constraints. Behavior constraints define the local behavior of components
and are user-definable. They consist of relations, defined over numerical and sym-
bolic parameters. Parameters can be constrained through a domain; the constraints
themselves can be supplied with metaknowledge.

e Model Selection Constraints. Model selection constraints are used to define differ-
ent component states; they associate a state description with a particular behavior
alternative. A behavior alternative comprises a set of behavior constraints.

e Demand Constraints. Demand constraints comprise internal and external restrictions.
Internal demand constraints check for violations of universal behavior laws of hy-
draulics; external demand constraints model a user’s demands and are specified in
the form of rules and simple relations. In contrast to behavior constraints, the de-
mand constraints are propagated destructively. l.e., they are not exploited to derive
new dependencies but rather to check them. To perform early pruning in the course
of constraint processing, demand constraints are checked after each inference step.

While a user is drawing a circuit diagram, a building block model of the hydraulic
system is constructed (cf. page 18). When the inference process is started deco processes
the connection constraints and the topological constraints as defined by the building block
model and formulates an instance of 1I°. This instance of II¢ in turn is processed in a
cycle of model synthesis and model simulation (cf. figure 4.3 and figure 3.9 on page 22
respectively).

4.2. INFERENCE 37

G

Synthesis of
behavior model

Formulation Modification
of synthesis of component
restrictions parameters

Simulation of
behavior model | f¢ contradictory physics

Y

II: Hydraulic checking problem Q [funﬁ, Ifilled demands
Q : Quality set with tuples (f, x)

Figure 4.3: Solving I1° in hydraulics

Efficient Model Synthesis

Section 3.4 introduced the idea of a synthesis search space M, which forms the set of
possible global behavior models for a given system C'. Actually, section 3.4 left open how a
consistent behavior model—i.e., a behavior model that fulfills all behavior constraints and
all demands—can be searched efficiently.

Note that even for a rather simple circuit, M might contain several thousand elements.
And, checking the consistency of an element M € M usually requires the simulation
of M¢. Thus, an intelligent exploration of the synthesis search space M is the key factor
which decides whether a solution of II° can be found at all in an acceptable time.

To get a grip on this model synthesis problem we developed domain-independent and
domain-dependent concepts to control the exploration of M. The essentials of our con-
cepts are outlined below.

o Incremental Constraint Update. Each time a new value is inferred, its side effects on
the model selection constraints are computed immediately.

e Dependency Recording. Within each inference step, the inferred values are labeled
with the responsible assumptions. The dependency recording in deco establishes
cause-effect links between single parameters as well as between different sets of con-
straints, regardless of their type.

e Topological Analysis. The topology of a hydraulic circuit is investigated in order to
determine global dependencies that have an effect on the constraint selection (e.g.
flow direction analysis).

e Domain Heuristics. Domain heuristics that define preferences on behavior alterna-
tives are evaluated during the inference process.

These concepts are tied together to a model synthesis control, which makes up a large
part of deco’s inference engine. Figure 4.4 and 4.5 show deco’s entire inference procedure
at an abstract level.

38 CHAPTER 4. THE deco SYSTEM

Input C,D

Check connection constraints

Formulate II°

Construct an initial Mc
WHILE inferences made
WHILE inferences made

Invoke model synthesis control

Apply local inference methods

C : Hydraulic system

D : User demands

II: Hydraulic checking problem o Mc consistent Jes
M_: Global behavior model of C

Q : Quality set with tuples (f, x)

Apply global inference methods

Terminate without solution | Return Q

Figure 4.4: Main inference loop

Remarks. Within the main inference loop we distinguish local and global inference meth-
ods. The former class comprises the methods for local value propagation, rule inference,
and algebraic transformation; the methods of the latter class handle different types of equa-
tion systems. Section 3.4 gave an overview of these methods. Since local inference is
causal and often more efficient as compared to global inference, it is applied before any
global inference method is tried.

To ensure early pruning in the course of the exploration of M, the model synthesis
control is invoked after each inference step.

M consistent
no yes

Identify inc(Mc)

M= M\ { x ¢ M | xis subsumed by inc(Mc) }
Me= 0

no c yes

Retract inc(M) and dependent inferences

Knowledge—based remedy proposals

no yes
Select Select
dependency—directed | proposed

alternative alternative

Topological synthesis hints
no yes

Modify alternative

Synthesize new M

M : Global behavior model
inc(Mc): Assumptions responsible for inconsistency in M¢
M_- : Synthesis search space

Figure 4.5: Model synthesis control

Remarks. The set {x € M|z is subsumed by inc(M¢)} in figure 4.5 comprises those
global behavior models of C' whose assumptions contain the set inc(Mc).

Note that the alternative selection and modification controls model synthesis by means
of dependency-directed backtracking, knowledge-based backtracking, and the evaluation of

4.2. INFERENCE 39

topology constraints.

The identification of the assumptions inc(Mc), which are responsible for an incon-
sistency in Ms—as well as the retraction of all consequences involved, requires a fairly
sophisticated dependency recording.

Dependency Recording

The constraint network established by I1° consists of two kinds of nodes: nodes referring to
functionalities (parameters) and nodes referring to behavior constraints. A constraint node
b and a functionality node f will be linked by an edge, if f stands in the relation defined by
b. Initially, each functionality is labeled either by f’s alternative states or by Unknown (cf.
figure 4.6).

Unknown

D Constraint
O Functionality Unknown

Figure 4.6: The constraint network defined by the checking problem

The value sets of the nodes f labeled Unknown are considered to be restricted by vy.
What happens during the constraint satisfaction process is that step by step constraints are
evaluated and value sets are cut down to those values that match (fulfill) all actually trig-
gered constraints. If a non-empty value set is assigned to each functionality, and each tuple
(1,9, ...,x,), induced by these value sets, fulfills all constraints b € B, the constraint
satisfaction problem will be solved.

If a contradiction occurs in the course of constraint processing the responsible nodes
must be detected, and these nodes with all their consequences must be retracted. Then, an
alternative value assignment of the nodes that caused the contradiction can be selected and
inference can be continued.

Dependency recording must be tailored to both the inference mechanisms and the con-
straints. Here, we distinguish between three types of dependency links:

e Constraint Dependency. Constraints can depend directly on other constraints, the
so-called model selection constraints. If such a constraint is fulfilled, the dependent
constraints are “active”; otherwise, they are “inactive”. Throughout constraint pro-
cessing, new links are introduced in the constraint network that indicate both the
inference (= supports) and the retract (= depends) direction (cf. figure 4.7).

e Local Value Dependency. The constraints processed during local propagation de-
fine a cause-effect chain between the nodes of the network. These relationships are
recorded by the introduction of support links and by node labeling. So, the root nodes

40

CHAPTER 4. THE deco SYSTEM

[Constraint
O Functionality

New edges:

» "supports"”

™= "depends on"

Figure 4.7: Dependency recording between constraints

of an inconsistency can be determined immediately, and their consequences can be
traced back (cf. figure 4.8).

Root nodes v; D
i

[Constraint
O Functionality

New edges:

» "supports” [f11

Figure 4.8: Dependency recording during local propagation

e Global Value Dependency. Constraints that cannot be treated by local propagation

are called global. Global constraints establish cyclic dependencies between function-
alities and constraints. Retracting one node of such a strong connected component
results in the retraction of all nodes involved. In order to avoid labeling effort in
O(n - m), with n, m specifying the number of functionalities and constraints respec-
tively, not all dependency links are installed in the graph but those that are necessary
to instantiate a strongly connected component.

This dependency recording concept is an integrated part of each inference method in

deco. It forms the base for the dependency-directed and the knowledge-based backtracking:
In either strategy, the setting back to arbitrary points of the inference process is necessary.
The former sets back to the root nodes of a contradiction where a new value assignment
(= new alternative) is chosen chronologically. The latter provides deeper information about
which of the alternatives of the root nodes should be modified. In both cases all inferences
that are no longer supported must be retracted, i.e., the constraint network has to be re-
labeled.

Discussion

There is a lot of research related to “constraint satisfaction problems” [5], [11], [14], [16],
[17], but only a small part of this research actually contributes to hydraulic configuration.
The term “constraint satisfaction problem” is somewhat misleading here since it is a label
used for very different problem classes: One part of these problems is tackled by some
kind of constraint propagation, while another part needs some kind of inherently global

4.3. KNOWLEDGE ACQUISITION 41

inference. E.g. Davis mentions six different categories of constraint propagation that are
distinguished by the type of information which is updated [5].

An important category of constraint satisfaction problems are the so-called label infer-
ence problems. They deal with a network of nodes, each labeled with a set of possible
values, and constraints that are used to restrict the value sets. Related to such problems,

and certainly useful, are the terms “node consistency”, “arc consistency”, and “path consis-
tency”, which define different levels of local consistency [14], [32].

Note that in our constraint satisfaction problem local consistency is not crucial. Most of
the constraints define underdetermined relations on infinite sets. I.e., filtering value sets in
its classical sense is hardly possible—but, filtering in the form of value range propagation
is useful and partly necessary: value range information is exploited during the numerical
subjobs and the constraint selection process.

Rather than label inference the following inference types are employed to tackle the
hydraulic checking problem:

e Constraint Inference. Constraint inference denotes a process where new constraints
are inferred and added to the network.

e Value Inference. In the course of value inference, initially labeled nodes (the assump-
tions) along with the constraints are used to infer values of unlabeled nodes.

To make things worse, our constraint satisfaction problem II¢ is inhomogeneous, i.e.,
very different types of constraints are employed. Thus, it cannot be tackled by a single
method but needs a global control mechanism that both combines all required computation
methods and maintains dependencies.

The dependency management in deco adopts concepts from Doyle’s justification-based
truth maintenance system (JTMS) [12] and from deKleer’s assumption-based truth mainte-
nance system (ATMS) [7]. Employing the classical ATMS-based dependency management
would not be useful for performance reasons here: (i) Label-inferencing and updating all
combinations of assumptions is not necessary, and (i7) maintaining ATMS-data structures
poses an overhead as compared to recording the cause-effect dependencies during local
propagation.

4.3 Knowledge Acquisition

deco operationalizes the component model of section 3.3. This component model defines all
deco object classes, the structure of these classes, the building block model, and the syntax
of the behavior descriptions. These concepts are an integral part of deco’s philosophy: They
are intended to simplify the creation and the processing of new components and cannot be
modified.

Most of these concepts are kept transparent: From the users’ point of view, deco objects
represent a data structure that defines physical and graphic information (cf. figure 4.9).

42 CHAPTER 4. THE deco SYSTEM

Graphic Graphic

representation \ properties
and methods

nrElecoobject

/ \ Physical

Physical behavior

propertieq constraints

Figure 4.9: The user’s view of ‘deco objects

Physical and graphic information need to be “synchronized”. More exactly: If a connec-
tion line between two objects is drawn, it has to be ensured that there is also a physical cor-
respondence between these objects. This correspondence is established by the gate concept:
Gates are designated areas of an objects graphic representation. They define how external
physical parameters can be referred and where components can be connected graphically.

Following EBNF-notation describes those parts of an deco-object that are user-definable:

(component) — (name) (physical-representation) (graphic-representation)
(physical-representation) —
{GATE.(number) }} {(functionality) }§ {(behavior-constraint) }
(functionality) — (name)(value) (default) (alternatives)
(name) — (symbol)
(default) — (value)
(alternatives) — ({(value) }{)
(value) — (symbol) | (number)

Remarks. The term (behavior-constraint) denotes an expression in deco’s behavior descrip-
tion language; (graphic-representation) denotes a collection of graphic primitives with differ-
ent mouse-sensitive regions.

If a user wants to create a new component, he has to provide a set of behavior con-
straints as well as a graphic description with designated gates. deco takes this information,
instantiates the necessary objects, updates the component model, and converts the behavior
description into an internal form.

Strategy Language

deco’s global inference strategy can be redefined. More exactly: deco provides a set of
atomic inference techniques coping with different types of constraints like symbolic rela-
tions, equation systems, etc. Using some kind of BNF-syntax, these deduction techniques
can be composed easily to a new, individual inference strategy. This is useful for adapting
the inference process to the type of constraints given or to particularities of the domain.

The EBNF-notation below defines all productions that form a valid strategy for deco’s
inference process. In this connection, the semantics of the &-symbol is as follows. The
preceding deduction technique will be repeated until no further inference can be drawn.
Note that this situation is always reached after a finite number of steps, since the number of
constraints, variables, and alternatives is finite, and cyclic dependencies are detected.

4.4. REALIZATION 43

(control-strategy) — {(control-strategy) } | ((control-strategy))e |
(local-inference) | (global-inference)
(local-inference) — LOCAL-NUMERIC-PROPAGATION |
LOCAL-SYMBOLIC-PROPAGATION |
CONDITIONAL-CONSTRAINT-PROPAGATION |
DEMAND-TEST
(global-inference) — SOLVE-LINEAR-EQUATION-SYSTEM |
SOLVE-NON-LINEAR-EQUATION-SYSTEM |
SOLVE-DIFFERENTIAL-EQUATION-SYSTEM

Behavior Description Language

The behavior description language establishes the interface to component behavior. Via this
language interface one is able to modify and to maintain behavior descriptions of existing
deco objects as well as to define the behavior of new ones.

deco’s behavior description language is an implementation of the constraint language
presented in section 3.3. Since the typical hydraulic engineer has no programming skill
it is kept as simple as possible and free of programming language details. Some of its
characteristics are:

e The language allows the formulation of (mixed) numerical and symbolic relations.

e The language is tailored to the connection philosophy of the building block model,
which is defined on page 18. l.e., using the keywords [SELF] and [GATE], compo-
nents may refer to their own functionalities as well as to information types at their
gates.

e Parameters (variables) need not to be typed.

Usually, behavior constraints are specified in an external form, which in turn is con-
verted into an internal representation that can be processed more efficiently. A detailed
description of the constraint language and the converter can be found in [19].

4.4 Realization

Figure 4.10 gives an overview of deco’s main modules. Important modules are briefly
described below.

User Interface. The user interface consists of three main parts: (i) The front end realizing
the circuit drawing area where a user manipulates graphic symbols and dialog boxes, (ii) an
action interpreter taking a user’s actions (mouse drag, double-click, keyboard input, etc.)
and, dependent on the context, decides whether an action is valid or not, and (iii) a module
providing graphic routines for a CAD-like handling of circuit diagrams.

44 CHAPTER 4. THE deco SYSTEM

i[i?tgllzface Action interpreter Graphic routines
Object system
o
2
Graphic g
knowledge g
base ®
]
50
el
9
. 2
Technical Q
knowledge Q
base
Inference ‘
engine Inference control
‘ Alternatives management
. Numerical
Algebralc Local Truth routines
manipulation| |inference maintenance
routines techniques | | system
Figure 4.10: Modules of ‘deco

Knowledge Bases. ‘deco provides a graphic and a technical knowledge base containing
classes from which all user-visible objects are instantiated. The graphic classes predefine
the eligible manipulation methods; the technical knowledge base defines the basic structure
of important hydraulic component classes. The component catalog is built on top of these
knowledge bases and can be extended with the aid of the acquisition module.

Knowledge Acquisition Module. The knowledge acquisition module provides the language
for behavior descriptions outlined in the previous section and an interface for the import
of new graphic descriptions. The module checks new descriptions with respect to different
syntactical and semantic aspects, instantiates the necessary objects in the knowledge bases,
and makes the new components available in the component catalog.

Inference Engine. The inference engine provides several local and global inference tech-
niques that are invoked by a global inference control. The inference control can be imagined
as an interpreter that takes a hydraulic circuit along with the technical knowledge base (=
I1¢) as input and evaluates the global control strategy in order to find a solution of I1°. For
clarity reasons, the interplay between the different submodules is presented simplistically
here.

Developmental Issues

There are two extreme positions of how a system that solves instances of I1¢ in hydraulics
may be developed:

4.4. REALIZATION 45

1. Tool-based. By this approach we designate the strategy of selecting and combining
tools where each solves a particular job of the entire problem: (i) MAPLE or MATH-
EMATICA, for instance, are employed to do the algebraic manipulation and numerical
computation jobs, (i7) flexible object-oriented representation of data, rule processing,
local propagation algorithms, and truth maintenance mechanisms are realized with
aid of a powerful knowledge engineering tool, (iii) a CAD system establishes the
front end, and (iv) all tools are controlled by a command language, e.g. by TCL/TK
[35]. Additionally, we need algorithms that filter the graphic descriptions and formu-
late instances of 11° which can be processed by the other tools.

2. Language-based. We will designate an approach language-based, if all concepts and
algorithms are developed from scratch using one or more programming languages.

At first glance, the favorable developing approach seems to be closer to (1) than to (2).
But for the following reasons rather the opposite is true:

e A circuit diagram given in a CAD system needs to be translated into single object
representations that are both related one-to-one to hydraulic components and supplied
with technical parameters and behavior descriptions.

e The integration of domain knowledge into a CAD system is difficult. But such an
integration is exactly that what we need here: User decisions that are not permitted
should be detected earliest possible in order to avoid superfluous simulation effort.

e Since none of the tools could the entire constraint processing, a common constraint
representation needs to be developed. This representation must be supplied with a
truth maintenance mechanism and a global inference control that triggers the compu-
tation jobs.

e Generic numerical routines do not exploit physical restrictions of the domain. As a
consequence, they may be less efficient than specially adapted algorithms. Also note
that a numerically correct solution needs not to be physically correct.

e Rule processing and constraint inference have to be developed and integrated within
the common constraint representation. Since knowledge acquisition is a heteroge-
neous task here its operationalization would benefit from the language-based ap-
proach, too.

Tackling all these problems is a demanding job that cannot be done in a single step since
new concepts need to be developed and evaluated. Moreover, users should participate in the
development process as early as possible.

We addressed this situation by dividing the development process of deco into two stages:

1. Prototype Stage. In the first place, we had to get a clear idea of how configuration in
hydraulics could be supported at all. Hand in hand went research related to graphic

46 CHAPTER 4. THE deco SYSTEM

problem formulation, the necessary inference types, the expressiveness of a com-
ponent language, adequate data structures, and the interplay of different inference
mechanisms.

2. Reimplementation Stage. The reimplementation stage was not a copy of the prototype
stage. Rather, research has been concentrating on the design of efficient concepts and
algorithms: From a user’s point of view, a configuration problem cannot be “solved
in principle” but needs to be solved in an acceptable time.

Throughout the prototype stage, we used the knowledge engineering environment KEE
to realize our ideas [20]. At the end of this stage, deco’s philosophy, its architecture, and a
large part of the necessary methods were developed or evaluated. The algorithms (local de-
duction techniques, algebraic routines, graphic routines, the acquisition module) were writ-
ten in COMMON LISP, the knowledge bases were built on top of the KEE object system, the
user interface based on the KEE picture system. Aside from improving and developing our
concepts, the KEE/LISP version of deco served as a realistic communication base between
users and developers.

When we started reimplementing deco, we refrained from the employment of particular
shells or knowledge engineering tools. Tools often restrict the portability and usually lead
to a loss of performance.

deco’s philosophy requires a tight combination of the inference process on the one hand
and the user interaction on the other. Thus, we developed a small graphics kernel that can
be ported easily to other platforms. On top of this graphics kernel we built a “semantic”
graphics layer that provides powerful graphic commands related to the application. This
semantic graphics layer interprets user actions and manipulates the technical and the graphic
knowledge base. For efficiency and maintenance reasons, also a specialized object system
for the representation of knowledge bases was developed.

If an inference process is invoked, deco constructs a constraint satisfaction problem
using the actual instantiations of the technical and the graphic knowledge base. This job
is passed to the inference control that employs local and global inference techniques, truth
maintenance, and an alternatives management to solve the problem. Since these techniques
need a coordinated interplay both a generic constraint representation wherein all constraints
can be formulated, and tailored constraint processing methods have been developed.

The actual version of deco is realized in COMMON LISP and C/C++. The object system,
the graphic interface, and the numerical routines are written in C/C++; the other modules
of the inference engine are written in COMMON LISP. Parts of the knowledge acquisition
module were developed with the UNIX tools LEX and YACC. At the present time, deco runs
on WINDOWS 3.1.

Chapter 5

Diagnosis of Hydraulic Systems

5.1

Introduction

Before we present concepts concerning the diagnosis of hydraulic systems, we will have a
short look at troubleshooting aspects that relate to hydraulics. The following points should
be noted.

Large Number of Sources of Faults. The misbehavior of a hydraulic system may
result from both broken components and structural faults. Structural faults lead to
additional or missing connections between the components of a hydraulic system.

Multiple Faults. By multiple faults we designate the presence of more than one struc-
tural fault or broken component at the same time.

Little Knowledge about Symptoms. When the diagnosis of a malfunctioning hydraulic
system starts, only one symptom is usually known. Often a single symptom is insuf-
ficient to perform a definite diagnosis; i.e., further investigations of the system must
be carried out.

Difficult Measurements. Measurements in hydraulic systems are normally incom-
plete, inexact, and expensive. Thus, the number of measurements should be kept at a
minimum.

Qualitative Observations. Observations of misbehavior need not be stated in the form
of numerical values. For an engineer who is observing a hydraulic system it can be
much easier to describe a symptom qualitatively. Example: “The cylinder’s piston is
driving out too slowly.”

Knowledge about Faulty Behavior. Experts have knowledge about the behavior of
defect components. This knowledge is not part of a standard component description
and hence, it has to be explicitly specified within a component’s behavior definition.

When investigating the aspects above, it becomes clear that a diagnosis concept should
rather be model-based instead of heuristic'. Note that by the term “model-based” no par-

'A short review of the different approaches for diagnosis can be found in [37].

47

48 CHAPTER 5. DIAGNOSIS OF HYDRAULIC SYSTEMS

ticular diagnosis mechanism or algorithm is specified at all. This term does merely imply
that the diagnosis process relies on balancing the simulated behavior of a model with the
observed behavior of a real system. Using the model-based approach there is the challenge
to master the following problems:

e At which level of abstraction should the model be formulated?
e How can the model be specified?

e By which mechanisms can the model be processed?

Our research showed that the component description that we used to perform the check-
ing tasks is not adequate respecting diagnosis jobs. The reasons for this insight can be
summarized as follows. The description covers only the correct behavior of components;
secondly, it is too detailed with respect to particular concepts of typical hydraulic faults.

Possible component faults are listed in [27]. Moreover, ibid., it is proposed to separate
between a global model-based diagnosis concept and a local heuristic diagnosis concept.
With the global diagnosis process a hydraulic circuit is investigated at the circuit level, i.e.,
faulty components are detected. The local diagnosis process is ought to refine this result: It
explains exactly which defect has been occurred within the faulty component.

This hierarchical concept imitates the diagnosis procedure of a human expert, who also
applies some top-down strategy. The advantages of such a procedure are the following:

1. The model-based diagnosis process can be restricted to relatively simple behavior
descriptions. Because it does not encode very particular component defects, it needs
not to be adapted respecting new hydraulic components.

2. The heuristic diagnosis process at the component level works independently of its
model-based counterpart. It can be easily enriched with an expert’s individual diag-
nosis experience.

The model-based diagnosis process has been prototypic realized. The subsequent sec-
tions introduce the concepts.

5.2 Model-based Diagnosis

Model-based diagnosis grounds on a model that represents the interesting system’s structure
and behavior. Such a model allows the prediction of the behavior of the real system. The
deviations found when comparing the predicted behavior of the simulated model to the
observed behavior of the real system are called symptoms. These symptoms have to be
explained in terms of one or several misbehaving components.

A set of misbehaving components that can explain all observed symptoms is called
a candidate. Note that for a set of symptoms there may be more than one explanation,
and thus, more than one candidate. In order to differentiate between several candidates,
additional observations of the real system’s behavior must be made.

5.2. MODEL-BASED DIAGNOSIS 49

The power of model-based diagnosis results from its modularity. Knowledge about
faults needs not to be anticipated but can be derived from the system’s structure + local
component descriptions + simulation. A system whose components are modeled correctly
will produce a correct global behavior as well.?> Or conversely, each set of correctly mod-
eled components whose predicted behavior does not correspond to the observed behavior
contains at least one component that is faulty. Such a set of components is called a conflict.

Model-based diagnosis is comprised of the following 5 subtasks: model formulation,
behavior prediction, conflict identification, candidate generation, and candidate discrimina-
tion. The subtasks 2 to 5 form the diagnosis process of the “General Diagnostic Engine”
(GDE); the model formulation job is considered to be completed when diagnosis starts and
is usually not counted to the diagnosis process.

The General Diagnostic Engine

This section introduces the fundamentals of the GDE related to a small hydraulic diagnosis
example. The GDE is a domain-independent diagnosis mechanism, presented by deKleer
and Williams [10]. It requires a component-oriented description of a system; component
behavior is modeled by local constraints that define relations between a components’ input
and output parameters; behavior simulation is realized by constraint propagation. More-
over, each component is tagged with an assumption indicating whether the component does
behave correctly or not. These correctness assumptions are considered when processing
behavior constraints.

Figure 5.1 shows a hydraulic system that consists of two connected pipes. Let us con-
sider that the incoming flow is about 6 [/min at point A.

6 l/min < L; K L, <)

A B C

Figure 5.1: Hydraulic circuit example consisting of two pipes

As stated above, the GDE performs a cycle comprised of the following steps:

1. Behavior Prediction. In our example the expected flow at point C' can be computed
in the model via a propagation of the pipes’ local behavior descriptions. It will also
be 6 [/min if we presume that the two pipes L; and L, work correctly. Each locally
predicted value has a label, a particular set, whose elements in turn are sets con-
taining components. The semantics is as follows. When given a particular system
configuration, for instance the two pipes and an input flow, the (correctly working)
components in each element of a label form a necessary and complete set to infer the
value associated to this label. If there are, for example, two possibilities to infer a

2This concept is sometimes referred to as the “no-function-in-structure-principle”. Loosely speaking, the
no-function-in-structure-principle says that a component’s behavior is independent of its context of use [4],
[9], [24].

CHAPTER 5. DIAGNOSIS OF HYDRAULIC SYSTEMS

value, the associated label will contain two sets. Figure 5.2 shows the inferred flow
values with their associated labels.

6 l/min, < L; K L (}

A B C
Flow value: 6 6 6
Label () (L} (L), Ly)

Figure 5.2: Behavior prediction of the flow at the points B and C

The elements of a label are called environments for the associated value. The mini-
mum environment for some value is the empty set.

Note that behavior prediction in a technical system must not follow the physical prop-
agation direction, which is directed from a component in-ports to its out-ports.

. Conflict Identification. We now assume that at point C' of the real system a flow value
of 41/min has been observed or measured. Based on this observation, the values and
labels as shown in figure 5.3 can be stated by the GDE.

6 Umin < L K L, < > 4 Umin

A B C
Flow value: 6 6 6
Label: {} {LI} {LI’ L2}
Flow value: 4 4
Label: { LZ } { }

Figure 5.3: Behavior prediction of the flow at the points B and C'

The flow at point B is predicted with 6 [/min if pipe L; is assumed to work correctly
but with 4 [/min if pipe Lo is assumed to work correctly. Since at point C' some other
than the predicted value was observed, “C' = 41/min” is a symptom. At least one
of the correctness assumptions that let to the prediction of “C' = 6 [/min” is wrong;
i.e., the set { L1, Lo} forms a conflict.

In complex systems a single symptom may lead to a lot of conflicts. Note that the
set of all components will always form a conflict, if at least one symptom has been
observed. In order to reduce the complexity of the candidates generation step, it is
useful to concentrate only on minimal conflicts. A conflict is called minimal, if no
proper subset of it will form a conflict; any superset of a conflict always establishes a
conflict.

. Candidate Generation. Recall that a candidate is a set of components that can explain
all observed symptoms, if all components in the set are broken. Clearly, in order to
explain the observed symptoms, a candidate must contain at least one component of

5.3. CONFLICT IDENTIFICATION BASED ON THE ATMS 51

each conflict. If we assume that {L,, L, } was the only conflict in our example, then
{L,} and {Ls} would be the two minimal candidates.

The concept of Candidate Generation is able to cope with multiple faults. Let us
consider that at point B the flow value 5/min is measured. As a result {L;} and
{Ly} are the two minimal conflicts, and { L, Lo} is the only (minimal) candidate.

Candidate sets establish hypotheses that indicate in which way the real system differs
from the simulated model. The empty candidate set {} is equivalent to the statement
that all components work correctly.

4. Candidate Discrimination. A diagnosis process should produce a definite solution
(diagnosis) of a diagnosis problem. Often there exist several minimal candidates, and
additional knowledge in the form of additional observations is needed to differentiate
between them. Thus candidate discrimination is realized by measuring point proposal
for new observations. New observations can be obtained as follows:

(a) Observations are made without modifying the system.

(b) Observations are made after the modification of particular parameters of the
system.

Since the number of additional observations should be at a minimum, measuring
points have to be chosen respecting their average gain of information. Note that a
measuring point which provides the best discrimination between the actual candi-
dates must not lead to a total minimum of measurements to identify a system’s faults.
Since the result of a measurement cannot be predicted, it is usually not possible to
determine the measuring point that minimizes the total number of observations. De
Kleer proposes the following equation to compute the gain of information [8]:

G(X)=> clng

X denotes a measuring point, ¢; denotes the number of minimal candidates that are
consistent with the i-th possible measurement result. The sum is formed using all
possible measurement results; the maximum average gain of information is provided
by that point X for which G(X) is at a minimum.

In our example the only measurement point is 5. Possible measurement results at B
are 6 [/min (if L, works correctly) and 4 [/min (if L, works correctly). In either case
the number of minimal candidates is 1; the computation of G(B) is trivial: G(B) =
1in1+41Ilnl =0.

5.3 Conflict Identification Based on the ATMS

The GDE explains deviations between the real system and the simulated model by retracting
correctness assumptions that were made within in the model. Recall that if a predicted
value v of the model does not match an observed value in the real system, the components
involved in the inference of v form a conflict.

52 CHAPTER 5. DIAGNOSIS OF HYDRAULIC SYSTEMS

In order to identify such conflicts, a diagnosis system must be able to specify the origins
of each inferred value. l.e., within each inference step the dependencies between the de-
duced value and its related correctness assumptions of the components have to be recorded.
A mechanism which can do this dependency recording job is de Kleer’s ATMS [6]. In the
next subsection we will outline some of its concepts, details may be found in [6].

The Basic ATMS

An ATMS is a mechanism that records dependencies of the type “a A § — 7. Note that
an ATMS is not intended to realize the inference process of the problem solver. Rather
it supports the problem solving process by maintaining well-chosen dependencies in the
search space. In that sense the problem solver decides by itself which dependencies should
be recorded at all by the ATMS; the ATMS is independent of the domain and the type of
inference.

The ATMS constructs for each datum provided by the problem solver a node which
consists of three parts: the datum, a label, and a set of justifications. The datum is treated
as atomic and is stored independently of the problem solver’s representation and semantics
for it.

The label consists of a set of environments each of which represents a set of assump-
tions, that allow the datum to be inferred. Hence, the label shows the assumptions that must
be made before the datum is known to be derivable. From the viewpoint of the GDE, all
correctness assumptions regarding the hydraulic components form the assumption set of the
ATMS.

Relations between assumptions and ATMS-nodes are established by the justifications.
Each justification of a node consists of the antecedents of one of the problem solvers infer-
ences used to infer the node’s datum. Technically, a justification is represented as a propo-
sitional horn clause. Example: A behavior constraint that models the continuity condition
of a pipe regarding some particular flow value is given with the following formula:

—“Qin = 61/min” V —“pipe = 0k” V “Qou = 61/min”

A datum (or a node) is said to hold within an environment e, if the datum can be inferred
from e and the justifications, using propositional logics. The job of the ATMS is the com-
putation of a datum’s environments. These computations are comprised of different set
operations for the most part. If an inferred datum A is part of some justification supporting
the datum B, A’s assumptions are merged with those of B. The ATMS guarantees the min-
imality of an environment e, which means that the datum cannot be inferred from a proper
subset of e.

Two important types of nodes should be mentioned: premises and nogoods. A premise
depends upon no assumption and consequently, its label has an empty environment. A
premise holds in every environment, it also has no justifications. Taking the standpoint of
diagnosis, a premise corresponds to an observation made at the real system.

The problem solver can inform the ATMS that a datum, or a conjunction of data, is
inconsistent. This can be thought of as an inference for the nogood datum, represented by

5.3. CONFLICT IDENTIFICATION BASED ON THE ATMS 53

L. Hence, the label of _L is the set of those environments which are inconsistent. These en-
vironments are also called nogoods. Note that each superset of a nogood in turn establishes
a nogood. Also note that the ATMS computes minimal nogoods.

The following properties of a label [,, = {ey, . .., ex } associated to a node n are essential
with respect to the GDE?:

1. Soundness. The node n holds in every environment e;, ¢; € [,,.
2. Consistency. | cannot be inferred in some e;, e; € [,,.

3. Completeness. Each consistent environment ¢ from which n can be inferred is a
superset of some ¢;, ¢; € [,,.

4. Minimality. No e; € l,, is a proper subset of some ¢; € [,,.

The GDE utilizes the label information of the ATMS to determine the necessary min-
imal conflicts: Let us assume that at some particular point of the hydraulic system a flow
value of)19 = 5.51/min has been predicted. Le., in the ATMS there exists a node con-
taining the datum “Q1o = 5.51/min”. The label of this node provides for the minimal sets
of correctness assumptions of those components that are responsible for the inference of
this datum. If now a flow value of Q19 = 2.3/min is observed at the real system, and the
ATMS is informed about that fact, an appropriate premise will be established. Actually the
ATMS has no idea of the hydraulic semantics that is associated with these two propositions,
and thus the two nodes would live in the ATMS without causing a contradiction. The prob-
lem solver must explicitly establish a contradiction by means of the following justification:

“Ql(] =5.5 l/min” N “Ql(] = 23l/mzn” —1

Using this justification a contradiction can be inferred from all environments in the
label of “Q19 = 5.51/min”, and the ATMS wil mark these environments as nogoods.
Furthermore, the ATMS identifies all nodes that depend on “Qyp = 5.51/min” and will
mark them as nogoods as well. A key aspect is that these nogoods are minimal because each
label’s environments are minimal. I.e., the nogoods correspond to the minimal conflicts
needed by the GDE.

Inexact Measurements

The identification of deviations between the real system and the simulated model, some-
times referred to as model-artifact differences, forms the base for our diagnosis process.
When investigating a real system, errors in measurement cannot be excluded. We took this
problem into consideration by introducing the special predicate nearly-equal-p when
realizing the diagnosis system. Hence, the values computed by the inference system are
mapped onto rounded values in the ATMS.

The use of this predicate involves problems in connection with multiple faults; usually
a tolerance-relation is not transitive. The local decision whether a model-artifact difference

3These label properties are discussed in greater detail in [13].

54 CHAPTER 5. DIAGNOSIS OF HYDRAULIC SYSTEMS

results from an error in measurement or from a misbehaving component does not consider
the propagation of errors.

Add to this, if a user decided to classify a model-artifact difference as a symptom, a
revision would be impossible at a later stage: Symptoms are based on observations and are
represented as premises within the ATMS. They cannot be redrawn.

5.4 A Closer Look at Candidate Generation

Within the candidate generation step the entire set of minimum candidates shall be com-
puted. Remember that a candidate is a set of components that can explain all observed
symptoms if all components in the candidate set are faulty. As a consequence a candidate
will contain at least one element of each minimal conflict set.

Computing a minimal candidate is equivalent to the problem of computing a minimal
hitting set, which is NP-complete [15]. Moreover, the number of minimal candidates can
grow exponentially in the number of minimal conflicts: Consider a system that is built of
2n components; the observed symptoms shall result in » minimal conflicts, one minimal
conflict for each pair of components {oy;, 02,11}, 7 € 0...n — 1. Obviously the number of
minimal candidates is 2".* If we restricted candidate generation to the detection of single
faults®, all minimal candidates could be computed in linear time [31].

The following subsections outline approaches for the generation (computation) of can-
didates.

Approximate Candidate Computation

Since the computation of a minimal candidate is NP-complete, one strategy to cope with
the complexity is to give up the claim to an exact solution, i.e., to a candidate’s minimum
cardinality. Possibly an approximate solution is sufficient for a lot of real world hydraulic
diagnosis problems. The considerations of this subsection are based on the assumption
that the cost for the determination of an exact solution exceeds the cost for a redundant
diagnosis, which is correct but not minimal.

The determination of a minimal candidate can be formulated as an optimization prob-
lem:

Problem: Minimal Candidate

Instance. A set C of minimal conflicts. Each element C' € C is a subset of a finite set of
components O.

Configuration. A set S C O, where S(C # 0, C € C.

“In the special case that all minimal conflict sets consist of two elements, the determination of a minimal
candidate corresponds to the vertex cover problem of a “conflict graph” GG. The components form the nodes
of G, and each conflict set corresponds one-to-one to an edge of G.

SFor complex hydraulic systems it is not useful to stick to the single fault assumption.

5.4. A CLOSER LOOK AT CANDIDATE GENERATION 55

Solution. Any configuration.
Minimize. c¢(S) := |S|.

The problem Minimal Candidate establishes an optimization problem according to
Lengauer [30]. ¢ denotes the cost function of Minimal Candidate and maps an integer
to each proper configuration.

The approximation towards an optimum solution to the above problem can be realized
by selecting and modifying either an element from the space S of configurations or from the
complement of S. The idea of the latter is to efficiently compute a non-admissible solution®
which is close to an optimum configuration. This approach is problematic— there is no
proper measure to compute the quality of a candidate approximation that does not explain
all observed symptoms. Thus we will concentrate on the former approach. The algorithm
below computes an approximate solution for a minimum candidate.

Algorithm 5.1: Approximate Minimum Candidate

CANDIDATE « CANDIDATE {0, ..., 00, }
Remove from C each conflict C’ with C' "N C # ()
7. Return CANDIDATE

1. CANDIDATE «— 0

2. C « CONFLICTS

3. WhileC # 0

4. Select a conflict C' := {o,,, ..., 0, } from C
5.

6.

Remarks. In line 1 and 2 the new candidate and the set of all conflicts are initialized.
Within the lines 3 to 5 a hitting set over the minimum conflicts is computed, which is stored
into CANDIDATE. The algorithm terminates because at least one element is removed from C
within each pass of the While-loop. Note that if the conflict sets are sorted, all set operations
can be done in O(n), where n denotes the total number of components.

Aside from its time complexity the practical advantage of algorithm 5.1 depends on the
deviation between an approximate solution, computed by algorithm 5.1, and the optimum.
According to Lengauer [30] we define a metric by which the error of some algorithm A can

be measured: 1
ERROR(A) := max AR).
vel c(opt(p))
I denotes the set of all problem instances, A(p) is the solution computed by algorithm A,
and opt(p) is the optimum solution for p.

Lemma. The error of algorithm 5.1 is max{|C| | C' € CONFLICTS}.

Proof. Let C be all minimal conflicts, and let C’ C C be those minimal conflicts that are
actually selected within line 4. Because of the Remove-operation in line 6, no conflicts in
C’ have an element in common. Hence, the following relations hold:

|CANDIDATE| = Y |C] < |C'| - max{|C||C € C} (5.1)
cec’

Each set of components which does not cover all conflict sets represents a non-admissible solution.

56 CHAPTER 5. DIAGNOSIS OF HYDRAULIC SYSTEMS

To cover all conflicts, a (minimum) candidate must contain at least one element from
each conflict set in C and C’ respectively. Since the conflict sets in C’ establish mutually
exclusive sets, no element of a minimum candidate is contained in more than one conflict
set of C’. Hence,

|C’'| < |CANDIDATE’| (5.2)
From (5.1) follows
|CANDIDATE| .
< IC 53
max{|C||C € C} — c' (5-3)

Putting together (5.2) and (5.3) results in

| CANDIDATE|
max{|C||C € C}

CANDIDATE
| L < max{|C]|C e ¢}

< |CANDIDATE"| & <
|CANDIDATE|

o

The error of algorithm 5.1 is bound by the maximum cardinality of the minimum conflict
sets. L.e., if one minimal conflict contains n elements, the computed candidate may contain
n of times as much as elements as a minimal candidate. This result is acceptable only in
the special case that all conflict sets contain two elements. Thus, in the next subsection, we
will present a procedure of de Kleer and Williams [10], which incrementally computes the
minimal candidates.

Candidate Computation due to de Kleer and Williams

The algorithm of de Kleer and Williams copes with multiple faults and works incrementally.
It is outlined below.

Algorithm 5.2: Incremental Diagnosis of Multiple Faults

1. CANDIDATES «)
2. Propose observation
3. Generate CONFLICTS

4.1 VD,D e CANDIDATES
42 YC,C € CONFLICTS

42 If D C = () Then
43 CANDIDATES := CANDIDATES \ D
44 Vo,0 € C' : CANDIDATES := CANDIDATES J{D J{o}}

4.5 Remove subsumed candidate sets in CANDIDATES¢

5. Stop, if CANDIDATES is sufficiently detailed.
6. Goto step 2.

4Let Cy and Cy be two sets. C is subsumed under Cs if Cy C C].

How does the candidates computation work? When diagnosis starts, CANDIDATES is
the empty set. With each new observation the symptom propagation updates the sets of
minimal conflicts. The steps under 4 realize the incremental computation of the candidates.
The following example illustrates the algorithm.

5.4. A CLOSER LOOK AT CANDIDATE GENERATION 57

Let us assume that in the course of the diagnosis of a hydraulic system the two minimal
conflicts {A, B, C'} and {C, B} have been generated. If these sets are the only conflicts,
the candidate generation tree looks like depicted in figure 5.4.

Candidates:
{}
Conflict: {A, B, C} /N
{A} {B} {)
Conflict: {C, D} N N \
{A.C} {A.D) {B.C} ({B.D})
Subsumation test ‘ ‘ ‘
{A, D} {B, D} {C}
Figure 5.4: Incremental candidate generation according to de Kleer and Williams; { A, B,C'} and {C, D}
are the only conflicts.

If, in a further course of the diagnosis process, a new observation has been made, which
let to new sets of minimal conflicts, { A, B} and {D, E'}, the candidate generation tree is
updated as shown in figure 5.5.

Candidates:

{A,D} {B,D} {C}
Conflict: {A, B} ‘ ‘ /\
{A,D} {B,D} {A, C} {B,C}
Conflict: {D, E} ‘ ‘ /\ /\
{A,D} {B,D} {A,C,D} {A,C,E} {B,C,D} {B,C,E}
Subsumation test ‘ ‘ ‘ ‘
{A, D} {B,D} {A, C,E} {B,C,E}

Figure 5.5: Continuation of the above candidate generation example; {A, B} and {D, E} are the only
conflicts now.

The example shows how algorithm 5.2 works; moreover, it discloses another interesting
effect: Obviously the computed candidate sets { A, C, E'} and {B, C, E'} are not minimal,
the component C' is not contained in any minimal conflict set. This rises the question if the
candidate generation algorithm of de Kleer and Williams works correctly.

Since we employed this type of candidate generation scheme within our prototypic di-
agnosis system, it was necessary to investigate its correctness. The original paper of de
Kleer and Williams does not provide for a formal proof of the correctness of algorithm
5.2. Leveling presents an investigation of related issues and shows the correctness of the
algorithm [31]. In this place we will not further elaborate on this question.

Complexity Considerations

As shown before, the time complexity of a diagnosis problem considering multiple faults
grows exponentially in the number of a system’s components. Consequently the total num-

58 CHAPTER 5. DIAGNOSIS OF HYDRAULIC SYSTEMS

ber of processed components in a hydraulic should be kept as small as possible. This
objective can be achieved by means of the following concepts:

1. Comprising components of a hydraulic system by the introduction of substitute resis-
tances.

2. Focusing on particular parts of a hydraulic system during the diagnosis process.

In the following we consider a hydraulic system as a network consisting of hydraulic
resistances, sources, and sinks. A certain class of networks, the so-called series-parallel
networks, can be represented by a hierarchy of substitute resistances. Loosely speaking,
series-parallel networks are composed of series and parallel connections of resistances only.
Series-parallel networks can be mapped onto series-parallel graphs, which are defined in [1]
or in [30].

The decomposition levels of a series-parallel network define a tree whose leafs represent
the components of the hydraulic system. Figure 5.6 shows an example.

E@ L'
Tank
Sy (series) So an

S Py Tank
S, (parallel) 1
P Pump
. b
S, (series) S5 (series) S3¢ P, L] Tank
L pump
P,

Ps C, Py P, C, P,

Tank

series : series connection of resistances

parallel : parallel connection of resistances P, P, Pump

S, 3 : substitute resistance
C, , : cylinder
Pyg pipe

Figure 5.6: Hydraulic system represented at different levels of decomposition.

The inner nodes of the decomposition tree denote the substitute resistances S. A sub-
stitute resistance comprises its descendant nodes, which are connected either in series or
in parallel. In this way the entire network can be represented through one substitute resis-
tance, the root Sy. Note that the nodes on each direct path from the root to a leaf comprise

5.5. A CONSTRAINT SYSTEM FOR DIAGNOSIS 59

series and parallel connections in an alternating sequence. The decomposition tree of a
series-parallel network can be computed in linear time [30].

Given such a decomposition tree, the strategy for focussing works at follows. If a symp-
tom has been observed at component o, then all nodes of the direct path between the root
and o are expanded. Expanding a substitute resistance .S means to employ all direct de-
scendants of S to represent the hydraulic system. When diagnosis starts the entire system
is represented by the substitute resistance associated with the root. If, for example, a symp-
tom has been observed at cylinder C1, the nodes Sy, S7, and S5 will be expanded, and the
hydraulic system consists of C, Py, P, Ps, Py, and Ss.

5.5 A Constraint System for Diagnosis

Within our diagnosis approach a hydraulic plant is modeled using constraints. As described
earlier in chapter 2 a constraint consists of both a set of variables and a relation defined upon
these variables. Constraint processing will realize the inference of component behavior,
which is a constructive task, as well as the test of inconsistencies relating the observed
symptoms, which is some kind of destructive task.

Concepts of the Constraint System

From a diagnostic point of view, hydraulic components need not to be modeled at a very
detailed physical level. Simplified equations, which qualitatively describe component be-
havior, are in most cases sufficient for a global diagnosis process at the circuit level. Figure
5.7 shows a black-box representation of a simplified cylinder.

F=pyAg = ppag @

- | |

-
-
-
ok—condition

Figure 5.7: Graphical description of a cylinder constraint

Note that the correctness assumption (OK-condition) establishes an obligatory part of
each behavior constraint: It determines whether a constraint can be applied at all.

We realized our diagnosis prototype using the ATCON-language to formulate the com-
ponent constraints [13]. In the ATCON system to each constraint-variable a structure is
attached with slots where, aside from the variable’s value, information regarding both con-
straint dependencies and parameter dependencies is stored. ATCON is based on an ATMS;
each constraint-variable also establishes an ATMS node.

60 CHAPTER 5. DIAGNOSIS OF HYDRAULIC SYSTEMS

A constraint in ATCON enforces the fulfillment of its associated relation by means of
rules. These rules are defined for each variable. A rule is of the following form:

((head) (body) (computation rule))

(head) contains the name of the variable to be computed; (body) contains a subset
of a constraint’s variables each of which must be known before the rule can be applied;
(computation rule) provides a LISP function that computes the value for the variable in
(head), dependent on the values supplied in (body).

The subsequent constraint example shows one rule of the definition of the balance of
forces in a cylinder. It defines the dependencies of the variable p, from the other variables
involved:

(pa (P F Ak Ag OK) (if (or (not OK)
(nearly-zero-p Ag))
:DISMISS
(/ (+ F (x psg Ar)) Ag)))

The symbol : DISMISS denotes a particular keyword which informs the inference ma-
chine that no value can be computed by this rule if the or-clause evaluates to True.

Symptom Propagation in the Constraint Network

Together all components’ constraints form a constraint network. Each two components
that are mechanically connected in the hydraulic system share at least one variable in the
constraint network. A cylinder with a pipe for instance have one flow variable and one
pressure variable in common. Hence, values for variables can be propagated in the network.

In ATCON value propagation works as follows. If a constraint provides sufficient in-
formation to deduce a new value for some variable, a particular rule can fire. For each rule
that fires, ATCON creates a new node within the underlying ATMS. The computed value
for the rule’s (head)-variable becomes the datum of this node. The values for the variables
in the (body)-part of the rule become the antecedent nodes of the justification. Finally, the
new node’s label is computed by the ATMS as described in a former subsection.

Note that also for the components’ correctness assumptions (OK-conditions) ATMS-
nodes’ exist. Each justification that is derived from a constraint thus contains the cor-
rectness assumption of the component which is associated to this constraint. As a result
correctness assumptions occur in the label of every propagated value v; they specify the set
of correctly working components responsible for v.

If because of a new symptom observation a variable of the constraint system is modified,
the involved constraints are tickled and checked whether their rules can fire. This symptom
propagation works according to the following rule:

"These ATMS-nodes are of the type “assumption”.

5.5. A CONSTRAINT SYSTEM FOR DIAGNOSIS 61

Algorithm 5.3: Symptom Propagation

1. While a new value has been inferred

2 Select some variable v that has been modified.
3. For each constraint c that is defined upon v:

4 Apply all rules of c that can fire.

Remarks. The above algorithm processes the rules in a forward chaining manner. In order
to avoid cycles during propagation, the processed constraints will be marked. Note that con-
straint propagation does not necessarily follow the physical flow of energy in the hydraulic
system.

Modeling Layers

Three modeling layers of a hydraulic plant can be identified in the diagnosis system (cf.
figure 5.8). The topmost layer contains the representation of the hydraulic plant’s topology;
it is comprised of components, connections, and pipes. This layer corresponds to the user’s
view to a hydraulic plant and is created while drawing a circuit with deco.

The second layer, which is called constraint layer here, realizes the component behavior
from the standpoint of diagnosis. The functional models of the components are exploited
to create both the behavior constraints of ATCON and the ATMS nodes.

Taking the observed symptoms as input, the second layer constructs via constraint prop-
agation the lowest layer, the justification layer.

Note that a user is faced only with the topmost layer.

Discussion

Constraint propagation is one possibility to realize behavior prediction for technical sys-
tems. The description and the processing of constraints as outlined in this section has been
used in different diagnosis systems, especially in connection with the GDE [13]. Bound up
with such an approach are the following advantages:

The constraint network can be easily constructed.

Continuous connections can be modeled.

The computation of local constraints is efficient.

The formulation of local dependencies is very intuitive and simplifies the process of
knowledge acquisition.

A major drawback of the above constraint propagation approach is that it can fail in
computing all unknown variables, although a globally consistent solution exists. Recall
that the identification of conflicts is realized by constraint propagation in cooperation with
the ATMS. An imperfect determination of variables in the constraint network may result in

62 CHAPTER 5. DIAGNOSIS OF HYDRAULIC SYSTEMS

Compononent layer FH;;:'

v, F
Ap Pg, Op L
AN
A PO)
Constraint layer o, v Op
_ Continuity condition A Continuity condition B
- Oy = Agv Op = Agv

| & @ 7

| g loncs offorces
— J —
o F=pyAp - pghp @ ok—condition
ok—condition

Justification layer

Justification 112

Justification 110

Figure 5.8: Model formation and processing regarding diagnosis takes place on three layers

smaller conflict sets. Hence the GDE will not be able to propose the most discriminating

measuring point; as a consequence, the number of observations will not be minimum.

References

[1] H. Booth and R. Tarjan. Finding the Minimum-Cost Maximum Flow in a
Series-Parallel Network. Journal of Algorithms, 15:416-446, 1993.

[2] D. Brown and B. Chandrasekaran. Design Problem Solving. Morgan Kaufmann
Publishers, 1989.

[3] T. Bylander and B. Chandrasekaran. Generic Tasks for Knowledge-based Reasoning:
the “right” Level of Abstraction for Knowledge Acquisition. Int. J. Man-Machine
Studies, 26:231-243, 1987.

[4] B. Chandrasekaran and R. Milne. Reasoning About Structure, Behavior, and
Function. SIGART Newsletter, Juli 85(93):4-59, 1985.

[5] E. Davis. Constraint Propagation with Interval Labels. Artificial Intelligence,
32:281-331, 1987.

[6] J. de Kleer. An Assumption-based Truth Maintenance System. Artificial Intelligence,
28:127-162, 1986.

[7] J. de Kleer. Problem Solving with the ATMS. Artificial Intelligence, 28:197-224,
1986.

[8] J. de Kleer. Using Crude Probability Estimates to Guide Diagnosis. Artificial
Intelligence, 45:381-391, 1990.

[9] J. de Kleer and J. S. Brown. A Qualitative Physics Based on Confluences. Artificial
Intelligence, 24:7-83, 1984.

[10] J. de Kleer and B. C. Williams. Diagnosing Multiple Faults. Artificial Intelligence,
32:97-130, 1987.

[11] R. Dechter and J. Pearl. Network-based Heuristics for Constraint-Satisfaction
Problems. Artificial Intelligence, pages 1-38, 1988.

[12] J. Doyle. A Truth Maintenance System. Artificial Intelligence, 12:231-272, 1979.

[13] K. D. Forbus and J. de Kleer. Building Problem Solvers. MIT Press, Cambridge,
MA, 1993.

63

64 REFERENCES

[14] E. C. Freuder. Synthesizing Constraint Expressions. Communications of the ACM,
21(11):958-966, Nov. 1978.

[15] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

[16] J. Gosling. Algebraic Constraints. Dissertation, Carnegie-Mellon University,
Department of Computer Science, May 1983.

[17] H.-W. Giisgen. CONSAT—A System for Constraint Satisfaction. Dissertation,
Gesellschaft fiir Mathematik und Datenverarbeitung mbH, Sankt Augustin, Nov.
1987.

[18] M. Hoffmann. Algorithmen zur Verarbeitung von topologischen Informationen in
Netzwerken. Diploma thesis, Gerhard-Mercator-Universitit - GH Duisburg,
Fachbereich Mathematik / Informatik, Sept. 1993.

[19] U. Husemeyer. Entwurf und Realisierung einer Verhaltensbeschreibungssprache fiir
technische Expertensysteme. Diploma thesis, University of Paderborn, Department
of Mathematics and Computer Science, 1995.

[20] IntelliCorp. KEE User’s Guide. IntelliCorp, Inc, 1975 El Camino Real West,
California, 1988.

[21] A. Kecskeméthy. MOBILE—An Objectoriented Tool-Set for the Efficient Modeling
of Mechatronic Systems. In M. Hiller and B. Fink, editors, Second Conference on
Mechatronics and Robotics. IMECH, Institut fiir Mechatronic, Moers, IMECH, 1993.

[22] J. Kippe. Komponentenorientierte Repriasentation technischer Systeme. In H. W.
Friichtenicht, editor, Technische Expertensysteme: Wissensreprdsentation und
Schlufifolgerungsverfahren. R. Oldenbourg Verlag, Miinchen, Wien, 1988.

[23] H. Kleine Biining and B. Stein. Supporting the Configuration of Technical Systems.
In M. Hiller and B. Fink, editors, Second Conference on Mechatronics and Robotics.
IMECH, Institut fiir Mechatronic, Moers, IMECH, 1993.

[24] B. Kuipers. Commonsense Reasoning about Causality: Deriving Behavior from
Structure. Artificial Intelligence, 24:169-203, 1984.

[25] R. Lemmen. Akquisition und Analyse von Wissen zur Inbetriebnahme von
hydraulischen translatorischen Anlagen. Diploma thesis,
Gerhard-Mercator-Universitit - GH Duisburg, Inst. f. MeB3-, Steuer-, und
Regelungstechnik, 1991.

[26] R. Lemmen. Modellbasierte Priifung hydraulischer Anlagen. Technical Report
MSRT7/92, Gerhard-Mercator-Universitit - GH Duisburg, 1992.

[27] R. Lemmen. Entwurf und Implementierung eines wissensbasierten Verfahrens fiir
die Inbetriebnahme technischer Anlagen am Beispiel translatorischer hydraulischer
Antriebe. Technical Report MSRT 5/95, Gerhard-Mercator-Universitit - GH
Duisburg, 1995.

REFERENCES 65

[28] R. Lemmen. Zur automatisierten Modellerstellung, Konfigurationspriifung und
Diagnose hydraulischer Anlagen mit dem Beispiel tankdruckangehobener
Differentialzylinderantriebe. Number 503 in Fortschrittsberichte VDI, Reihe 8:
Mess-, Steuer- und Regelungstechnik. VDI-Verlag, DAisseldorf, 1995.

[29] R. Lemmen and B. Stein. Wissensbasierte Konfigurationspriifung hydraulischer
Anlagen. at — Automatisierungstechnik, 3, 1994.

[30] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. B. G.
Teubner, Stuttgart, 1990.

[31] U. Leweling. Moglichkeiten und Grenzen der modellbasierten Diagnose bei
hydraulischen Anlagen. Diploma thesis, Universitit-GH Paderborn, FB 17
Mathematik / Informatik, 1995.

[32] A. K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,
24:169-203, 1994.

[33] Math Works Inc. SIMULINK User’s Guide. Math Works Inc., Nattik, Massachusetts,
1992.

[34] Y. Nakashima and T. Baba. OHCS: Hydraulic Circuit Design Assistant. In First
Annual Conference on Innovative Applications of Artificial Intelligence, pages
225-236, Stanford, 1989.

[35] J. K. Ousterhout. TCL: An Embeddable Command Language. In USENIX
Conference, 1990.

[36] M. Piechnick and A. Feuser. MOSIHS — Programmsystem zur Simulation komplexer
elektrohydraulischer Systeme. In AFK, Aachener Fluidtechnisches Kolloquium.
Mannesmann Rexroth GmbH, Lohr, Germany, 1994.

[37] F. Puppe. Einfiihrung in Expertensysteme. Springer-Verlag, 1988.
[38] F. Puppe. Problemlosungsmethoden fiir Expertensysteme. Springer-Verlag, 1990.
[39] H. R. Schwarz. Numerische Mathematik. B. G. Teubner, Stuttgart, 1986.

[40] B. Stein. Functional Models in Configuration Systems. Dissertation, University of
Paderborn, Department of Mathematics and Computer Science, 1995.

[41] B. Stein and R. Lemmen. ARTDECO: A System which Assists the Checking of
Hydraulic Circuits. In Workshop for Model-based Reasoning, ECAI "92, 1992.

[42] P. StruB. Assumption-based Reasoning about Device Models. In H. Friichtenicht,
editor, Wissensreprdsentation und Schluflfolgerungsverfahren. Oldenbourg Verlag,
Miinchen, 1988.

[43] M. Suermann. Wissensbasierte Modellbildung und Simulation von hydraulischen
Schaltkreisen. Diploma thesis, Universitit-GH Paderborn, FB 17 Mathematik /
Informatik, 1994.

66 REFERENCES

[44] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal of
Computing, 1(2):146-160, June 1972.

[45] H. VoAS$§. Representing and Analyzing Causal, Temporal, and Relations of Devices.
Dissertation, Universitit Kaiserslautern, Fachbereich Informatik, 1986.

[46] J. Weiner. Aspekte der Konfigurierung technischer Anlagen. Dissertation,
Gerhard-Mercator-Universitit - GH Duisburg, FB 11 Mathematik / Informatik, 1991.

