Realization of Web-based Simulation Services

Sven Meyer zu Eissen ~ Benno Stein

Department of Media Systems
Bauhaus University Weimar

Abstract

Web-based simulation is a collective term used for various applications and with dif-
ferent meanings: simulation as hypermedia, simulation research methodology, Web-
based access to simulation programs, distributed modeling and simulation, and sim-
ulation of the WWW (1).

Here, the term Web-based simulation relates to the first three areas, where we see
great potential in bringing simulation technology to the Web: Exciting applications
include the development of new MIME types for technical documents or the real-
ization of standardized service building blocks, which make agile workflow modeling
possible in the technical departments of many companies.

The contributions of this paper are as follows. The different realization alternatives
for Web-based simulation services are explained and discussed with respect to their
advantages and disadvantages. Moreover, the prototypic implementation of a Web
service is presented, which allows for the analysis and execution of technical models
described in the well-known Modelica modeling language. While existing simulators
use proprietary or non-interactive communication concepts for Web access, our ser-
vice is built on the proposed W3C Web interface stack. In particular, it integrates
the professional simulation engine YANOS, wich is employed among others in the
simulation software FluidSIM of FESTO. Our Web service enables the electronic
mailing of technical documents, which may contain model descriptions that can be
simulated in the Web browser of the recipient.

Key words: Web-based Simulation, Web Service, SOAP, Modelica

1 Rationale of Web-based Simulation Services

The term Web-based simulation as it is used in this paper relates to non-
distributed, single-user simulation tasks. This is an important problem class
since the simulation of technical systems is usually carried out in this way, be

Email addresses: sven.meyer-zu-eissen@medien.uni-weimar.de (Sven
Meyer zu Eissen), benno.stein@medien.uni-weimar.de (Benno Stein).

Preprint submitted to Elsevier Science April 27, 2006

lient side:
Formulation of
simulation task

Server side:
Simulation

Figure 1. Simulation scenario: Model libraries, simulation and model formation al-
gorithms as well as algorithms for information visualization are made available as
Web-services.

it discrete event simulation, continuous time simulation, or hybrid simulation.
The term “non-distributed” means that a simulation job is not distributed on
several compute servers but processed on a single machine. Note that, else-
where, Web-based simulation is also associated with distributed processing or
with multi-user scenarios, and that existing Web-based simulation applications
primarily focus on discrete event system simulation (DESS) (2; 3).

Figure 1 illustrates the typical setting for our problem class: At the client
side, a user formulates a model in a high-level modeling language such as
VHDL-AMS or Modelica (4). In particular, model formulation and experiment
definition shall enable the description of multi-disciplinary systems and al-
low object-oriented model composition, non-causal modeling, mixed discrete-
event /continuous-time relations, and the reuse of existing model libraries. At
the server side, which is connected to the client via the Internet, there is a set of
tools for model syntax analysis, experiment execution (i.e., model simulation
under the desired user constraints), textual and graphical result preparation,
model hosting, sharing, or syndication.

Note that a number of apparent as well as future use cases become possible if
the aforementioned tools are operationalized in the form of Web-based services
(see also (5)). The following list gives interesting examples.

e Web-based simulation and development tools for fast model building and
quick and easy experimentation will be available at each Internet access
point and without cumbersome installation. Of course, such a service may
allow the easy integration of a client’s model libraries.

e Instead of porting or reimplementing approved simulation technology, the
provision of an existing simulation environment in the form of Web-based
services will directly address legacy aspects such as cross-platform usability.

e New license models for simulation software become possible. This is useful
for individuals and small companies where simulation capabilities are only
rarely needed.

e Dedicated simulation services can be set up, which focus on a special domain
or task and which provide domain-specific engineering know-how for model

optimization or diagnosis (6).

e Simulation services for the purpose of third party analyses and comparative
evaluations can be realized.

e High-level simulation services open new possibilities for education and train-
ing. This relates to the availability and distribution through the World Wide
Web as well as to hypermedia concepts, since simulation capabilities can be
integrated seamlessly in course material and combined with text, audio, and
video.

Observe that the mentioned scenarios share the same service structure: A
single user works in a well-defined client-server environment. Nevertheless, a
standardized Web service for simulation can open a new quality of interac-
tive documents: Documents like CAD drawings, system descriptions, research
papers—to mention only a few—can be equipped with the underlying sim-
ulation models and be published via the World Wide Web. The recipient of
such an interactive document can simulate the embedded models by the press
of a button, comparable to the PDF-document standards which allow for the
embedding of several kinds of multimedia data.

The goal of our research is the development of powerful and robust Web-based
simulation services, the evaluation of the software engineering requirements,
and the preparation of feasibility studies with different industrial and educa-
tional partners.

2 Realization Approaches for Web-based Simulation Services

Apart from enabling the aforementioned Internet-based use cases, a Web-based
simulation service addresses a major challenge in industrial engineering: the
integration of simulation software within the process of system analysis and
design. Integration difficulties fall into two categories: (a) model exchange,
model coupling, and model reuse, and (b) workflow integration and optimiza-
tion. The former category includes the exchange of models for different simula-
tion purposes, as well as the coupling of device models from different domains,
e.g. when simulating a hybrid system. The latter category relates to the inte-
gration of simulation software into a company’s business information systems
infrastructure in order to support the design, the production, the maintenance,
and the redesign of a product during its whole life cycle.

From a technical point of view, a simulation engine that is realized in the
form of a service can be accessed globally, via the Internet, or locally, via
a company’s intranet. We understand a service as a function that is well-
defined, self-contained, and that does not depend on the context or state of
other services (7). Moreover, services are loosely coupled and invoked through

communication protocols that emphasize location transparency and interop-
erability (8). Loosely coupled means that a service requester and a service
provider know only a minimum about each other. For self-documentation, a
service should provide its own description (9), which may comprise a semantic
description of its function and its interface specification. Another requirement,
for services, which follows directly from the interoperability, is platform inde-
pendence, since services may be realized on different operating systems and in
different programming languages. If the core intelligence in a company’s in-
tranet is realized through the composition of services, one speaks of a so-called
“service-oriented architecture” (SOA).

Figure 2 illustrates the SOA principle: it shows how services for retrieval,
simulation, and optimization are integrated into a product designer’s workflow.
At our institute we have developed tools that support the mentioned functions
within a system analysis and design process (10; 11); Web services are the
means of choice to integrate these tools under the SOA paradigm. !

Sleeper defines Web services as loosely coupled, reusable software components
that semantically encapsulate discrete functionality and that are distributed
and programmatically accessible over standard Internet protocols (12). While
this informal definition is in accordance with the Web Services Architecture
Team at IBM, other authors define Web services meticulously by the following
equation (cf. (1; 2)):

“Web Service = HTTP + XML + SOAP
(+ WSDL + UDDI + WSFL)”

Though the quoted protocols and description languages, which have partly
been proposed and adopted by the W3C consortium and big software vendors,
form a powerful and tailored framework for implementation, Web services can
be realized in different ways, so long as they fulfill the mentioned properties
of services.

In the following we discuss deployment and communication concepts of well-
known realization approaches for a Web-based simulation service and outline
problems to be solved.

1" One scenario we have been focusing on lets a human designer formulate his mental
model of an interesting system by means of a CAD-like editor. The resulting raw
design is refined by an expert system using a database of design cases along with a
rule-based modification and repair language. Since each modification of the model
may entail substantial changes in its behavior, simulation is used to analyze and
control evolution of the design.

/ System Analysis and Design \

. Library / retrieval Simulation Paramerization /
Human designer

service service optimization service

Define
requirements

Design
constraints l

[Find similar
design case
design - Design case

Preliminary _ (Simulate \ _ Adapted
model ~_ model / model

4

Simulation
results

Modify
parameters

»| Evaluation I

Expert
lelse] gvaluation lelse] [improvement

}.«

[requirements achievable]
fulfilled] - Retain
o model
Design Extended
solution case base

Figure 2. Simplified UML activity diagram that shows the interplay of a case-based
retrieval service, a simulation service, and a service for model optimization and
parameter finding as part of a product designer’s workflow. In the ideal case, it
keeps transparent for the human designer whether the shown functions are provided
by a Web service or by locally installed tools.

2.1 Classical Communication Concepts: RPC, DCOM, RMI, CORBA

Several vendors developed technologies to let a client remotely invoke functions
on a server (cf. Figure 1). Well-known examples are Sun’s Remote Procedure
Call (RPC) (13), Microsoft’s Distributed Component Object Model Technol-
ogy (DCOM) (14), Sun’s Java-specific Remote Method Invocation (RMI) (15),
and OMG’s Common Object Request Broker Architecture (CORBA) (16).
If an RPC (DCOM, RMI, CORBA) server is set up, an appropriate RPC
(DCOM, RMI, CORBA) client has to be used that can interpret the binary
request /response format. This restricts a potential client to a specific plat-
form, vendor, or programming language: RPC is typically implemented on
Unix systems, DCOM is Microsoft-specific, and RMI is Java-specific. More-

RPC

Client DCOM Simulation
User Application client | | Scheduler enqgine
T T

r1 "Start Application”
— >

< - User Interface' :

"Start Simulation”

'startSimuIationgm) : . . I
startSimulation(m)_ .) !

startSimulation(m)
startSimulation(m)

Result I:I

Result | < = = - - === v
"Diagram" | = — — — — Result =TT --- ! ;
e _ _ _"Diagram’

Figure 3. UML sequence diagram for a Web-based simulation service using classical
interfaces.

over, RPC does not offer access to object-oriented programs, and Microsoft
discourages the use of DCOM and pushes the use of SOAP (17). CORBA is
available for many programming languages and platforms but suffers from a
noticeable programming overhead. Aside from its complicated architecture,
CORBA implementations from different vendors may not be fully compatible
(18). As all of the aforementioned interface types are pairwise incompatible
and for the most part platform or language-dependent, it is impossible for a
designer to integrate several Web services that provide several of these inter-
faces. Since Web services should be available for every interested user, the use
of these techniques must be called into question.

A UML sequence diagram for a Web-based simulation service using classical
interfaces is depicted in Figure 3. After the client application has been started,
the user can request actions, say, function calls in terms of a programming lan-
guage. Instead of executing the functions locally, their parameters are packed
in a special format and transferred to the server. The server unpacks the pa-
rameters and calls the corresponding function. In our case, a scheduler observes
the load on one or more simulation servers and deploys the execution. Once
the simulation finished, the results are again packed in the RPC (DCOM,
RMI, CORBA) format and transferred back to the client.

Advantages. (a) The underlying binary protocols for parameter and result
transfer ship with the particular protocol implementations. Consequently, ap-
plications that use these protocols do not have to implement protocol parsers.
(b) Binary protocols allow a compact representation of function parameters
and results, yielding to high transmission speed.

Disadvantages. (a) The mentioned interface types are pairwise incompatible,
and it is unlikely that a client application can integrate several services of
the mentioned types. (b) The client programmers’ choice of the programming
language, platform, and middleware depend on the implementation of the

Scripting Simulation
User | Browser | | Web Server engine | Scheduler engine
r "Request URL" E E E ' .
—— > [httoget URL | h I
Form' | |< - - - - HTML |

F---

"Start Simulation”
http post simulatiop !

> 1 1
startSimulation(m) !)) 1

startSimulation(m)

Resultl:l

HTML, i e o ___ Resutjs======- -

HTML | <= = === "T85] ;

e — = = = =22 I

| http get images :
) images Ij
" " <_ _____ =
. _ _ _'"Diagram”| |

4%

Figure 4. UML sequence diagram for a Web-based simulation service using
HTTP/HTML.

server. (c) Clients cannot be run within a Web browser.

2.2 Proprietary TCP/IP Protocol

The invention of application-specific protocols based on TCP/IP has a long
tradition; typical examples are Internet-service protocols like the File Trans-
fer Protocol (FTP) (19), the Simple Network Management Protocol (SNMP)
(20), or the Internet Message Access Protocol (IMAP) (21). Each of them is
text-based and requires a specialized client that can interpret the protocol.
The application flow is similar to Figure 3: Instead of using an RPC (DCOM,
RMI, CORBA) communication protocol, a tailored parsing engine and mes-
sage generator must be implemented. An example for a Web-based simulation
service that uses an applet as frontend and a proprietary communication pro-
tocol is described in (22).

Advantages. (a) The commands of a proprietary protocol constitute only a
small overhead as they are tailored to the underlying application. (b) Data
transfer happens at maximum performance since a protocol designer will min-
imize the size of messages that are to be transferred. (c) Web clients, like Java
applets, can implement the protocol and be run in a Web browser.

Disadvantages. (a) Users who want to access the service without using the
standard client must implement the entire protocol. (b) Users who want to
compose a service out of several services of this kind will have to implement all
of the protocols—a fact which renders a network of Web-based services hard
to be set up. (c) Apart from standard search engines, there is no service with
which the simulation service might be found.

- "Request URL" E

r requestURL()

Browser/ SOAP
User Java applet Web Server server Scheduler

e o _____Hm
requestApplet() _
e ____Awiet[]

"User Interface”

< - T - .| soapP
! client

"Start Simulation”)) T i ,
> start&mulahon(m} ' ! !
SOAP request 1 |

< _ _ _‘Diagam’ [|< —= =~~~ =~ :

4%

Figure 5. UML sequence diagram for a Web-based simulation service using SOAP.

2.3 HTTP/HTML

Another way to access a Web-based simulation service is to offer an HTML
frontend. Figure 4 shows the application flow of an HTTP/HTML-based sim-
ulation service. A user enters the URL of a service and usually gets a frontend
that contains a text box where a model definition can be entered. Clicking a
submission button will transmit the model via the HT'TP POST command to
the Web server, which in turn passes the contents of the text box to a scripting
engine such as Perl, PHP, or JSP. The script starts the scheduler and passes
the model with a request for simulation. After the simulation is finished, the
script picks up the simulation results and dynamically generates either an
HTML page that contains raw simulation data or data including an HTML
reference to server-generated diagrams. In the latter case, the browser loads
the diagrams as images from the Web server and displays them. An example
for such an implementation is described in (23) and can be found at the URL
given in (24).

Advantages. (a) Users need only a standard browser.

Disadvantages. (a) The deployment of subtasks to the client is not possible:
the entire job must be processed by the server. (b) The result is an HTML-
document, which lacks structural information and makes a subsequent format-
ting difficult. (¢) Such a service can hardly be integrated into other applica-
tions. (d) Interactions require either large caching capabilities or computing
power: If a user wants to zoom into a diagram, a new image has to be gen-
erated and transferred. This implies that the simulation data either has to
be stored on the server or the simulation data must be recomputed for each
interaction.

- > startSimulation(m) : . . :
| startSimulation(m)
H Result Resultl:l
' esu IZ
Result | |< ! SOAPresponse | < — — — — — — — : i
esu S el h I

Simulation
engine
|

<wsdl:definitions name="Simulation"
rgetNar The header denotes that object types and
: z delect . d1/s s messages belong to the "Simulation" service.

n

<wsdl:types> \
<xsd:schema targetNamespace=
"http://www.themindelectric.com/package/aisim.server/">

<xsd:complexType name="VariableValues">
<xsd:all>

<xsd:element name="numberOfVariables" type="xsd:int"/> Definition of the complex data type "VariableValues".

<xsd:element name= It consists of an integer called
"numberOfValuesPerVariable" type="xsd:int"/> "numberOfValuesPerVariable" and an array of
<xsd:element name= arrays of double precision values called "values".
"values" type="xsd:ArrayOfArrayOfdouble"/>
</xsd:all>

</xsd:complexType>

</wsdl:types>
1 Definition of the function "startSimulation”.

It takes as input a String called "arg0"

(in this case, the name of the model to be

simulated), and returns as result an object

evalues"/> of type "VariableValues", which has been

defined above.

</wsdl:definitions>

Figure 6. A part of the generated WSDL definition.

2.4 HTTP/SOAP

The Simple Object Access Protocol (SOAP) is an XML-based protocol to let
applications exchange information over HTTP (25). It combines the advan-
tages and overcomes the drawbacks of the aforementioned approaches. SOAP
is independent of platforms, programming languages, and vendors, and most
implementations offer automatic protocol generation for several programming
languages. Moreover, concepts for publishing Web services with regard to both
semantic and syntax are inclusive. The former is implemented in the form of
UDDI (universal description, discovery and integration of Web services) that
enables Web service providers to publish the missions along with the addresses
of their services in a directory of Web services. The latter relates to WSDL
(Web service definition language), a language with which Web service inter-
faces can be described in an XML representation. Among others, WSDL covers
the formulation of complex data types, function names, and parameters. We
chose SOAP for implementation because the aforementioned properties fulfill
all requirements for service implementation, as discussed in the beginning of
this section, enabling a service-oriented architecture. Related to our simulation
application, the listing in Figure 6 shows that part of the WSDL specification
where the complex data type “VariableValues” and the input and output data
types of the function “startSimulation” are defined.

Based on an interface definition in the form of Java or C# code for example,
a complete WSDL definition can be automatically generated. A SOAP server
uses this definition to parse and map incoming SOAP requests to the interface

POST /glue/simulation HTTP/1.1

Host: 131.234.41.48:8004

Connection: Keep-Alive The HTTP header gives the information
User-Agent: TME-GLUE/4.1.2 that the function "startSimulation" is requested

SOAPAction: "startSimulation” to be invoked at the server side.
Content-Type: text/xml; charset=UTF-8

Content-Length: 482
' encoding='UTF

<soap:Envelope xmlns:xsi=

'http://www.w3.0rg/2001/XMLSchema-instance' " " X
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema’ The SOAP header ("envelope”) defines that the

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"' XML message contains a SOAP request.
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"'>

The SOAP message is a request to remotely
invoke the "startSimulation" function with the
model "circuit.mo" as argument.

</soap:Envelope>

Figure 7. SOAP request for a call of the function “startSimulation” with the param-
eter “circuit.mo”.

functions. In turn, the generated WSDL definition can be used by potential
clients to automatically produce the client side communication protocol along
with function stubs. This approach renders calls of remote functions com-
pletely transparent for clients. Major software developers like Microsoft, IBM,
Sun, and Apache support the SOAP technology.

Figure 5 shows a UML sequence diagram for the invocation of our simulation
engine, where an applet is used as frontend. Whenever a user requests the
respective URL, the corresponding Web server delivers HTML code which
embeds an applet. After its launch the applet instantiates the generated SOAP
client, displays the user interface and waits for input. Once the user hits the
“start simulation” button, the SOAP message shown in the listing in Figure 7
is generated by the SOAP client and sent to the SOAP server.

The message contains the name of the function to be called and its parameters
along with their types. The SOAP server strips the HTML wrapper from the
SOAP message, parses the content, reconstructs the parameter data types,
and calls the requested function. The SOAP server wraps the results in a
SOAP envelope similar to the request and sends it back to the SOAP client.
The client reconstructs the delivered data types and passes them to the client
application, in our case to the Java applet.

Advantages. (a) Client-side as well as server-side protocols can be generated
automatically from an interface definition. (b) The data contains a logical
structure. (c) SOAP provides meta-information about data structures that
are exchanged in the form of WSDL. This enables modern programming lan-
guages to reconstruct the data structures at runtime. (d) Meta-data concern-
ing the purpose of the simulation service can be provided in a directory of

10

Web services. (e) A standardized network of Web services becomes possi-
ble. (f) Standard encryption via HTTP/SSL is possible (HTTPS). (g) Major
software vendors support SOAP within their platforms and programming lan-
guage APIs. (h) SOAP is recommended by the W3C and may get its own
Mime type.

Disadvantages. (a) Overhead when wrapping data in HTML/XML/SOAP en-
velopes. (b) SOAP client code for message parsing in applets is (still) too
big.

Although the list of advantages for SOAP-based communication is large SOAP
must not be seen as a cure-all: A virtual enterprise will have to arrange an
agreement with its business partners as to employed protocols.

2.5 Unsolved Problems

The outlined realization alternatives from Subsections 2.1 to 2.4 address the
SOA implementation question, say, the communication problem, with the
given advantages and drawbacks; nevertheless, there are desirable enhance-
ments that are common to all of them. In a scenario where an application
embeds a third party Web service, functions must be called in a given order,
i.e. a model must first be transmitted and then simulated. Let us assume that
a remote service offers a function that returns a list of all variable names. Then
the question is whether this function may be called directly, or after transmit-
ting the model, or whether the variable list shall be accessible only when the
model has been parsed for execution. Obviously there are restrictions on the
function call order, which could explicitly be modeled in a dedicated language
that gets part of the Web service definition. Such a language could be used
to detect semantic flaws in a client application. Current approaches, such
as WSFL (IBM), XLANG (Microsoft), BPEL4AWS (IBM/BEA /Microsoft),
WSCI (BEA/SAP /Sun), WSCL (Hewlett Packard) are not recommended yet
by the W3C consortium and must be considered being proprietary.

Another concern is encryption. SOAP offers a standard way for channel en-
cryption: HTTP tunneling through the Secure Socket Layer (SSL). Although
approved channel encryption technology secures the transmission, the de-
crypted model is available in a plain form at the server side, as it must adhere
to the simulator’s model representation. Due to the fact that models may con-
tain crucial business know-how, the client must trust the service provider. An
option that cannot be implemented in a Web service protocol but in a Web
service client is model obfuscation, which could substitute inane identifiers for
the meaningful model constituents.

From the viewpoint of a company that provides a simulation service there is the

11

i model Circuitl

: Manometer manol; L _____
ReliefValve reliefl (op=60) ; ! N
CheckValve checkl;

. equation
connect (manol.A, reliefl.P);
connect (reliefl.P, checkl.B);:

i end Circuitl;
'

Emodel CheckValve '
PinH A, B; ' A

' B A
I I?é%ameter Pressure pNom=1; E e |: :l X — @-Illm
, equation E P T P

if dp > pNom then L

A.g = sqgrt (dp/Rh);

else
A.qg = 0;
end if;

. end CheckValve;

Figure 8. The diagram shows a manufacturing sequence consisting of a feed unit, a
press, and a holding unit. The box on the left contains the Modelica definition of
the behavior for the encircled diagram part.

need for an efficient load balancing and scheduling mechanism: Simulation jobs
may concentrate at a peak-time, within the core working hours of a country.
Observe that for an efficient scheduling the duration of a simulation job has
to be estimated. Though rules of thumb can be applied for such estimations,
a reliable duration estimations is subject of current simulation research.

3 A Prototypic Web Simulation Service for Modelica

The purpose of this section is twofold. The first two subsections give a very
brief introduction to the Modelica modeling language and the YANOS simula-
tor; the remainder, Subsection 3.3, explains how SOAP is used to deploy the
functionality of the YANOS simulator as a Web service.

3.1 On Modelica™

Modelica is a language for modeling physical systems; it is attractive for Web-
based simulation for several reasons: it is an open specification, it is stan-
dardized, and it incorporates state of the art modeling technology.? A fourth
point, which is technically more involved, is introduced below.

2 See www.modelica.org (26; 27)

12

Consider the circuit in Figure 8. It consists of valves, cylinders, throttles,
and pumps and represents a manufacturing sequence from a metal processing
application. The behavior specification at the left shows the descriptive power
of the Modelica language. The specification both declares the components
and, introduced by the keyword equation, defines the circuit topology. For
example, the line

ReliefValve relief1(op=60) ;

declares the variable relief1 being of class ReliefValve and sets its opening
pressure op to the value of 60. The line

connect (reliefl.P, checkl1.B);

states that pin P of the relieve valve is connected to pin B of the check valve.
Note that by virtue of the connect construct also the necessary compatibility
and continuity conditions are implicitly defined, which, in fluidic engineering,
correspond to pressure identity and the law of the conservation of mass.

Observe that modeling with Modelica means modeling at the physical compo-
nent level, as opposed to the classical block-oriented modeling. Block-oriented
models follow local relationships and can, in principle, be processed by lo-
cal propagation. Hence, this kind of modeling is also called “causal”’, whereas
the modeling that is oriented at the device structure is called “non-causal”
(28). From the modeling viewpoint, non-causal modeling is by far superior
to causal modeling where the burden of the algorithmic reformulation of the
underlying mathematical equations is shifted to the user. In fact, this prop-
erty is also very interesting from the viewpoint of Web-based simulation: The
specification of a simulation problem (at the client side) is declarative and
happens completely uncoupled from its solution (at the server side). As a con-
sequence, user interaction and simulation feed-back during the specification of
models, simulation constraints, and simulation tasks is not necessary. Clearly,
this means on the other hand that the processing of non-causal models, such
as Modelica models, is much more demanding since it must afford this model
formulation intelligence.

Finally, it should be noted that Modelica has several features that are known
from object-oriented programming languages. Among others, it supports type
checking, multiple inheritance as well as redeclaration of behavior descriptions,
and basic mechanisms for access control. Moreover, it provides support for
matrices, units, quantities, and even for the specification of processing hints
for numerical algorithms.

13

Model | Modelica parser |

preprocessing

| Model instantiation, unification |

<

Knowledge-based simulation control

Simulation Model synthesis DAE processing
algorithms
Implicit Explicit
methods methods

| Order/step size control

| Newton lIteration

| Dense output computation |

| Linear algebra methods

Simulation

Equations, constraints
data structures

Algebraic expressions Graphs Matrices

Variables, functions, bignums

Y Y
Symbol processing Numerics

Figure 9. Overview of the core modules in the YANOS simulation engine.

3.2 The Modelica Simulator YANOS

YANOS is a professional simulation engine for the Modelica language and has
been rigorously designed from scratch with special attention to high simulation
performance, a small memory footprint, and extendability; see Figure 9 for an
overview of its core modules. YANOS supports a large subset of the Modelica
language specification—which currently is at release 2.2. The YANOS simula-
tion engine has proven its suitability: It forms the backbone of Festo’s simu-
lation software FluidSIM™, from which more than 140.000 registered licenses
have been sold world-wide.

From the mathematical standpoint the YANOS simulation engine implements
recent algorithms for the analysis of so-called stiff systems (29; 30); moreover,
it realizes a knowledge-based interplay between the collection of model equa-
tions and the application of an integrator’s solution equations. This way it can
resemble the behavior of the famous DASSL algorithm (31), but also apply
the inline integration concept to several integration procedures (32).

A strong point of YANOS is its tight integration of computer algebra at simu-
lation runtime, which provides a high level of flexibility for behavior analysis:

14

HTML repository
Web Browser
Web Server .
Web services

Java applet
SOAP Scheduler
YANOS
Diagram| [SOAP Scripting !.atlon

! e
: engines
output | |Client (JSP, CGl)

Client side:
Formulation of

simulation task Se_rver sl|de:
v Simulation

Figure 10. Hlustration of the YANOS Web deployment.

It enables YANOS to apply a spectrum of algebraic methods in the course of a
simulation, e. g., if a system changes its mode or its structural setup. Though
its high flexibility, simulation performance is not compromised since YANOS
has a just-in-time compiler built in.

What can not be seen in Figure 9 is that the YANOS simulation engine is en-
capsulated in a scheduler that provides different organizational facilities: The
syntactical analysis and instantiation of Modelica models, the user manage-
ment, the scheduling of different simulation tasks, or the upload and publica-
tion of simulation models. Together, these modules form the simulation server.
There exist different frontends (clients) for the simulation server. Especially
for Web deployment purposes we have developed a client in the form of a Java
applet that provides the following basic functionality:

e Selection, upload, and textual manipulation of Modelica models.
e Graphical display of state trajectories.
e Definition of basic experimental constraints.

3.3 YANOS Web Deployment

The following points summarize the steps that are necessary to add a SOAP
interface to YANOS using the GLUE SOAP implementation (33).

(1) Interface Design. Figure 10 outlines our plan for function shipping. The
client side consists of a Web browser that runs the Java applet; the applet
contains the code for handling user interactions as well as the (automat-
ically generated) code for parsing the SOAP responses. We decided to
transfer raw simulation data (the trajectories of the variables) to the
client and let the client do all presentation-related tasks like the drawing
of diagrams with respect to interesting variables. Consequently, the inter-
face can be kept narrow: It contains functions to load Modelica models,
to specify simulation parameters, to start the simulation, and to fetch

15

simulated values.

The server side consists of a Web server, which delivers the applet to
the client and which has a SOAP server integrated besides the standard
scripting engines. We built a Java wrapper that calls the native YANOS
functions and added functionality to schedule simulations, and to buffer
simulation data. The buffer concept enables a user to specify the data
packet size within a SOAP response and hence to define the frequency
by which the client display is updated.

(2) WSDL Generation. Given the Java wrapper interface, the WSDL defi-
nition can be generated using the GLUE java2wsdl-converter (see List-
ing 6).

(3) Client Code Generation. The generated WSDL definition can be used
as input for a client code generator. GLUE offers the wsdl2java-tool that
generates SOAP clients along with Java method stubs. We used the stubs
as a basis for the Java applet and realized functions for displaying dia-
grams etc. according to Point 1.

(4) Publication. If the Web service is published via UDDI there are two
alternative invocation scenarios: (a) A user can download our applet client
and use it as frontend. (b) A user can generate method stubs from the
published WSDL definition and integrate the simulation service in own
applications.

Figure 11 shows a screenshot of our applet. On the left-hand side, models can
be chosen for instantiation; according schematic views are displayed and can
be examined. Once a model is instantiated, its variables are sorted according
to their type (state, parameter, or other) and shown in a tree. Each variable
can be selected to be plotted, and start values can be provided for the state
quantities (middle). When the simulation is started, all settings are submitted
to the SOAP backend. The curves in the plot window (right) are updated
whenever the backend sends computed variable values or when a user changes
the selection of variables to be displayed. Several models can be simulated in
parallel: When a user decides to analyze another model, a new tab is opened.
This enables one to compare models and variable curves, and to analyze the
impact of parameter and model variations.

4 Summary and Discussion

Web services for simulation provide platform independence, automatic licens-
ing, version control, and deployment facilities. The purpose of this paper was
threefold: it presented application scenarios of Web services for simulation, it
discussed technologies to realize them, and it introduced the prototype of a
fully-fledged simulation service with a professional simulation engine as back-
end. Our service has been implemented with SOAP; it follows the service-

16

2} YANOS Web-based Simulation - Microsoft Internet Explorer.

Dakei Bearbeiten Ansicht Fawvoriten Extras 7

> \ﬂ @ _;‘J /'._.' Suchen "-é'i‘:.\.’Favoriten @Medien {_‘? L' ,,;. ‘@“; |]

Adresse |@ http: ffpe-kb-sim1 :8080/indes:., html

v | B wechselnzu Links

Edit Simulation Options

Classes -\ circuit1 |
@ [Libraries % B variables Plot
@ [Models e 0 state
[circuitt i [cylinderH1.Ap S checkvaleRilotCertraledH1LAp

[circuitz

[y cylinderH1 5

[cylinderH1 v

[cylinderHz 5

[cylinderHz v

[y civolurmez Ap
[oivalurnes Ap
D ResistanceH1 Ap

| 44231

—
|
3
]y | vame CheckValvePilotContraled:
p || value :

Tvpe Other
|| start
|| Modinication

[w]

- CheckvalveFilot¢antroledH1.B.d
- CheckvalvePilofContraledH1 dp
| CheckyalePilgtcantraledH sp
 CylinderH2.5f 8

|| Plot value

Figure 11. Screenshot of the YANOS Web Interface.

oriented architecture paradigm and can be integrated easily into a company’s
workflow.

SOAP is a simple protocol that is defined on top of the HTTP proto-
col stack and that realizes the transparent distribution of request/response-
functionality; it has been developed to ease the implementation of Web ser-
vices: Based on WSDL, communication protocols for SOAP can be generated
automatically and meta information regarding the syntax and semantics of a
service can be published in designated Web service directories.

4.1 Lessons Learned

As pointed out, we understand a service as a function that is well-defined, self-
contained, and that does not depend on the context or state of other services—
a definition that is in accordance with (7). When implementing a Web-based
simulation service, this function-centric view must be complemented with the
message-centric semantics of asynchronous transfer: Complex simulation jobs
need time and a client may want to start a simulation, but process the results

17

later. SOAP offers one-way function calls for this purpose: Instead of waiting
for a response when invoking a function, a one-way function delivers to the ser-
vice a request message only; on completion of the request, the server invokes a
one-way function on the client side to deliver the results as a response message.
However, the demand of asynchronous transfer entails additional problems re-
lated to reliability, persistence, and security. Message queuing strategies that
guarantee such quality of service issues are not integral part of the SOAP
specification but must be seen as an additional layer on top of the SOAP pro-
tocol stack. The messaging frameworks from Microsoft and Sun address these
issues: they guarantee reliable message delivery by transparently recovering
from transmission failures and system crashes (34; 35).

Though Modelica is a powerful standard that comprises nearly all aspects of
the future of modeling languages, the acceptance of a simulation service is
closely coupled to the interface question. Modern analysis tools pursue the
paradigm of graphic problem formulation, where analysis tasks are defined by
simply drawing a circuit or another model of the interesting technical system.
It should be noted that uncausal simulation languages like Modelica render
such a graphical problem formulation actually possible. 1. e., for the developers
of state-of-the-art simulation tools the separation between a graphical problem
definition client as frontend and a Web-hosted simulation engine as backend
will presumably be the design-paradigm for the next simulator generation.

4.2 Current Developments

In previous work we showed how technology for domain-specific design sup-
port, such as case-based retrieval, automated model synthesis, or diagnosis
model construction can be operationalized (11). Currently, we are working
on Web-based versions of software that originated from this research. We are
convinced that simulation-related applications with SOAP interfaces render
powerful engineering applications possible, which are composed of—what we
call—“high-level” Web-services. From the industry’s point of view this may
lead, among others, to new hosting and licensing models.

Other research activities are related to performance and standardization is-
sues:

e Complex simulation tasks need time to be solved, and in this connection it is
necessary to schedule simulation jobs on a server. Since advanced scheduling
algorithms work on the basis of processing time estimations, we search for
heuristics to estimate the model processing time within certain bounds.

e In a joint project with the developers of YANOS we are analyzing the idea
of a MIME type for technical documents containing Modelica models that

18

shall be simulated and analyzed over the World Wide Web with a mouse
click.

References

[1]
2]

3]
4]

15]
[6]

7]

18]

[9]

[10]

[11]

[12]

E. Page,
http://wuw.mitre.org/news/the_edge/august_98/wbs.html (1998).
R. Kilgore, Simulation Web Services with .NET Technologies, in:

E. Yiicesan, C.-H. Chen, J. Snowdon, J. Charnes (Eds.), Proceedings of
the 34th Winter Simulation Conference (WSC’02), ACM Press, 2002,
pp- 841-846.

E. Yiicesan, C.-H. Chen, J. Snowdon, J. Charnes (Eds.), Proceedings of
the 34th Winter Simulation Conference (WSC’02), ACM Press, 2002.
H. Elmqvist, S. Mattsson, M. Otter, Modelica—A Language for
Physical System Modeling, Visualization, and Interaction, in:
Proceedings of the IEEE Symposium on Computer-Aided Control
System Design, CACSD’99, Hawaii, 1999, pp. 630-639.

P. Fishwick, Web-based Simulation, in: Proceedings of the 29th Winter
Simulation Conference (WSC’97), ACM Press, 1997, pp. 100-102.

B. Stein, Engineers Don’t Search, in: W. Lenski (Ed.), Symposium on
Logic versus Approximation, Schloss Dagstuhl, Germany, Vol. 3075
LNCS of Lecture Notes in Computer Science, Springer, 2003, pp.
120-137.

Service Architecture Team, Service-oriented architecture (SOA)
definition, http://www.service-architecture.com/web-services/
articles/service-orienjted_architecture_soa_definition.html
(2005).

Martin Keen, Amit Acharya, Susan Bishop, Alan Hopkins, Sven
Milinski, Chris Nott, Rick Robinson, Jonathan Adams, Paul
Verschueren, Patterns: Implementing an SOA Using an Enterprise
Service Bus, IBM Redbooks, IBM, 2004.

IBM Web Services Architecture Team, http:
//www-106.ibm.com/developerworks/webservices/library/w-ovr/
(2000).

B. Stein, How Case-Based Methods Can Automate Fluidic Circuit
Design, Proceedings of the Fluid Power Network International PHD
Symposium (FPNI 00), Technical University of Hamburg Harburg,
Germany, 2000, pp. 137-148.

B. Stein, Model Construction in Analysis and Synthesis Tasks,
Habilitation, Department of Computer Science, University of
Paderborn, Germany (Jun. 2001).

URL http://ubdata.uni-paderborn.de/ediss/17/2001/stein/

B. Sleeper,

19

http://www.stencilgroup.com/ideas_scope_200106wsdefined.html
(2001).

[13] R. Srinivasan, RFC 1831: Remote Procedure Call (RPC),
http://www.rfc-editor.org (1995).

[14] Microsoft Corporation, The Distributed Component Object Model
(DCOM), http://www.microsoft.com/com/default.mspx (1994).

[15] Sun Microsystems, Remote Method Invocation (RMI),
http://java.sun.com/products/jdk/rmi (1997).

[16] OMG, The Common Object Request Broker Architecture (CORBA),
http://wuw.corba.org (1997).

[17] D. Box, A Young Person’s Guide to The Simple Object Access Protocol:
SOAP Increases Interoperability Across Platforms and Languages,
http://msdn.microsoft.com/msdnmag/issues/0300/soap/toc.asp
(2000).

[18] R. Hoffman, Sneaking Up On CORBA: The Race for the Ideal
Distributed Object Model,
http://wuw.networkcomputing.com/1009/1009f2.html (1999).

[19] J. Postel, J. Reynolds, RFC 959: File Transfer Protocol (FTP),
http://www.rfc-editor.org (1985).

[20] R. Presuhn, RFC 3416:Version 2 of the Protocol Operations for the
Simple Network Management Protocol (SNMP),
http://www.rfc-editor.org (2002).

[21] M. Crispin, RFC 3501: Internet Message Access Protocol Version 4revl
(IMAP), http://www.rfc-editor.org (2003).

[22] DYNAST Development Team, DYNCAD,
http://icosym.cvut.cz/dyncad/applet (2003).

[23] H. Mann, M. Sevéenko, Simulation and Virtual Lab Experiments across
the Internet, in: Proceedings of the International Conference on
Engineering Education, Valencia, Spain, 2003, pp. 5265-5272.

[24] DYNAST Development Team, DYNAST Collection of Solved Examples,
http://icosym.cvut.cz/dyn/examples (2003).

[25] W3C Consortium, SOAP Version 1.2 W3C Recommendation,
http://www.w3.org/TR/soapl2-partl/ (2003).

[26] Modelica Association, Modelica™—A Unified Object-Oriented
Language for Physical Systems Modeling: Tutorial, Modelica
Association, Linkoping, Sweden (2000).

[27] Modelica Association, The Modelica Specification, version 2.0, Modelica
Association, Linképing, Sweden (2000).

[28] H. Nilsson, J. Peterson, P. Hudak, Functional hybrid modeling, in:
Proceedings of PADL’03: 5th International Workshop on Practical
Aspects of Declarative Languages, Springer Verlag LNCS 2562, 2003,
pp- 376-390.

[29] J. Dormand, Numerical Methods for Differential Equations, CRC Press,
New York, London, Tokyo, 1996.

[30] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff

20

and Differential-Algebraic Problems, second edition Edition, Springer,
Berlin Heidelberg New York, 1996.

[31] L. Petzold, A Description of DASSL, a Differential-Algebraic System
Solver, Scientific Computing (1983) 65—68.

[32] H. Elmqvist, M. Otter, F. Cellier, Inline Integration: A New Mixed
Symbolic/Numeric Approach for Solving Differential-Algebraic Equation
Systems, in: Proceedings of the European Simulation Multiconference,
ESM’95, Prague, Czech Republic, 1995, pp. xxiii—xxxiv.

[33] The Mind Electric, The GLUE SOAP Implementation,
http://www.themindelectric.com/glue/index.html (2003).

[34] Microsoft Corporation, The Microsoft Message Queue (MSMQ),
http://www.microsoft.com/windows2000/technologies/
communications/msmq/d%efault.mspx (2005).

[35] Sun Microsystems, The Sun Java System Message Queue,
http://www.sun.com/software/products/message_queue/index.xml
(2005).

21

