An Extensible Synthesis Framework

Theodor Lettmann Benno Stein
lettmann@upb.de stein@upb.de

Paderborn University
Department of Computer Science
D-33095 Paderborn, Germany

Abstract This paper describes the background and ideas of an on-deirgop-
ment at our institute: The creation of a framework that casgw state-of-the-art
configuration and synthesis technology.

Key words: configuration framework, design problem solving, synthéasks

1 Introduction

Starting point of a design problem is a spatef possible design solutions along with
a setD of demands. Solving a design problem means to determinetansys® €

S that fulfills D. Typically, S* is not found by experimenting in the real world but
by operationalizing a search process after having mappedytstem spaces, onto a
model spaceM. M comprises all modeld/ that could be visited during the design
process. Figure 1 illustrates these connections.

: ‘1 Model ! Model :

i Model '+ selection 11 simulation Model

! space M ™ Model M == behavior |

E Model

' formation . Transfer +

' 1 Comparison
System Design Experiment
spaceS ~ T T T T~ > SystemS - - - - - - - Demands D

Figure 1. A generic scheme of design problem solving according to:[Bfen is a spacé& of
possible design solutions and a set of demabd©n a computers is represented as a model
space M, wherein a modelM ™ is searched whose behavior fulfills.

It is the job of a design algorithm to efficiently find a model* € M whose
simulation produces a behavior that complies wittand which optimizes a possible
goal criterion. A synthesis framework can support this jobexveral places:

! Following Minsky we callM a model of a systens, if M can be used to answer questions
aboutS [9]. In particular in connection with design problem$ may establish a structural, a
functional, an associative, or a behavioral model.

2 Lettmann / Stein

1. Model FormationGiven a system spac® there exist several paradigms to define
a suited model spac#1 for synthesis purposes. They include differential equa-
tions [6], taxonomies (is-a relations), compositionalriehies [3], design graph
grammars [1, 12], resource descriptions [5], case-basesbréng [7, 11], or propo-
sitional logic [13, 14].

2. Model SelectionUsually model selection does not happen by chance but is a
guided process that defines in which way the search is orgdniz fact, most of
the model formation paradigms mentioned before advise ticpkar search strat-
egy.

3. Model Simulation.Within this step the “behavior” of the selected model is
analyzed—a process which can vary largely in its complextyg., when a
behavior-based design problem is to be solved, complexréifitial-algebraic
equations need to be processed, while in a simple compuasitaesign problem
merely the existence of components is checked [4].

There is a strong research background for solving syntipesisiems at our insti-
tute, and, in the past, we have developed several speciatmefiguration solutions
for real world tasks [6, 12, 15]. Based on this experienceavathed in 2003 the de-
velopment of an extensible synthesis framework that stoafiprise a wide range of
technologies related to defining model spaces on the one haddon the other hand,
to select, search, and simulate models from a given modeéspa

Note that we are not aiming atggenericsynthesis engine since we know that many
synthesis problems require specialized and tailoredisolsitinstead, we take existing
configuration and synthesis technology and put much empbasioftware engineering
aspects: extendibility, transparent coupling of techgias, state-of-the-art interfaces,
or Web-based access.

Related Work

There has been considerable research effort related tayooation and design in the
last 20 years. The starting point for developing tailorefiveare techniques to tackle
synthesis problems was the R1 system, which emerged fronmiagjmject between
CMU and DEC in the early eighties [8]. R1 was no generic platfut specifically
designed to realize the configuration of Vax computers.

The R.AKON system developed from the TEX-K project (1986 - 1990) whdse o
jective was the creation of a knowledge-based kernel fanrpiey and configuration
tasks, independent from a concrete domain. Configuratmtdogy in RAKON was
centered around the skeletal configuration paradigm. Aiwm®a powerful composi-
tional and taxonomic descriptions. RKON enabled the modeling of basic functional
and associative constraints as well as the specificatioomfa knowledge to guide
the search.

Based on the experiences gathered in TEX-K the successarasfd®h —the sys-
tem KONWERK was created. Among others OKIWERK extended the modeling capa-
bilities of PLAKON and came along with a clear modular architecture. Bathk®N
and KONWERK were implemented in Lisp.

An Extensible Synthesis Framework 3

The system ECON can be considered as a partial relaunch of tleevt/ERK plat-
form, having a strong emphasis on commercial requiremejtsgNCconN is imple-
mented in Java, and, since its configuration kernel is endatesl by an abstraction
layer, the tool is qualified to bring configuration technalag the Web.

2 The EsSF Synthesis Framework

The configuration and design projects that we conductedanetst fifteen years came
from very different domains, such as logistic systemsctai@munication systems, flu-
idic engineering, computer networks, testing equipmemntspftware systems. Our en-
deavorsto find adequate solutions taught us several lessonsg others the following:

— Finding the “right” level of abstraction when defining the debspaceM is both
the most crucial and difficult job.

— Given a real-world configuration task, then no modeling gaya will do it all,
say, modeling concepts have do be adapted, modified, or egated.

— No configuration strategy can provide that degree of flexjbihat it leads to an
acceptable search performance for all projects mentionedea

Nevertheless, every configuration task aims at the congiruof a system (to be
precise: model of a system) whose function fulfills a set eégidemand®. Function,
in turn, can be regarded as a consequence of the interplagéestructure and behav-
ior of a system [17]. Put another way, a configuration tool npuevide concepts for
modeling and processing both structure and behavior.

These considerations form the ground for our implememagftorts that flow into
the extensible synthesis frameworkEcf. Figure 2). It provides modeling paradigms
and processing methods related to the following three kedgé sources:

(a) Strategy KnowledgeDesign or configuration strategies can be easily defined by
means of a scripting language. Strategies are objects éimabe created, stored,
combined, triggered, or modified.

(c) Component Knowledga his knowledge source relates to the definition of compo-
nent classes and instances. Component behavior can béeedsat different lev-
els of granularity, which includes resource descriptionsimple functional con-
straints, and will allow complex behavior descriptionsdzh®n the Modelica
language in the near future [10].

(c) Structural Knowledgdnstead allowing only compositional and taxonomic hierar-
chies we use the rather new concept of design graph gramard$]. Design
graph grammars have been developed as a powerful means ijputaéa arbitrary
structure models of technical systems.

EsF provides several algorithms for manipulating the aforetioaed object types.
In particular, objects can be shared among different algms using a blackboard; the
blackboard is also used to store a certain state of the searchremember alterna-
tive choice points among which a strategy may chooses thé pnasiising one. New

2 pLAKON, for instance, addressed the question of structure withegats for modeling skeletal
plans; likewise, it addressed the question of behavior bynattaint processing mechanism.

4 Lettmann / Stein

Presentation layer |

ESF Developer |

interface
Control Blackboard mgy\

Strategies

Filing / Editing

Interpreter / Object v
Debugger W

W Component
Blackboard database
Object manager
Object viewer : :

Data

Modelica classes

E Structural
database

Structure
Modeling tools

|
Runtime support

Thread manager

(%))
2
2l
@

Design graph grammar

Interface definition layer |

Design graph Hybrid
coﬁ%{iﬂ;ﬁon grammar proséiiing simulation
processing engine

Figure 2. Conceptual view onto & A blackboard serves as central communication turntable
(middle); the three different knowledge sources are shawthe right-hand side, the respective
algorithms are shown below.

modeling paradigms or component types can integratedybtfarwardly: An interface
definition layer prescribes a set of accessors and manipukanctions that each object
must implement to be shareable via the blackboard.

EsFis being implemented in Java. Note that there are varioesdasting software-
technical aspects that deserve an in-depth discussionwiitidoe described in a forth-
coming white paper.

3 Application: Task-Oriented Plant Layout

This section outlines a particular job-shop manufactutask that has been realized
with ESF. The task combines several aspects of planning, configurand simulation:
For the production of small metal parts such as screws or\gbkaels the necessary
machines have to be selected, a suited processing sequande he found, and, a
layout of the manufacturing plant has to be generated (speaé-B).

An Extensible Synthesis Framework 5

Design process I . S Design process || 2
(human engineer) |+ —[f (by ESF) %)
1| Spe—— btz = o]
: . [2 o Lathe
Demands -————————— Demands System
(as product photo) (as CAD drawing) (as plant layout)

Figure 3. The figure shows the desired product (left), a technical ohgfrom which the man-
ufacturing constraints are derived (middle), and the plapout (right), which is part of the
solution of the design process.

The solution of this design task happens in a cycle of thefdlig steps:

1. Creation of a process flow graph by means of a design graphrgar.

2. Selection and parameterization of the machines useiprticess flow graph.

3. Simulation of the work-flow. In case of a positive evalaatithe solution is com-
pared to alternative realizations already derived.

The machines that are used to realize the production prgeesile certain func-
tionalities: sawing, drilling, milling, nibbling, or tuing. Their capacities and per-
formances, as well as their constraints are modeled by mefathe resource-based
paradigm. For the simulation of the process flow along with¢bnfigured machines
tailored algorithms were implemented and plugged in$@.E

- ---p Control of the
design process e

——» Data flow E Strategy script E Blackboard

! L 1
1
R i !
(i) i \i \
\ .
S i s
aw m Machine |Parts/h | Power | Space | A f\\
Saw XS 100 | 100 | 1.75kw [8.0sqm “L'\/
(i} Mill ZP S 270 | 2.30kw |6.55qm -
san}— (1)
Model formation (structure) Model formation (behavior) Model simulation

Figure 4. The employed modeling paradigms: Design graph grammargdorgeneration (left)
and resource-based configuration for material propenpiexjuction constraints, and space re-
quirements (middle). The simulation (right) is necessargidtermine an optimum solution.

A detailed description of the system, the design graph grammies, and the re-
source model can be found in [18].

6 Lettmann / Stein

References

1. Erik K. Antonsson and Jonathan Cag&armal Engineering Design Synthesis
Cambridge University Press, 2001. ISBN 0-521-79247-9.

2. V. Arlt, A. Ginter, O. Hollmann, and T. Wagner. Enginegré
Configuration—A Knowledge-Based Software Tool for CompBonfiguration
Tasks. InProceedings of the AAAI 99 Workshop on Configurati99.

3. R. Cunis, A. Glnter, I. Syska, H. Peters, and H. Bodeak®N—AN Approach to
Domain-independent Construction. Technical Report 21FBMerbundsprojekt,
Universitat Hamburg, FB Informatik, March 1989.

4. John S. Gero. Design Prototypes: A Knowledge Representatheme for
Design.Al Magazing 11:26-36, 1990.

5. M. Heinrich and E. W. Jiingst. A Resource-based ParadigthéaConfiguring of
Technical Systems for Modular ComponentsPhoc. CAIA '91, pages 257-264,
1991.

6. Marcus HoffmannZur Automatisierung des Designprozesses fluidischer @gste
Dissertation, University of Paderborn, Department of Matlatics and Computer
Science, 1999.

7. Mary Lou Maher and Pearl Pu, editotssues and Applications of Case-Based
Reasoning in DesigrLawrence Erlbaum Associates, Mahwah, New Jersey, 1997.

8. John McDermott. R1: A Rule-based Configurer of Computat&ys.Artificial
Intelligence 19:39-88, 1982.

9. Marvin Minsky. Models, Minds, Machines. Proceedings of the IFIP Congress
pages 45-49, 1965.

10. Modelica AssociationModelicad —A Unified Object-Oriented Language for
Physical Systems Modeling: TutoridVlodelica Association, Link&ping, Sweden,
2000.

11. Michael M. Richter. Introduction to CBR. In Mario Lenzigitte Bartsch-Sporl,
Hans-Dieter Burkhard, and Stefan Wel3, edit@ase-Based Reasoning
Technology. From Foundations to Applicatiohecture Notes in Artificial
Intelligence 1400, pages 1-15. Berlin: Springer-Verl&$a.

12. André SchulzOn the Automatic Design of Technical SysteBissertation,
University of Paderborn, Department of Mathematics and Quier Science,
2001.

13. David B. Searls and Lewis M. Norton. Logic-based Configion with a
Semantic NetworkJournal of Logic Programming8:53—73, 1990.

14. Benno SteinFunctional Models in Configuration Systeniissertation,
University of Paderborn, Institute of Computer Scienceé5.9

15. Benno SteinModel Construction in Analysis and Synthesis Taskabilitation,
University of Paderborn, Institute of Computer Scienceel2001.

16. Benno Stein. Engineers Don’t Search. In Wolfgang Lereskitor,Proceedings of
a Symposium on Logic versus Approximation, Schloss Dag&emmany
volume LNAI of Lecture Notes in Artificial Intelligenc@erlin Heidelberg
New York, October 2003. Springer.

17. Nam Oyo SuhAxiomatic DesignOxford University Press, 2001. ISBN
0-19-513466-4.

18. Achim Wullenkort. Eine Entwicklungsumgebung fir Desi§ufgaben. Diploma
thesis, University of Paderborn, Institute of Computeesce, 2004.

