
An Extensible Synthesis Framework

Theodor Lettmann Benno Stein
lettmann@upb.de stein@upb.de

Paderborn University
Department of Computer Science

D-33095 Paderborn, Germany

Abstract This paper describes the background and ideas of an on-goingdevelop-
ment at our institute: The creation of a framework that comprises state-of-the-art
configuration and synthesis technology.

Key words: configuration framework, design problem solving, synthesis tasks

1 Introduction

Starting point of a design problem is a spaceS of possible design solutions along with
a setD of demands. Solving a design problem means to determine a system S

∗ ∈

S that fulfills D. Typically, S∗ is not found by experimenting in the real world but
by operationalizing a search process after having mapped the system space,S, onto a
model spaceM. M comprises all modelsM that could be visited during the design
process.1 Figure 1 illustrates these connections.

Model

behavior

Transfer +

Comparison

Model

space M Model M

Model

formation

Model

selection

System

space S System S

Design Experiment
Demands D

Model

simulation

Figure 1. A generic scheme of design problem solving according to [16]: Given is a spaceS of
possible design solutions and a set of demandsD. On a computer,S is represented as a model
space,M, wherein a modelM∗ is searched whose behavior fulfillsD.

It is the job of a design algorithm to efficiently find a modelM∗ ∈ M whose
simulation produces a behavior that complies withD and which optimizes a possible
goal criterion. A synthesis framework can support this job at several places:

1 Following Minsky we callM a model of a systemS, if M can be used to answer questions
aboutS [9]. In particular in connection with design problemsM may establish a structural, a
functional, an associative, or a behavioral model.

2 Lettmann / Stein

1. Model Formation.Given a system spaceS there exist several paradigms to define
a suited model spaceM for synthesis purposes. They include differential equa-
tions [6], taxonomies (is-a relations), compositional hierarchies [3], design graph
grammars [1, 12], resource descriptions [5], case-based reasoning [7, 11], or propo-
sitional logic [13, 14].

2. Model Selection.Usually model selection does not happen by chance but is a
guided process that defines in which way the search is organized. In fact, most of
the model formation paradigms mentioned before advise a particular search strat-
egy.

3. Model Simulation.Within this step the “behavior” of the selected model is
analyzed—a process which can vary largely in its complexity: E. g., when a
behavior-based design problem is to be solved, complex differential-algebraic
equations need to be processed, while in a simple compositional design problem
merely the existence of components is checked [4].

There is a strong research background for solving synthesisproblems at our insti-
tute, and, in the past, we have developed several specialized configuration solutions
for real world tasks [6, 12, 15]. Based on this experience we launched in 2003 the de-
velopment of an extensible synthesis framework that shall comprise a wide range of
technologies related to defining model spaces on the one hand, and, on the other hand,
to select, search, and simulate models from a given model space.

Note that we are not aiming at agenericsynthesis engine since we know that many
synthesis problems require specialized and tailored solutions. Instead, we take existing
configuration and synthesis technology and put much emphasis on software engineering
aspects: extendibility, transparent coupling of technologies, state-of-the-art interfaces,
or Web-based access.

Related Work

There has been considerable research effort related to configuration and design in the
last 20 years. The starting point for developing tailored software techniques to tackle
synthesis problems was the R1 system, which emerged from a joint project between
CMU and DEC in the early eighties [8]. R1 was no generic platform but specifically
designed to realize the configuration of Vax computers.

The PLAKON system developed from the TEX-K project (1986 - 1990) whose ob-
jective was the creation of a knowledge-based kernel for planning and configuration
tasks, independent from a concrete domain. Configuration technology in PLAKON was
centered around the skeletal configuration paradigm. Asidefrom powerful composi-
tional and taxonomic descriptions PLAKON enabled the modeling of basic functional
and associative constraints as well as the specification of control knowledge to guide
the search.

Based on the experiences gathered in TEX-K the successor of PLAKON—the sys-
tem KONWERK was created. Among others, KONWERK extended the modeling capa-
bilities of PLAKON and came along with a clear modular architecture. Both PLAKON

and KONWERK were implemented in Lisp.

An Extensible Synthesis Framework 3

The system ENCON can be considered as a partial relaunch of the KONWERK plat-
form, having a strong emphasis on commercial requirements [2]. ENCON is imple-
mented in Java, and, since its configuration kernel is encapsulated by an abstraction
layer, the tool is qualified to bring configuration technology to the Web.

2 The ESF Synthesis Framework

The configuration and design projects that we conducted in the last fifteen years came
from very different domains, such as logistic systems, telecommunication systems, flu-
idic engineering, computer networks, testing equipments,or software systems. Our en-
deavors to find adequate solutions taught us several lessons, among others the following:

– Finding the “right” level of abstraction when defining the model spaceM is both
the most crucial and difficult job.

– Given a real-world configuration task, then no modeling paradigm will do it all,
say, modeling concepts have do be adapted, modified, or even created.

– No configuration strategy can provide that degree of flexibility that it leads to an
acceptable search performance for all projects mentioned above.

Nevertheless, every configuration task aims at the construction of a system (to be
precise: model of a system) whose function fulfills a set of given demandsD. Function,
in turn, can be regarded as a consequence of the interplay between structure and behav-
ior of a system [17]. Put another way, a configuration tool must provide concepts for
modeling and processing both structure and behavior.2

These considerations form the ground for our implementation efforts that flow into
the extensible synthesis framework ESF (cf. Figure 2). It provides modeling paradigms
and processing methods related to the following three knowledge sources:

(a) Strategy Knowledge.Design or configuration strategies can be easily defined by
means of a scripting language. Strategies are objects that can be created, stored,
combined, triggered, or modified.

(c) Component Knowledge.This knowledge source relates to the definition of compo-
nent classes and instances. Component behavior can be described at different lev-
els of granularity, which includes resource descriptions or simple functional con-
straints, and will allow complex behavior descriptions based on the Modelica
language in the near future [10].

(c) Structural Knowledge.Instead allowing only compositional and taxonomic hierar-
chies we use the rather new concept of design graph grammars [12, 15]. Design
graph grammars have been developed as a powerful means to manipulate arbitrary
structure models of technical systems.

ESF provides several algorithms for manipulating the aforementioned object types.
In particular, objects can be shared among different algorithms using a blackboard; the
blackboard is also used to store a certain state of the searchor to remember alterna-
tive choice points among which a strategy may chooses the most promising one. New

2 PLAKON , for instance, addressed the question of structure with concepts for modeling skeletal
plans; likewise, it addressed the question of behavior by a constraint processing mechanism.

4 Lettmann / Stein

Presentation layer

Component

database

Structural

database

Blackboard

Modelica classes

Design graph grammar

model ModifiedFiltersInSeries

 FiltersInSeries F12(F1(T=6), F2(T=11, k=2)); // alternative 1

 FiltersInSeries F34(F1.T=6, F2.T=11, F2.k=2); // alternative 2

end ModifiedFiltersInSeries;

model VsourceAC "Sin-wave voltage source"

 extends OnePort;

 parameter Voltage VA = 220 "Amplitude";

 parameter Real f(unit="Hz") = 50 "Frequency";

 constant Real PI=3.141592653589793;

equation

 v = VA*sin(2*PI*f*time);

end VsourceAC;

class LowPassFilter

 parameter Real T=1;

 Real u, y(start=1);

equation

 T*der(y) + y = u;

end LowPassFilter;

Strategy

database

Strategies

Tactics Heuristics

Task

Object

State

Structure

Object

Object

Task

Filing / Editing

Interpreter /

Debugger

Control

Thread manager

ESF Developer

interface

Object manager

Object viewer

Modeling tools

Strategies

Blackboard

Data

Runtime support

Interface definition layer

Balance

configuration

Design graph

grammar

processing

Rule

processing

Hybrid

simulation

engine
...

Task

Structure

Structure

State

...

Figure 2. Conceptual view onto ESF. A blackboard serves as central communication turntable
(middle); the three different knowledge sources are shown on the right-hand side, the respective
algorithms are shown below.

modeling paradigms or component types can integrated straightforwardly: An interface
definition layer prescribes a set of accessors and manipulation functions that each object
must implement to be shareable via the blackboard.

ESF is being implemented in Java. Note that there are various interesting software-
technical aspects that deserve an in-depth discussion; they will be described in a forth-
coming white paper.

3 Application: Task-Oriented Plant Layout

This section outlines a particular job-shop manufacturingtask that has been realized
with ESF. The task combines several aspects of planning, configuration, and simulation:
For the production of small metal parts such as screws or gear-wheels the necessary
machines have to be selected, a suited processing sequence has to be found, and, a
layout of the manufacturing plant has to be generated (see Figure 3).

An Extensible Synthesis Framework 5

S
to

ck

S
a
w

M
ill

Lathe

M
ill

M
ill

M

ill

Design process

(by ESF)

Design process

(human engineer)

Demands

(as CAD drawing)

System

(as plant layout)

Demands

(as product photo)

Figure 3. The figure shows the desired product (left), a technical drawing from which the man-
ufacturing constraints are derived (middle), and the plantlayout (right), which is part of the
solution of the design process.

The solution of this design task happens in a cycle of the following steps:

1. Creation of a process flow graph by means of a design graph grammar.
2. Selection and parameterization of the machines used in the process flow graph.
3. Simulation of the work-flow. In case of a positive evaluation, the solution is com-

pared to alternative realizations already derived.

The machines that are used to realize the production processprovide certain func-
tionalities: sawing, drilling, milling, nibbling, or turning. Their capacities and per-
formances, as well as their constraints are modeled by meansof the resource-based
paradigm. For the simulation of the process flow along with the configured machines
tailored algorithms were implemented and plugged into ESF.

Strategy script
 Blackboard

Mill

Mill

Mill

Mill

Saw

Saw

Lathe

Model formation (structure)
 Model formation (behavior)
 Model simulation

...

...

...

Machine

Saw XS 100

Mill ZP S

...

Space

8.0sqm

6.5sqm

...

Power

1.75kW

2.30kW

...

Parts/h

100

270

...

Control of the

design process

Data flow

Figure 4. The employed modeling paradigms: Design graph grammars forplan generation (left)
and resource-based configuration for material properties,production constraints, and space re-
quirements (middle). The simulation (right) is necessary to determine an optimum solution.

A detailed description of the system, the design graph grammar rules, and the re-
source model can be found in [18].

6 Lettmann / Stein

References

1. Erik K. Antonsson and Jonathan Cagan.Formal Engineering Design Synthesis.
Cambridge University Press, 2001. ISBN 0-521-79247-9.

2. V. Arlt, A. Günter, O. Hollmann, and T. Wagner. Engineering &
Configuration—A Knowledge-Based Software Tool for ComplexConfiguration
Tasks. InProceedings of the AAAI 99 Workshop on Configuration, 1999.

3. R. Cunis, A. Günter, I. Syska, H. Peters, and H. Bode. PLAKON—An Approach to
Domain-independent Construction. Technical Report 21, BMFT Verbundsprojekt,
Universität Hamburg, FB Informatik, March 1989.

4. John S. Gero. Design Prototypes: A Knowledge Representation Scheme for
Design.AI Magazine, 11:26–36, 1990.

5. M. Heinrich and E. W. Jüngst. A Resource-based Paradigm for the Configuring of
Technical Systems for Modular Components. InProc. CAIA ’91, pages 257–264,
1991.

6. Marcus Hoffmann.Zur Automatisierung des Designprozesses fluidischer Systeme.
Dissertation, University of Paderborn, Department of Mathematics and Computer
Science, 1999.

7. Mary Lou Maher and Pearl Pu, editors.Issues and Applications of Case-Based
Reasoning in Design. Lawrence Erlbaum Associates, Mahwah, New Jersey, 1997.

8. John McDermott. R1: A Rule-based Configurer of Computer Systems.Artificial
Intelligence, 19:39–88, 1982.

9. Marvin Minsky. Models, Minds, Machines. InProceedings of the IFIP Congress,
pages 45–49, 1965.

10. Modelica Association.Modelica—A Unified Object-Oriented Language for
Physical Systems Modeling: Tutorial. Modelica Association, Linköping, Sweden,
2000.

11. Michael M. Richter. Introduction to CBR. In Mario Lenz, Brigitte Bartsch-Spörl,
Hans-Dieter Burkhard, and Stefan Weß, editors,Case-Based Reasoning
Technology. From Foundations to Applications, Lecture Notes in Artificial
Intelligence 1400, pages 1–15. Berlin: Springer-Verlag, 1998.

12. André Schulz.On the Automatic Design of Technical Systems. Dissertation,
University of Paderborn, Department of Mathematics and Computer Science,
2001.

13. David B. Searls and Lewis M. Norton. Logic-based Configuration with a
Semantic Network.Journal of Logic Programming, 8:53–73, 1990.

14. Benno Stein.Functional Models in Configuration Systems. Dissertation,
University of Paderborn, Institute of Computer Science, 1995.

15. Benno Stein.Model Construction in Analysis and Synthesis Tasks. Habilitation,
University of Paderborn, Institute of Computer Science, June 2001.

16. Benno Stein. Engineers Don’t Search. In Wolfgang Lenski, editor,Proceedings of
a Symposium on Logic versus Approximation, Schloss Dagstuhl, Germany,
volume LNAI of Lecture Notes in Artificial Intelligence, Berlin Heidelberg
New York, October 2003. Springer.

17. Nam Oyo Suh.Axiomatic Design. Oxford University Press, 2001. ISBN
0-19-513466-4.

18. Achim Wullenkort. Eine Entwicklungsumgebung für Design-Aufgaben. Diploma
thesis, University of Paderborn, Institute of Computer Science, 2004.

