Belli (Ed.): Proceedings of the IEA/AIE ’92, Paderborn
5th Int. Conf. on Industrial & Engineering Applications of AI
Lecture Notes in AI, pp. 441-450, 1992, Springer. ISBN 3-540-55601-X

441

A Theoretical Framework for Configuration*

O. Najmann B. Stein
FB 17, Praktische Informatik, Universitat-GH-Paderborn

Abstract: We develop a general theory of configuration and give a precise method-
ology for studying the phenomenon of configuration from a viewpoint which is indepen-
dent of any knowledge representation formalism. One main result is that we show that
the classical skeleton-oriented approach and the resource-oriented approach are in some
sense equivalent. We formulate a number of typical configuration problems, like finding
a cost-minimal configuration, and show the NP-completeness of one of them.

1 Introduction

Manufacturers of complex technical systems are faced with the problem to satisfy
the exceptional demands of their customers in order to stay competitive. Due to the
enormous number of possible variants, the process of configuring a technical system
became a sophisticated problem. Therefore, many systems have been developed which
assist humans in this process. However, only few attempts have been made to formally
analyze the nature of typical configuration problems.

The main contribution of this paper is that it provides two models of configuration.
A basic idea of these models is that all involved parts of the technical system are solely
described by their functionalities. Since we want to describe the configuration problem
in a general way, the presented approach does not presuppose any particular knowledge
representation formalism.

The paper is arranged as follows: First, a short introduction to configuration prob-
lems is given and the idea of a formal description is motivated. Second, two models, M1
and M2, are presented. Model M1 allows to formulate resource-oriented configuration
problems [Heinrich, 1991; Stein & Weiner 1990|, while model M2 allows to formulate
skeleton-oriented configuration problems [Puppe, 1990]. Several problems that can be
formulated under these models are presented. Although model M2 additionally contains
restriction rules, it is shown that M1 and M2 are equivalent. This means that it is
principally possible to transform explicit knowledge about the structure of a technical
system into a set of object functionalities without loss of information. Finally we consider
the computational complexity of configuration and show that the general configuration
problem is NP-complete.

The operational point of view. Configuration problems are characterized by the fact
that the solution (which is the completely configurated object) is composed of smaller
subobjects. A typical example is the configuration of computers: Particular components
such as a harddisk, a processor, etc. are given. The problem is to select components in
such a way that their composition fulfills a customer’s demand.

A lot of studies in the field of configuration deal with technical aspects of the problem,
i.e., description of ideas, concepts, and techniques how a certain configuration problem
can be solved. Such a pragmatical, teleological point of view is justified. It is caused by
the complexity of the general problem “configuration”; most of the configuration systems
represent solutions of particular cases.

442

In this context, PLAKON [Cunis et al., 1991] seems to be the highest developed sys-
tem dealing with configuration tasks. Also AMOR (cf. [Tank et al., 1989]), a description
language for technical systems, should be mentioned here. Brown and Chandrasekaran
[1989] developed DSPL, a knowledge representation language for routine design prob-
lems.

A theoretical approach. Rather than specifying a particular method of processing
or acquiring configuration knowledge, we aim at a formal description of general con-
figuration problems. Such a description could be used to distinguish between different
configuration approaches or to compare certain configuration problems with respect to
their complexity. One approach, pointing at a similar direction, is the configuration
model of Dérner [1991].

In our approach, the central idea is the notion of functionality. Objects are described
solely by functionalities. When objects are selected, functionalities are composed in order
to specify the functionality of the whole system. Because of the functionality-centered
approach, our model is especially appropriate to describe problems where the selection
of components comes to face.

Definition: A configuration problem consists basically of three things, (i) a set of objects,
(ii) a set of functionalities which are used to describe certain properties of these objects,
and (iii) a set of demands which describe the desired properties of the system to be
configured.

2 Model M1

Subsequently, we give a formal definition of the notion configuration problem. We
will distinguish between the problem itself and the notion configuration, which is viewed
as the solution of a particular configuration problem.

The system MOKON [Stein & Weiner 1990] operationalizes important parts of model
M1. So, the given formalization can be used to distinguish between different classes of
configuration problems on the one hand as well as to determine limits of particular
domain descriptions on the other (regarding their computer-supported solution).

Definition: A configuration problem II is a tuple (O, F,V, P, A, T, D) whose elements are
defined as follows:

e O is an arbitrary finite set, it is called the object set of II.
e Fis an arbitrary finite set, it is called the functionality set of II.

e For each functionality f € F there is an arbitrary finite set v, called the value set
of f. V.= {vs|f € F} comprises these value sets.

e For each object o there is a property set, p,, which contains pairs (f,), where
(i) f € F and z € vy, and (ii) each functionality f € F occurs at most once in
Do- A property set specifies the values of certain functionalities of a given object.
P = {p,|o € O} comprises these property sets.

e For each functionality f there is an addition operator ay which is a partial function
af : vy X vy — vf. An addition operator specifies how two values of a functionality
can be composed to a new value if a new object is added to a given collection of
objects which themselves describe a part of the system to be configured. A =
{af|f € F} comprises all addition operators.

443

e For each functionality f there is a test t; which is a partial function ¢ : vy X vy —
{TRUE, FALSE}. A test ¢; specifies under what condition a demand (see below)
is fulfilled. T = {ts|f € F} comprises all tests.

e D is an arbitrary, finite set of demands. Each demand d is a pair (f,z), where
f € F and = € vy. Additionally, the demand set must have the property that no
functionality occurs more than once in D. A demand set D describes the desired
properties of the system to be configured.

Remarks: O contains objects which can be composed to a system meeting a certain
requirement. For example, if we had to configure a computer system, then typical
objects of O would be a harddisk, a CPU, a power supply, etc.

Furthermore, functionalities describe certain properties of the objects in O. For
example, the harddisk may have the functionalities “capacity,” “access time,” etc. Then
for example, Veapacity ={10,20,30,40} [Megabytes].

A typical example of an addition operator is the calculation of the entire capacity of
a set of harddisks. For example, acapacity can be defined as follows (where the symbol L
is used wherever Geapacity is undefined):

z+y, if x4y <40;
Gcapacity (T,) = { 1 otherwise.

3

The addition operator in this example can be used to allow multiple use of a hard-
disk in order to increase the amount of harddisk capacity. An addition operator needs
not necessarily specify an addition between two numbers, but any kind of operation is
possible.

Every object o € O is characterized by its set of properties, p,. For example, a
particular harddisk can have the following set of properties: phardaisk = {(capacity, 10),
(access-time, 7)}. Note that every functionality can occur at most once in a property
set.

Since we have to compose the values of functionalities with respect to a given demand,
it is necessary to introduce a test ¢ for each functionality f € F. For example, a typical
test for “capacity” is the “>” predicate.

An example of a demand set is D = { (capacity, 30), (mouse, yes), (keyboard,
english) }.

So far we have only defined the notion “configuration problem”; now we have to define
what a solution of such a problem is.

Definition: A solution of a configuration problem must fulfill two conditions: 1. It must
be a configuration, which is defined below. 2. This configuration must meet all demands
of the demand set D.

A configuration contains both, objects and functionalities. Before we give an induc-
tive definition of a configuration, we define how properties can be composed.

Definition: Let (f,x), (g,y) be two properties.

o ={ (o BISe

is called the composition of the properties (f,x) and (g,y).

444

Remarks: The composition of two properties is a set. This set contains either a single
property if the functionalities are equal, or it contains these two properties if they are not
equal. The rationale of this composition is as follows: If two objects, which have some
properties in common, are included in a set containing the configuration objects, then it
is necessary to “compute” the values of these properties in some way. The computation is
done by the addition operator. If the addition operator is not defined for the given value
constellation, these two objects may not both occur in the set of configuration objects.
For example, the definition of acapacity does not allow two 40 Megabyte harddisks.

According to our definition, a configuration must specify 1. which objects are parts
of the system to be configured, and 2. the entire functionality of the system.

Therefore, a configuration is a pair C' = (I, Q), where I is a set of items of the form
(k,0) and @ is a set of qualities of the form (f,). An item (k, 0) means that object o € O
is used k times in the configured system. A quality (f,z) means that the configured
system has the functionality f with value x.

Although qualities and properties are syntactically equal, we distinguish between
them since a property is the feature of an object, while a quality (f,z) is the result of
the composition of several objects having the functionality f in their property sets.

Based on the above definition of composition, we are now ready to formally introduce
the notion configuration.

Definition: Let I1 = (O, F,V, P, A, T, D) be a configuration problem. A configuration C
is inductively defined as follows:

1. C = (0,0) is a configuration.

2. If C = (I,Q) is a configuration and o is an object of O, then C' = (I’,Q’) is a
configuration if the following conditions hold:

(i) For every (f,x) € p, and for every (g,y) € @, the composition ¢ ((f,x), (g,y))
is defined or @ = 0.
(i)
=L IR0 U{(k+1,0)}, 3(k0) €l
| TU{(1,0)}, otherwise.

(iii)
[e(fi2),(9:y), Q#W;
Q B { Do Q =0.

3. Nothing else is a configuration.

Remarks: Condition (i) guarantees that only those objects o € O are added to a given
configuration C' if all object’s properties p, can be combined with all qualities of C.
Condition (ii) specifies how one new object can be added to a given set of items I.
Condition (iii) specifies how a new set of qualities can be constructed if a new object is
added to the configuration.

Next we give a precise definition of the notion solution of a configuration problem.

Definition: A configuration C' = (I,Q) is a solution of a configuration problem
IT = (O,F,V,P,A,T,D) if and only if for each demand d = (f,x) € D there ex-
ists a quality ¢ = (g,y) € Q such that f = g and ¢;(x,y) = TRUE. The set
S(IT) = {C'| C is a solution of II} is called the solution space of II.

445

Remarks: The above condition guarantees that all demands are fulfilled. Generally there
exists more than one solution of a configuration problem II. Sometimes S(II) is called
the “space of variants.”

General configuration problems
Based on the above definitions, the following problems may be stated:

Problem CONF
Given: A configuration problem II.
Question: Does there exist a solution of II 7

Problem FINDCONF
Given: A configuration problem II.
Task: Find a solution of II, if one exists.

Problem COSTCONF

Given: A configuration problem II, a cost function ¢ : O — Q, and maximum cost
cteqQ.

Question: Does there exist a solution C' = (I, Q) of Il such that }Z, , crkc(o) < c*7?

Note that each of the above problems is essentially a combinatorial problem.

3 Model M2

We will now extend our model M1 in that way that we introduce rules. These rules
may be interpreted as installation restrictions. For example, one would like to formulate
the rule “If harddisk A is used, then either controller B or controller C must be used.”

Definition: 1. Let O be a set of objects and N = {1,...,k}. Let I'(N,O) = {[n,0] | n €
N, 0 € O} denote the set of Boolean variables over N and O. A configuration restriction
rule r is an implication [n, o] — ¥, where [n, 0] € T'(N, O) and v is a logical formula over
I'(N, O) using parentheses, ‘=7, ‘A’ and ‘V’ in the standard way. A rule set R is a finite
set of configuration restriction rules over I'(N, O).

2. Let O be given as in 1. Let C = (I,Q) be a configuration, where I C N x O.
A configuration assignment oy is a function oy : T'(N, O) — {TRUE, FALSE} such that
for every [n, o] € T'(N, O):

(In, o]) = TRUE, if (n,0) € I;
I\, o) = FALSE, otherwise.

3. A configuration C = (I, Q) is called satisfying for a rule set R if and only if every
rule 7 € R is true under the assignment «; using the known semantics of propositional
logic.

Remarks: The semantics of a restriction rule is perhaps best explained by the following
example: Let r = [1, A] — ([2, B] A—[1,C]) V [3, D]. The meaning of r is: “If a config-
uration contains exactly one object A, then the configuration must contain either two
B’s and not one C or three D’s.

Definition: A configuration problem under model M2 is a tuple I = (O, F,V, P, A,
T, D, N, R) where all elements but N and R are defined as in model M1, and R is a set
of configuration restriction rules over T'(IV, O). A configuration C = (I, Q) is a solution
of Il if and only if for every demand (f,x) € D there exists a quality (g,y) € @ such
that f = g and t¢(z,y) = TRUE and C is satistying for the rule set R.

The above problems CONF, etc. can be formulated in a similar way for model M2.

446

4 Is model M2 more powerful than model M17?

Model M1 is suitable to model a resource-oriented configuration problem, while model
M2 is suitable to model a skeleton-oriented configuration problem. Many systems are
built upon the skeleton model. If II is a problem under model M2, then the skeleton of
the configured system can be derived from the rules of II. The skeleton is the digraph
G = (V,E) with V = O and (0;,0;) € E if there is a rule which contains o; in its
left-hand side and o; in its right-hand side. In typical applications, the digraph is a tree,
and a configuration problem is then solved by a top-down strategy.

The model M2, which additionally contains a mechanism to express structural knowl-
edge, seems to be more powerful than the pure resource-oriented model. However, as
the following results shows, this is not the case. This is quite surprising since one ex-
pects that the rule language enables us to formulate more sophisticated configuration
problems.

A central theorem of this work is the following.

Theorem A: Let II be any instance of problem CONF under model M1 (M2). Then
there exists an equivalent instance II' of problem CONF under model M2 (M1) which
can be obtained in polynomial time in the size of II.

Corollary: Theorem A is also valid for the problems FINDCONF and COSTCONF.

We only prove the theorem, the corollary then follows immediately from the proof.
(Readers not interested in the proof may continue with the example of the next section.)

Proof: Part I: Let I = (O, F,V,P, A, T, D) be an instance of problem CONF under
model M1. Trivially, let R:=0, N := {1} and let I := (O, F,V, P, A,T, D, N, R).

Part II: Let IT = (O, F,V, P, A,T,D,N,R) with N = {1,...,k} be an instance of
problem CONF under model M2. We have to show that there exists an instance IT’
of problem CONF under model M1 such that IT has a solution if and only if II' has a
solution.

We construct II’ as follows. The basic idea of the proof is that the rules are replaced
by new functionalities and new tests whose behavior is equivalent to these rules.

First, R is transformed into a logically equivalent set R which contains only 3CNF
formulas (i.e., propositional formulas in conjunctive normal form where each clause has
at most 3 literals).

This transformation is performed in two steps. First, a transformation technique
due to Tseitin [1983] is used to transform each rule into a logically equivalent propo-
sitional formula in conjunctive normal form. This step requires the introduction of

new variables, I' = {[1,01],...,[1,07]}. Second, every formula obtained from step
one is transformed into an equivalent 3CNF formula by introducing the new variables
I ={[1,61],...,[1,05]}. Note that both transformations can be made in quadratic time
and linear space. Let I' = (N,0) UT UT.

Thus, every rule r € R is transformed into a set 3CNF(r) = {ry,...,rs} such
that r is satisfiable if and only if every formula r; € 3CNF(r) is satisfiable. Let R =
U,cr 3CNF(r).

The introduction of the new variables implies that the new object set O’ is defined
as O':=0UO0OUO, with O ={061,...,0r} and O = {61,...,0s}.

1. For every r € R we construct a new functionality g, whose values are sets(!). For
each o € O’ which occurs in a rule r € R, we define the property set of o with respect

to g, as g.(0) :=={(1,0)}.

447

2. We define the following “union” of an item set X and a singleton {(1,0)}, 0 € O’, as
follows:

X\ {(n,0)}U{(n+1,0)}, if o€ O and o occursin X and n < k;
X\{(n,0)}Uu{k+1,0)}, ifoe O andooccursin X and n > k;
X, ifonUOandooccursinX;

X U{(1,0)}, otherwise.

Xuw{(l,0)} =

This “union” function will subsequently be used to construct the value sets of the
new functionalities.

3. The value set v, is inductively defined as follows. Note that A is a help variable.

(i) If o occurs in 7, then g.(0) € A.

(iii) Nothing else is in A.
i

)
(ii) If X € A and o occurs in r, then X W {(1,0)} € A.
)
(iv) vg, == AU{r}.

Note that v,, contains both sets of number/object pairs and the rule r itself. Also note
that the computation of v, can be made in a finite number of steps since k£ + 1 bounds
the number n that can occur in a pair (n,0) which itself occurs in a set X € v,,.

4. As a demand d, for r we define d, := (g, 7).

5. For g, we define the test ty, as follows, where ¢,, (X,Y") is only defined for X = r and

Y e v, \ {r}:
£y (1Y) = TRUE, if r is true under ay;
g\t = FALSE, otherwise;

where @y is restricted to the variable set T, = {[n,0]|n < k + 1, and o occurs in r}.
Note that other variables than those in I';,. cannot occur because k41 bounds the number
n.

6. Next we define the addition operator a,, for functionality g, as follows: a4, (X,Y) is
only defined for X € vy, \ {r} and Y € {g,(0)]o € 7}: a4, (X,Y) =X WY.

7. Henceforth, let p(0) = {(gr, 9,(0)) |7 € {r € R|o occurs in r}
8. The elements of II' := (O', F', V', P', A’, T', D) are now defined as follows:

0 = 0uouo,

F' := FUFg, where Fg := {g,|r € R},

V' = VUVg, where Vi := {v,, |r € R},

P = {peUp(ollo€ O} U{p(o)lo e DUO)
A" = AU Ag, where Ap = {ay,, |r € R},

T' = TUTg, where Ty :={t, |7 € R},

D' := DU Dg, where D :={(g,,7)|r € R}.

Case A. We have to show: If C' = (I, Q) is a solution of II, then there exists a solution
C' = {I',Q") of II'. We show that there exist an item set AT and a quality set AQ such

448

that I' = TUAIL Q' = QUAQ, and C' = (I UAI, QU AQ) is a solution of IT". Due to
this construction of I’ and since D’ = D U Dpg, we need only consider the “difference”
demands Dg. (The original demands D are satisfied by I.)

We have to construct a AI in such a way that I’ induces a quality set AQ with the
following characteristic: For each d = (g,,r) € Dg there exists a property (g,,Y) € AQ
with t,, (r,Y) = TRUE.

Let d = (g,,7) be any demand of D where r € R is a 3CNF rule of the form
r=10VieVigwith l; € {[n,0]]|[n, 0] € I"}U{=[n, 0] |[n,0] € I'}. Note that r is satisfied
if some [; is satisfied. Since C' is a solution of II, it follows that all rules r € R are
satisfied. Hence, all 3CNF rules in R are satisfiable by some truth assignment a;:. Note
that a; C o; this guarantees that an object o € O occurs with frequency n in I if and
only if object 0 occurs with frequency n in I’. Without loss of generality, we can assume
that {1 (= [n1,01]) is satisfied under «j.

Case Al: Let 01 € O. If I3 = [n1,01] then g/ ([n1,01]) = TRUE, hence (n1,01) must
occur in I. The definition of a4, (cf. the “w-operator”) guarantees that a Y € v, with
(n1,01) € Y is inevitably constructed as the quality value of g,. If [= —[nq1,01] then
ay([n1,01]) = FALSE (hence (n1,01) € I). Now, either (mq,01) € I with m; < n; or
my1 > ny, then (my,01) € Y, or 01 does not occur in I at all and (mi,01) € Y. As
before, an appropriate Y € v, is constructed as the quality value of g,..

Case A2: Let o € OUO. Ifl; = [n1,01] then ap ([1,01]) = TRUE and we put
(1,01) in AI. The quality value Y of g, will contain (1,01). If I = —=[1,01] then
ar([1,01]) = FALSE and o; is not allowed to be in AI. Hence, the quality value Y of
gr cannot contain (1, 01). So, AT is defined as the collection of all tuples (1, 01) found in
case A2. Furthermore, let the g, (with r € R) and their corresponding Y form the set
AQ. As seen above, with these definitions of AQ and AT it is guaranteed that for each
d = (gr,r) € Dpg there exists the quality (d,,Y) € AQ such that ¢, (r,Y) = TRUE.

Case B. We have to show: If C' = (I’, Q') is a solution of II’, then there exists a solution
C = (1,Q) of TI. Since C" = (I, Q") is a solution of II’, all demands in D' = DU Dg, are
satisfied. Let I = {[n,0]| o occurs in O} and let AQ = {(f,z) € Q| f € po,0 € OUO}.
1. Clearly, C = (I, Q" \ AQ) satisfies all demands d € D since objects which occur
in I’ \ T have no properties for which a demand d € D exists.
2. To see that C = (I,Q" \ AQ) satisfies all rules r € R, one need only consider the
above transformation which guarantees that aj is a satisfying truth assignment since

ar Cap and R <— R. o

5 Skeleton-oriented configuration

In this section we give an example of a skeleton-oriented configuration problem for-
mulated under model M2. Although a configuration problem and its solution strongly
depend on particular aspects of the application, this example gives an idea how a hier-
archical organized configuration problem can be described.

One characteristic of the skeleton-oriented configuration is that the solution space
can be described by a hierarchical graph with two kinds of nodes: AND-nodes and OR-
nodes (cf. Puppe [1990]). An AND-node indicates that each direct successor of this
node must be selected in the configuration process (more general: to solve the whole
problem, each subproblem has to be solved); an OR-node describes mutually exclusive
alternatives. The skeleton-oriented configuration approach is appropriate, if we want to
configure a system which has always the same basic structure.

449

In the following example, the task is to configure a tower which has always three
planes: An A-plane, a B-plane and a C-plane. For each plane there exists a particular
kind of building blocks (A-blocks, B-blocks and C-blocks). Furthermore, the building
blocks of the tower have to fulfill the following restrictions: For both plane A and
plane B exactly one block of the appropriate kind must be selected. Plane C has to be
constructed with at least one C-block where C3 cannot be combined with any of the
other C-blocks. If block C2 is used once, block Bl is not allowed to occur once in a
configuration. The goal is to build a tower with a given height and minimum cost. The
following figure describes the building blocks which can be used to construct a tower.

Block Height Cost

m

QOB

AW

DWNUTW AN
> | w

To describe this problem as a hierarchical configuration problem, we introduce particular
“dummy blocks” S, A, B, C which have no properties. With the new building blocks,
the configuration restrictions are described by the following rules:

— [LD] v [1,C3], [1D] — [L,C1] Vv [2,C1] v [1,C2] v [2,C2], [1,C2] — = [1,B]]

The set of objects is O = {S,A,B,C,D,A1,A2,B1,B2,C1,C2,C3}, and the set of function-
alities is F' = {height}

With the specification of the transformation of model M2 into model M1 (see Section 4),
we are now able to reformulate this configuration problem as a problem which solely bases
on functionalities and their computation. We do not want to perform this transformation
explicitly since we gave examples for single transformation steps in Section 4.

In the reformulated problem, the dependencies between the objects must be derived
from their properties. There is an edge between those objects which share at least one
functionality.

The following figure shows the original configuration problem and its concrete refor-
mulation. It illustrates in which way the transformation of M1 into M2 comes to effect.
The transformation of the above rules yields eight new functionalities g1,...,g9s. In
the picture, both functionalities and configuration objects are vertices; an edge (0;, g;)
indicates that the object o; has the functionality g; in its property set.

/A\ AND-Node
O Object
OR-Node .
/\ <> Functionality Height

450

6 A complexity consideration

We present in this section a result regarding the computational complexity of CONF.
Note that all other problems are at least as hard as CONF.

Theorem B: Problem CONF is NP-complete.
Lemma C: Problem CONF with restriction rules (CONFg) is NP-complete.

The theorem and the lemma are proven in [Najmann & Stein 1992]. The basic idea of
the proof is to transform 3SAT (which is NP-complete, [Cook, 1971]) to CONF g and to
apply the equivalence results of section 4.

Summary: We have developed two models of configuration, M1 and M2. Model M1 allows to
formulate typical ressource-oriented configuration problems, while model M2 allows to formulate
skeleton-oriented configuration problems. Model M2 was obtained by augmenting model M1
by a restriction rule language. Although model M2 seems to be more powerful than M1, it
was shown that both models can be transformed into each other in polynomial time. That
means that there is principally no difference between the classical configuration approach and
the ressource-oriented approach. Under both models, we have formulated a number of typical
configuration problems like the problem of finding a cost-minimal configuration. We have also
noted that the fundamental problem, namely to decide whether there exists a configuration for
a given problem specification, is NP-complete.

References
Brown, D. C.; Chandrasekaran, B. [1989] Design Problem Solving, Pitman.
Cook, S. [1971] “The complexity of theorem-proving procedures”, Proc. 3rd Ann. ACM

Symp. on Theory of Computing, Association for Computing Machinery, New York, pp. 151—
158

Cunis et al. [199]1] Das PLAKON-Buch — Ein Expertensystemkern fir Planungs- und Kon-
figurierungsaufgaben in technischen Domdnen, Springer Verlag, Berlin.

Doerner, H. [1991] “Ein Modell des Konfigurierens” Beitrige zum 5. Workshop “Planen und
Konfigurieren”, LKI-M-1/91

Heinrich, M. [1991] “Ressourcenorientierte Modellierung als Basis modularer technischer
Systeme,” Beitrige zum 5. Workshop “Planen und Konfigurieren”, LKI-M-1/91

Najmann, O., Stein, B. [1992] “Modeling resource-oriented configuration problems.” Internal
report, University of Paderborn.

Puppe, F. [1990] Problemlésungsmethoden in Ezrpertensystemen, Springer Verlag.

Stein, B.; Weiner, J. [1990] MOKON, Interner Report, Universitat-Gesamthochschule-
Duisburg, SM-DU-178

Tank et al. [1989] “AMOR: Eine Beschreibungssprache fiir technische Systeme zur Unter-
stiitzung der Wissensakquisition fiir Konfigurationsprobleme”, Beitrdge zum 3. Workshop “Pla-
nen und Konfigurieren”, Arbeitspapiere der GMD 388

Tseitin, G . [1983] “On the complexity of derivations in propositonal calculus”’, Automation of
Reasoning 2: Classical Papers on Computational Logic, pp. 466-483. Springer Verlag, Berlin.

*A reprint of this paper can be found in the Report Series LKI-M of the Laboratory for Artificial
Intelligence, Hamburg, number 93/3, pp. 41-47, September, 1993.

