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Abstract—Automated text classification is one of the most
important learning technologies to fight information overload.
However, the information society is not only confronted with
an information flood but also with an increase in “information
volatility”, by which we understand the fact that kind and
distribution of a data source’s emissions can significantly vary.
In this paper we show how to estimate the expected effectiveness
of a classification solution when the underlying data source
undergoes a shift in the distribution of its subclasses (modes).
Subclass distribution shifts are observed among others in online
media such as tweets, blogs, or news articles, where document
emissions follow topic popularity.

To estimate the expected effectiveness of a classification
solution we partition a test sample by means of clustering.
Then, using repetitive resampling with different margin distri-
butions over the clustering, the effectiveness characteristics is
studied. We show that the effectiveness is normally distributed
and introduce a probabilistic lower bound that is used for
model selection. We analyze the relation between our notion
of expected effectiveness and the mean effectiveness over the
clustering both theoretically and on standard text corpora.
An important result is a heuristic for expected effectiveness
estimation that is solely based on the initial test sample and
that can be computed without resampling.
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I. INTRODUCTION

The reliable evaluation of a classification solution is a
basic necessity, be it for model selection purposes or for as-
sessing the effectiveness with respect to a given task. Today’s
information filtering and retrieval tasks that deal with class
label prediction in volatile environments render an evaluation
more complicated. Large parts of statistical evaluation and
machine learning research rely on the assumption that the
provided as well as the future examples are independent and
identically distributed (i.i.d.) with regard to the underlying
probability distribution. It is known that this is often not
the case in real-world scenarios, e.g., if examples from a
time-varying stream are to be classified.

User-generated content on the Web such as news articles,
blog posts, and tweets exhibit large variations of the under-
lying distribution characteristics; especially Twitter exempli-
fies the volatile nature of “trendy” topics, as illustrated by
Liu et al. [1] with a new interactive visualization technique.
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Forman [2] subdivides the phenomena of distribution
changes over time, also known as concept drift, into three
types:

(1) Class distribution shift: the sample of a class remains
1.i.d., but the ratio between the classes varies.

(2) Subclass distribution shift: the sample of a subclass
remains i.i.d., but the sample of the class and the classes
overall does not.

(3) Fickle concept drift: the ground truth of the class labels
changes.

The second type, a subclass distribution shift, models the
dynamics in online media best and forms the basis for the
paper in hand. This type is also known as covariate shift [3]
if the shift occurs across subclass boundaries.

Our paper addresses the problem of evaluating classifi-
cation solutions if subclass distribution shifts are likely to
occur in the future and if one has no knowledge about how
a shift will evolve. Research in semi-supervised learning,
domain adaptation [4], and sampling bias correction are
related to our problem, but the most approaches assume
that knowledge of the target distribution (the distribution for
which a classification solution is applied) is given. Other
research, which disregards the target distribution, e.g. [2]
and [3], focuses on machine learning within concept drifts
and visualization.

We propose an evaluation framework that accounts for the
nature of online media streams by estimating the expected
effectiveness of a classification solution under subclass
distribution shifts. In online media such as news streams,
articles from the past remain retrievable while a new article
substream emerges whenever a new topic becomes interest-
ing. The evolution of the article distribution is hence not
arbitrary, and one can expect density changes within local
regions that lead to a subclass distribution shift.! Currently
there is no means for a reliable evaluation nor for a model
selection in this scenario, even if the changes of the target
distribution are of a homogeneous nature.

1 Also the growth rate of high density areas over the time is not random:
Yang and Leskovec [5] studied the dynamics of attention of content within
online media and identified six dominant temporal patterns.



Our evaluation framework adapts common statistical eval-
uation measures to estimate the expected effectiveness and
to select the best classification solution in terms of the lowest
worst case effectiveness. Given a classification solution m
we partition the test sample and evaluate m on each partition.
The partitioning is constructed by a clustering algorithm
that identifies regions of similar examples. The examples
in a cluster are likely to behave similarly, a fact which
is known as cluster hypothesis in information retrieval:
“closely associated documents tend to be relevant to the
same requests”. We create new test samples by varying the
ratio between the clusters, and, based on these variations,
we estimate the expected effectiveness. In addition, we
consider the effectiveness of each cluster in isolation and
study the effectiveness distribution over the clustering of the
test sample. By assuming a constant effectiveness per cluster
we derive a second statistics that approximates our idea of
expected effectiveness under subclass distribution shifts. Our
contributions comprise:

(1) Two statistics to assess the expected effectiveness of a
classification solution under subclass distribution shifts.

(2) A probabilistic notion of the expected effectiveness for
model selection.

(3) An empirical validation of the assertions of our model
selection approach for different corpora.

II. RELATED WORK

A concept drift is a change of the distribution of examples
over time. Research in this field can be divided into concept
drift detection and concept drift handling—with the objec-
tive to compile a machine learning algorithm that detects a
drift and adapts to it. Concept drifts occur either gradually
or abruptly and are empirically observable in labeled and
unlabeled samples [6], e.g. by monitoring the prediction
quality, the distribution, or clustering parameters such as
densities, centers, or shapes. Vreeken et al. [7], for example,
estimate the differences between two samples by techniques
based on compression and covering characteristics, while
Anderson et al. [8] use the distances between density esti-
mates. Standard drift detection employs statistical hypothesis
testing for the randomness of the samples, such as the Wald-
Wolfowitz test or more advanced tests [9].

Concept drift handling has become an important research
topic in recent years—the most popular machine learning
methods are adapted to handle it, and theoretical results
have also been extended to concept drift phenomena. Ad-
vanced window-based approaches are given in [10], [11], for
example. The former paper proposes a window-based one-
class ensemble, whilst the latter proposes a window-based
ensemble for learning from positive and unlabeled data in
order to accurately select and classify unlabeled examples
for reuse. Huang [12] extends a sampling strategy for active
learning by monitoring a possible concept drift in unlabeled
data. Aggrawal et al. [13] present a classification method

that adapts to changes of the underlying data stream by
dynamically selecting an appropriate training sample, and
Hulten et al. [14] focus on novel decision tree learning algo-
rithms, where outdated subtrees are revisited and recreated.

III. EXPECTED EFFECTIVENESS
UNDER SUBCLASS DISTRIBUTION SHIFTS

We define a classification solution m as a tuple of two
functions: a model formation function « and a classifier h.
A feature vector is denoted as x; it represents a document d
in text classification tasks. The model formation function « :
d — x defines this representation and is an important factor
within the process of building m. The statistical learning
theory considers x as an instance of a real-valued multi-
variate random variable X, and the assigned class label y
as an instance of a binary random variable Y € {—1,1},
governed by the joint probability distribution P(X,Y"). The
classifier h : x — y, also called hypothesis, is provided by
a machine learning algorithm or a domain expert; h predicts
the class label of a given feature vector. We define m
as tuple (o, h) in order to emphasize the fact that each
classification solution has an underlying design process.

The performance of m’s predictions is quantified by
measures such as recall, precision, or accuracy. Without loss
of generality we use the term effectiveness as a generic term
for such measures and presume the range [0;1]. A higher
effectiveness e(m, S) corresponds to a larger value of a
measure when applied to a labeled test sample S, and hence
to a better prediction quality of m.

It is assumed in this paper that the documents are emitted
by stochastic processes. It is also assumed that each process
is stationary and emits the documents of a subclass indepen-
dently and identically distributed. Both assumptions qualify
for many real-world classification problems. A subclass
distribution shift occurs if the emission rates of the processes
differ in the course of time. Note that under a subclass
distribution shift, all measures that rely on the confusion
matrix fail.

We introduce E; [e], the expected effectiveness of a clas-
sification solution m under subclass distribution shifts, as
the weighted average of the effectiveness that m achieves
under all possible subclass distribution shifts. In situations
where the development of the underlying distribution cannot
be predicted, the expected effectiveness provides a sensible
means for model selection. The exact computation of the
expected effectiveness is not possible since the underlying
emission processes cannot be controlled to produce all
possible distribution shifts.

A. An Expected Effectiveness Estimate

We estimate the expected effectiveness E; [e] of m under
subclass distribution shifts by identifying subclasses of the
underlying stochastic processes and by modeling different
distribution shifts via resampling. We associate subclasses
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The estimation of the expected effectiveness of a classification solution m (with classifier h) happens in the following steps: (a) input for

the estimation, which consists of m and a given test sample of positive and negative labeled examples, (b) cluster analysis of the test sample in order to
identify the modes of the distribution, (c) variation of the cluster sizes and application of m, (d) sample statistics (mean € and standard deviation s) of the

achieved effectiveness.

with the clusters of a clustering C = {C1,...,Cx}, C; C S,
i =1,...,k, where C is an exclusive and complete parti-
tioning of the feature vectors in the sample S. The difference
between a clustering on the one hand and a categorization
by humans on the other is that the latter is based on
the interpretation of real-world objects, while a clustering
analyzes densities (MajorClust), variances (k-means, Ward’s
method), or distributions (expectation-maximization cluster-
ing) of feature vectors. If the documents within a cluster are
considered as realizations of a single stochastic process, it is
likely that this process emits documents in a high-similarity
region of the population.

Distribution shifts are modeled by resampling the doc-
uments within the clusters. An increase or decrease of
the documents in a high-similarity region (as specified by
a cluster) implies that the probability density function of
the global probability distribution of documents and class
labels will change. If, for example, the density values of
the global probability density function increase inside a
specific region, the density values outside will decrease
due to normalization. In our considerations, we constrain
the modeling of distribution shifts by preserving the local
(cluster-specific) characteristics of the distribution. Stated
another way, the probability distribution of a cluster C,
Po(Y)X), remains i.i.d., and the distribution of clusters
sizes varies.

Given a clustering ¢ = {C4,...,Ci}, let S be a set
of samples where each S € § is compiled by a unique
weighting over C:

S = sample(Cq) U --- U sample(Cy,).

The estimate € for the expected effectiveness E; [e] of m
under subclass distribution shifts is defined as the sample
mean over S:

e = 1/|8| > e(m,S). 1)
Ses
The sample variance s? of e can hence be written as:
s2 = 1/\8|Z(e(m,5)—€)2. (2)
ses

The symbol € is used instead of € to emphasize that the
mean is computed from a specifically constructed set S.

Figure 1 illustrates the estimation procedure:

(a) Classification solution m. Feature space and document
representation are defined by the model formation func-
tion «; h is a classifier built by a learning algorithm.

(b) Clustering of the documents.

(c) A set of samples, each one constructed by scaling the
number of documents in a cluster by resampling.

(d) Distribution of e over the set S of samples.

B. An Expected Effectiveness Heuristic

The estimate ¢ of the expected effectiveness is based on a
sufficiently large set S of samples. We now devise a second
statistics € for E; [e], which considers only the characteristics
of the clustering C of the test set S.

In this regard we evaluate for each cluster C € C, |C| = k,
its cluster-specific effectiveness e of m. Since the effective-
ness is likely to be the same on similar documents, it can be
assumed that m’s effectiveness for a cluster C remains stable
under a subclass distribution shift. This assumption relates
to the clustering assumption in the field of semi-supervised
learning: “If points are in the same cluster, they are likely
to be of the same class.”

The (overall) effectiveness e of m given S is the weighted
sum of the cluster-specific effectiveness values:

e = wiec, + -+ Wgec,,

where w; is the weight given by the relative size of the
cluster |C;|/|S|. Using vector notation, with a positive
real-valued weight vector w,|w| = k, and effectiveness
vector e = (ec,,.--,ec, ), the effectiveness is e = wle,
where w’' denotes the transpose of w.

We now assume that the effectiveness for a cluster shows

no variation at different points in time:
e = e = M = . 3)

Since this assumption depends on the degree to which the
clustering assumption is fulfilled, we call the statistic € for
the expected effectiveness E; [¢], introduced below, a heuris-
tic. Note that Assumption (3) does not imply a constant
(overall) effectiveness e.

Under Assumption (3), the effectiveness e varies only with
the change of the weights w. We model the weight vector w
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Heuristic estimation of the expected effectiveness of m: (a) application of cluster analysis to the test sample in order to identify the modes

of the distribution (this corresponds to Step (b) in Figure 1), (b) adaptive sampling of the clusters in order to equalize different cluster sizes that may be
given in the sample, (c) application of m for each cluster in isolation, (d) mean e of the cluster-specific effectiveness values.

as a k-dimensional random variable W = (Wy,..., Wy).
Without knowledge about future topic distributions, our risk
minimization strategy is to consider all possible vectors w
as equally likely, whereas the L'-norm of w is always one:
Zle w; = 1. As a consequence, the vectors w lie on a
simplex and W is Dirichlet distributed, W ~ Dir(«), with
concentration hyperparameter o = (1,...,1)7, |a| = k.
The resulting mean and variance are:

k
E[W;] = Z—; = 1/k, where OZOZZO@',
j=1
a;i(ag — o) E—1
Var[W,] = _ _
ar [W] aZ(ag + 1) k2(k+1)

Let e’ denote the random variable Wiec, + - - -+ Wiec, .
The heuristic € of the expected effectiveness E; [e] of m
under subclass distribution shifts is defined as the mean of e’:

/e\:

E[Wl]ecl + +E[Wk] ec,

k
= lkeo,+-+1/kec, = 1/kY ec.. (@)
1=1

Due to the central limit theorem, €’ is normally distributed
and its variance is:

k-1

Varle/]| = BELD

Var [¢/] is independent of the cluster-specific effectiveness
values and hence constant for all classification solutions.
Therefore, this variance cannot be exploited for model
selection purposes. We conclude that the difference be-
tween Var [¢/] and the sample variance s2 of e (Equation 2)
reflects to what extent Assumption (3) is violated, say,
to what extent the effectiveness within the clusters is not
constant.

Assumption (3) is strict, but not unrealistic, and we can
show in the experimentation section that our heuristic has
in practice only a small approximation error (about 3%)
for estimating the expected effectiveness under a subclass
distribution shift.

Figure 2 illustrates the computation of the heuristic:

(a) Input. A classification solution m along with a cluster-
ing C of the test sample with %k clusters.

(b) Adaptive Sampling. The k clusters are resampled to the
same size, |C]| = --- = |C}|, to get better effectiveness
estimates for each cluster.

(c) Effectiveness Estimation. For each cluster the effective-
ness ecr of m on C' is estimated.

(d) Output. €, the mean of the ecs, which represents a
heuristic estimate of the expected effectiveness under
distribution shifts in the clustering (Equation 4).

C. Model Selection via Expected Effectiveness

Given a clustering C of a test set .S, model selection
means to choose a classification solution m from a set of
solution candidates M. If the expected effectiveness E; [e]
is approximated under Assumption (3) as e, the model
selection problem can be tackled by choosing the model with
the highest e. If the expected effectiveness is approximated
via the estimation procedure (Figure 1) as e, additional
model selection information in form of a probabilistic lower
effectiveness bound © can be provided.

We present such a lower bound © to show that the ef-
fectiveness of classification solution m is with a probability
of 1 — § larger than ©, if the subclass distribution varies.
The effectiveness e is normally distributed, see Section III-B,
with approximated mean ¢ and variance s? (Equations (1)
and (2)). We can estimate the parameters of the normal
distribution for each solution in M and infer © with the
inverse of its cumulative distribution function, also known
as quantile function:

F7Y6; p,0?) = p+4ov2erf (1 —20)
O = Fl(5es), )

where F~! denotes the quantile function of the normal
distribution for 1 — §, and erf ~! denotes the inverse error
function. If § is chosen to be 0.0228, the value of © is e+2s.
Figure 3 shows an example for the accuracy Acc.

While the expected effectiveness estimate is useful to
select the classification solution with the best expected
effectiveness, the probabilistic lower bound is useful to select
the solution that minimizes the risk of an effectiveness drop
in the wild.

IV. EXPERIMENTATION

This section validates our theoretical findings and demon-
strates the use of the expected effectiveness concept. We
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Figure 3. Comparison of classification solution m; (¢ = 0.88,s = 0.02,
green line) to classification solution ma (e = 0.90,s = 0.04, blue line)
with respect to their accuracies. At confidence level 0.5 solution m2 has a
higher expected accuracy than m1. However, at confidence level § = 0.05,
the lower bound (worst case) © under m is better than © under ms.

show for different corpora, classifiers, and measures, that

(1) the expected effectiveness under subclass distribution
shifts, E; [e], is normally distributed,

(2) the expected effectiveness can be applied as a proba-
bilistic lower bound for model selection,

(3) the heuristic ¢ for assessing the expected effectiveness
is a tight estimate.

In order to demonstrate the evaluation of classification
solutions under subclass distribution shifts we focus on
standard text classification corpora and standard machine
learning algorithms. As text classification task the topic
categorization problem is studied: given a set of topics,
assign an unseen document to one of these topics.

A. Classification Solutions and Corpora

As mentioned at the outset, classification solutions com-
bine a model formation function o and a classifier h. We
vary the range of solutions by employing several machine
learning algorithms, while a remains unchanged. The model
formation function « is the following: The documents of
each considered corpus are represented under a vector space
model with term frequencies, whereas the dimensions cor-
respond to the stemmed alphabetic words that occur at least
10 times. The Lovins stemmer is employed as stemming
technology, the vectors are normalized. In order to run a
vast amount of experiments within a reasonable time, 2 500
words with the highest information gain scores remain after
further processing, while the scores are evaluated only on
the training examples with discretized word frequencies. The
following machine learning algorithms are employed in the
experiments to learn A : linear support vector machine, naive
Bayes, C4.5 decision tree, and k-Nearest Neighbor.

The experiments are conducted on standard corpora:
Reuters (RVC1), the Open Directory Project (ODP), and
20 Newsgroups (20NG), which are the most frequently
used data sets in the field of topic categorization. A pre-
processing of the corpora restricts them to documents that
are uniquely classified and that have a minimum size of
1kB. We construct binary classification tasks by selecting
two categories instead of pursuing a one-versus-all strategy.

From the large number of tasks that have been considered in
our experiments we will report results for the task Science
versus Sports, since these categories occur across all corpora.

B. Cluster Analysis

The comparison of different clustering algorithms is be-
yond the scope of this paper. The appropriate choice depends
on the application domain and the concrete classification
task, and it cannot be expected that a single algorithm is
consistently the best choice (no free lunch). Within our
experiments the k-means algorithm is applied, which yields
an non-overlapping (exclusive) clustering, i.e., V; j;;C; N
C; = 0. We set k to \/|S|/2 and use Lloyd’s algorithm for
approximation.

For the RCV1 we explicitly show that the setting is able to
identify appropriate subclasses: opposed to ODP and 20NG,
the RCV1-corpus provides time stamps. Moreover, by vi-
sualizing the change of the top 100 most predictive words
over time, the authors of [2] gave evidence for a subclass
distribution shift in RCV1. With statistical randomness tests,
we empirically validate the two main properties of subclass
distribution shifts:

(1) the overall samples at different time stamps are not
i.i.d. according to the same distribution, but
(2) the samples of single subclasses are i.i.d.

The most practical randomness tests operate on binary
sequences, which are often constructed by dichotomizing a
sequences of continuous values. For a sample S we consider
the sequences of the Euclidean distances d(x(",x(—1)
fori = 2...|S|, where x(“~1) is the chronological predeces-
sor of x(V). A sequence of distances that is i.i.d. according
to an unknown distribution indicates a process of data
generation that can produce i.i.d. samples. As an illustrative
example consider a random process that first produces fairly
similar news articles on politics and after a while articles
on sports. The corresponding (non-random) sequence of
distances is a series of small distances followed by a large
distance when the emission of sports articles begins. As a
consequence, the samples drawn at different points in time
are not representative for the same distribution.

In the following, we test the randomness of the process
of emitting Reuters articles with the Wald-Wolfowitz runs
test and the Bartels test on the chronological sequence of
distances. We also test the isolated emission of articles
within the subclasses defined by the clustering. Table I shows
the analysis results: The p-values of the respective tests
indicate that the null hypothesis (“The articles are i.i.d.”)
is rejected if the data is analyzed as a whole, but that it
is accepted if each cluster is analyzed in isolation, i.e., the
articles are possibly i.i.d.

C. A Model Selection Example

To apply model selection as described in Section III-C, the
effectiveness has to be normally distributed under subclass



Table I
RANDOMNESS OF THE DATA GENERATION FOR THREE RUBRICS OF THE
REUTERS CORPUS, QUANTIFIED BY BARTELS AND WALD-WOLFOWITZ
TESTS. p-VALUES ARE COMPUTED FOR THE ENTIRE SETS (OVERALL) AS
WELL AS FOR THE CLUSTERINGS (AVG. CLUSTER).

Science Sports Politics

avg. cluster overall avg.cluster overall avg.cluster overall
p-values p-value p-values p-value p-values p-value

Bartels 0.169 ~0 0.139 ~0 0.141 ~0

Wald-Wolfowitz 0.274 ~0 0.202 ~0 0.105 ~0

distribution shifts. We revisit the theoretical result that
the effectiveness is normally distributed by employing the
Shapiro-Wilk test, which has been shown to be one of the
most powerful tests of normality [15]. The value W of the
test is the ratio between two variance estimators for a random
sample e; < ey < --- < e,. The first variance estimator is
the expected variance of an assumed normal distribution,
while the second variance estimator is the bias-corrected
variance of the given random sample, cf. [15]. A W close to
one indicates a normal distribution. The high p-value of the
Shapiro-Wilk test indicates that the null hypothesis (“The
data is normally distributed.”) cannot be rejected. For the
results reported in Table II, we removed the 5 highest and
lowest values in the evaluation since the test is very sensitive
to outliers. With respect to all measures and classifiers the
estimated effectiveness passed the test under the subclass
distribution shift.

In addition, we conduct classification experiments with
all mentioned classifiers and corpora and average the results
over 10 different testing and training samples. The expected
effectiveness is estimated on 1000 different test samples
based on the initial clustering. Considering the most com-
monly used measures, namely accuracy Acc, precision Prec,
and recall Rec, and a probabilistic lower bound ©, which
results from § = 0.0228, the average approximation error
of € by the heuristics € is 3 %.

V. CONCLUSION

We presented the notion of expected effectiveness and
its probabilistic lower bound as a basis for preferring one
classification solution over another when the underlying
data source undergoes a shift in the distribution of its
subclasses. Subclass distribution shifts occur in many real-
world classification applications, and quite often one has no
knowledge about how such a shift will evolve. Our idea is to
prefer the solution that has the best probabilistic lower bound
of its effectiveness. This bound is based on the expected
effectiveness if all shifts are considered equally likely.

Our estimate of the expected effectiveness relies on a
repetitive resampling of the clustered test sample for dif-
ferent margin distributions. Clustering is an appropriate
method, as exemplified in the experimentation section for
news articles, for the identification of those subclasses that
are not subject to distribution shifts. The effectiveness within
these subclasses is nearly constant. This observation suggests

Table II
SHAPIRO-WILK TEST TO ANALYZE IF THE EXPECTED EFFECTIVENESS IS
NORMALLY DISTRIBUTED. THE W - AND p-VALUES ARE AVERAGED
OVER THE CLASSIFIERS IN SECTION IV-A AND OVER ALL STANDARD
MEASURES, WHICH ARE BASED ON THE CONFUSION MATRIX.

Science versus Sports

ODP RCV1 20NG
W p-value W' p-value W p-value
093 0.29 092 0.17 093 0.37

a heuristic for computing another expected effectiveness
estimate, namely, to use the mean effectiveness over the
clustering. In an empirical evaluation we applied the outlined
considerations to standard text corpora, and we showed
that the heuristic for the expected effectiveness has a low
approximation error.
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