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Notation

Symbol Meaning

|| · || norm

| · | cardinality or absolute value

〈·, ·〉 dot product

δ Kronecker symbol, cluster distance, probability density

Δ cluster diameter

ϕ similarity function

λ, λi capacity of minimum cut

Λ weighted connectivity

θ graph density

τ labeling, labeling function

ρ probability density function

ρ expected density

C clustering / categorization

C∗ desired categorization / reference categorization

C, Ci category or cluster, set of documents

d, di document

d,di vector or data structure for a document

[d]j j-th component of vector d

D set of documents / document collection

D∗ desired set of documents

e edge

E, Ei edge set

F, Fi,j F−Measure

fC(w) score for term w to be topic identifier in cluster C

G = 〈V, E〉 G is a graph with node set V and edge set E
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G(Ci) subgraph induced by the node set Ci

H(Cj) entropy of Cj

I(C) cluster validity index value for clustering C
idf inverse document frequency

N natural numbers

prec precision

q query

Q set of queries

R real numbers

rec recall

ti term

T, T ′ set of terms

tf (d, tj) term frequency of term tj within document d

tfD(tj ) term frequency of term tj in collection D

P (A | B) conditional probability for event A given B

tf · idf term frequency multiplied with inverse document frequency

V, Vi node set

w, wi weight or edge weight



Preface

Information retrieval (IR) is a discipline that deals with the task of satisfying

a person’s information need with the help of a computer. IR systems let a user

specify an information need, which is evaluated against large collections of digital

documents.

Techniques for satisfying information needs have meanwhile become ubiqui-

tous, be it in the form of search engines at home or at work, on mobile devices or

on workstations, or as retrieval components in file systems, document repositories,

databases, or knowledge management tools. The reason for this pervasiveness is

the growing information need, the diversity of retrieval tasks, and the desired

degree of personalization.

This thesis develops new concepts and new algorithms in various aspects

throughout the information retrieval process. A focus lies on the automatic

categorization of text and hypertext documents according to topic and genre.

Aside from proposing new data structures and algorithms for these tasks, a novel

IR process operationalization paradigm based on Model Driven Architecture is

suggested.

All concepts and algorithms have been operationalized, among others within

AIsearch, a search engine that has been awarded at the EASA-2004 (European

Academic Software Award) competition.

ix





Chapter 1

Introduction

The growing importance of information retrieval systems is accounted for not

only by the Internet and digital libraries but also by the fact that vast numbers of

companies organize their workflows and correspondence with digital documents.

For bigger companies, the number of documents that have to be managed by

an IR system easily goes into the millions. The cost of not finding a document

within a company’s intranet may be measured by the amount of money that has

to be spent on recreating it. These costs can be significant; consider for example

the cost to recreate a technical document that contains construction descriptions

for parts of a technical system.

The key challenge in the development of IR systems is the adaption of search

interfaces to human behaviour, limitations, and personal information needs. The

following points illustrate the adaption challenge; each point asks questions about

the design of an adequate retrieval process and also poses algorithmic problems.

• Behavior. Studies have shown that the majority of all keyword queries

against Web search engines are one or two term1 queries [127]. Aside from

delivering a huge set of matching documents, short queries are often am-

biguous since terms may have more than one meaning (polysemy). As a

consequence, search results often comprise a large fraction of documents

that do not fit the information needs of a user. On the other hand, relevant

documents can contain terms that are semantically related but lexicograph-

ically distinct to a query term, and they will not be judged relevant if terms

1A term in this context denotes an atomic lexicographical unit, e.g. a word, a number, or
an abbreviation.

1



2 Chapter 1. Introduction

are matched exactly (synonymy). Another problem with short queries is

that the query focus of a user is unclear; missing context information con-

tributes to long result lists containing many irrelevant hits.

• Limitations. The number of matching documents for typical queries against

very large document repositories goes easily into the thousands. Due to

human limitations in information processing, only some of the found doc-

uments or extracted document snippets2 can be read. Human information

miners are hardly able to narrow down the search iteratively using different

or more keywords since it is unclear in which context their query terms

are used, and which terms could be useful to focus the search, for example

to eliminate unwanted hits. Aside from being frustrating, a hand-crafted

query reformulation is time consuming.

• Information Need. Search interfaces that follow the keyword search paradigm

are broadly accepted by users; however, the challenge for the next decades

is the development of search solutions that reflect a user’s context. In other

words, solutions that are able to (a) organize search results better than in

the form of long lists, (b) filter beyond topic, i.e. to filter according to

document quality and type, (c) adapt to a user’s personal skills and ex-

perience concerning the underlying document collection, and (d) adapt to

the retrieval task a user is concerned with—in short: to adapt to a user’s

information need.

This thesis contributes right here; techniques are developed which address the

design and the operationalization of IR processes respecting the above points.

The research focus is automatic document categorization, a technique which has

been shown to improve retrieval performance.

2Document snippets are excerpts from documents that contain one or more query terms.
In most of the well-known search engines, document snippets serve as preview for a found
document.
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(a)
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Figure 1.1: Screenshot of AIsearch. The area at the top (left) shows controls for query
specification. Below, a generated category graph is shown in which each node represents
a category. The edges indicate similarity relations: each category is connected with
an edge to its most similar category. At the bottom, checkboxes for genre filtering are
shown. On the right, a list of document snippets that is ordered by category is shown.
The main text contains detailed explanations for the points (a) – (g).

AIsearch

The contributions of this thesis are manifest in our award-winning meta search

engine AIsearch, which categorizes search results according to topic and genre.

Figure 1.1 shows a screenshot of the AIsearch user interface: When query terms

are specified in field (a), spelling corrections as well as alternative query terms are

proposed in drop-down box (b). A categorization of the search results is shown

in tab (c): Each node of the depicted graph represents a found category that

is labeled with a topic identifier as well as with its size (d). Each category is

connected by an edge to its most similar category. The checkboxes (e) allow to

filter documents according to genre. On the right hand side, document snippets

are shown (g), which are sorted by category (f). A mouse click on a category

label selects the corresponding category: It centers the associated node within

the display, and updates the result list with document snippets from the selected

category.
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Figure 1.2: The retrieval process underlying AIsearch. The numbers refer to the sum-
marized contributions described in the text below.

1.1 Thesis Contributions

Figure 1.2 shows the building blocks of AIsearch: An information need is specified

in the form of a query, which is processed by Web search engines. The delivered

Web documents are converted to data structures for topic and genre categoriza-

tion. The topic categorization step uncovers the underlying topic structure using

cluster analysis and cluster validity tools. Each of the found categories is labeled

with a topic identifier by our new WCC algorithm. A genre categorization al-

lows to filter the resulting documents according to their form and function. The

following points summarize the main contributions of this thesis; the numbering

refers to the place within the AIsearch retrieval process in Figure 1.2.

(1) Document Representation. When regarding a document as a sequence

of terms, the similarity between two documents with respect to topic can be

quantified by the fraction of terms that both documents have in common.

Traditional document representations like the Boolean model or the vector
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space model are typical representatives that implement this view. However,

these models fail to quantify to what extent the term order matches between

documents. Since a term order match can reflect a concept match3, the

amount and the length of these matches constitute important similarity

information. We propose the suffix tree document model along with new

similarity measures that are able to quantify both aspects in parallel, term

matches as well as term order matches. The computational complexity

to implement the suffix tree document model is comparable to the Vector

Space Model.

Information Need. The suffix tree document representation addresses a

user’s information need directly when browsing categories: Our experiments

show that the suffix tree document representation substantially improves

document categorization performance compared to traditional vector space

representations. The performance gain is independent from the employed

clustering algorithm.

(2) Cluster Validity. Past research on document categorization according

to topic prevalently compares the maximum performance of clustering al-

gorithms on given document collections. Although this research question

is interesting, it is far away from realistic scenarios: The parameters of

clustering algorithms are unknown when clustering search results on an ad

hoc basis. In this connection we propose ρ, a new cluster validity index

for document clustering. The index ρ allows us to identify among a set of

clusterings those which are generated using adequate parameters. An ex-

perimental evaluation shows that ρ delivers reliable results in comparison

to existing approaches in document categorization scenarios.

Information Need. Since ρ allows to identify high-quality clusterings in an

unsupervised manner, it is especially suited for post-retrieval categorization,

allowing for user interfaces that display ad hoc categorizations of search

results.

3Take for example compound nouns like “artificial intelligence” or text blocks containing
domain specific speech such as typical phrases from financial reports or expressions from legal
terminology.
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(3) Topic Identification. When a categorization according to topic is deter-

mined using an unsupervised approach, it has to be presented to a user.

In particular, the categories have to be labeled with characteristic terms

for browsing. The question about which terms should be chosen for label-

ing is very difficult since a maximum of only five terms from the set of all

terms within a document cluster can be presented to a user4. The labeling

question is especially interesting since desired properties of category labels

are partly contradictory. We introduce and formalize desired properties for

category labels, and we propose the new WCC algorithm to compute them.

Information Need. In contrast to the few existing approaches, which have

until now been evaluated by human judgment, we develop an evaluation

methodology that delivers reproducible results and allows for an absolute

performance quantification in terms of precision and recall. Our experi-

ments show that WCC identifies up to five terms per cluster with a very

high precision when comparing them to human-assigned keywords. As an

aside, a document corpus for experimenting has been developed, which is

available upon request.

(4) Genre Categorization. Categorizations are grounded on meaningful cri-

teria. In recent IR research, the term “categorization” is associated with

an organization of documents according to topic. However, we will show

that the genre of a document is a very useful categorization criterion when

searching large document repositories. In particular, a first user study in

the field of genre categorization has been conducted, which shows the great

interest of human information miners to filter beyond topic.

In particular, we propose a genre categorization scheme for Web documents,

and we introduce a novel document representation that can be employed to

classify documents according to genre. A feasibility study shows that genre

categorization is possible, even in a large and heterogeneous collection like

the World Wide Web.

Information Need. To investigate the extent to which a genre categorization

according to human wishes is feasible, we compiled a test corpus of Web

4Given that a typical cluster comprises about 2500 different term stems, there are
(
2500

k

)
possibilities to choose a subset of k terms.
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pages, which originally included 1209 Web pages and was recently extended

to 1707 Web pages. The results for a multiclass classification with eight

genre classes are very promising: the experiments show that about 80%

of the corpus pages can be classified correctly. Meanwhile, the corpus has

been used by other institutes for follow-up research.

(5) Software Engineering. The remaining contribution concerns software

engineering. In particular, a Model Driven Architecture (MDA) approach

for composing and executing IR processes is developed. In contrast to

the commonly used library-based IR process design, our approach clearly

separates the specification of an IR process from its operationalization.

Our architecture called Tira allows to specify an IR process in the form of

a platform-independent UML activity diagram, from which an executable

platform-dependent model can be automatically generated.

Information Need. The proposed technology allows us to rapidly develop

new prototypes, to adapt IR processes to personal preferences, and to test

new ideas at the push of a button. In particular, Tira’s possibility to tailor

IR processes to fit individual skills, personal wishes, and retrieval scenarios

contributes to satisfy a user’s information need.

1.2 Thesis Overview

This chapter motivates the presented research and summarizes our contributions.

Chapter 2 reviews the information retrieval process; in particular, data structures

and algorithms for constructing document representations and for computing

document similarity are presented.

Chapter 3 contains the main contributions related to categorization. After

document categorization is motivated and existing research respecting the cluster

hypothesis is summarized and compared, clustering algorithms for automatic ad-

hoc category formation are reviewed. The following section surveys existing work

in cluster validity and introduces our novel cluster validity index, ρ. The next

section introduces the suffix tree document model and presents theoretical as well

as experimental comparisons to other approaches. The topic identification section

introduces a formal framework of desired properties for cluster labels. After
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presenting the WCC algorithm for topic identification, a novel evaluation strategy

is introduced and evaluation results are given. Finally, genre classification of Web

pages is introduced as a novel instrument to satisfy a user’s information need.

Our flexible software architecture for the composition and execution of IR

processes, Tira, is introduced in Chapter 4. The thesis concludes with Chapter 5.



Chapter 2

Technical Background:

Document Representation

and Retrieval

Within the last years, the number of digital documents in the Internet, corpo-

rate intranets, and digital libraries exploded. IR systems evolved, which aim to

provide structured access to large-scale document collections. From a user’s per-

spective, these IR systems follow various search paradigms that broadly make up

four categories [29]:

(1) Unassisted keyword search. Search terms are entered and the search engine

returns a ranked list of document snippets. Representative: Google

(www.google.com).

(2) Assisted keyword search. The search engine produces suggestions based on

the user’s initial query. Representative: AskJeeves (www.askjeeves.com).

(3) Directory-based search. Here, the information space is divided into a hier-

archy of human-maintained categories, where the user navigates from broad

to specific classes. Representative: Yahoo (www.yahoo.com).

(4) Query-by-example. The user selects an interesting document snippet, which

is then used as the basis for a new query. Representative: AltaVista

(www.altavista.com).

9
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Search interfaces that implement these paradigms form the “visible” part of IR

systems. In the following two chapters we will shed light on what happens in IR

systems behind the scenes. The focus of this chapter is document representation,

while the next chapter discusses document retrieval.

Table 2.1: Typical retrieval tasks.
Retrieval task Input Task description

(1) keyword search keywords Find documents that match the
given keywords best.

(2) local search keywords, Find documents that match the
geographic given keywords best and that relate
location to the given location.

(3) similarity search document Find documents that are similar
to the input document.

(4) question answering question Find documents that answer
in natural the given question best. Preferably,
language generate a tailored answer.

(5) plagiarism document Find passages within the document
detection that are copied from other documents.

(6) quality search various Find documents that comply with
given quality criteria.

2.1 The Information Retrieval Process

The purpose of IR systems is to satisfy a user’s information need. Typically, for a

universe D of documents this task involves the identification of a subset D∗ ⊂ D

of documents that are considered useful for satisfying a user’s information need.

Since information needs are manifold, IR systems are specialized correspondingly,

i.e. they are designed to process specific retrieval tasks that arise from specific

information needs (cf. Table 2.1, which resumes some examples).

Retrieval tasks are operationalized within a retrieval process that includes

query formulation and result presentation (cf. Figure 2.1). The operationaliza-

tion of retrieval tasks happens in the form of a retrieval function, which is defined

as follows.
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Document
representation
(Chapter 2.2)

Query
representation 
(Chapter 2.2)

Retrieval
function

(Chapter 3)

Query

Presentation

Information
need

Query formulation

Retrieval task
operationalization

Result presentation

External
knowledge

(Chapter 2.3)

Set of
documents

Retrieval
result

Figure 2.1: The information retrieval process, adapted from [129]. A user formulates
his/her information need in the form of a query (top), which is transformed into an
internal representation, typically a tailored data structure. Likewise, documents from a
collection are represented as data structures. A retrieval function operates on the inter-
nal representations to identify matching documents, probably using external knowledge
(middle). Finally, the retrieval results are presented to the user (bottom).

Let D = {d1, . . . , dn} be a document collection, let q be a query from the set of

queries Q, and let K be external knowledge1. A retrieval function ρD,K : Q → R
is a mapping that selects a subset of D being relevant to a query q ∈ Q given

external knowledge K. The result in R may take several forms, e. g. , R may be a

ranked list, a categorization of the selected subset of D, or another representation

that can be generated from D using K. The operationalization of a retrieval

function requires a representation of the documents di and the query q, which

are discussed next.

2.2 Document Representation

A document representation d is a data structure to model a document within

computer memory.2 In literature, d is almost always a vector whose components

1K may contain thesauri, past queries, click stream statistics, etc. A discussion of the
exploitable knowledge will follow at the end of this chapter.

2Bold latin lowercase letters, in general, denote vectors. We use the symbol d for a data
structure here; the reason is that this data structure is almost always a vector in the IR
literature.



12 Chapter 2. Document Representation and Retrieval

quantify document properties like term frequencies. However, d may be another

abstraction; in particular, we introduce the suffix tree document model in the

next chapter.

Document representations are usually tailored to both, the retrieval task and

the documents’ information content. The following list grades document types

according to information content.

(1) Plain documents. Documents that contain no more information than their

text.

(2) Structured documents. Documents in which structure information like

chapter boundaries or headlines is given. Example: Microsoft Word docu-

ments.

(3) Hypertext documents. Hypertext documents are structured documents

that may contain references (links) to other documents. Example: HTML

documents.

(4) Annotated documents. Documents that come along with meta-information

like category or author. Examples are Semantic Web documents, which are

enriched with ontological information [21, 20, 19].

The following rule of thumb applies: The more information a document con-

tains, the merrier are the retrieval results, and the lower is the retrieval effort

[129].

2.2.1 Term Vector Models

Let D = {d1, . . . , dn} be a document collection, and let T = {t1, . . . , tm} be the

set of terms3 each of which occurring in at least one d ∈ D. Moreover, let R

denote the set of real numbers, and let the jth component of an n-dimensional

vector d ∈ Rn be denoted as [d]j .

3T is sometimes called the dictionary of D. The index numbers of the terms in T are
arbitrary; i.e., no specific order of the ti is assumed.
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The Boolean Model. In the Boolean document model, the representation di

of a document di ∈ D is a vector whose j-th component indicates if tj occurs in di,

say, di is a boolean-valued vector with dimension m and [di]j = 1 iff tj ∈ di. This

kind of representation allows, among others, to quantify the similarity between

two documents using a geometric measure, e.g. in the form of angles or distances

between vectors in Rm. An equivalent of the Boolean model is the set model,

where a document is represented as a set in which the elements are the document’s

terms.

The Vector Space Model. A generalization of the Boolean model is the

Vector Space Model (VSM) [121], in which the components of the vector repre-

sentation are real values, the so-called term weights. Let tf (di, tj) denote the

function that specifies how often the term tj occurs in document di. Setting

[di]j = tf (di, tj) includes term frequency information into the vector representa-

tion instead of boolean values only; the rationale is that terms that occur more

often are more important [126].

However, with respect to a document collection one might argue that terms

that are rather rare within the collection are important since they discriminate

between documents, especially when the documents in the collection are on sim-

ilar topics. Consider for example a document collection on feeding pets: two

documents on cats are likely to be considered more similar than two documents

on dogs and cats. Likewise, the term “feeding” loses its value within the collec-

tion since it will appear in most of the documents. In this connection tf is used

in combination with the inverse document frequency idf . Let df (tj) denote the

document frequency of a specific term tj , say the number of documents in which

tj occurs. Then the inverse document frequency idf : T → R+,0 with

idf (tj) = log

(
|D|

df (tj)

)

is a function that measures how a term tj is distributed over the documents in

D, in other words, it measures the discriminative power of tj [126]. If only idf

was used to weight terms in di, then rare terms would dominate a geometric

similarity computation: a term that occurs only once in the document collection

has a maximum idf value. For this reason, [di]j is chosen to be the product
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tf (di, tj) · idf (tj). This product ensures that both very rare and very frequent

terms do not influence a similarity computation too much4.

The definition of idf can also be justified in the context of information theory.

Let Et be the probabilistic event that a term t ∈ T occurs in a randomly drawn

document d ∈ D. Then the probability of Et is given as P (Et) = df (t)
|D| . The

amount of surprisal (also known as self-information [145, 154]) contained in this

event depends only on the probability of the event. More specifically: the smaller

this probability is, the larger is the surprisal associated with receiving information

that the event actually occurred. A measure I that reflects surprisal is

I(Et) = log

(
1

P (Et)

)
= log

(
|D|

df (t)

)
= idf (t).

A property of I is that the surprisal of a composition of two mutually independent

events equals the surprisal sum of the events, i.e. I(Et1 ∩Et2) = I(Et1) + I(Et2).

If the events Et are regarded as atomic then they are independent by definition.

However, two terms do not necessarily appear independent in a document since

natural language comprises regular structures like figures of speech, compound

nouns, and proper names that are made up of more than one term.

Consequently, when using I to measure surprisal, the underlying dictionary

should reflect the independence condition: Instead of building the document

representations based on single terms5 from T , their construction based on a

tailored index term set T ′ in which one element can comprise more than one term

is advised. For example, in a collection on feeding pets it is a good idea to regard

the compound noun “cat food” as one element of T ′ instead of two single terms.

Section 2.2.3 discusses methods to construct T ′.

VSM with Probabilistic Term Weights. A probabilistic method to define

term weights is based on the assumption that so-called “specialty words”, i.e.

highly informative terms, are concentrated in a few documents within a collection

[54, 55, 6]. Given this assumption, the value of a term can be quantified using

the “divergence from randomness” theory, which generalizes Ponte and Croft’s

language modeling approach [104] as follows.

4More recent term weighting approaches factor document lengths into term weights. An
approach that has shown superior performance for queries in TREC collecions is the BM25
term weighting scheme [113, 114].

5Single terms are also referred to as unigrams.
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Let D = {d1, . . . , dn} be a document collection, let t denote a term and let

tf D(t) denote the number of occurrences of t in D. For each of the tf D(t) copies

of t, a random process can be imagined that first selects a d ∈ D at random and

then assigns t to d. Since “nonspecialty words” are assumed to be distributed

uniformly at random over the n documents, the probability for k occurrences

from the tf D(t) copies of t in a single document can be modeled using a Bernoulli

experiment:

P (Xt = k) = B(n, tf D(t), k) =

(
tfD(t)

k

)
pkqtf D(t)−k (2.1)

where p = 1/n and q = (n − 1)/n. Here, the random variable Xt describes

the term frequency of t in a document from D. Again, this model assumes term

independence.

The application of this model is as follows. Using the formula above6, we

can compute for a given document di ∈ D the probabilities P (Xt = k) for each

term, using k = tf (di, t). The lower this probability, the less the term t is

distributed in accordance with the model, and the more informative it is. Con-

sequently, a function that increases monotonously as P decreases quantifies the

informative value of a term. Since term probabilities also depend on a docu-

ment’s length, Amati and van Rijsbergen propose to “normalize” k according to

document length first. In particular they propose to choose

k̄(di, t) := tf (di, t) · log2

(
1 +

avg(D)

l(di)

)

Here, l(di) denotes the length of document di measured by the number of terms

that di contains, and avg(D) = 1
n

∑
di∈D l(di) denoting the average document

length within D.

A weight function that increases monotonously as P decreases and, conse-

quently, grows with a term’s importance in di is again the surprisal, resulting

in

w1(di, t) := − log2(P (Xt = k̄(di, t)))

Amati and van Rijsbergen propose to choose as term weight a product w(di, t) =

6In practice, the mentioned probabilities are approximated using a Poisson distribution.
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w1(di, t) ·w2(di, t), where w2 is a smoothing function that quantifies the informa-

tion gain of a term within the so-called “elite set” St ⊆ D, say, the set of doc-

uments in which t occurs. The authors propose two different weighting schemes

for w2(t), one based on Laplace’s law of succession (w2(di, t) := 1
k̄(di,t)+1

), and

another as the ratio of two Bernoulli processes (w2(di, t) :=
tf St

(t)+1

|St|·(k̄(di,t)+1)
).

It should be noted that the model of randomness, which is implemented in

Formula (2.1) is interchangeable: Instead of using a Binomial distribution, models

based on Bose-Einstein-statistics, the geometric distribution, and tf · idf can be

employed [6, 5].

2.2.2 Document Similarity

Document representations are usually designed such that a function ϕ can be

stated that maps from the representations d1 and d2 of two documents d1, d2

onto the interval [0; 1] and that has the following property: If ϕ(d1,d2) is close

to one then the documents d1 and d2 are similar; likewise, a value close to zero

indicates a high dissimilarity. Formally, a function ϕ is called similarity function

if it fulfills at least point (1) of the following properties [152]. However, if not

stated otherwise, we assume a similarity function to satisfy points (1)-(4).

(1) ∀di ∈ D: ϕ(di,di) > 0

(2) ∀di, dj ∈ D: ϕ(di,dj) ≥ 0 (non-negativity)

(3) ∀di, dj ∈ D: ϕ(di,dj) = ϕ(dj,di) (symmetry)

(4) ∀di, dj ∈ D: ϕ(di,dj) ∈ [0, 1] (normalization)

(5) ∀di, dj, dk ∈ D: ϕ(di,dj) + ϕ(dj,dk) ≥ ϕ(di,dk) (triangle inequality)

The applications of a similarity function ϕ are manifold. A query q in the

form of a keyword list can be regarded as a very small document; consequently, ϕ

can serve to define a retrieval function for similarity search. Moreover, ϕ can be

used to generate similarity graphs, which in turn are a basis for clustering. The

function ϕ can also be turned into a dissimilarity function by computing 1−ϕ if

ϕ is normalized and ϕ(di,di) = 1 for all di. In particular, dissimilarity matrices

enable multidimensional scaling to visualize document collections [131, 18, 77].
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Since ϕ operates on the abstractions of the documents di it must be tailored

to the representations di. The remainder of this subsection gives an overview of

similarity measures for set-based, geometric, and probabilistic document repre-

sentations.

Set-based Similarity Measures. Given that documents di, dj ∈ D are repre-

sented as sets Di, Dj of their terms, similarity can be quantified by set intersection

ratios. In particular, the Jaccard coefficient ϕjacc , the cosine coefficient ϕcoscoef ,

the dice coefficient ϕdice and the overlap coefficient ϕover have been employed in

the past to measure set similarity, and they are defined as follows [111].

ϕjacc(Di, Dj) =
| Di ∩ Dj |
| Di ∪ Dj |

ϕcoscoef (Di, Dj) =
| Di ∩ Dj |

| Di |1/2 · | Dj |1/2

ϕdice(Di, Dj) =
| Di ∩ Dj |

| Di | + | Dj |

ϕover(Di, Dj) =
| Di ∩ Dj |

max(| Di |, | Dj |)

It should be noted that generalizations of these coefficients exist, which are de-

signed to incorporate term weights. Put another way, these generalizations apply

for geometric similarity measurement.

Geometric Similarity Measures. The most popular similarity measure for

term vector representations is the cosine similarity function. Let di,dj denote

the vector representations of the documents di and dj respectively. The cosine

similarity function ϕcos : Rm × Rm → [0, 1], which measures the cosine of the

angle between di and dj is defined as

ϕcos(di,dj) =
〈di,dj〉

‖di‖ · ‖dj‖
where 〈·, ·〉 : Rn × Rn → R denotes the dot product and ‖ · ‖ : Rn → R

denotes the Euclidean norm. In comparison to a linear relationship between angle

and similarity, the cosine similarity values are amplified, especially for angles in
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[0, π/4] (cf. Figure 2.2). This effect is considered useful when sparse vectors are

given and the similarity values tend to be low. Another property of the cosine

similarity measure is its scale invariance, i.e. ϕ(α · di, β · dj) = ϕ(di,dj) for all

scalars α, β. The interpretation of scale invariance in the document domain is

that documents are regarded as equal when they use the same terms in the same

proportion; document length is not important.

Another natural similarity measure derives from the Euclidean distance be-

tween di and dj . With dmax = maxi,j ‖di−dj‖ a similarity measure can be defined

as 1− ‖di−dj‖
dmax

or, without the need to compute dmax , as 1
1+‖di−dj‖ . However, these

measures are not scale invariant.

A scale invariant Euclidean distance measure operates in the unit sphere, when

the term vectors are scaled to length 1. Let d′
i denote these scaled vectors, say,

d′
i = di

‖di‖ . Since the maximum distance between two points in the first quadrant

of the unit sphere in Rn is
√

2, a similarity measure based on the Euclidean

distance is

ϕeucl(di,dj) = 1 − 1√
2
· ‖d′

i − d′
j‖

Note that ϕeucl directly relates to ϕcos since distances between points on the unit

sphere are determined by the angle between the points. In particular,

‖d′
i − d′

j‖ =
√

sin2(α) + (1 − cos(α))2

=
√

sin2(α) + 1 − 2 cos(α) + cos2(α)

=
√

2 − 2 cos(α)

where α denotes the angle between d′
i and d′

j . Consequently, ϕeucl(di,dj) =

1 −
√

1 − cos(α).

Strehl and Ghosh propose the similarity measure ϕexp = e−‖di−dj‖2
, which is

also based on Euclidean distance and has useful properties when clustering with

k-Means [141]. Another measure that has not been used yet is 1− sin(α), which

is scale invariant and has the salient property that it reduces noise since it scales

down low similarity values.

Figure 2.2 illustrates similarity function values for normalized vectors in the

first quadrant of Rn depending on the angle between them. Like the curves show,
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Figure 2.2: Plots of geometric similarity function values (y-axis) for normalized vectors
in the first quadrant of Rn depending on the angle between them (x-axis).

each of them has different characteristics concerning the dilution and amplifica-

tion of similarity values.

Probabilistic Similarity Measures. Let P (R | di) denote the probability

that a user finds di ∈ D relevant to a query q. Probabilistic retrieval models

employ estimations of P (R | di) to sort the documents in D with respect to

relevance to q [46]7. The estimations are based on Bayes’ theorem, namely

P (R | di) =
P (di | R) · P (R)

P (di)

Here, P (di | R) denotes the probability for selecting di from the set of relevant

documents; likewise, P (di) is the probability to randomly draw di from the set

of all documents. Since the latter probability is constant for a collection, the

7In Fuhr and Buckley’s original work [47], odds in the form O(R, di) = P (R|di)

P (R|di)
were used for

ranking instead of probabilities for similarity computation. If O(R, di) > 1 then the probability
for di being relevant is greater than di not being relevant. This rule, also known as Bayesian
decision rule, enables an IR system to decide how many results should be retrieved. Moreover,
the Bayesian decision rule minimizes the expected error.



20 Chapter 2. Document Representation and Retrieval

Index
construction
principle

Index term selection

Index term modification

Index term enrichment

Index transformation

Stemming

Information gain

Co-occurrence analysis

Singular value decomposition

Inclusion methods

Exclusion methods Stopword removal

Figure 2.3: A taxonomy of index construction principles for vector space models.

former probability P (di | R) remains to be estimated. These estimations are

based on the Boolean vector representation and the assumption that terms occur

independently in documents. The estimated probabilities can be adapted to a

user’s information need, which must be given in the form of relevance feedback

for retrieved documents. Details can be found in [47, 46].

2.2.3 Index Term Set Construction Methods

Up to now T was defined to be the set of all terms that occur in at least one d ∈ D.

However, the composition of document models from a tailored index term set T ′

can significantly enhance the performance of tasks like similarity computation

or classification. From a linguistic point of view two documents are topically

equal when they share the same concepts rather than the same terms. From a

probabilistic point of view, the index terms in T ′ should appear independently

(cf. Section 2.2.1). From an algebraic point of view this means that the index

terms in T ′ should be used to create an orthogonal basis from which the document

vectors are composed as linear combinations.

Generally, the index term set construction problem is a specialization of the

well-known feature selection problem in machine learning [87, 66, 76, 15]. Since

the evaluation of each possible subset of T with respect to the outlined goals is

computationally infeasible, the construction of T ′ follows heuristics that exploit

specific text domain knowledge. In the following, methods to construct T ′ by

selection, modification, enrichment, and transformation of terms are resumed;

each of them strives to reflect the mentioned goals. Figure 2.3 depicts a taxonomy

of index term set construction methods.

Index Term Selection. The methods that operationalize index term selection

subdivide into exclusion and inclusion methods. The goal of exclusion methods
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is to remove terms from T that simply add noise when computing a similarity

value. Examples for these terms include common words like articles, prepositions

or conjunctions (e.g. “the”, “and”, “or”, “of”, “from” etc.) that certainly do not

contain topical information. The tf · idf term weighting scheme would adjusts

these terms’ weights to a value close to zero automatically; however, these so-

called stopwords can already be identified and removed accurately at parsing time

according to stopword lists. This procedure speeds up similarity computation and

saves memory in the document representations.

In contrast to exclusion methods, which construct T ′ in a bottom-up manner

by removing terms from T , inclusion methods construct T ′ from scratch, say, in

a top-down manner. As outlined above, good index terms reflect concepts and

may be composed out of several terms. If the occurrence of terms correlates, e.g.

within a fixed-size sliding window, the terms may be considered as concept and

added to T ′ [89]. Another way to identify concepts in the form of related terms is

to measure their mutual information [147] or to use association rule mining [3, 4].

However, these methods’ time complexity is in general at least O(|T |2). The

suffix tree document model [96] contributes right here: it allows for non-trivial

index term set construction in linear time.

Index Term Modification. Term modification is necessary to map morpho-

logically different words that embody the same concept to the same index term.

E.g., the terms connection, connecting, connectivity, connector are variants

of connect, and they should map to the same index term. Stemming algorithms

apply here; their goal is to find canonical forms for inflected or derived words,

e.g. declined nouns or conjugated verbs. Since the adaption of words to gender,

number, time, and case are language-specific, it might be reasonable to compile

a set of rules that map an inflected word back to its stem. This is the way

how Porter’s stemmer for the English language works [106]. However, rule-based

stemming algorithms require the development of specialized rule sets for every

language.

Statistical stemming algorithms generate stemming dictionaries based on large

document collections. For this purpose, all terms from a document collection

are inserted character-wise into a tree whose edges are labeled with the words’

characters. When a term is inserted, the path emanating from the root is followed
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while its current edge label matches the word’s current character. In case of a

mismatch, a new edge is inserted and labeled with the actual character.

If the number of a node’s successors at some minimum depth is large enough

then the character concatenation on the path from the root to this node is a

candidate stem. Several techniques for identifying candidate stems have been

proposed in the past; variants are based on thresholds, relative successor vari-

ety, and entropy [51, 43, 44]. Besides their language independence, statistical

stemmers have the ability to adapt to document-specific vocabulary or language

changes. Note that these stemmers are not only able to identify stems that orig-

inate from suffix removal, but that they can also be used to remove prefixes. For

example, if the suffix connect from the term reconnected is inserted into the

suffix tree, a match along the path that is associated with connect will deliver

a high confidence hint for connect being a correct stem. A recent study on

statistical stemming can be found in [140].

Index Term Enrichment. We classify a method as term enriching if it in-

troduces terms not found in T . By nature, meaningful index term enrichment

must be semantically motivated and exploit linguistic knowledge. A standard

approach is the possibly transitive extension of T by synonyms, hyponyms, and

co-occurring terms [59, 137]. The extension shall alleviate the problem of differ-

ent writing styles, or of vocabulary variations observed in very small document

snippets as they are returned from search engines.

Note that these methods are not employed to address the problem of polysemy,

since the required in-depth analysis of the term context is computationally too

expensive for many similarity search applications.

Index Transformation. Let D = {d1, . . . , dn} be a document collection over

the term set T = {t1, . . . , tm}. An m× n matrix A whose columns consist of the

document models di is called term-document matrix for D. We understand index

transformation as a function f that projects A to a k×n matrix A′ with the goal

to enhance the document models with respect to a retrieval task. In contrast

to the above mentioned index construction methods, which operate on single

columns of the term-document matrix, index transformation methods operate on

the entire matrix.
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Recall     /   = 0.26 Precision     /(     ∪     ) = 0.94 F-Measure = 0.40

Selected:
Relevant:
Documents:

Figure 2.4: Illustration of precision and recall. The figure shows documents of two true
classes: The solid points symbolize documents that are relevant to a query, and the
outlined points symbolize irrelevant documents. The boxed points stand for documents
that a retrieval system has selected for presentation. The set of boxed points shows a
selection of high precision, which consists to 94% of relevant documents. Its recall is
only about 0.26 since only 26% of all relevant documents are selected.

A popular representative index transformation method is latent semantic in-

dexing (LSI) [27, 11, 101], which uses a singular value decomposition of the

term-document matrix in order to improve query rankings and similarity com-

putations. For this purpose, the document vectors as well as the queries are

projected into a low-dimensional space that is spanned by the eigenvectors of

AT A that correspond to the k largest eigenvalues σ1, . . . , σk.

2.3 Techniques for Information Need Satisfac-

tion

An IR system is considered successful when a user can formulate his or her

information need easily and when the retrieval results point a user directly to

relevant documents. In our context, where a retrieval system selects a subset D′ ⊂
D as being relevant, the performance is often measured in terms of precision and

recall with respect to the “true” set of relevant documents, D∗ [111]: Precision

denotes the fraction of relevant documents within a retrieval result D′, while

recall denotes the fraction of retrieved relevant documents with respect to all

relevant documents within a collection (cf. Figure 2.4). I. e.,
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Figure 2.5: Taxonomy of information resources available to a retrieval system (left)
with example technologies that operationalize information exploitation (right).

prec =
| D′ ∩ D∗ |

| D′ | and rec =
| D′ ∩ D∗ |

| D∗ |
An IR system’s main task is to maximize both, precision and recall of re-

trieval results8. Several information sources can be exploited to allow for good

performance: (a) Intrinsic information (the document collection itself) (b) exter-

nal information from one or more users (recorded queries or click streams etc.),

or external knowledge like ontologies or thesauri. Figure 2.5 shows an informa-

tion taxonomy along with example technologies that operationalize information

exploitation. In the following, some technologies are sketched to exemplify how

information is exploited.

• Personalization. A personalized IR system builds a user profile based on

an application-specific user model throughout one or more search sessions.

These profiles are employed to rank and filter the results for upcoming

queries for the same user and associated context.

• Recommendation. Recommender systems collect information like relevance

judgments from a multitude of users in a specific context and use this

information to rank, filter, or augment query results [2].

• Relevance Feedback. Systems like Rocchio [120] let a user judge which of

the previously retrieved documents are relevant or irrelevant for her or his

information need. These judgments may be used to automatically gener-

8The simultaneous maximization of precision and recall is an ambitious goal: Recall can be
enlarged when delivering more documents. However, at the same time precision tends to get
smaller unless a perfect retrieval function is given.
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ate enhanced queries or to better rank and filter retrieval results in future

queries.

• Categorization. Clustering algorithms aim to uncover the intrinsic category

scheme of a document collection, enabling a user to focus the search on

selected categories.

These technologies are useful to a greater or lesser extent depending on the

individual use case, which may be characterized by aspects like collection size,

user skill, and background knowledge. In this connection a user’s skill denotes

his or her ability to formulate or reformulate a query q; a user’s background

knowledge relates to the collection D and the domain with which his or her query

is associated9. Table 2.2 summarizes the impact of the outlined approaches with

respect to the mentioned aspects.

huge small high low good bad
collection collection formul. formul. knowledge knowledge

skill skill of D of D

Personalization ++ o + ++ o ++
Recommendation + + + + o ++
Relevance Feedback + ++ - ++ o +
Categorization ++ + - ++ o ++

Table 2.2: Technology impact vs. collection and user characteristics. The performance
impact estimations are tendencies oriented at current publications in the field.

9These aspects are subsumed by the concept bounded rationality, which “is used to designate
rational choice that takes into account the cognitive limitations of both, knowledge and cognitive
capacity” [156].





Chapter 3

Information Need and

Categorizing Search

Search engine users know the surprising experience to learn from result lists

about the diversity of topics that are associated with particular query terms.

A reason for this surprisal is that a user’s mental model on topics and related

query terms does not match the real-world model: either, the query terms do

not reflect a user’s information need since they are too general, too narrow, or

simply inadequate, or some of the contexts in which the query terms are used

are unknown in advance. In each case, a summarizing overview of identified

document categories would be helpful to navigate within search results and to

figure out how the original query can be refined.

Uncovering category structures of a document collection is the main contri-

bution of this chapter. First, two categorization paradigms are discussed, and a

rationale for document clustering is given [133]. We then review algorithms for

automatic category formation and for the validation of clusterings. In particular,

we introduce the expected density ρ as a robust tool to assess document cluster

quality [138] and argue why our experiments are the first that reflect a realistic

scenario in unsupervised document categorization [90]. Moreover, we contribute

the suffix tree document model, which will prove to better reflect document simi-

larity than traditional approaches, and consequently to be an excellent foundation

for cluster analysis [96].

Once a meaningful clustering is found, it has to be presented to a user. In

this connection, each cluster has to be labeled with characteristic terms that

27
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Figure 3.1: Chapter organization.

characterize the cluster’s contents. Finding good cluster labels is a challenging

task since the labels should have properties like being summarizing and discrimi-

nating. These and other cluster label properties are discussed, and an algorithm

for cluster labeling called WCC is given [138]. The experiments, which are the

first ones that are reproducible in this area, show that WCC outperforms other

approaches.

Finally, we propose a genre category scheme for Web documents. In contrast

to topic categories, which reflect a document’s thematic context, genre categories

relate to a document’s form and presentation; typical Web genres include online

shop, private home page, link list, discussion forum, and article. Web pages of

a specific genre can up to now not be specified to be included or excluded from

search results—however, this aspect constitutes an important part of a user’s

information need. In particular, we discuss different kinds of genres that can be

found in the Web, we present a user study on genre usefulness, and we propose

a document model for genre analysis along with a categorization algorithm [92].
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The aforementioned techniques were put to work in the form of our meta

search engine AIsearch: We used indices of popular search engines as a starting

point; a subsequent processing shall improve the retrieval quality employing the

aforementioned tools [91, 93]. Figure 3.1 depicts this chapter’s structure, which

is oriented at the AIsearch retrieval task organization described at the outset.

3.1 Supervised vs. Unsupervised Categoriza-

tion

A categorization C = {C1, . . . , Ck} is a partition of a document collection D

into subsets C1, . . . , Ck ⊆ D such that ∪k
i=1Ck = D. A categorization is called

exclusive if a document falls into exactly one of the categories, that is, Ci∩Cj = ∅
for i �= j.

Automatic categorization aims to discover the intrinsic category structure

C∗ of D, which is optimal with respect to criteria like topics1 from the human

perspective. The employed algorithms are either supervised or unsupervised2.

The former try to learn a function f : D → C∗ from a so-called training set of

examples (di, Cj) ∈ D×C∗. The latter work without having seen correct category

assignments in advance; their goal is to construct a categorization based only on

D and a similarity measure ϕ.

The nature of supervised and unsupervised categorization algorithms deter-

mines their application area. For supervised categorization algorithms a category

scheme as well as a considerable number of correctly assigned documents must

be given in order to learn the function f . This fact limits the application area

to collections that possess a rather static category structure, since a modifica-

tion of C∗ involves laborious human intervention: Training examples have to be

reassigned to the new category scheme and the classifier f has to be relearned.

Examples of collections with static topic structure include digital libraries of sci-

entific articles, in which standardized category schemes like the ACM computer

science classification scheme are used [8].

1In literature, a categorization C∗ of D is often based on topic considerations. However,
we generalize this view: the underlying category system may be organized by any meaningful
criteria.

2For an introduction to machine learning, see e.g. [97, 35].



30 Chapter 3. Information Need and Categorizing Search

The ability of unsupervised algorithms to uncover category structures with-

out prior knowledge is especially useful for post-retrieval categorization tasks in

large, heterogeneous collections like intranets or the WWW: Due to their size

and the user’s different perspectives, these collections often lack commonly ac-

cepted category schemes. Moreover, unsupervised categorization in post-retrieval

scenarios can adapt to a query’s “zoom level”: Depending on whether a query is

general or specific, the range of relevant documents should be broad or focused,

and accordingly, a categorization’s granularity should adapt.

3.2 The Cluster Hypothesis

Browsing categories instead of result lists shall improve the retrieval performance,

e.g. measured by the ratio of relevant documents within a query response. Van

Rijsbergen formulated the underlying Cluster Hypothesis as follows: “Closely

associated documents tend to be relevant to the same requests” [111]. However,

the Cluster Hypothesis, if true, does not imply a concrete procedure for retrieval.

Former studies experimented with retrieval strategies that varied in the following

points.

(1) Document base. What is to be clustered? Alternatives are (a) the entire

collection [153, 103] or (b) top-ranked documents that were retrieved for a

query (“post-retrieval clustering”) [24, 56, 132, 151].

(2) Cluster selection. What is shown to a user? Possibilities include (a) the

documents that belong to the cluster that is closest to the query, e.g. mea-

sured by the query’s distance to cluster centroids [153] (b) the documents

that belong to the cluster whose centroid is closest to the top-ranked doc-

ument with respect to the query [22] (c) the documents that belong to

the top-k query-closest clusters [153, 155] (d) documents from all clusters

grouped by cluster [132, 151].

(3) Cluster presentation. How are clusters presented to a user? Alternatives

are (a) a single ranked list of documents that were retrieved from one or

more clusters [153], (b) a ranked list grouped by cluster [56, 103] (c) a

cluster overview for navigation combined with a list view [132, 151].
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The mentioned points are pairwise orthogonal and may influence the retrieval

performance to a great extent like the mentioned references show. E.g., cluster-

ing an entire document collection and selecting for presentation the documents

belonging to the cluster that is closest to an input query has proven not to im-

prove the retrieval quality in terms of precision [119, 153, 50]. As a consequence,

Hearst and Pedersen proposed to cluster retrieval results instead of the whole

collection (“Scatter/Gather”) [56]. Their results on a large, heterogeneous doc-

ument collection showed the great potential of the approach: retrieval from the

query-closest cluster increased the retrieval precision by up to 85% in compari-

son to the retrieval precision from unclustered results. This observation does not

support the Cluster Hypothesis directly, but a variant “with some assumptions

revised” [56]:

“[...] we do not assume that if two documents d1 and d2 are both

relevant or nonrelevant for query qA, they must also both be relevant or

nonrelevant for query qB. [...] In other words, because documents are

very high-dimensional, the definition of nearest neighbors will change

depending on which neighbors are on the street.”

The next section will discuss current approaches for document clustering. It

will present theoretical foundations, algorithms, and challenges of cluster analysis

in the text domain.

3.3 Clustering Documents

The definition of a clustering C = {C1, . . . , Ck} of a set D is—from a mathematical

point of view—the same like the categorization definition given above: the sets

Ci are (disjoint) subsets of D, and their union covers D. From a semantic point

of view, C is called clustering if it was generated by a clustering algorithm. The

goal of clustering techniques is to find clusterings that are close to the optimum

categorization3 C∗. In general, cluster analysis concentrates on the following

questions.

3Optimum categorizations are in our case human-made categorizations of the document
set D. However, the definition of optimality depends on the underlying application scenario
and should be oriented at the user’s information need. In contrast to ranked retrieval, where
the probability ranking principle defines optimality [112, 45], a formal, human-independent
optimality definition for clusterings has not been stated so far.
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(1) Are there clusters in D?

(2) How can the clusters be identified?

(3) How “good” are the found clusters?

Some statistics to answer question (1) have been proposed in the past [34]; a

recent article that discusses this question in context of information retrieval can

be found in [150]. However, our focus here is on the questions (2) and (3), which

we will elaborate in this and the next section respectively.

3.3.1 Challenges

A clustering is considered having a good quality with respect to a similarity

function ϕ : D × D → R, if the averaged similarity between objects of the same

cluster is “significantly higher” than the similarity between items from different

clusters. Other desired properties include that clusters shall be of a “compact

form” or resemble the “natural structure” of the item set [64, 71, 139].

A method to model the desired cluster properties is the specification of an

objective function fo that maps a clustering to a real number that quantifies the

goodness of a clustering. However, since the number of possibilities to partition a

set of n items into k partitions is roughly kn/k! [64], it is infeasible to exhaustively

search the space of possible partitions for elements that maximize/minimize the

value of fo, even when the “right” k is known. Finding the right k is a challenge

itself.

Apart from this general problem, document clustering using the standard

vector space model must cope with the high dimensionality of the vectors that

represent the documents. In particular, the curse of dimensionality and noise

phenomenons must be considered when clustering high-dimensional data.

Curse of Dimensionality. The term “curse of dimensionality” was coined

by Bellman [10] and circumscribes difficulties when analyzing high-dimensional

data; particularly it relates to the exponential growth of hyper-volume when

scaling dimensionality linearly. Consequently, clustering algorithms that rely on

analyses of spatial density4 must be designed carefully [57, 49]. According to

Dasgupta, the curse of dimensionality expresses in two different facets [25]:

4An example for a class of such algorithms are grid-based clustering algorithms.
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(1) Visualization problems. High-dimensional data are hard to visualize. Al-

though there are dimension reduction techniques to embed high-dimensional

data into lower-dimensional spaces while preserving similarity relations be-

tween data points as good as possible, caution is advised when inspecting

the projected data visually or when analyzing the projected data with sta-

tistical tools.

The first reason for caution is that a projection from a high-dimensional

space is subject to a projection error, the so-called stress [77], which mea-

sures similarity differences between point-pairs in the original and the pro-

jected space. Depending on the application, the stress may influence the

outcome to a greater or lesser extent. Our study in [131] illustrates this

effect when clustering low-dimensional projections of high-dimensional doc-

ument vectors.

The second reason is that distribution properties of point sets may be al-

tered when projected to a lower-dimensional space. For example, simple

non-Gaussian distributions exist whose two-dimensional projections look

Gaussian [32, 25].

(2) Counter-intuitive pitfalls. An example for such a pitfall is the following.

When uniformly choosing points from an n-sphere at random, they almost

always lie close to the surface of the sphere. This observation relates to the

fact that uniformly drawn points from [0, 1]n tend to be equidistant as n

rises. This and other related pitfalls that may be overlooked are described

in [25].

In general, much of the technology developed for lower dimensions does not

scale well to higher dimensions. Dasgupta mentions in this connection the parti-

tion of a vector space into Voronoi cells: m points in Rn will produce cells with

Ω(mn) faces.

Noise. Similarity values that are computed between two documents d1 and d2

are subject to noise. Clearly, even if d1 and d2 are not on the same topic there

will be terms that are shared between both documents. Although the idf part of

the tf · idf term weighting scheme reduces the weight for common terms within a
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Figure 3.2: Distribution of similarity values for a document collection of 1000 news
documents drawn uniformly at random from 10 categories. Observe the logarithmic
scale.

collection, some random term matches are still possible that influence a similarity

measure’s value5.

Figure 3.2 depicts a distribution of similarity values for a document collection

of 1000 news documents drawn uniformly from 10 categories. The figure shows

that there are many low similarity values due to random term matches. Clustering

algorithms based on similarity graph density measures, for example, run the

risk to sum up many of these values and add a remarkable error when judging

cumulated similarity, e.g. between clusters.

3.3.2 Clustering Algorithms

Given a text corpus D, an optimum clustering C∗ of D corresponds to its catego-

rization as accomplished by a human editor. Except for trivial cases C∗ cannot be

found—the reasons for this are twofold: First, it is hard to quantify the properties

of the “correct” categories in terms of the similarity function ϕ or the objective

function fo; secondly, the search space of possible clusterings is exponential in

|D| and a greedy strategy to find a global optimum is not at hand. I. e., clus-

ter algorithms are highly developed heuristics to search a global optimum with

respect to the outlined structure identification objectives.

5The probability can be bounded from below based on “Birthday Problem” estimates.
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Figure 3.3: A taxonomy of clustering algorithms that are used for document catego-
rization (adapted from [129]).

Various clustering heuristics and strategies have been proposed (cf. Figure 3.3),

and it is hard to say which of the existing approaches is suited best for text cat-

egorization. The following paragraphs outline basic principles of the clustering

algorithms that are used for document categorization. In this connection it is

useful to consider the n elements in D as nodes of a weighted graph whose edge

weights correspond to the similarity ϕ(d1,d2) of the respective documents.

Iterative Algorithms. Iterative algorithms strive for a successive improve-

ment of an existing clustering and can be classified further into exemplar-based

and commutation-based approaches. The former assume for each cluster a repre-

sentative to which the objects become assigned according to their similarity. It-

erative algorithms need information with regard to the expected cluster number,

k. Well-known representatives are k-Means, k-Medoid, Kohonen, and Fuzzy-k-

Means. The runtime of these methods is O(nkl), where l designates the number

of iterations to achieve convergence [64, 88, 71, 74, 160, 52, 53, 75, 62].

Hierarchical Algorithms. Algorithms of this type create a tree of node sub-

sets by successively dividing or merging the graph’s nodes. In order to obtain a

unique clustering, a second step is necessary that prunes this tree at adequate

places. Agglomerative hierarchical algorithms start with each vertex being its

own cluster and union clusters iteratively. For divisive algorithms on the other

hand, the entire graph initially forms one single cluster which is successively
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subdivided. Representatives are k-nearest-neighbor, linkage, Ward, minimum-

spanning-tree, or min-cut methods. Usually, these methods construct a complete

similarity graph, which results in O(n2) runtime [38, 40, 125, 67, 84, 158, 162, 69].

Density-based Algorithms. Density-based algorithms try to separate a sim-

ilarity graph into subgraphs of high connectivity values. In the ideal case they

can determine the cluster number k automatically and detect clusters of arbitrary

shape and size. Representatives are DBscan, MajorClust, or Chameleon. The

runtime of these algorithms cannot be stated uniquely since it depends on di-

verse constraints. For non-geometrical data it is in the magnitude of hierarchical

algorithms, O(n2) [139, 37, 69, 130, 131].

Meta-Search Algorithms. Meta-search algorithms treat clustering as an op-

timization problem where a given goal criterion is to be minimized or maximized.

Though this approach offers maximum flexibility only less can be stated respect-

ing its runtime. Representatives for meta-search driven cluster detection may

be realized by genetic algorithms, simulated annealing, or a two-phase greedy

strategy [9, 118, 117, 108, 41, 73].

Domain Specific Algorithms. Various clustering algorithms have been pro-

posed for high-dimensional data or especially for the text domain. The goal of the

latter is often to identify concepts, which are in turn the basis for grouping docu-

ments. Techniques that are employed in this connection include projections of the

high-dimensional data to lower dimensions each of which representing a concept,

e.g. low-rank approximations of the term-document matrix. Other approaches

try to identify concepts directly with frequency or subsumption analyses. Some

recent algorithms are given in [163, 159, 70, 31, 49].

Statistical Parameter Estimation Algorithms. This class of algorithms

regards a population of points in Rn as a sample that has been generated by a

mixture model of k n-dimensional density functions δ1, . . . , δk with different pa-

rameters, where the density functions have been combined according to a weight-

ing scheme w1, . . . , wk with
∑

i wi = 1. The goal is to estimate the parameter

set of each density function δi, each of which being regarded as generator for a
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particular cluster. The probability that a point is generated by δi can then be cal-

culated based on the density estimates, and the cluster numbers can be assigned

to the data points according to this probability. An up-to-date compilation of

such algorithms can be found in [25, 1].

3.4 On the Validity of Document Clusterings

Even when a document model along with a similarity measure is determined

for a particular categorization task, a muchness of clusterings can be generated

by clustering algorithms. The quality of unsupervised categorizations varies ac-

cording to the employed cluster algorithms, especially in combination with their

parameter settings. Since hundreds of clusterings of a mid-size document collec-

tion can be generated within one second CPU time, the difficulty with clustering

is not the time factor but the selection of a valid clustering, say, a clustering that

reflects the human idea of categorization best. Jain and Dubes [64] comment this

difficulty as follows:

“The validation of clustering structures is the most difficult and frus-

trating part of cluster analysis. Without a strong effort in this direc-

tion, cluster analysis will remain a black art accessible only to those

true believers who have experience and great courage.”

This is where cluster validity measures come into play; their task is to decide

which of the generated clusterings is best, either closest to a reference catego-

rization that is regarded as optimum, or well developed with respect to some of

the clustering’s structural properties. The former are called external measures,

the latter internal measures (cf. Figure 3.4). Measures that are capable to judge

which clustering is best among a set of clusterings are sometimes referred to as

relative measures.

In the following, a more detailed taxonomy of validity indices is introduced,

and the usage of particular measures is discussed. In particular, we introduce

a new internal cluster validity measure, called expected density, that proved to

consistently outperform other traditional internal measures in the document clus-

tering domain [138]. Experimental analyses conclude the section.
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Figure 3.4: Taxonomy of cluster validity indices.

3.4.1 External Cluster Validity Measures

External measures are subject to quantify the congruence between a given clus-

tering and a reference categorization. In document clustering, the latter is usually

a document collection that has been categorized by a human editor. In particu-

lar, external measures can be subdivided into information theoretic and covering

analysis approaches (cf. Figure 3.4). External measures are widely used for

measuring the performance of a clustering or classification algorithm against a

benchmark collection.

The F -Measure. The F -Measure combines the precision and recall measures

from information retrieval [111]. While precision quantifies the “purity” of a

cluster with respect to a reference class, the recall value captures the percentage

of data objects from a reference class that are contained in a particular cluster.

Let D represent a set of documents and let C = {C1, . . . , Ck} be a clustering

of D. Moreover, let C∗ = {C∗
1 , . . . , C

∗
l } designate the human reference categoriza-

tion.

Then the recall of cluster j with respect to class i, rec(i, j), is defined as

|Cj ∩ C∗
i |/|C∗

i |. The precision of cluster j with respect to class i, prec(i, j), is

defined as |Cj ∩C∗
i |/|Cj|. The F -Measure is the harmonic mean of precision and

recall:

Fi,j =
1

1
2

(
1

prec(i,j)
+ 1

rec(i,j)

) =
2 · prec(i, j) · rec(i, j)

prec(i, j) + rec(i, j)

Based on this formula, the overall F -Measure of a clustering (micro-averaged) is:

F =
l∑

i=1

|C∗
i |

|D| · max
j=1,...,k

{Fi,j}
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An alternative way to compute F uses macro-averaging: the maxima are not

weighted according to class size, but all classes are weighted equally, i.e.

F =
1

l

l∑
i=1

max
j=1,...,k

{Fi,j}

In other words, macro averaging treats classes equally, while micro averag-

ing treats documents equally. Unless stated otherwise, we will employ micro-

averaging as it considers class importance.

Note that parallel maximization of precision and recall is difficult; the F -

Measure quantifies to what extent this objective is met for a particular clustering.

A perfect fit between a generated clustering and a human reference categorization

leads to an F -Measure score of 1, which is the maximum value for this measure.

Entropy. Entropy is an information theoretic measure that quantifies the un-

certainty of an information source S, which emits symbols S1, . . . , Sk according

to the probabilities P (S1), . . . , P (Sk). The entropy of the information source is

defined [124] as

H(S) = −
k∑

i=1

P (Si) · log2(P (Si))

The connection between entropy and validity measures is as follows. Imagine

each cluster of a given clustering acting as information source. As impure clusters

comprise data from different “true” classes, one can imagine that a cluster emits

class numbers from the underlying reference categorization. Whenever a class

number is emitted from a cluster, its probability corresponds to the fraction of

the number of items from its class within the cluster, and the total number of

items within the emitting cluster. Obviously, an impure cluster, which contains

data from different classes, represents an uncertain information source, and thus

results in a high entropy value.

Let D represent the set of documents, and let C = {C1, . . . , Ck} be a clus-

tering of D. Moreover, let C∗ = {C∗
1 , . . . , C

∗
l } designate the human reference

categorization.Then the entropy of cluster Ci with respect to C∗ is defined as

H(Cj) = −
∑

|Cj∩C∗
i |�=0

|Cj ∩ C∗
i |

|Cj|
· log2

(
|Cj ∩ C∗

i |
|Cj|

)
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The entropy of the entire clustering C with respect to C∗ is the sum of

the cluster-wise entropies, which are weighted according to cluster size (micro-

averaged):

H(C) =
∑

Cj∈C

|Cj|
|D| H(Cj)

Observe that a perfect clustering has an entropy of 0. However, the patholog-

ical case in which each data object is assigned to its own cluster also scores with

0. The reason for this behaviour is that entropy mathematically transforms the

precision values of the clusters.

Pair-Analysis-based Figures of Merit. Another class of external measures

analyzes to which extent document pairs share the same cluster and the same

underlying class, and quantifies the congruence. Again, let D = {d1, . . . , dn}
be the set of documents, let C = {C1, . . . , Ck} be a clustering of D, and let

C∗ = {C∗
1 , . . . , C

∗
l } designate the human reference categorization. Let tC : N ×

N → {0, 1} be an indicator function with tC(i, j) = 1 if di and dj share the

same cluster in C, and 0 otherwise. Likewise, tC∗(i, j) = 1 if di and dj share the

same class in C∗, and 0 otherwise. Based on these indicator functions, the Rand

statistic [109] of a clustering C is defined as

R(C) =
1

n(n − 1)/2

∑
i<=j

δtC(i,j),tC∗(i,j)

where δx,y is the Kronecker symbol, i.e. δx,y = 1 if x = y, and 0 otherwise.

In other words, the Rand statistic counts the pairs of documents that lie

both in the same or both in different clusters in C and C∗. The resulting sum is

normalized with the total number of pairs. Consequently, the values stem from

the interval [0, 1] with 1 indicating a perfect match between C and C∗.

There are also other statistics that rely on the given indicator functions [64].

They include the Fowlkes and Mallows statistic [42], the Jaccard statistic [64],

and the Γ statistic [60].

3.4.2 Internal Cluster Validity Measures

In contrast to external measures, internal measures quantify the quality of a

clustering based on its structural properties only, i. e. , without comparing it

to the “right” categorization. They can further be split up into relative and
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absolute measures (cf. Figure 3.4), whereas the task of relative measures is to

identify the best in a set of clusterings, and the task of absolute measures is to

judge the quality of a single clustering by means of a real number. Although

there are measures that can only be employed relatively since they require a set

of clusterings as input, it should be noted that absolute measures can also be

used relatively, when comparing their values for different clusterings6.

The most popular internal measures are absolute measures that focus on static

structural properties like compactness and well-separateness, measured by within-

cluster-scatter, between-cluster-distance, etc. Alternatively, structural properties

may be assessed in a dynamic way employing re-clustering techniques, which aim

to assess the stability of a clustering. In the following, some well-known as well

as new validity measures will be introduced.

The Dunn Index Family. Dunn Indices [36] form one of the most popular

classes of internal validity measures. Dating back to 1973, Dunn’s measure was

one of the first to be investigated, and Bezdek generalized Dunn’s family of indices

by abstracting cluster diameter and cluster distance measures as follows [13].

Let C = {C1, . . . , Ck} be a clustering of a document collection D, δ : C ×C →
R be a cluster to cluster distance measure, and Δ : C → R be a cluster diameter

measure. Then all measures I of the form

I(C) =
mini�=j{δ(Ci, Cj)}
max1≤l≤k{Δ(Cl)}

are called Dunn indices. Originally, Dunn used

δ(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y) and

Δ(Ci) = max
x,y∈Ci

d(x, y)

where d : D × D → R is a function that measures the distance between objects

of D. Using these functions, the measure assigns high values to clusterings with

compact and very well separated clusters like shown in Figure 3.5. Here, the

maximum diameter is relatively low and the minimum distance between two

clusters is relatively large. As a consequence, the clustering is ranked high by

6It is assumed that the values of absolute measures relate monotonously to cluster quality.
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Figure 3.5: Clustering 1 contains a clustering with compact and well separated clusters.
The maximum diameter is relatively low and the distance of the two closest clusters
is relatively large. In this case the original Dunn index returns a high score for the
clustering. Clustering 2 shows two undesired properties from the perspective of the
Dunn Index: the left cluster’s large diameter as well as the relatively small distance
between C2 and C3 are responsible for the index returning a low value, even though
the clustering fits the structure well. If C2 and C3 are merged to one cluster, the Dunn
Index would falsely return a better value.

the Dunn index. However, Bezdek recognized that the index is noise sensitive.

Moreover, clusterings with arbitrarily shaped clusters can cause problems for the

Dunn index (see Figure 3.5 bottom): Even though the clustering in the example

is good, the large diameter of C1 along with the small distance between C2 and C3

leads to a low value of the Dunn index. Bezdek experienced that the combination

of

δ(Ci, Cj) =
1

|Ci||Cj|
∑

x∈Ci,y∈Cj

d(x, y) and

Δ(Ci) = 2
(∑

x∈Ci
d(x, ci)

|Ci|

)

give reliable results for data with normal mixture distributions [12]. Here, ci

denotes the centroid of cluster Ci. Note that a maximization of I is desired.
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The Davies-Bouldin Index. Davies and Bouldin proposed the following mea-

sure that is known as Davies-Bouldin Index [26]. It is a function that combines

within-cluster scatter and between-cluster separation as follows. Let C = {C1,

. . . , Ck} be a clustering of a document collection D. Then the Davies-Bouldin

Index DB : C → R is defined as

DB(C) =
1

k
·

k∑
i=1

Ri(C), with

Ri(C) = max
j=1,...,n,

i�=j

Rij(C) and Rij(C) =
(s(Ci) + s(Cj))

δ(Ci, Cj)
,

where s : C → R measures the scatter within a cluster, and δ : C × C → R is a

cluster to cluster distance measure.

Given the centroids ci of the clusters Ci, a typical scatter measure is s(Ci) =
1

|Ci|
∑

x∈Ci
||x−ci||, and a typical cluster to cluster distance measure is the distance

between the centroids, ||ci − cj||. Because a low scatter and a high distance

between clusters lead to low values of Rij , a minimization of DB is desired.

Cluster Validity by Resampling. The application of resampling for cluster

validity was introduced in 1987 by Jain and Moreau [63]. Resampling bases on the

idea to compare a given clustering C to a clustering of a randomly chosen subset

from the underlying document set. If the subsets’ clusterings differ significantly

from C, then C is instable. In this case, the clustering is bad or the underlying

data does not contain a structure. In general, the resampling procedure is carried

out in the following steps.

(1) Several resamples Dj ⊂ D with |Dj| < |D| are randomly chosen from the

original data set. The fraction
|Dj |
|D| is called dilution factor [86].

(2) A clustering algorithm is applied to each Dj , yielding to re-clusterings Rj .

Here, the cluster algorithm’s parameters must be identical to those used for

generating the clustering C.

(3) Similarities ψ(Ri, C) between the original clustering and the re-clusterings

are calculated and averaged. For this task, external validity measures can

be employed, with C acting as reference categorization.
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Figure 3.6: Illustration of resampling. On the left hand side a clustering is shown,
which was generated by a cluster algorithm that was mislead by noise. On the right
hand side, a clustering of a resampling can be seen, which identifies the regions in which
stable clusters reside.

The average difference between the original clustering and the resample clus-

terings is an indicator for the quality of C. An intuition for this interpretation is

that noise in the data set may loose influence on the clustering algorithm when

resamples are drawn. Probably, weak clusters that are influenced by noise will

break into parts during the re-clustering step. Consider Figure 3.6 in this con-

nection: After resampling, enough points of stable clusters remain so that the

clustering algorithm is able to detect them in several resamplings.

Note, however, that values of a clustering similarity measure ψ should only be

compared or averaged for re-clusterings that were generated using the same dilu-

tion factor, as upper/lower bounds for ψ are determined by the number of points

in Di. For example, the F -Measure-values for re-clusterings that were generated

using a dilution factor of 0.5 will likely be smaller than those generated with a

dilution factor of 0.9 if the same clustering algorithm with the same parameters

is employed.

The Elbow Criterion. The elbow criterion is a relative validity measure,

i. e. , it decides which clustering is best within a set of clusterings. Let C =

{Cp1 , . . . , Cpk
} be a set of clusterings that has been generated with the same clus-

tering algorithm but with different parameter values p1, . . . , pk, and let e : C → R

be an error function on the clusterings such as the sum over all clusters of within-

cluster scatter with respect to the cluster centroid. Let {(pi, e(Cpi
)) | i ≤ k} be a

set of points forming an error curve; without loss of generality, assume that the

(pi, e(Cpi
)) are ordered by descending e(Cpi

) values. If point (pi, e(Cpi
)) experi-

ences the maximum error drop with respect to its predecessor, the parameter pi
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e
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Figure 3.7: On the left, the figure shows some points in a 2-dimensional space, forming
two clusters. On the right, an error function e is depicted for k-Means generated
clusterings of the points, depending on the specified number of clusters, k. The error
drop for k = 2 is maximum, indicating that k = 2 is a good parameter for the underlying
data.

is considered as good choice for the clustering algorithm.

As an example, confer Figure 3.7. The clustering algorithm k-means tends to

reduce the overall variance of a generated clustering on the same data when k

increases, and when k reaches |D|, the variance disappears since each cluster tends

to contains only a single point. The depicted error function has its maximum

variance drop in the second point, indicating that k = 2 is a good parameter for

the underlying data.

An advanced approach is the GAP statistic, which is an error-tolerant and

normalized variant of the elbow criterion [144].

The Λ-Measure. A document collection can be considered as a weighted graph

G = 〈V, E, w〉 with node set V , edge set E, and weight function w : E → [0, 1]

where V represents the documents, and w defines the similarities between two

documents. The Λ-measure computes the weighted partial connectivity of G =

〈V, E, w〉, which is defined as follows [139].

Let C = {C1, . . . , Ck} be a clustering of the nodes V of a weighted graph

G = 〈V, E, w〉.

Λ(C) :=
k∑

i=1

|Ci| · λi,

where λi designates the weighted edge connectivity of the induced subgraph

G(Ci) = 〈Vi, Ei〉. λi is defined as minE′
∑

{u,v}∈E′ w(u, v) where E ′ ⊂ E and

G′
i = 〈Vi, Ei \ E ′〉 is not connected. λi is also designated as the capacity of a

minimum cut of G(Ci).
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Measure of Expected Density ρ. A graph G = 〈V, E, w〉 is called sparse

if |E| = O(|V |); it is called dense if |E| = O(|V |2). Put another way, we can

compute the density θ of a graph from the equation |E| = |V |θ. With w(G) :=

|V | +
∑

e∈E w(e) denoting the weight of G7,this relation extends naturally to

weighted graphs:

w(G) = |V |θ ⇔ θ =
ln (w(G))

ln (|V |)
Obviously, θ can be used to compare the density of each induced subgraph

G′ = 〈V ′, E ′, w′〉 of G to the density of the entire graph G: G′ is sparse (dense)

compared to G if the quotient w(G′)/(|V ′|θ) is smaller (larger) than 1. This

consideration is the key idea behind the following definition of a clustering’s

expected density ρ.

Let C = {C1, . . . , Ck} be a clustering of a weighted graph G = 〈V, E, w〉, and

let Gi = 〈Vi, Ei, wi〉 be the induced subgraph of G with respect to cluster Ci.

Then the expected density of a clustering C is defined as follows.

ρ(C) =
k∑

i=1

|Vi|
|V | ·

w(Gi)

|Vi|θ
, where |V |θ = w(G)

Since the edge weights resemble the similarity of the objects which are repre-

sented by V , a higher value of ρ indicates a better clustering.

Remarks. The Dunn index, the Davies-Bouldin index, and the elbow crite-

rion are related in that they have a geometric (typically centroidic) view on the

clustering. The measures work well if the underlying data contains clusters of

spherical form, but they are unreliable if this condition does not hold. Λ as well

as ρ interpret a data set as a weighted similarity graph; they analyze the graph’s

edge density distribution to judge the quality of a clustering.

3.4.3 Statistical Hypothesis Testing

An internal cluster validity index quantifies the quality of a given clustering with

regard to certain structural properties. But even though it is obvious whether

7The corrective summand |V | in w(G) assures that w(G) ≥ |V |, which in turn assures that
θ ≥ 1, and as a consequence, that the desired property |Vi|θ + |Vj |θ ≤ |Vi ∪ Vj |θ holds. This
correction is necessary for graphs with small edge weights in [0, 1].
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Figure 3.8: Estimated density function ρI of I under H0. The critical value tα of I is
marked for significance level α.

large or small values of a particular index indicate better or worse clusterings, it is

usually unknown which absolute values qualify a clustering being good or bad. In

some settings a value of 0.7 may be sufficiently large to indicate a good clustering,

in other settings a value of 0.8 is not large enough to accept a clustering. This

dilemma can be addressed by statistical test theory [64].

A statistical test indicates in our context whether a clustering C fits the data

unusually well. Here, “unusually well” means that C fits the data better than

a randomly generated clustering. Given that each document of D is labeled

according to cluster membership, a statistical test starts with the hypothesis

H0 : All permutations of the labels on the n documents are equally likely.

Let I be a real-valued (internal) cluster validity index for which a greater value

indicates a better clustering quality. Assumed that the distribution or density

function ρI of the values of I under the null hypothesis H0 is known (as depicted

in Figure 3.8), the probabilities P (E | H0) could be determined, where E is the

event “I(C) ≤ t” for some t. For a given significance level 0 ≤ α ≤ 1, one is

interested in a threshold tα such that P (I(C) ≤ tα | H0) = α. In this sense, tα is

a critical value. Formally, tα is determined by solving the equation:

∫ ∞

tα
ρI(t)dt = α

and the decision rule

“IF I(C) > tα THEN reject H0 at significance level α.”

applies, assuming that a greater value of I indicates a better clustering.

If the null hypothesis is rejected, then the clustering C is assumed to have

a non-random structure at significance level α. However, even though the null
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hypothesis is not supported by the test, it could still be true. But the probability

of mistakenly rejecting H0 is bounded by α, which in turn is controlled by the

tester. α is usually set to 0.05 or 0.01 to ensure a small risk of making a mistake.

Another problem is that rejecting the hypothesis H0 does not mean that the

found clusters in C are meaningful—the test can only give evidence with respect

to H0. A test against a stronger H1 hypothesis like “there are two clusters in D”

would be desirable.

The main problem with this test is that the distribution of I under H0 is

unknown and must be estimated. The following Monte Carlo method can be

applied to the problem [64]:

(1) Create a clustering C by assigning cluster labels 1, . . . , k randomly to the

elements of D. This procedure reflects the random label hypothesis H0.

(2) Compute the cluster validity index I(C), and count it as a match for a

corresponding interval.

(3) Repeat steps one and two m times for a sufficiently large m.

(4) Derive an approximation of the density function ρI from the collected data.

The disadvantage of a statistical test is its high computational cost. Note

that m must grow adequately when α reaches 0 to ensure the validity of the test.

Moreover, the Monte Carlo estimation of I’s distribution does not only depend on

the null hypothesis H0 and the generated clusterings, but also on the underlying

document set D.

3.4.4 Experimental Evaluation

The experiments have been conducted with samples of RCV1, short hand for

“Reuters Corpus Volume 1” [115]. RCV1 is a document collection that was pub-

lished by the Reuters Corporation for research purposes. It contains over 800,000

documents each of which consisting of a few hundred up to several thousands

words. The documents are enriched by meta information like category (also called

topic), geographic region, or industry sector. There are 103 different categories,

which are arranged within a hierarchy of the four top level categories “Corpo-

rate/Industrial”, “Economics”, “Government/Social”, and “Markets”. Each of
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Figure 3.9: A part of the topic structure of RCV1.

the top level categories defines the root of a tree of sub-categories, where every

child node fine grains the information given by its parent (cf. Figure 3.9). Note

that a document d can be assigned to several categories c1, . . . , cp, and that all

ancestor categories of a category ci are assigned to d as well.

For our experiments, we considered two documents d1, d2 as belonging to the

same category cs if they share both the same top level category ct and the same

most specific category cs. Moreover, we constructed the test sets in such a way

that there is no document d1 whose most specific category cs is an ancestor of

the most specific category of some other document d2.

The number of categories in our test data varies from three to six. For each

category, between 100 and 300 documents were drawn randomly from the entire

category. The data sets had different sizes and class numbers; we investigated

uniformly as well as non-uniformly distributed category sizes. Table 3.1 gives an

overview of the constructed data sets.

The preprocessing of the documents included parsing of text body and ti-

tle, stop word removal according to standard stop word lists, the application of

Porter’s stemming algorithm [106], and indexing according to term frequency. We

used the standard cosine similarity measure to capture the similarities between

documents.

Three analyses were conducted on each test data set to evaluate the perfor-

mance of the aforementioned indices. The three analyses along with their results

are described in the next three subsections.

Consistence Analysis. Since we know the reference categorization C∗ which

was provided by a human editor, we can use it to generate artificial cluster-

ings C1, . . . , Cn that are to a greater or lesser extent modifications of C∗. The
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DS1 DS2 DS3 DS4 DS5 DS6 DS7

# categories 3 3 4 3 5 5 6
# documents 300 600 400 450 450 800 900
unif. distributed yes yes yes yes yes no no

Table 3.1: Overview of the constructed data sets.

F -Measure values for C1, . . . , Cn will measure the degree of congruence for the

modified sets with respect to C∗. Assuming that the modified categorizations

represent erroneous clusterings, the value of a validation index for C1, . . . , Cn

should be worse than for C∗. Even more can be expected: For C1, . . . , Cn, the val-

ues of a subjective validation index should relate to the values of the F -Measure

monotonically.

To derive an artificial clustering Ci of C∗, we repeatedly chose two distinct

clusters of C∗ and interchanged randomly chosen subsets of documents pairwise

between the clusters. Note that the size of the interchanged subsets controls

the degree of congruence between Ci and C∗. We varied the sizes of the subsets

between 1 document and 50% of the documents within a cluster.

Figure 3.10 shows the resulting scatter plots for the artificial clusterings that

we derived from the reference categorization of DS5 and evaluated with the data

set DS5. We measured the F -Measure value (y-axis) and the validity index value

(x-axis) for each clustering. For the sake of better readability, we changed the

sign of the Davies-Bouldin Index, which is the only one to be minimized—this

way, the plots are directly comparable. Assuming that a greater index value

constitutes a better clustering, an ideal index would show points on a curve that

starts in the lower left corner and grows monotonically up to the upper right

corner.

DS1 DS2 DS3 DS4 DS5 DS6 DS7 average

Dunn 0.45 0.89 0.42 0.66 0.59 0.77 0.75 0.65
D.-B. 0.95 0.98 0.93 0.84 0.91 0.86 0.92 0.91
ρ 0.96 0.99 0.94 0.97 0.98 0.94 0.97 0.96

Table 3.2: The table shows for each index the Spearman rank correlation coefficient of
the artificial clusterings for the investigated data sets. The number of the underlying
clusterings is 30.
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Figure 3.10: Correlation of the F -Measure with (a) Dunn’s Index (top left), (b) Davies-
Bouldin-Index (top right) and (c) Expected Density (bottom) for the artificial cluster-
ings on DS5.

The extent to which this property is resembled by an index can be quantified

with Spearman’s rank correlation coefficient. We determined for 30 clusterings

their rank according to both, F -Measure and index value, and we quantified the

correlation of these rankings as depicted in Table 3.2. Since the critical value

for Spearman’s rank correlation coefficient for 30 items is 0.43 at the significance

level α = 0.01, it can be concluded that the indices perform well on this test on

all data sets (with one exception).

Analysis with Genuine Clusterings. We are normally faced with clusterings

which are not artificially constructed but stem from a document categorization

system that uses different clustering algorithms. For the experiments reported be-

low we employed hierarchical, iterative, and density-based algorithms. Moreover,

for each of these algorithms different thresholds, agglomeration levels, cluster

numbers, etc. were tried. We measured the F -Measure values and correspond-

ing validity index value for each clustering, and, in particular, for the reference
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Figure 3.11: Correlation of the F -Measure and the Dunn Index (top left), Davies-
Bouldin-Index (top right) and Expected Density (bottom) for genuine clusterings on
DS5.

categorization C∗ that can be identified by its F -Measure value of 1.

Figure 3.11 shows representative scatter plots for the investigated validity

indices for the same data set that was used for the consistency analysis (DS5)

with the difference that the clusterings were generated using different clustering

algorithms. Again, we changed the sign of the Davies-Bouldin Index. Like above,

we computed the rank correlations according to Spearman; these values can be

found in Table 3.3.

DS1 DS2 DS3 DS4 DS5 DS6 DS7 average

Dunn 0.69 0.64 0.78 0.64 0.71 0.68 0.76 0.70
D.-B. 0.58 0.53 0.49 0.53 0.38 0.44 0.40 0.48
ρ 0.79 0.76 0.86 0.90 0.90 0.78 0.71 0.81

Table 3.3: The table shows for each index the Spearman rank correlation coefficient of
the genuine clusterings for the investigated data sets. The number of the underlying
clusterings is 30.
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Note that the Davies-Bouldin Index, which works well for the synthetic data

sets, gets mislead by the genuine clusterings generated by our clustering algo-

rithms: Many clusterings with low F -Measure values untruly obtain a high index

value.

Prediction Quality. One might argue that a validity index only has to find

the best clustering among several candidates—a single outlier that has a very

good index value but a poor clustering can completely ruin the applicability

of the index. Therefore we measured the F -Measure value that corresponds to

the maximum index value for each validity index and each data set. Table 3.4

comprises the results.

DS1 DS2 DS3 DS4 DS5 DS6 DS7 average

Dunn 0.73 0.73 0.78 0.66 0.83 0.80 0.74 0.75
D.-B. 0.77 0.77 0.65 0.55 0.56 0.64 0.36 0.61
ρ 0.73 0.84 0.78 0.98 0.83 0.68 0.66 0.79

Table 3.4: The table shows for each index the F -Measure values that belong to its
top-rated clusterings. Since the reference categorization C∗ was among the evaluated
clusterings, a perfect prediction corresponds to the F -Measure value of 1.

3.4.5 Concluding Remarks

Clustering algorithms are considered as a technology that has the potential to

automatically categorize document sets. Different clustering algorithms produce

different clusterings, and cluster validity measures must be applied to identify

among a set of clusterings the most valuable one. Internal cluster validity mea-

sures assess structural properties of a clustering—they hence are in the role of

objective measures. The key question in this connection is whether or not an

objective measure can be used to capture a user’s information need.

In the field of automatic document categorization the information need cor-

responds to the categorization quality of a clustering C. Given a reference cate-

gorization C∗ the categorization quality of C can be quantified with the achieved

precision and recall values. I. e., in the field of document categorization an answer

to the above question can be given by analyzing the correlation of cluster validity

measures with the F -Measure.
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The experiments investigate classical cluster validity measures from Dunn and

Davies-Bouldin and present the new graph-based measures Λ and ρ. As reported

in the experiment section, the new ρ-Measure performed convincingly on both,

artificial and genuine clusterings of different document sets, and it outperformed

the classical measures in this domain. The Dunn Index performed robust but

missed to discover the real interesting artificial clusterings. The Davies-Bouldin

index performed well on artificial data sets—however, it was not able to cor-

rectly select the best clustering among clusterings that stemmed from a genuine

document cluster application.

3.5 The Suffix Tree Document Representation

The last two sections discussed how categorizations for document collections can

be generated in an unsupervised way, i.e. they outlined how clustering algo-

rithms work and how validity measures can be used to assess the quality of

clusterings. However, both clustering algorithms and validity measures work

on abstract representations of the underlying documents and require the state-

ment of a meaningful document similarity or distance function. Regardless of a

clustering algorithm’s or validity measure’s superiority, these methods are only

as good as the underlying representations and similarity statements reflect the

corresponding semantic relation. In other words, the better two semantically

unrelated documents can be separated based on their representation and the as-

sociated similarity value, the easier is the clustering job, and the better is the

resulting clustering.

In this connection it should be noted that vector-based document models

encode no information about the order by which the words occur in a document8.

A more sophisticated document model that preserves the complete word order

information is the suffix tree document model that we introduce here; it defines

the similarity between two documents in terms of string overlaps in their common

suffix tree.

8Some kind of “weak” order information can be introduced by using phrases or just every
sequence of n consecutive words, so-called n-grams, instead of single words.
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Figure 3.12: Illustration of the two document model types. The left-hand side shows
two documents under the vector-based paradigm; the underlying dictionary contains
the words “boy”, “chess”, and “bridge”. As similarity function ϕ the cosine similarity
is shown, which corresponds to the cosine of the angle between d1 and d2. The right-
hand side shows a suffix tree for the documents “boy plays chess” and “boy plays bridge
too”. Here, the similarity function ϕ must quantify the portion of the overlap, which
corresponds to the green (thick) edges in the graph.

3.5.1 Suffix Trees

The ith suffix of a document d = w1 . . . wm is the substring of d that starts with

word wi. A suffix tree of d is a labeled tree that contains each suffix of d along

a path whose edges are labeled with the respective words. The construction of a

suffix tree is straightforward: The ith suffix of d is inserted by checking whether

some edge emanating from the root node is labeled with wi. If so, this edge is

traversed and it is checked whether some edge of the successor node is labeled

with wi+1, and so on. If, in some depth k, a node n without a matching edge is

reached, a new node is created and linked to node n with an edge labeled with

wi+k.

Remarks. Document models and similarity functions ϕ determine each other:

Vector-based document models are amenable to the cosine similarity in first place.

The suffix tree document model requires a measure that assesses the similarity

between two graphs. Figure 3.12 illustrates both paradigms.

3.5.2 A Closer Look to the Suffix Tree Document Model

In this section we introduce a generic similarity measure for the suffix tree doc-

ument model. Moreover, we argue that the well-known similarity concepts of

the classical document models have their counterpart in the suffix tree document

model. Our generic view enables us to seamlessly understand the famous suffix
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Figure 3.13: A suffix tree for the documents d+=“boy plays chess” and d−=“boy plays
bridge too”. The seven paths from the root node to the leafs nodes represent the seven
suffixes of d+ and d−. Edges which are traversed on insertion by suffixes of d+ are
labeled with “+”; likewise, a “-” marks the edges that are traversed by d−.

tree clustering algorithm of Zamir and Etzioni as a heuristic to efficiently evaluate

the graph-based similarity measure for large document collections.

A Graph-Based Similarity Measure. As pointed out above, a document

model in the form of a suffix tree preserves full word order information. Here, we

introduce a measure that quantifies the similarity of two documents under the

suffix tree document model.

Let d+, d− designate two documents that are inserted into an initially empty

suffix tree T . Each edge e in T gets either labeled “+”, “–”, or “+–”, depending

on whether or not e has been traversed while inserting a suffix from d+ or d−

(cf. Figure 3.13). Moreover, let E denote the edges in T , and let E+ and E−

denote those edges in E whose label contain a “+” and a “–” respectively. Then

the suffix tree similarity ϕST is defined as

ϕST =
|E+ ∩ E−|
|E+ ∪ E−|

Obviously, ϕST fulfills the following properties of a similarity measure:

(1) Normalization. From 0 ≤ |E+ ∩ E−| ≤ |E+ ∪ E−| follows that |E+∩E−|
|E+∪E−| ∈

[0, 1].

(2) Reflexivity. If d+ = d− holds, then E+ = E−, and consequently |E+∩E−| =

|E+ ∪ E−| and ϕST = 1.
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(3) Symmetry. The symmetry property follows directly from the fact that the

insertion order does not affect edge labeling.

ϕST is the Jaccard coefficient of the edge sets E+ and E−. Other possibilities

to measure the match between the two sets include the Dice coefficient, the

cosine coefficient, or the overlap coefficient [111]. Observe that ϕST quantifies

the frequencies of suffixes in a Boolean sense, since it is not recorded how often

an edge is traversed while inserting suffixes of d+ and d−. Put another way, ϕST

captures “word order matches” rather than term frequencies.

There are two ways to incorporate term frequencies in ϕST . One possibility is

to combine ϕST with a traditional vector space model similarity measure by means

of a weighted sum, say, ϕHYB = λ·ϕST+(1−λ)·ϕcos, with λ ∈ [0, 1]. Alternatively,

frequency information for each edge can be recorded during the construction of

T . The latter approach has the advantage that frequency information for word

sequences that are longer than one (suffix frequencies) can be considered for

similarity computation.

We construct the suffix tree as described above; all suffixes of d+ and d− are

inserted into an initially empty tree T . During insertion the functions n+(e) and

n−(e) are computed, which define for each edge e how often it is traversed when

inserting suffixes from d+ and d− respectively. Then the similarity value ϕSTF

that incorporates suffix frequencies is given as

ϕSTF =
1

|E|
∑
e∈E

min{n+(e), n−(e)}
max{n+(e), n−(e)}

The properties of normalization, reflexivity, and symmetry also hold for ϕSTF .

Note that n+(e) and n−(e) capture the term frequencies of d+ and d− for all edges

e that are incident with T ’s root.

Research on vector space models has shown that term weighting schemes for

document collections that rely on both term frequency and inverse document

frequency outperform schemes that are based on only one of these concepts [126].

Note that under the suffix tree document model the inverse document frequency

can also be measured for a document collection D = {d1, . . . , dn}: We construct

a suffix tree T for all suffixes of the di ∈ D and associate an initially empty

set S with each edge e in T . If a suffix of di creates or traverses e, we set

S (e) := S (e) ∪ {i}. Since |S (e)| captures the document frequency of the suffix
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that is represented by the path that starts at the root and ends with e, the inverse

document frequency can be measured by IDF (e) = log(n/|S (e)|), leading to

ϕSTFIDF =
1

|E|
∑
e∈E

min{n+(e), n−(e)}
max{n+(e), n−(e)} · IDF (e)

STC: A Fusion Heuristic for the Suffix Tree Document Model. Given

a similarity measure like the cosine similarity for the vector space model or one

of the suffix tree similarity measures introduced above, the construction of a

similarity graph is in O(n2) for a document collection D of size n. However,

[163] introduced the suffix tree clustering algorithm (STC), which runs in O(n)

without computing O(n2) similarity values. In detail, STC is made up of three

steps.

Step 1. A suffix tree for all suffixes of each document in D = {d1, . . . , dn} is

constructed, and each suffix is associated with the set of documents wherein it is

contained. In other words, using the notation given above, for each edge e (each

of which representing a certain suffix) the set S (e) is computed. The sets S(e)

with |S(e)| ≥ 2 are called “base clusters” and identify the documents di with

i ∈ S(e).

Step 2. Each base cluster is assigned a score f , which is a function of |S (e)| and

the length of the suffix that is represented by e. In [163] the authors propose f

as the product of |S (e)| and the length of the suffix that is represented by e.

Step 3. The k base clusters S1, . . . , Sk that score best under f are selected. A

similarity graph in which the base clusters form the node set is generated, and

an edge between two nodes Si and Sj is added if the Jaccard coefficient of Si and

Sj is larger than 0.5, say, when |Si∩Sj |
|Si∪Sj | > 0.5. The connected components of this

graph form the final clusters.

Analysis of the STC Heuristic. STC has proven to work well on document

snippets that are returned by search engines [163], but its properties have not

been analyzed yet. As pointed out above STC is a heuristic which is highly

efficient, but which also has some drawbacks. The following observations will

provide a rationale for some of STC’s characteristics.
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Non-Exclusiveness. Documents may be associated with several base clusters.

Consequently, the documents may appear in more than one of the found cate-

gories.

Incompleteness. A clustering that is generated by STC does not necessarily

contain all documents of the original collection. An incomplete categorization

happens for document collections which comprise documents that share only few

short word sequences with the remaining documents. The reason for this behavior

is that the emerging base clusters will not score high.

Document frequency based. A base cluster scores higher if the document fre-

quency of its associated suffix increases. This can lead to big clusters, because it

is likely that high-scoring base clusters that contain terms with a high document

frequency share more than half of their associated documents with other base

clusters and consequently are merged in Step 3 of the STC algorithm.

Drifting. Suppose that four base clusters, S1, S2, S3, S4, are given, where S1 = {1,
2, 3}, S2 = {2, 3, 4}, S3 = {3, 4, 5}, and S4 = {4, 5, 6}. Then all documents

d1, . . . , d6 are merged into a single cluster within Step 3 because the Jaccard

coefficient of Si and Si+1 is larger than 0.5. In particular, this single cluster

comprises the documents that are associated with S1 and S4, which might be

completely dissimilar.

Absoluteness. STC considers two documents as similar and assigns them to the

same base cluster if they share a rather long suffix or several short suffixes. Re-

gardless of whether their base cluster is merged with other base clusters in Step

3, their base cluster is part of the final clustering. Note that no information

about document lengths or suffix mismatches of the rest of those documents is

computed, resulting in poor quality clusters. This point is relatively unimpor-

tant for short documents—a fact that explains the good performance of STC on

document snippets like those returned by search engines.

Topic Generating. Each base cluster is associated with a suffix, which can serve

as a label for this cluster. This method solves two basic problems in topic iden-

tification for document clusters [134]: word order preservation and topic length

determination.



60 Chapter 3. Information Need and Categorizing Search

3.5.3 Experimental Evaluation

The purpose of our experiments is twofold. First, we want to gain evidence on

STC’s character as a heuristic, say, to measure how good the STC algorithm per-

forms on popular document collections compared to clustering algorithms that

rely on the new suffix tree similarity measures or the traditional vector space

similarity measures. Second, we want to answer the question to which extent

word order preservation improves clustering performance. For this purpose we

evaluated STC and the clustering algorithms MajorClust [139] and Group Av-

erage Link using the discussed similarity measures on several categories drawn

from RCV1 [115].

Document Sets. The number of categories in our test data varies from three

to six. For each category between 50 and 300 documents were drawn randomly

from the entire category. The data sets have different sizes and class numbers,

and we investigate uniformly as well as non-uniformly distributed category sizes.

Table 3.5 gives an overview of the constructed data sets. The document prepro-

cessing involves parsing, stop word removal according to standard stop word lists,

and the application of Porter’s stemming algorithm [106].

DS1 DS2 DS3 DS4 DS5 DS6

# categories 3 4 3 5 4 6
# documents 300 400 500 600 700 800
uniformly distributed no yes no yes yes no

Table 3.5: Overview of the constructed document sets.

Results. We employed STC and the graph-based clustering algorithms Major-

Clust and Group Average Link to cluster the constructed document sets. For

MajorClust and Group Average Link the underlying document models were var-

ied by computing the edge weights according to the cosine similarity measure

using the tf · idf term weighting scheme, and the new suffix-tree-based similarity

measures. For the hybrid measure, we used ϕHYB = λ · ϕST + (1 − λ) · ϕcos and

found that λ = 0.2 (λ = 0.5) works well for MajorClust (Group Average Link).

Table 3.6 and 3.7 show the achieved F -Measure values [111] for MajorClust and

Group Average Link respectively. Note that performance improvements of up to
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40% for the new hybrid similarity measure in comparison with the cosine simililar-

ity measure can be observed. The outlined disadvantages of STC are reflected in

STC’s F -Measure values.

DS1 DS2 DS3 DS4 DS5 DS6 average

STC 0.55 0.40 0.61 0.33 0.40 0.34 0.44
ϕcos 0.80 0.60 0.62 0.67 0.66 0.49 0.64
ϕST 0.55 0.46 0.61 0.38 0.45 0.55 0.50
ϕSTF 0.82 0.70 0.70 0.68 0.76 0.55 0.70
ϕSTFIDF 0.60 0.60 0.71 0.64 0.78 0.62 0.65
ϕHYB 0.84 0.83 0.72 0.74 0.93 0.64 0.78

Improvement in % 5% 38% 16% 10% 40% 31% 22%

Table 3.6: The table shows the achieved F -Measure values for STC (first row), for
MajorClust with the traditional similarity measure ϕcos on tf · idf vectors (second
row), and for MajorClust with the new suffix-tree-based similarity measures (remaining
rows). The improvement refers to ϕHYB with respect to ϕcos.

DS1 DS2 DS3 DS4 DS5 DS6 average

STC 0.55 0.40 0.61 0.33 0.40 0.34 0.44
ϕcos 0.82 0.63 0.69 0.55 0.78 0.51 0.64
ϕST 0.55 0.40 0.61 0.33 0.40 0.55 0.47
ϕSTF 0.83 0.64 0.71 0.57 0.85 0.63 0.71
ϕSTFIDF 0.84 0.72 0.71 0.64 0.80 0.60 0.72
ϕHYB 0.84 0.74 0.74 0.66 0.92 0.70 0.77

Improvement in % 2% 18% 7% 20% 18% 37% 17%

Table 3.7: The table shows the achieved F -Measure values for STC (first row), for
Group Average Link with the traditional similarity measure ϕcos on tf · idf vectors
(second row), and for Group Average Link with the new suffix-tree-based similarity
measures (remaining rows). The improvement refers to ϕHYB with respect to ϕcos.

3.5.4 Concluding Remarks

Both the classical vector space model and the suffix tree model play an impor-

tant role in text processing applications: the VSM predominates the information

retrieval domain, while suffix trees are employed as data structure for string al-

gorithms. Interestingly, these models are used in an isolated way: there has not
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been an attempt to combine their different properties for similarity measurement

in IR applications.

Our experiments clearly indicate that word order preservation in the docu-

ment model influences similarity computation to a greater extent. The combina-

tion of a vector-space-based similarity measure with a suffix-tree-based similarity

measure can lead to a significant improvement of clustering performance, regard-

less of the chosen clustering algorithm. Moreover, we identified properties of the

STC heuristic that explain why this approach can not keep up with any other of

the investigated clustering settings on the RCV1.

3.6 Topic Identification

Assume that a categorization C of a document set D is determined using an un-

supervised approach. To present this categorization to a user, it is convenient

to label the individual categories with characteristic terms. Amongst others,

these terms called category labels9 should characterize the content of the asso-

ciated category with respect to the remaining categories. This property implies

that it should summarize a category’s content and that it should discriminate

a category from the other categories. This section resumes desired properties of

category labels and reviews algorithms to generate such labels. Moreover, a novel

evaluation methodology as well as experimental evaluations of topic identification

approaches for flat categorizations are contributed.

3.6.1 Formal Framework

Desired properties for category labels are expressed in the formal framework

from [134]; they are resumed in the following. For a categorization C let Wd =

{wd1 , . . . , wdn} denote the word set for document d, and let W =
⋃

d∈D Wd de-

note the entire word set underlying D. Term frequency and inverse document

frequency of a term w are expressed by the functions tf (d, w) and idf (w), respec-

tively.

Several clustering algorithms define a hierarchy or can be applied in a recur-

sive manner, this way defining a hierarchy HC on C. HC is a tree whose nodes

9Category labels are also called category names or topic identifiers.
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correspond to the categories in C from which one is marked as root node. Given

two categories, Ci, Cj, Ci �= Cj , we write Ci � Cj if the corresponding nodes in

HC lie on a common path emanating at the root and if Ci is closer to the root

than Cj.

Topic identification means the construction of a function τ : C → 2W that

assigns to each element C ∈ C a set WC ⊂ W . The following properties are

generally desired for a labeling function τ :

(1) Unique. ∀Ci,Cj∈C
Ci �=Cj

: τ(Ci) ∩ τ(Cj) = ∅

(2) Summarizing. ∀C∈C ∀d∈C : τ(C) ∩ Wd �= ∅

(3) Expressive. ∀C∈C ∃w′∈τ(C) ∀d∈C ∀ w∈Wd
w �∈τ(C)

: tf (d, w) ≤ tf (d, w′),

where tf (d, w) designates the term frequency of term w in document d.

(4) Discriminating. ∀Ci,Cj∈C
Ci �=Cj

∃w′ ∈ τ(Cj) : 1
|Ci| tf Ci

(w′) � 1
|Cj |tf Cj

(w′),

where tf C(w) is the term frequency of w in category C, say,

tf C(w) =
∑

d∈C tf (d, w).

(5) Contiguous. ∀C∈C ∀w′ ,w′′∈τ(C)

w′ �=w′′
∀d∈C ∃wi,wi+1∈Wd

: wi = w′ ∧ wi+1 = w′′

(6) Hierarchically Consistent.

∀Ci,Cj∈C
Ci �=Cj

: Ci � Cj ⇒ P (wi|wj) = 1 ∧ P (wj|wi) < 1,

where wi ∈ (Wdi
∩ τ(Ci)), wj ∈ (Wdj

∩ τ(Cj)), di ∈ Ci, dj ∈ Cj.

(7) Irredundant. ∀C∈C ∀w′,w′′∈τ(C)

w′ �=w′′
: w′ and w′′ are not synonymous.

The stated properties formalize ideal constraints which, in the real world, can

only be approximated. Note that merely Property 6 requires the existence of a

category tree HC
10. Finally note that hierarchical consistency and irredundancy

are practically impossible to achieve if no external knowledge is provided.

10A discussion of desired properties for hierarchies can be found in [78].
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3.6.2 Related Work

Like the stated properties show, topic identification is related to keyword extrac-

tion and text summarization. The main difference for topic identification is that

each identified topic refers to a set of documents instead of a single document.

In the following we resume existing topic identification approaches, which can be

classified according to the underlying categorization type: flat or hierarchical.

Topic Identification in Flat Categorizations. In past work on keyword ex-

traction from English texts, several term features have been proposed to identify

meaningful keywords; they include the following: (1) first occurrence measured

by a term’s offset from the beginning of a document, (2) term frequency and, for

document collections, inverse document frequency, (3) co-occurrence information

[157, 89, 146]. It is unclear how some of these features can be generalized for

topic identification; e. g. it is unclear how first occurrence can be defined and if

first occurrence is a significant feature with respect to a set of documents. In

general, it is questionable if features for keyword identification are suited or can

be adapted for topic identification.

Popescul and Ungar propose a labeling algorithm for flat categorizations using

frequency and predictiveness information of terms [105, 161]. In particular, the

function

fC(w) = P (w | C) · P (w | C)

P (w)

measures the score for word w to be topic identifier in cluster C. Here, P (w | C)

denotes the conditional probability to draw w from a document in C, and P (w)

is the probability to draw w from the whole collection. The first factor in fC

makes sure that more frequent terms within a category are preferred, while the

second factor measures the predictiveness11 of w for C, i. e. the discrimination

power. These factors mean to optimize points (2), (3), and (4) from the desired

properties. However, point (1) is not addressed by this approach.

Topic Identification in Category Hierarchies. Popescul and Ungar also

propose a two-step algorithm to label hierarchical document clusterings as follows

[105]. Let the cluster hierarchy be modeled as a tree in which each node represents

a cluster, and let the nodes contain their associated documents12. In the first

11Popescul and Ungar remark that the second factor is similar to a mutual information esti-
mator.

12Popescul and Ungar assume that only the leaf nodes hold documents.
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step, bag-of-word representations of the documents are propagated bottom-up

starting at the leaf nodes: at each inner node, the bag-of-word representations of

its descendants are coalesced. In a second step, the tree is recursively traversed

starting at the root node. For each word that is associated with the current

node, a χ2 independence test is conducted to gain evidence if the word appears

equally likely in all of the child nodes. If this is the case, the word is considered

being general for all children: It is kept as label in the current node and it is

deleted from all children. Else, if the test rejects the independence hypothesis,

the conclusion is that the term is specific for one or more child nodes. In this

case, it is deleted from the current node. The χ2 test puts emphasis on points (3)

and (6) in the first place, while the bottom-up as well as top-down propagation

strategy addresses points (1) and (2) from the formal framework.

The STC algorithm presented in the previous section has the advantage that

cluster labels are generated during the clustering procedure. As mentioned above,

these labels are path labels in suffix trees in which a set of documents has been

inserted. The nodes that score best in terms of frequent visits and depth within

the suffix tree are chosen as cluster labels. In contrast to other methods, this

labeling approach preserves word order, contributing to property (5) in the formal

framework. However, STC has problems fulfilling properties (6) and (7).

Subsumption analysis approaches, which are based on term distribution anal-

yses of document sets, contribute to address property (6) from the formal frame-

work [122, 80, 82]. The underlying consideration is that some terms occur fre-

quently among all documents within a document set, while other terms only

occur in some of the documents within the set. The hypothesis is that if both

of the mentioned term kinds co-occur with a certain probability, then the terms

may be related in that the more frequent term is more general than the other

term. In particular, Sanderson and Croft propose the following definition: Term

x subsumes term y if

P (x | y) ≥ 1 − ε and P (y | x) < P (x | y)

where P (x | y) denotes the conditional probability that term x is drawn when

term y has already been drawn from a document [122, 81]. A value of ε = 0.2

has been shown to work well in [122].
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3.6.3 The WCC Algorithm for Topic Identification

Like above, let D denote a set of documents, and let C be a clustering of D. Let

κ : W × {1, . . . , |C|} → C be the function with

κ(w, i) = C ⇔ C is at rank i in a cluster ranking according to tf C(w).

E. g. κ(w, 1) denotes the cluster in which w appears most frequently and

κ(w, |C|) is the cluster in which w appears least frequently.

The algorithm WCC consists of two main parts (cf. Algorithm 1). First,

a vector T is constructed, containing tuples of the form 〈w, tf κ(w,i)(w)〉, i ∈
{1, . . . , k}, which are sorted according to descending term frequency. Second, the

clusters are cycled in a round-robin manner: Each time a cluster is visited, it

is assigned one more word unless it holds l terms. According to the top-down

processing of tuples from T , the most frequent words from the cluster centroids

are covered.

The labeling τ generated by WCC fulfills the properties (1) and (2) according

to the parameters k and l (a value of k = 1 ensures the validity of property 1);

the cluster-wise Round-Robin-strategy aims at fulfilling property (3). A small

k helps fulfilling property (4). Computing the κ-values (including sorting) is

in O(k · |W | · log(k · |W |)); assigning the labels is in O(l · k · |W |). Since k

and l are typically bounded by a small constant, the overall complexity is in

O(|W | · log(|W |)).

3.6.4 Experimental Evaluation

Evaluating the quality of topic identification approaches is a difficult concern

since no benchmark collection is available, i. e. there are no document clusterings

that have been labeled by humans. In the past, different labelings of the same

collection were presented to a couple of people who ranked the labeling quality

relatively (cf. e. g. [105, 78]). However, although such studies are useful to get

hints concerning relative performance, they are neither reproducible nor they give

evidence how good the approaches perform in terms of precision and recall. To

overcome these weaknesses, we propose statistics that measure to what extent

the desired properties from Section 3.6.1 are satisfied.
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Algorithm 1 WCC, Weighted Centroid Covering.

Input: C clustering
l number of terms per label
k maximum occurrence of the same term in different labels

Output: τ labeling

WCC(C, l, k)

(1) T = ∅;
FOREACH C IN C DO

τ(C) = ∅;

(2) FOREACH w IN W DO
FOR i = 1 TO k

compute C = κ(w, i) from C;
add tuple 〈w, tf C(w)〉 to T ;

ENDFOR
ENDDO

(3) SORT T according to descending term frequencies;

(4) FOR labelcount = 1 TO l
assigned = 0;
j = 1;
WHILE assigned < |C| AND j ≤ |T |

let tj = 〈w, tf C(w)〉 be jth tuple of T ;
IF |τ(C)| < labelcount THEN

τ(C) = τ(C) ∪ {w};
delete tj from T ;
assigned = assigned + 1;

ENDIF
j = j + 1;

ENDWHILE
ENDFOR

(5) FOREACH C IN C DO SORT τ(C);

(6) RETURN τ;
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In particular, the following statistics quantify the development of the proper-

ties (1)-(4):

1. Unique.

f1(τ) := 1 − 2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

| τ(Ci) ∩ τ(Cj) |
| τ(Ci) ∪ τ(Cj) |

If the term sets of each pair of labels are disjoint, f1(τ) takes a value of one;

here, k denotes the number of categories in C. The closer f1 is to zero, the

more the terms of distinct labels overlap.

2. Summarizing.

f2(τ) :=
1

k

∑
C∈C

1

|C|
∑
d∈C

| τ(C) ∩ Wd |
| τ(C) |

The closer f2(τ) is to 1, the better the label terms cover the documents

of the associated category. A value close to 0 indicates that the category

labels appear in only a few documents of a category.

3. Expressive.

f3(τ) := 1 − 1

k

∑
C∈C

argmin
w′∈τ(C)

1

|C|
∑
d∈C

1

|Wd|
∑

w∈Wd
w �∈τ(C)

tf (d, w)

tf (d, w′)

If for each cluster there exists an expressive term, f3(τ) reaches the maxi-

mum 1. Observe that f3 can take negative values for poorly chosen labels.

4. Discriminating.

f4(τ) := 1 − 2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

argmin
w′∈τ(Cj)

|Cj|
|Ci|

tf Ci
(w′)

tf Cj
(w′)

The closer f4(τ) is to 1, the more discriminating is τ . Small values of f4

indicate weaker discriminative power. Like above, f4 can be negative.

To evaluate the quality of WCC, Popescul and Ungar’s method, and the stan-

dard keyword extraction algorithm RSP [146], we downloaded 150 documents

from the digital library Citeseer13, each of which containing author-defined key-

13http://citeseer.ist.psu.edu/

http://citeseer.ist.psu.edu/
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Figure 3.14: The statistics f1 (top left), f2 (top right), f3 (bottom left), and f4 (bottom
right) for the topic identification approaches WCC, Popescul and Ungar’s method, and
RSP depending on the number of extracted words per label.

words. The evaluation idea is to cluster the documents, label the resulting clus-

tering, compute f1-f4, and measure to which extent the identified topic labels

appear in the keyword list of at least one document of the associated cluster. To

measure the extent, standard precision and recall values can be chosen. Note,

however, that the precision value is more important in our scenario since usually

only a few words (about one to five) are presented to a user.

The clustering was done on randomly drawn subsets D′ ⊆ D with |D′| =

80 using k-means, with k varying between 3 and 25. Since the Dunn index

has a centroidic view comparable to k-means, we let the Dunn index decide

which clustering was best among the generated clusterings. The labelings τ were

generated by each of the three mentioned algorithms. For the RSP approach, the

documents within a cluster were concatenated to form a single document. The

values of the proposed statistics f1-f4 are averaged over 10 retries; their values

depending on the number of words per label are depicted in Figure 3.14.
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Figure 3.15 shows precision and recall curves for the mentioned approaches,

again depending on the number of extracted words per label. The values are

averaged over 10 retries of the experiment, each time redrawing a new set of

documents. The precision curve shows that one to five cluster labels can be

identified at very high precision rates.
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Figure 3.15: Precision (left) and recall (right) of topic identification approaches de-
pending on the number of extracted words per label.

3.6.5 Concluding Remarks

The proposed formal framework of desired properties for category labels shows

that topic identification is related to keyword extraction and summarization. The

key difference is that topic identification relates to sets of documents—a fact that

introduces intra-category as well as inter-category constraints for labels.

In contrast to hierarchical topic identification, not much work has been done

in labeling flat categorizations. We proposed the WCC labeling algorithm, which

is designed to perform in accordance with the desired properties.

The conducted experiments are ambitious from a combinatoric point of view:

only about 15 terms from a cluster’s vocabulary of about 2300 distinct terms14

appear in the keyword list of a document. The results show that especially

the properties “summarizing” and “expressive” are very well developed for WCC

labelings. The achieved precision values of WCC as well as Popescul and Ungar’s

approach are surprisingly high.

14This number is an average over several generated clusters from our corpus of scientific
articles.
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3.7 Genre Classification

People who search the World Wide Web usually have a clear conception: They

know what they are searching for, and they know of which form or type the search

result ideally should be. The former aspect relates to the topic of a document,

the latter to the presentation of its content. For example, when searching for the

topic “Bayes” in the Internet, a human information miner might be interested in

either of the following: a technical article, a biography, or an online book shop.

It would be of much help if a search engine could deliver only documents of a

desired form, which is here called “genre”. This fact raises two questions:

(1) What are useful genres in the Web, especially when searching the Web, and

(2) How can a detection of these genres be operationalized?

This section will address these questions with the goal to automate genre

identification in the context of Web search.

3.7.1 What Does Genre Mean?

As pointed out by Finn and Kushmerick, the term “genre” is used frequently in

our culture; e. g., in connection with music, with literature, or with entertainment

[39]. Roussinov et al. argue that genre can be defined in terms of purpose or

function, in terms of the physical form, or in terms of the document form. And,

usually, a genre combines both purpose and form [116].

Here, we are interested in the genre of HTML documents. Several definitions

for document genre have been given and discussed in the past [14, 68, 72]. Com-

mon to all is that document genre and document content are orthogonal, say,

documents that address the same topic can be of a different genre: “The genre

describes something about what kind of document it is rather than what the doc-

ument is about.” [39]. In this way, a genre classification scheme can be oriented

at the style of writing, or at the presentation style. When analyzing newspa-

per articles for example, typical genres include “editorial”, “letter”, “reportage”,

“spot news”.
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3.7.2 What Does Genre Mean in the WWW?

In the literature on the subject there is more or less agreement on what document

genre means and how different genre classes can be characterized. And, at first

sight, it seems to be canonical to apply this common understanding to the World

Wide Web: Certainly, “advertisement” seems to be a useful genre class, as well

as “private homepage”. On second sight, however, several difficulties become

apparent: Where does a presentation of a company’s mission end and where does

advertisement begin? Or, does a scientific article on a private homepage belong

to the same genre like a photo collection of mom’s lovely pet?

Our proposed definition of genre classes for the World Wide Web is governed

by two considerations:

• Usability from the standpoint of an information miner, which can be achieved

by a what we call “positive” and “negative” filtering. With the former the

need for a focused search can be satisfied, while the latter simply extends

the idea of spam identification to a diversified genre scheme.

• Feasibility with respect to runtime and classification performance.

The first point means that we want to support people who use the World Wide

Web as a huge database to which queries are formulated.15 The second point

states that automatic genre identification shall happen on the fly, in the form

of a post-processing of the results of a search engine. This aspect prevents the

computation of highly sophisticated features as well as the application of a fine-

grained genre scheme.16 To get an idea which genre classes are considered useful

by search engine users, we conducted a user study that is described in detail in

Section 3.7.4.

3.7.3 Existing Work

We distinguish the existing work for computer-based genre classification with

respect to the underlying corpus, say, whether it is targeted to a particular doc-

ument collection—like the Brown Corpus, for example—or to the World Wide

Web. In the following we outline selected papers.

15There are other groups of Internet users who use the Web for amusement, for example.
16Crowston and Williams identified about hundred genre classes on the World Wide Web

[23].
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Corpus-specific genre classification has been investigated among others in

[72, 128, 30, 39]. The existing work can further be distinguished with respect to

the interesting genre classes and the types of features that have been evaluated.

Kessler et al.’s work is based on the Brown Corpus. For the characterization of

genre classes they employ so-called genre facets, which are quantified by linguis-

tic and character-level features [72]. Stamatatos et al. use discriminant analysis

based on the term frequencies to identify the most discriminative terms with re-

spect to four newspaper genre classes [128]. Dewdney et al. concentrate on differ-

ent learning approaches: Naive Bayes, C4.5, and support vector machines. They

employ about three hundred features including part of speech, closed-class word

sets, and stemmed document terms [30]. Rehm proposes a Web genre hierarchy

for academic homepages and a classifier that relies on HTML metadata, pre-

sentation related tags and unspecified linguistic features. Finn and Kushmerick

distinguish between the two genres “objective” and “subjective”; they investigate

three types of features sets: the document vector containing the stemmed list of

a document’s terms without stop-words, features from a part of speech analysis,

and easily computable text statistics [39].

Genre classification and navigation related to the World Wide Web is quite

new, and only very few papers have been published on this topic. Bretan et al.

propose a richer representation of retrieval results in the search interface. Their

approach combines content-based clustering and genre-based classification that

employs simple part-of-speech information along with substantial text statis-

tics. The features are processed with the C4.5 algorithm; however, the au-

thors give no information about the achieved classification performance [17].

Roussinov et al. present a preliminary study to automatic genre classification:

Based on an explorative user study they develop a genre scheme that is in part

similar to ours and that comprises five genre groups. However, their work de-

scribes an ongoing study, and no recognition algorithm has been implemented

[116]. Dimitrova et al. describe how shallow text classification techniques can be

used to sort the documents according to genre dimensions. Their work describes

an ongoing study, and experience with respect to the classification performance

is not reported [33]. Lee and Myaeng define seven genre types for classifying doc-

uments from the World Wide Web. Aside from the genre “Q&A” and “Home-

page” Lee and Myaeng use also the newspaper-specific genres “Reportage” and
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“Editorial”. The operationalized feature set is based on a list of about hundred

document terms tailored to each genre class [83].

3.7.4 User Study and Genre Selection

Although we have an idea of potentially useful genres, a user study should give

insights into the importance of dedicated genre classes. Moreover, it can be used

as a basis to select genres for building test collections. As a matter of course,

selected genres influence feature selection for automatic classification.

User Study. To get an idea about the expected usefulness of different Web

page genre classes were manifold, we decided to inquire a bigger number of search

engine users. We developed a questionnaire to shed light on search engine use,

usefulness of genre classification, and usefulness of genre classes; in detail, we

were interested in the following points.

(1) Frequency of Search Engine Use. We expect that experienced search engine

users have a clearer idea whether genre classification could be useful or not.

We asked the interviewees how often they use search engines. Possible

answers were “daily”, “once or twice a week”, “once or twice a month”,

and “never”.

(2) Typical Topics for Queries. As already pointed out, our target audience

should use the World Wide Web not only for entertainment, but also as

information source. To get an idea what the interviewees search for on the

Internet, we let them specify up to 3 typical search topics.

(3) Usefulness of Genre Classification. With this question we wanted to figure

out if genre filtering is considered as useful in general, i. e. if genre filtering

helps to satisfy the user’s information need. Possible answers were “very

useful”, “sometimes useful”, “not useful”, and “don’t know”.

(4) Favored Genre Classes. We proposed ten genre classes that we found inter-

esting: publications/articles, scholar material, news, shops, link collections,

help and FAQ, private portrayals, commercial portrayals, discussion forums,

and product presentations. For each of these genres, the interviewees could

specify the usefulness in terms of “very useful”, “sometimes useful”, “not

useful”, and “don’t know”.
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daily
1-2x per week
1-2x per month
never

0%

73%

4%23%

Search Engine Use Frequency

Figure 3.16: Frequency of search engine use. About three quarters of the interrogated
students use a search engine on a daily basis.

Usefulness of Automated Genre Classification

64%

29%
1% 6%

very useful
sometimes useful
not useful
don't know

Figure 3.17: Usefulness of genre classification.

(5) Additional Useful Genre Classes. We also wanted to find out which addi-

tional genre classes could be interesting for the users. Therefore, a set of

up to three additional genre classes could be specified and classified into

“very useful” and “sometimes useful”.

(6) Comments. We also gave the interviewees the possibility to comment on

the idea of genre classification.

To give the interviewees an idea of genre classification, we gave them a short

introduction to genres and their use as positive and negative information filters.

As we expect students to frequently use search engines, we asked 286 of them in

our university to complete the proposed form. Figure 3.16 shows that we met

the right audience: about three quarters of the students use search engines on a

daily basis, and nearly the remaining quarter at least once a week.

The most frequently mentioned searches comprise scholar material, shopping

and product information, help (discussions and troubleshooting), entertainment

(music / games / films / humorous material / news), downloads, health, and

programming (in this order). The fact that 64% of the students think that genre

classification is very useful, and that another 29% find it sometimes useful shows

that there is a strong need to post-process query results (cf. Figure 3.17).
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Favored Genre Classes
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Figure 3.18: The favored genre classes. Higher values indicate a greater expected
usefulness.

To make up a ranked list of dedicated genre classes with respect to their

usability, we assigned scores on the usefulness of each genre class: “very useful”

scored 2 points, “sometimes useful” scored one point, “not useful” scored 0 points.

We added the scores for each proposed genre and divided it by the number of

interviewees that did not tick “don’t know” on that genre class. The results are

depicted in Figure 3.18: scholar material scores best, while private portrayals

were not judged as very useful by the interviewees.

Additional genres that were significantly often proposed include Web page

spam and download sites. As the given comments and some given specifications

of spam let conclude, spam comprises in this context (a) paid links, (b) sites that

try to install dialers, and (c) sites that are only used to improve a site’s ranking in

search engines. Other propositions included topics (and not genres) like pornog-

raphy. The comments were encouraging and often asked for operationalization.

Genre Selection. An inherent problem of Web genre classification is that even

humans are not able to consistently specify the genre of a given page. Take for

example a tutorial on machine learning that could be either classified as scholar

material or as article. In general, scholar material can be seen as a super-genre

that covers help, article, and discussion pages; therefore scholar material was not

chosen as a genre on its own. Another finding is that most product information

sites are combined with a shopping interface, which renders a discrimination of

the shops and products impossible.
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To cut a long story short, we finally ended up with the following eight genre

classes:

(1) Help. All pages that provide assistance, e. g. Q&A or FAQ pages.

(2) Article. Documents with longer passages of text, such as research articles,

reviews, technical reports, or book chapters.

(3) Discussion. All pages that provide forums, mailing lists, or discussion

boards.

(4) Shop. All kinds of pages whose main purpose is product information and

sale.

(5) Portrayal (non-priv). Web appearances of companies, universities, and

other public institutions. I. e., home or entry or portal pages, descriptions of

organization and mission, annual reports, brochures, contact information,

etc.

(6) Portrayal (priv). Private self-portrayals, i. e., typical private homepages

with informal content.

(7) Link Collection. Documents which consist of link lists for the main part.

(8) Download. Pages on which freeware, shareware, demo versions of programs

etc. can be downloaded.

Although not every document can be rigorously assigned to a single class, our

scheme reflects the genre assessment of many human information miners: A sci-

entific article or a link collection, for instance, is still distinguished as such, in-

dependently of the domain holder’s form of organization where the document is

hosted.

3.7.5 Features for Genre Classification

With respect to the investigated features the existing literature on genre classi-

fication falls into two groups: Classifiers that rely on a subset of a document’s

terms (sometimes called bag-of-words, BOW), and classifiers that employ linguis-

tic features along with additional features relating to text statistics. This section
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gives an overview of these features. In particular, we introduce features that

are based on the frequency class of a word as well as concentration features for

closed-class word sets. Moreover, we suggest URL analyses with respect to the

closed-class word sets.

Word Frequency Class. The frequency class of a word is directly connected

to Zipf’s law and can be used as an indicator of a word’s customariness. Let D

be a document collection, and let tf D(w) :=
∑

d∈D tf (di) denote the frequency of

a word w in D, and let r(w) denote the rank of w in a word list T of D, which

is sorted by decreasing frequency.17

In accordance with [148] we define the word frequency class c(w) of a word

w ∈ T as �log2(f(w∗)/f(w))�, where w∗ denotes the most frequently used word,

i. e. w = arg maxw∈T (tf D(w)). In the Sydney Morning Herald Corpus [28], w∗

denotes the word “the”, which corresponds to the word frequency class 0; the

most uncommonly used words within this corpus have a word frequency class of

19. The intuition to use the word frequency class as feature is the expectation

that articles use a more specialized speech than e.g. shops. The complexity of

speech is expected to be reflected in the average word class.

Dictionary of word frequency classes

(1) + Webster's unab. dictionary

(2) + misspelled words

(3) + unknown words

(1)
(2)

(3)
(4)

Figure 3.19: The figure shows the inclusion relation of the used word sets. Note that
the sets (3) and (4) are only implicitly defined, by means of the Levenshtein distance
and the “not-found” predicate respectively.

Based on the Sydney Morning Herald Corpus, which contains more than

38,000 articles, word frequency classes for about one hundred thousand words

have been computed. This dictionary is shown as set (1) in Figure 3.19. The

other sets in the figure evolve in a natural manner as supersets of (1): Webster’s

17Zipf’s law states that r(w) · f(w) is constant.
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unabridged dictionary (2), the set of misspelled words (3), and the set of unknown

words (4). Observe that set (3) comprises all words from the sets (1) and (2) as

well as words found in the Levenshtein distance of one [85]. We use these sets to

define the following features:

• average word class

• average number of misspelled words

• average number of words not found in Webster’s unabridged dictionary

Syntactic Group Analysis. A syntactic group analysis yields linguistic fea-

tures that relate to several words of a sentence. Such analyses quantify the use

of tenses, relative clauses, main clauses, adverbial phrases, simplex noun phrases,

etc. Since the identification of these features is computationally expensive, we

have omitted them in our analysis. Dewdney et al., however, also include the

transition in verb tense within a sentence in their analysis [30].

Part-of-Speech Analysis. Part-of-speech analysis groups the words of a sen-

tence according to their function or word class. Part-of-speech taggers analyze

a word’s morphology or its membership in a particular set. In this connection

one differentiates between so-called open-class word sets and closed-class word

sets, where the former do not consist of a finite number; examples are nouns,

verbs, adjectives, or adverbs. Examples for closed-class word sets are preposi-

tions and articles. For our analysis we have employed the part-of-speech tagger

of the University of Stuttgart [149]. Table 3.9 and 3.10 list the actually used

word classes.

Other Closed-Class Word Sets. Aside from word classes that relate to gram-

matical function, we have also constructed other closed-class word sets that may

be specific to a certain genre: currency symbols, help symbols, shop symbols,

link symbols, download symbols, homepage symbols, months, days, countries,

first names, and surnames. Table 3.8 shows examples for some elements of some

of these sets.

In connection with closed-class word sets it is usual that feature values are

measured as the proportion of words from an individual closed-class word set with
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respect to the total word count within a document. However, since characteristic

terms for a genre are often concentrated in one place within a document18, it

is reasonable to measure for a document the maximum concentration of terms

from these sets within a sliding term window [136]. Moreover, the appearance of

these terms in the URL of a Web document is also a good genre hint. Table 3.9

shows for which closed class word sets we also computed concentration and URL

containment features.

Table 3.8: Example terms in closed-class word sets.

Word set Example members

currency $, EUR, DLR, pound
discussion forum, subject, post, views, re:,next, thread
download Windows, Linux, zip, download
help FAQ, Q&A, support
homepage name, ˜, address, phone, homepage
shop buy, now, purchase, add, to, cart

Text Statistics. Under the label “text statistics” we comprise features that

relate to the frequency of easily accessible syntactic entities: clauses, paragraphs,

delimiters, question marks, exclamation marks, or numerals. Counts for these en-

tities are put in relation to the number of words of a document. Kessler et al. des-

ignate features of this type as “character-level cues” [72]; Finn and Kushmerick

designate such features as “hand-crafted” [39].

Presentation-Related Features. This type of features relate to the appear-

ance of a document. They include frequency counts as well as particular HTML-

specific concepts and stylistic concepts. To the former we count the number of

figures, tables, paragraphs, headlines, or captions. The latter comprises statis-

tics related to the usage of colors, hyperlinks (anchor links, site-internal links,

Internet links), URL specifications, mail addresses, etc.

18Examples include table headlines in discussion forums, in which terms like “subject”,
“poster”, “views” etc. can be found. Another example are download sites, in which version
information like operating system names or file extensions from different binary formats can be
found.
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Table 3.9: Feature set A consists of the listed features. The averages are taken with
respect to the total word count within a Web document. For closed word sets, the
number of appearances in the URL of a page as well as their maximum concentration
within the page were additionally measured.

Feature type Feature set A

Presentation related avg. # of <p> tags
avg. # of <ul> tags
avg. # of <br> tags
avg. # of anchor links
avg. # of links same domain
avg. # of links foreign domain
avg. # of mail links
avg. # of <img> tags
avg. # of <tr> tags

Closed word sets avg. word frequency class
conc. / avg. # of currency symbols
URL / conc. / avg. # of help symbols
URL / conc. / avg. # of shop symbols
URL / conc. / avg. # of link symbols
URL / conc. / avg. # of download symbols
URL / conc. / avg. # of date symbols
URL / conc. / avg. # of homepage symbols
URL / conc. / avg. # of first names
URL / conc. / avg. # of surnames
avg. # of words that do not
appear in Webster’s dictionary

Text statistics avg. # of question marks
avg. # of letters
avg. # of digits
avg. # of dots
avg. # of semicolons
avg. # of colons
avg. # of commas
avg. # of exclamation marks
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Table 3.10: Feature set B extends feature set A by ten additional features. The averages
are taken with respect to the total word count within a Web document.

Feature type Feature set B

Presentation-related
Closed word sets identical to feature set A
Text statistics

Part of speech avg. # of nouns
avg. # of verbs
avg. # of rel. pronouns
avg. # of prepositions
avg. # of adverbs
avg. # of articles
avg. # of pronouns
avg. # of modals
avg. # of adjectives
avg. # of alphanumeric words

Constructed Feature Sets. As our concern is genre classification of search

results, the classification should be done “on the fly”, as a post-processing step.

Since a user usually waits actively for search results, the features must be com-

puted quickly. We propose a split of the mentioned features with respect to

computational effort as follows.

(1) Features with Low Computational Effort. These features comprise text

statistics, which can be acquired at parse time by means of counters.

(2) Features with Medium Computational Effort. All features that are word-

related and that require dictionary lookups or superficial parsing. These

are closed-class word sets, word frequency class and presentation related

features.

(3) Features with Higher Computational Effort. This class comprises features

that rely on grammar analyses. Syntactic group analysis features and part-

of-speech related features fall in this category.

It should be clear that feature category (1) is not powerful enough to discrim-

inate between the genre classes solely. As a consequence, we built a feature set

that comprises features of (1) and (2), and a feature set that makes use of all

three feature classes. The Tables 3.9 and 3.10 show the details.



3.7. Genre Classification 83

3.7.6 Experimental Evaluation

Since no benchmark corpus is available for our concern, we compiled a new corpus

with Web documents and analyzed statistical properties of the two feature sets

with respect to them. We employed classifiers in the form of discriminant func-

tions from discriminant analyses to test the achievable classification performance.

Moreover, we analyzed the classification performance for genre-specific searches

and typical user groups. The following subsections outline our experiments.

Corpus Compilation. The compiled corpus of Web documents is described

in Table 3.11. Each element in the corpus represents a single HTML document;

documents that are composed of frames and Flash elements were discarded. We

then generated two distinct representations of each corpus according to the fea-

ture sets (see Table 3.9 and Table 3.10).

Statistical Analyses. We conducted a discriminant analysis (linear model,

incremental variable selection according to Wilks Lambda, a-priori probability

uniformly distributed) to get an idea of the classification performance of the

selected features. Table 3.12 shows a confusion matrix that belongs to feature

set B. The results range from acceptable to very good—articles, discussion, and

download pages are detected with a very high precision of about 85%, and the

remaining genres are detected with a good performance. However, about 80%

classification performance for cross-validated data (ten-fold) on a huge corpus

with eight classes appears still very good to us.

The scatter plot in Figure 3.20 shows a clear separation of help, link list, and

discussion from the remaining genres using only the first two discriminant func-

tions. Like the analysis has shown, the first two discriminant functions capture

Genre # of Documents

article 181
discussion 242
download 201
help 198
link list 233
portrayal (non-priv) 213
portrayal (priv) 193
shop 246

sum 1707

Table 3.11: Composition of the Web document corpus.
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Table 3.12: Ten-fold cross-validated confusion matrix. It shows the percentage of cor-
rectly classified documents on the diagonal and summarizes the percentage of misclas-
sified documents with respect to other genres. The average classification performance
is about 81%.

Article Discussion Download Help Link Portrayal Portrayal Shop total
Collection (non-priv) (priv)

Article 84.0% 0.6% 1.1% 3.3% 0.6% 8.3% 1.1% 1.1% 100.0%

Discussion 3.3% 86.0% 1.7% 1.7% 0.8% 3.7% 1.2% 1.7% 100.0%

Download 1.0% 1.0% 81.1% 2.0% 0.0% 10.0% 1.0% 4.0% 100.0%

Help 9.6% 2.0% 0.5% 78.3% 0.0% 5.6% 2.0% 2.0% 100.0%

Link
Collection 1.3% 0.9% 1.7% 0.0% 79.0% 12.0% 2.1% 3.0% 100.0%

Portrayal
(non-priv) 6.1% 0.9% 6.1% 0.5% 2.8% 76.5% 2.8% 4.2% 100.0%

Portrayal
(priv) 6.7% 0.0% 1.6% 0.0% 1.0% 4.7% 85.5% 0.5% 100.0%

Shop 0.8% 1.2% 2.0% 2.4% 0.8% 13.4% 0.4% 78.9% 100.0 %

about 46% of the variance.

Classification Results. We conducted 10-fold cross-validated classifications

on the 1707 feature sets using discriminant analyses. Each experiment was con-

ducted twice, using feature set A and feature set B, respectively. The first row of

Table 3.13 comprises the classification results when classifying one genre against

all. The second row comprises the multiclass classification results. To make our

results reproducible for other researchers, the corpus is available on request19.

Specialized Classifiers. Aside from general classification performance, we are

interested in the question how efficient classifiers for single genre classifications

and typical user profiles can be built. Assumed that a user starts several queries

on the same topic, an intelligent search assistant could figure out to which prede-

fined user profile a user probably belongs and apply the corresponding classifier.

We conducted classification experiments for the following three user profiles.

(1) Edu. This profile is of educational nature and comprises articles, link col-

lections, and help sites.

(2) Geek. Geeks are mainly interested in downloads, discussions, articles, link

collections, and help sites.

19Meanwhile, our results from [92] have been confirmed in subsequent work on our corpus;
corresponding values can be found in Boese and Howe [16] and in Santini [123].
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Figure 3.20: The figure shows a scatter plot of the genres according to the first two
discriminant functions. The underlying feature set is B.

(3) Private. This group comprises individuals that surf the net for shopping

and for reading private portrayals.

The performance of the compiled classifiers with respect to both of the feature

sets is given in Table 3.13.

3.7.7 Concluding Remarks

We see genre classification as a promising concept to improve the search efficiency

and to address the information need of many users that use the World Wide Web

as a database. While in the past an automatic detection of genre classes has

been demonstrated for newspaper corpora, there is the question whether genre

classification can also be applied to the Internet.

A user study has shown the need for advanced page filtering and gave hints

on the importance of dedicated Web genre classes. Taken the viewpoint of an

Internet information miner we propose the following eight genres: help, article,

discussion, shop, portrayals of companies and institutions, private portrayal, link

collection, and download. We show that with a small set of features, which cap-
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Table 3.13: The table shows the classification performance of specially crafted one-
against-all classifiers (first row), multiclass classifiers (second row) and three profile
classifiers (remaining rows). The bigger boxes symbolize an aggregation of the genre
classes that stand atop of them. Within a box, the upper value shows the classification
performance for feature set A, while the lower value shows the performance for feature
set B.

Shop Portrayal Portrayal Download Discussion Article Link Help
(priv) (non-priv) Collection

One against
all

94.7%
94.7%

95.9%
96.4%

85.6%
86.2%

95.0%
95.1%

96.0%
96.2%

91.6%
92.0%

96.1%
96.6%

95.5%
96.0%

Multiclass
Classification

78.0%
78.9%

85.0%
85.5%

74.6%
76.5%

81.1%
81.1%

86.0%
86.0%

81.8%
84.0%

76.8%
79.0%

77.3%
78.3%

Profile “Edu”
91.8%
91.7%

82.9%
84.5%

78.1%
83.3%

77.3%
79.3%

Profile “Geek”
85.1%
85.3%

82.1%
85.6%

85.1%
85.1%

83.4%
84.5%

77.7%
80.3%

78.3%
78.3%

Profile “Private”
82.5%
82.9%

87.6%
91.2%

92.9%
93.1%

tures linguistic and presentation-related aspects, text statistics, word set concen-

tration measures, URL pervasion, and word frequency classes, acceptable clas-

sification results can be achieved: Our analysis reveals that about 80% of the

documents are assigned correctly with a multiclass classifier.
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Tira: A Software Architecture

for Personal Information

Retrieval

Information retrieval is not a universal answer to a generic information need

problem but a collective term for myriad solutions to individual information need

problems. To become an effective means, retrieval technology must be adapted to

personal information needs, which pertains among others to the following points:

(1) Personal Data. Document sources on which retrieval tasks are carried out

include local hard drives, the Web, or intranets.

(2) Personal Preferences. Typical preferences are language and local settings,

or an individual style for result preparation.

(3) Personal Skills. This characteristic comprises a user’s creativity to for-

mulate queries, his/her ability to improve queries iteratively upon search

engine feedback, or background knowledge about the retrieval strategies of

search engines.

(4) Personal Knowledge. Even when a personal query formulation skill is highly

developed, retrieval success still depends on a user’s knowledge of the query

domain and the underlying collection (e.g. technical terms). This observa-

tion applies especially to closed collections or topic-centered collections in

corporate intranets.

87
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(5) Personal IR Tasks. Advanced personal information needs cannot be suit-

ably addressed with a keyword query approach but require the statement

of a tailored IR process. Examples include plagiarism detection, opinion

extraction, and filtering according to document quality.

We argue that the current generation of IR tools is not flexible enough to

address the above points, especially Point 5. The “course of action” in current

IR tools is hard-wired, i. e., a user is restricted to specify a query along with a

few parameters and cannot adapt or even design the retrieval process itself. We

propose an IR software architecture that follows a service composition paradigm:

Given an advanced IR problem, a tailored tool that solves this problem shall be

constructed by simply selecting and connecting services from a set of “IR building

blocks”. Our architecture allows to specify and to store personal IR tasks on a

user’s personal device and to execute these tasks in a distributed environment.

The remainder of this chapter is organized as follows. Section 4.1 relates IR

theory to IR software and motivates the service-oriented approach, Section 4.2

discusses formalisms to specify IR processes, and Section 4.3 introduces architec-

tural concepts behind Tira.

4.1 From IR Theory to IR Software

The operationalization of an IR process is far off from being a standard software

engineering task. Current implementation practice is to maintain software li-

braries that provide generic IR functionality, and to reuse them in other projects.

Although this practice has approved in general settings, the IR process design

situation comes with properties that allow for a more powerful modeling perspec-

tive:

• IR processes are composed of rather autonomous software building blocks,

which are called modules here. Basically, each module provides a service

that transforms an input data structure into an output data structure.

Examples for such modules include import filters, clustering algorithms,

validity measures, ranking functions, classifiers, language taggers, and vi-

sualization algorithms.
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• Information retrieval theory yielded different solutions for one and the

same task or for a class of related tasks.1 Examples include the differ-

ent approaches to stemming (statistical algorithms, rule-based algorithms

[106, 140]) and to keyword extraction (internal versus external methods,

corpus-based methods).

• Several tasks within an IR process are addressed with a parameterizable

base algorithm.2 Examples include the language-specific stemming and

stopword filtering [107], which take language-specific rules or word lists as

their input.

• IR processes are subject to frequent change: they are optimized, tested

with new ideas, and adapted to changing information needs.

• Typically, various parts of an IR process can be executed in parallel, es-

pecially when documents are analyzed with respect to different objectives.

An example is the intrinsic similarity analysis of a document collection with

respect to topic, to genre, as well as to writing style [61, 128, 94, 135].

• A set of standard modules, which are useful for virtually any IR process,

can be identified. Examples include modules for stemming, modules for

stopword removal, and conversion modules for binary formats like Adobe

Acrobat (PDF) or Microsoft Word.

The outlined points exhibit the modular nature of IR processes and, in par-

ticular, the benefits when this nature is actually exploited. For this we propose

a two-step procedure: In a first step an IR process is specified in a diagrammed

form; in a second step, this specification is automatically instantiated and de-

ployed as a distributed software system.

4.2 Specification of IR Processes

Consider as an example an IR task where a document shall be categorized accord-

ing to both a given topic taxonomy and a given genre taxonomy [92]. Figure 4.1

1Observe the connection to the Strategy Design Pattern described in [48].
2Observe the connections to the Factory Design Pattern and the Decorator Pattern described

in [48].
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Input: URL u, dictionary dict, stopword list stl.
Output: genre and topic class for the document at URL u.

Text ht=download(u);
Text plainText=removeHTMLTags(ht);
Text filteredText=removeStopwords(plainText, stl);
FeatureVector topicModel=buildTopicModel(filteredText, dict);

Language lang=detectLanguage(plainText);
FeatureVector presentationFeatures=buildPresentationFeatures(ht);
FeatureVector posFeatures=buildPOSFeatures(plainText, language);
FeatureVector genreModel=union(presentationFeatures, posFeatures);

int topicClass=classifyTopic(topicModel);
int genreClass=classifyGenre(genreModel);

return(topicClass, genreClass);

Figure 4.1: IR process for the sample categorization task, specified in pseudo code.

depicts a specification of the underlying IR process in pseudo code: The topic

model and the genre model that are constructed from the document found at

an URL u form the input for previously built classifiers. Note that several text

representations, including HTML text, plain text, and filtered text, are necessary

to perform the outlined task.

This kind of specification is current practice in a—what we call—library-based

modeling approach, but it does not take the nature of IR processes into account:

(1) the replacement of a module entails tedious and error-prone code and data

structure replacements, (2) it requires in-depth knowledge concerning the library,

(3) the exploitation of the concurrency between particular subtasks leads to an

inflexible design since such behavior must be hard-wired in the underlying execu-

tion model (in the form of threads or remote function calls), (4) the deployment

strategy must be hard-wired as well.

We propagate to specify an IR process at a conceptual level, by means of a

diagrammed modeling language. In the past, different modeling tools have been

proposed for similar purposes; they can be classified according to the following

scheme [143]:

(1) control flow dominant or state-oriented: finite state machines, UML state

charts

(2) data flow dominant or activity-oriented: data flow graphs, Petri nets,

marked graphs, UML activity diagrams
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(3) structure-oriented: component connectivity diagrams, UML class

diagrams, UML deployment diagrams

(4) time-oriented: UML time diagrams

(5) data-oriented: entity relationship diagrams

(6) hybrid, a combination of the above mentioned principles: control/data

flow graphs

Most IR processes can be considered as data flow dominant, i. e., they are

invoked by a user who asks to process a query, and none of the involved modules

can be executed until its preceding modules have delivered their data.

In addition to prescribing data dependencies, a modeling approach for IR

processes must allow for defining concurrency (branching and synchronization)

since parts of an IR process may be executed in parallel. Moreover, a modeling

approach should support explicit typing in order to analyze module composition

constraints with respect to input and output parameters. Finally, depending on

the modeling granularity, it can be useful to define iterations on parts of an IR

process as well as conditions on the produced data.

In the following, selected modeling tools are discussed with respect to the

specification of IR processes.

4.2.1 Petri Nets

A Petri net [102, 143] is a tuple N = 〈P, T, F, c, w, m0〉, where

• P = {p1, . . . , pm} is a set of places,

• T = {t1, . . . , tn} is a set of transitions,

• P ∩ T = ∅,

• F ⊆ (P × T )∪ (T × P ) is a flow relation; the elements in F are also called

edges,

• c : P → N ∪ {∞} is a function that defines the capacity restriction of the

places,

• w : F → N is a function that defines the edge weights,

• m0 : P → N0 is an initial marking with ∀p ∈ P : m0(p) ≤ c(p).
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Figure 4.2: IR process for the sample categorization task, specified as Petri net.

A Petri net is a bipartite graph where each p ∈ P contains up to c(p) tokens.

Places are usually displayed as circles; tokens are depicted as bullets within the

respective circles. A transition is represented as a bar, and each directed edge

from F is displayed as an arrow between the transitions and the places. The

marking m0 defines an initial distribution of tokens, which will change depending

on the firing of transitions; m : P → N0 denotes an arbitrary marking. Figure 4.2

shows a Petri net of the IR process for our sample categorization task.

Petri Net Semantics For x ∈ P ∪ T let •x = {y | (y, x) ∈ F} denote the set

of direct predecessors of x; likewise, let x• = {y | (x, y) ∈ F} denote the set of

x’s direct successors. A transition t ∈ T is called enabled under a given marking

m if

(1) ∀p ∈ •t \ t• : m(p) ≥ w(p, t)

(2) ∀p ∈ t • \ • t : m(p) ≤ c(p) − w(t, p)

(3) ∀p ∈ t • ∩ • t : m(p) ≤ c(p) − w(t, p) + w(p, t)

An enabled transition t can fire: for each input place p ∈ •t a number of

w(p, t) tokens is consumed (deleted), and w(t, p) marks are produced (added) for

each p ∈ t•.
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Discussion. In our scenario the transitions correspond to modules and the

tokens represent the data passed between the modules. Petri nets can model

sequential as well as concurrent processing, see Figure 4.2: analysis tasks run in

parallel, they may be synchronized when displaying results to a user.

Petri nets are well researched: various tools for their analysis and simulation

have been developed in the last forty years, including algorithms that determine

reachability or deadlocks in a net. However, Petri net tokens are indistinguish-

able, and hence the handling of different data types cannot be modeled—a fact,

which renders Petri nets unusable for our purposes. Another shortcoming relates

to the missing possibility to specify a processing order for the produced data: it

is questionable whether a FIFO strategy is always desirable.

To circumvent the data type restriction colored Petri nets could be employed

[65]. But even with this extension the modeling of control flows such as iterations

remains fairly restricted. Since a Petri net cannot “look inside” a token, control

flows that depend on the content of data (typical for many IR processes) cannot

be modeled.

4.2.2 Data Flow Graphs

and Control/Data Flow Graphs

A data flow graph G = 〈V, E〉 is a directed graph where each node represents a

task and where each directed edge defines a data flow between its incident nodes.

Processing semantics: a task v ∈ V can only be executed if all u ∈ V with

(u, v) ∈ E have already been executed. Figure 4.3 shows a data flow graph of the

IR process for our sample categorization task.

If Petri net transitions and Petri net places are substituted for a data flow

graph’s nodes and edges respectively, one obtains a Petri net isomorphic to Fig-

ure 4.2. Hence, the shortcomings of Petri nets still apply to data flow graphs.

However, the problem that control structures like iterations cannot be modeled

is tackled with the more powerful control/data flow graphs, CDFGs. This hybrid

approach complements data flow graphs with control flow edges, which can be

used to model control flow alternatives as well as iterations. Typically, control

flow edges define alternative paths of which exactly one is followed according to

a condition.
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Figure 4.3: IR process for the sample categorization task, specified as data flow graph.

Discussion. CDFGs are powerful enough to model complex IR processes that

include branching and iterations. However, the data flow component in Figure 4.3

shows that data types as well as synchronization are only implicitly modeled, by

means of labeled edges. This deficit is addressed within the following, more

intuitive UML modeling approach.

4.2.3 UML Activity Diagrams

The UML activity diagrams [100] combine novel ideas from Web service flow

languages like BPEL [7] with traditional concepts like the token concept from

Petri nets in order to specify control flow and data flow between so-called actions.

In particular, action nodes, object nodes, and control nodes are connected with

directed edges that specify either a data flow or a control flow [58]. Figure 4.4

shows an activity diagram of the IR process for our sample categorization task.

Similar to CDFGs, actions nodes represent tasks, which are software modules

in our modeling scenario. Object nodes may be placed between action nodes,

symbolizing data objects that are transferred between action nodes. Alterna-

tively, connectors, called “pins”, which are attached to the action nodes, can

specify the data type that is accepted as input or produced as output by an

action node.

Control nodes further divide into decision nodes, merge nodes, fork nodes,

and join nodes. Decision nodes delegate control flow exclusively to one of several
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Figure 4.4: IR process for the sample categorization task, specified as UML activity
diagram.

possible branches, depending on a condition that is bound to the node; their coun-

terpart are the merge nodes. Concurrency is modeled with fork nodes and join

nodes; they indicate the concurrent execution and the subsequent synchroniza-

tion of control flows and data flows. Finally, buffer nodes, which are specialized

object nodes, can be used to define a buffering strategy for concurrent processing.

An activity diagram may be partitioned into so-called “swimlanes” in order to

group nodes and edges according to common properties. Such logical groups are

oriented at the user-defined semantics (a closed sub-retrieval-task for example)

and allow for the structuring of complex IR processes.

Discussion. Apart from being intuitive, UML activity diagrams are widely ac-

cepted as modeling tool. Moreover, advanced concepts that allow for the modeling

of data streams, parameter sets, stereotypes, action and time events, exceptions,

and exception handlers render this diagram form ideal for our purposes. In the

upcoming UML 2.1 specification, conditional nodes and iteration nodes, which re-

mind of block diagram elements, will probably be included, making UML activity

diagrams even more intuitive for modeling control flows.
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4.3 Operationalizing IR Processes with Tira

In terms of the model driven architecture (MDA) paradigm, an IR process spec-

ified with a UML activity diagram can be considered as a platform independent

model (PIM) [98]: UML activity diagrams are not bound to programming lan-

guages, operating systems, middleware, or system architectures. Consequently,

to make an IR process operable, a target platform has to be chosen, and the PIM

must be transformed into an executable platform specific model (PSM).

In this context a platform denotes the next (lower) abstraction layer on which

a particular model is represented in a more concrete form. For example, J2EE

and CORBA are possible platforms for a business process implementation, and,

the Java Development Kit in turn is a possible platform for a CORBA imple-

mentation. As the latter example shows, the transformations along descending

platform layers prescribe the path by which a PIM is rendered executable. The

OMG denotes a platform that is in-between the PIM and executable code as

middleware platform [98].

Operating system

Java Development Kit

XML
object

serialization

XML
object

visualization

PIM specification

PSM generation

Middleware
platform

Computing
platform

IR module library

Web service abstraction

UML activity diagrams:
 compilation, deployment, processing

UML activity diagrams: 
GUI, modeling, management

TIRA

Figure 4.5: The layer architecture of Tira on top of a computing platform. The IR
module library is not part of Tira but provides an open and extensible container for
IR-related algorithms and data structures.

Just as in other MDA-based application scenarios our objective is to define,

to develop, and to implement the transformation of the PIM towards a lower

platform layer. However, in contrast to many MDA-based application scenarios

we are not interested in the handling of a variety of middleware platforms and

their related transformations, but in the development of a particular middleware

platform that is suited to execute personal information retrieval tasks. Put an-
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other way: Our focus is on rapid prototyping, reduced turn-around times, and

minimized effort for implementation and test.

Figure 4.5 shows our implemented proposal for the layer architecture of Tira:

The input PIM is an IR process, modeled as UML activity diagram; a PIM can be

compiled and deployed, becoming an executable PSM this way. Modules with the

core IR functionality are comprised in an open IR library; the library encapsulates

the modules as Web services to make them transparently usable from a PSM via

remote function calls (see also [95]). Data objects that are required or produced

by the IR modules are materialized as XML objects.

4.3.1 From PIM to PSM

An activity diagram, either loaded from file or modeled interactively with the

Tira GUI, is represented as an object structure in computer memory. The

structure is oriented at the UML meta-model [99] and reflects the important

elements of activity diagrams, i. e., there are instances of action nodes, fork nodes,

etc., which are interconnected by data nodes. The action nodes are bound to IR

modules, which in turn are encapsulated as Web services; the data nodes are

bound to XML objects.

Figure 4.6 shows the part of Tira’s class design that models how action nodes

are simulated. Instead of modeling an IR module as subclass of the action node

class, action nodes are instantiated using a factory class and configured with a

symbolic action name. The factory class looks up the URL of the Web service

that is associated with the action name at Tira’s service registry and provides

the action node instance with this URL. Each IR module that is registered in the

service registry comes with a self-description in XML format: input as well as

output data types are specified in XML schema. This approach keeps Tira open,

since it allows for registering and executing new IR modules without recompiling

Tira’s source.

The object structure is provided with a Petri-net-like token semantics. Sim-

ulating the activity diagram means to check the availability of an action node’s

input data, to allocate processing resources, and to call the corresponding Web

service. On delivery of a Web service result, the associated data tokens are prop-

agated in the object structure.
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Figure 4.6: A part of Tira’s software design given as UML class diagram.

4.3.2 The Tira Middleware Platform

The functions in the IR module library take objects as input and return new

objects. Instead of supplying the Web service stubs with serializations of these

objects, parameter passing is realized with the call-by-name paradigm in its most

generic form: a parameter must be a URL, pointing to a serialized XML rep-

resentation of the respective object. This approach comes with the following

advantages.

(1) When executing an IR process, a client needs not to transfer the interme-

diate data between two Web service calls; instead, an invoked Web service

fetches the data directly from the given URLs, resulting in reduced data

transfer costs.

(2) When two consecutive modules are executed whose corresponding Web ser-

vices are located on the same server machine, data transfer costs are even

lower since the XML files can be directly accessed.

(3) The transfer of URL references instead of data objects enables low-bandwidth

machines to be fully functional clients. In particular, home users are able

to execute personalized IR processes.

(4) The use of URLs opens the entire World Wide Web as address space for

data hosting and data sharing.

Because of the broad acceptance of XML the serialization of data objects as

XML streams is the means of choice for data exchange. Within Tira powerful
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Figure 4.7: The left screenshot shows our meta search engine, AIsearch, whose under-
lying IR process is defined in Tira. The right screenshot shows the Tira editor for
the specification of activity diagrams.

parser generation tools and an XML language binding (JAXB) are responsible

for the reading and writing of XML object streams [142].

Intermediate data that is produced during the execution of an IR process is

made available for visual inspection, which helps debugging IR processes and lets

a user reason about the underlying process. For this purpose the XSL transfor-

mation technology is intensively used in Tira; XSL stylesheets are easy to adapt

and to maintain, and they are suited to produce any desired format from the

data.

4.3.3 Tira at Work

Figure 4.7 (left) shows a screenshot of our meta search engine AIsearch, rebuilt

as a Tira application. AIsearch takes as input a keyword query, meta searches

commercial Web search engines, and categorizes the found documents according

to the identified topics [91]. The underlying IR process extracts the delivered

snippets, removes stop words, and stems the remaining words before compressed

term vectors are built. Based on the term vectors, a clustering with the Ma-

jorClust algorithm [139] is generated, and, for browsing purposes, meaningful

text labels for the clusters are constructed with with a statistical text covering

algorithm.

Figure 4.7 (right) shows a screenshot of the Tira activity diagram editor,

which is implemented as a Java applet. The left hand side of the applet shows

a selection of available IR modules. A double click instantiates a module, which
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is then displayed graphically on the right hand side of the Applet. The arrows

between the modules display the data flow. A click on a data node invokes

the associated XSL transformation, which translates the corresponding data to

XHTML and displays the results in a browser.

4.4 Concluding Remarks

IR processes have become ubiquitous, be it in the form of search engines at home

or at work, on mobile devices or on workstations, or as retrieval components in

file systems, document repositories, databases, or knowledge management tools.

The reason for this pervasiveness is the growing information need, the diversity of

IR tasks, and the desired degree of personalization. Although specialized retrieval

algorithms have been developed in the past, less work has been done on modeling

and operationalizing IR processes from a software engineering point of view.

This chapter contributes to this aspect. Starting from a discussion of modeling

approaches for IR processes we introduced Tira, a flexible MDA solution for the

rapid prototyping of tailored IR tools. Tira allows a user to model an IR process

as UML activity diagram, which can be transformed to a problem specific model

and, based on the Tira middleware platform, executed by the press of a button.

Currently, Tira is a research prototype and further extended and enhanced

in our working group. The Tira approach is rather independent of particular IR

algorithms and data structures; it is intended to be built around an existing IR

module library.
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Conclusion and Outlook

Today, the prevailing form in which search results are presented when querying

document collections is as a list of document snippets. Analyses of human search

behaviour have shown that most keyword queries are short queries—a fact that

leads to long result lists that comprise mainly irrelevant hits. Since human ca-

pabilities in information processing are rather limited, this form of search result

organization and presentation is questionable. A technique which contributes to

solve this problem is document categorization.

Categorization according to topic.

The performance of unsupervised document categorization algorithms is strongly

influenced by the underlying document representation. We introduced the suf-

fix tree document model along with new similarity measures, which compile full

term order information into the similarity values. Experiments have shown that

this model is able to substantially improve the unsupervised categorization per-

formance.

Clustering algorithms require parameters such as the desired number of clus-

ters, density thresholds, and neighborhood specifications. The choice of these

parameters affects the clustering quality to a great extent. We introduced ρ,

an internal cluster quality measure, which allows us to compare the quality of

clusterings in an unsupervised manner. In particular, it finds the best categoriza-

tions in a set of clusterings, each of which has been generated by trying different

clustering algorithms or parameters. The experiments have shown that ρ corre-

lates better with the F -Measure with respect to reference categorizations of test

collections than traditional validity indices.

101
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A categorization has to be presented to a user, i. e. the category structure

must be visualized, and topic labels for the found categories must be identified.

We formalize desirable properties for category labels and propose the Weighted

Centroid Covering algorithm for topic identification. The results of our ambitious

experiments are convincing: precision rates between 50% and 75% for up to five

extracted topic labels have been achieved. Our new evaluation methodology

renders performance measurement reproducible and comparable.

Categorization according to genre.

Document categorization according to genre is considered useful by the vast ma-

jority of search engine users; in particular, over 90% of 286 interrogated students

considers genre categorization in connection with Web search very useful or some-

times useful.

We identified strong features that allow for building expressive document rep-

resentations for genre classification. Feasibility studies have shown that a mul-

ticlass classification with eight classes using a discriminant analysis can be done

at a convincing average performance of about 80% classified correctly. If a single

genre category shall be distinguished from the remainder, the classification per-

formance is around 95%. Personalized classifiers achieve error rates in the range

between the two mentioned figures.

Software engineering for personalized IR.

Although IR processes exhibit a modular nature, little work has been done in the

intersecting fields of software engineering and information retrieval. We propose

Tira, a model driven architecture (MDA) approach for IR process specification

and operationalization. This technology separates IR process specification from

implementation, and it allows to rapidly develop new prototypes, to quickly adapt

IR processes to personal preferences, and to test new ideas at the push of a button.

What comes next?

The first commercial meta search engine that clustered search results was Viv́ısimo 1.

Although there are other products that provide categorization functionality2,

1http://www.vivisimo.com
2e. g. http://www.turbo10.com

http://www.vivisimo.com
http://www.turbo10.com
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Viv́ısimo convinces with robust and mature clustering technology. However, like

the suffix tree document model, the new validity inices, and the analysis of the

STC heuristic has shown, there is still room for optimizing categorization perfor-

mance.

Meanwhile, two-class genre search engines have evolved; they include Froogle3,

a search engine for shops, and Google Scholar4, an article search engine. However,

there is still no Web search engine that lets a user specify which genres to include

or exclude from query results. We expect that a search engine providing such a

functionality would be widely appreciated. However, to put such an engine to

work, it is advantageous to classify documents according to genre at indexing

time since an on-the-fly computation of the according document representation

may be too expensive in terms of runtime.

Tira performs well in our labs; however, it must stand the industry test,

and the modeling granularity must prove to be practical in a wider range of

application scenarios. Also, a deployment of the PIM that is given in the form of

a UML activity diagram to high-performance platforms would be interesting to

investigate; e. g. theoretical models for the automatic deployment of IR process

components to architectures like P2P nets, cluster computers, or grids would be

interesting. In particular, the associated tasks to estimate job lengths opens a

new field in IR; likewise, performance guarantees would be highly appreciated,

especially in distributed commercial applications.

3http://www.froogle.com
4http://scholar.google.com

http://www.froogle.com
http://scholar.google.com
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