
ON RESOURCE-BASED CONFIGURATION—RENDERING
COMPONENT-PROPERTY GRAPHS

Oliver Niggemann ∗ Benno Stein ∗ Michael Suermann ∗

∗ Department of Mathematics and Computer Science / Knowledge-based Systems
University of Paderborn, D–33095 Paderborn, Germany

email: {murray | stein | michel}@uni-paderborn.de

Abstract: In a broader sense, this paper is on knowledge acquisition support for configura-
tion problems. Actually it concentrates on resource-based configuration—precisely: on the
visualization of component-property graphs. A component property graph is a directed graph
in first place, which defines nodes (components, functionalities) and directed edges (relations
between components and functionalities).
Each resource-based configuration problem defines such a component-property graph. From
a knowledge engineering viewpoint, the visualization of this graph is of great value: It can
illustrate functional cause-effect chains within complex technical systems, exhibit crucial
points in the modeling, or organize the knowledge base of a large system into useful parts.
This paper provides an answer to the following question: Given a knowledge base containing
a resource-based component model—in which way and to which quality can the underlying
component-property graph be drawn automatically?

Keywords: configuration, graph visualization, clustering, heuristic search

Sauer, Stein (Eds.): Proceedings of the PUK ’98
12th Annual Workshop on Planning and Configuration
Notes in Computer Science, tr-ri-98-193, pp. 65-72
Institute of Computer Science, University of Paderborn

1. INTRODUCTION

Configuration is the process of composing a technical sys-
tem from a predefined set of objects. This process relies on
a particular component model, which is a useful abstrac-
tion of the domain and the technical system to be com-
posed (Tong, 1987), (Stein, 1995).

System

o1 o2 o3

o4 o5 o6

o7 o8

o4 o5

o o

o
o o

o
And node:

Or node:

Figure 1: And-Or tree of some technical system.

In this context the visualization of a configuration knowl-
edge base of a given configuration problem actually means
to visualize the underlying component model. Such a vi-
sualization should not happen by a universal approach but
exploit meta knowledge concerning the type of compo-
nent model under investigation. E. g., hierarchical compo-

nent models, which form the basis of skeletal configura-
tion problems, are often visualized in the form of And-Or
trees. Figure 1 gives an example.

Also resource-based component models can be visualized
as graphs, so-called component-property graphs; see Fig-
ure 2 for an example. Component-property graphs will be
discussed in greater detail below.

fo "o" supplies "f"

fo "o" demands "f"

f6
f1

f3

f2

o2

o1

o3

o4

Figure 2: Component-property graph of a technical system.

Matter of the paper in hand is the visualization of resource-
based component models, so to speak, of the related
component-property graphs. Why is such a visualization
useful? The main reasons lie in acquisition and mainte-
nance purposes:

Resource-based component models are defined locally,
component by component, and normally they are formu-

66 Oliver Niggemann et al.

lated textually. A consequence is that the global view,
which a knowledge engineer has developed in his mind,
will go lost sooner or later in the course of the acquisi-
tion process. Moreover, knowledge bases are maintained
by several persons, and, modifications and revisions of
a knowledge base may occur a long time after its initial
building.

In this connection a visualization of the component-
property graph is of great value. It can illustrate functional
cause-effect chains within complex technical systems, ex-
hibit crucial points in the modeling, or organize the knowl-
edge base of a large system into useful parts. This wish
immediately raises the question: Given a knowledge base
containing a resource-based component model—in which
way and to which quality can the underlying component-
property graph be drawn automatically?

This paper gives answers to these questions; it is organized
as follows. Section 2 provides a short introduction to the
resource-based configuration approach. Section 3 presents
some generic issues respecting graph visualization, while
section 4 shows how component-property graphs, implic-
itly defined in a knowledge base, can be rendered properly.
Section 5 compares our visualization results to those of ex-
isting tools.

2. RESOURCE-BASED CONFIGURATION

This section provides a short introduction to resource-
based configuration.

2.1 The Resource-Based Component Model

The resource-based component model establishes an ab-
straction level that reduces a domain to a set of compo-
nents described by simple functionality-value-pairs. More
precisely, all technical properties that are relevant for the
configuration process form a set of resources (functionali-
ties), which are supplied or demanded by the components.

E. g. when configuring a small technical device such as
a computer, one property of power supply units could be
their power output, and one property of plug-in cards could
be the cards’ power consumption. Both properties are re-
flected by the resource “power”: A power supply unit sup-
plies some power value, while a plug-in card demands
some power value. Figure 3 depicts some resource-based
descriptions of computer components.

Note that a component-property graph as shown in Figure
3 represents a simplified functional model of the domain.
Actually, resource-based configuration means the instanti-
ation and simulation of such a functional model.

o

fo

Initial demand

f o supplies n units of functionality f

o demands n units of f

n

n

Board

Card B

RAM Extension

Mount place

Slot place

Power valueCard A

Box

Power
supply

1

2

4

1
1

8

1

15

15

60

SCSI Interface

200

2

1

Figure 3: Resource-based component descriptions

The resource-based component model is suitable for a
configuration problem if the following conditions are ful-
filled: (i) structural information plays only a secondary
role, (ii) the components can be characterized by resources
that are supplied or demanded, and (iii) the components’
properties are combined in order to provide the system’s
entire functionality.

A precise specification of the resource-based configuration
problem and its solution can be found in (Stein, 1995).

2.2 The Configuration Process

Main purpose of this subsection is to round off the intro-
duction of resource-based configuration; it is of secondary
importance with respect to visualization aspects.

If there exists a configuration C that solves a resource-
based configuration problem, C can be determined by
means of the balance algorithm. This algorithm op-
erationalizes a generate-and-test strategy and has been
operationalized in the configuration systems COSMOS,
CCSC, AKON, and MOKON (Heinrich and Jüngst, 1991),
(Laußermair and Starkmann, 1992), (Weiner, 1991), (Stein
and Weiner, 1991). The generate part, controlled by
propose-and-revise heuristics or simply by backtracking,
is responsible for selecting both an unsatisfied function-
ality f and a set of objects that supply f . The test part
simulates a virtual balance. A functionality (resource) is
called unsatisfied, if its supplied amount x is smaller than
its demanded amount y.

Basically, configuration works as follows. First, the vir-
tual balance is initialized with all demanded functionali-
ties, and C is set to the empty set. Second, with respect to
some unsatisfied f , an object set is formed; the related sup-
plies and demands are added to the corresponding func-
tionalities of the balance, and C is updated by the object

ON RESOURCE-BASED CONFIGURATION—RENDERING COMPONENT-PROPERTY GRAPHS 67

set. Third, it is checked whether all functionalities are sat-
isfied. If so, C establishes a solution of the configuration
problem. Otherwise, the configuration process is contin-
ued with the second step.

3. VISUALIZING GRAPHS

3.1 Generic Concepts

When visualizing graphs the question about a definiton of
a good or lucid layout plays a key role. Important criteria
for such a layout are:

• No two vertices should intersect, and
• neither should an edge and a vertice.
• Having placed all vertices, edges should be drawn by

straight lines.
• The angle between two intersecting edges should be

obtuse.
• Parallel edges should not be too close.
• Clusters in the graph should be identifiable as such.

Note, however, that both the criteria and their importance
depend on the actual design problem. Various approaches
for visualizing graphs exist; some visualize graphs by con-
structing just one layout, others construct several possible
layouts and choose the best. The algorithms also vary in
their usage of domain knowledge: some are general graph
visualization tools, but many, like ours, exploit features of
the domain.

3.2 More on Component-Property Graphs

In component-property graphs, components point only
to functionalities and vice versa. As a consequence,
component-property graphs are bipartite. Figure 4 shows
a different layout of the graph of Figure 2 that emphasizes
this characteristic.

fo "o" supplies "f"

fo "o" demands "f" f6

f1

f3

f2o2

o1

o3

o4

Figure 4: The component-property graph of Figure 2.

This bipartite-characteristic can be exploited when con-
structing a layout for component-property graphs: If the
nodes of a graph are arranged in several layers, no edges
must be drawn within a layer, if all nodes in the layer are of
the same type (cf. The Leveling Step in the next section).

Recall that component-property graphs represent a func-
tional model of a technical system. Technical systems
are composed from subsystems or modules, which finally
are built up with components. Although in a configura-
tion knowledge-base these submodules are not labelled as
such, they can often be identified by a smart clustering al-
gorithm (cf. The Clustering Step in the next section).

Such a clustering algorithm exploits the fact that the com-
ponents within a module are closely connected, while the
modules themselves are connected via rather narrow inter-
faces. The automatic identification of modules is a partic-
ularity when visualizing component-property graphs; note
that standard approaches for graph visualizations may con-
sider user-defined clusters but do not try to identify clus-
ters on their own.

It is quite evident that a clustering that resembles the tech-
nical setup of a system is a benefit from the knowledge-
engineering standpoint.

4. VISUALIZING COMPONENT-PROPERTY
GRAPHS

We now present a visualization algorithm exploiting the
already mentioned features of the graph and considering
our criteria of a lucid layout.

4.1 Strategy

Three major steps to a good layout can be identified. In a
first step the clusters must be found. The next task consists
of finding a good arrangement of the clusters on the page,
finally we seek positions for the nodes within a cluster.

4.2 The Clustering Step

How can a cluster be identified? As mentioned above clus-
ters relate to modules or subsystems of a technical sys-
tem, therefore we expect less edges between clusters than
within a cluster: Modules are combined by only a few
edges, while the components within a cluster are highly
connected. A clustering divides the vertices V of a Graph
G = (V, E) into disjunct sets C1, . . . , Cn, n ∈ N .

Definition 4.1 (Clustering). A clustering C of a graph
G = (V, E) is defined as follows:
C = {C|C ⊆ V }, and ∀Ci, Cj ∈ C : Ci ∩ Cj = ∅.

The cut of two disjunct sets of vertices is defined by the
number of edges between these sets:

68 Oliver Niggemann et al.

Definition 4.2 (Cut). The cut cut : V 2 → N is defined as
follows:
∀C1, C2 ⊆ V, C1 ∩ C2 = ∅, and cut(C1, C2) =
|{(v1, v2)|(v1, v2) ∈ E, v1 ∈ C1, v2 ∈ C2}|.

How can the quality of a clustering be measured? We want
a small interface between clusters, i.e. the cut between
clusters should be as small as possible. On the other hand,
defining just one cluster C1 = V can not be called a great
solution. Hence we demand the number of clusters to be
maximized. However, we also want the clusters to be as
dense as possible.

Definition 4.3 (Density of a cluster). The density d :
P(V) → R of a cluster Ci is defined as follows:
d(Ci) = |{(v1,v2)|(v1,v2)∈E,v1,v2∈Ci}|

|Ci|
.

Definition 4.4 (Density of a clustering). The density d2

of a Clustering C is defined as follows:

dC(C) =

∑

Ci∈C
|{(v1,v2)|(v1,v2)∈E,v1,v2∈Ci}|

∑

Ci∈C
|Ci|

.

Definition 4.5 (Cut of a clustering). The Cut cutC of a
Clustering C is defined as follows:
cutC(C) =

∑

Ci,Cj∈C,i<j cut(Ci, Cj).

Definition 4.6 (Connectivity of a clustering). The Con-
nectivity con of a Clustering C is defined as con(C) =
cutC(C)

|C|

Obviously we can rewrite dC as dC(C) = |E|−cutC(C)
|V | .

Definition 4.7 (Quality of a clustering). The quality q of
a clustering C is defined as q(C) = dC(C)

con(C) .

How can a cluster be found? Here we present a solution
based on a greedy strategy. Starting with an arbitrary ver-
tex within a cluster, the algorithm enters the cluster as deep
as possible, i.e. it increases the cut of the respective cluster.
In a second phase the algorithm walks through the cluster
while the cut remains constant. In a last phase the cut is al-
lowed to decrease, i.e. the algorithm tries to find the border
of the cluster. Figure 5 illustrates the situation.

A special feature of component-property graphs supports
the termination of the clustering: clusters are normally
connected to a functionality or component with a small
degree (see vertex v2 in Figure 5). The algorithm does not
cross this special vertex, therefore the clustering stops at
the interface of components.

A division of the graph by a vertical borderline would re-
sult in a cut as shown in the diagram below the graph. An
algorithm intended to find clusters could exploit the “hill-
appearance” of the clusters in the cut-diagram.

Note that not all vertices are suitable as start vertices for

v v1 2 v 3

Cut

Figure 5: Cut and cluster connectivity.

the clustering algorithm. The vertex should be within a
cluster and not be part of an interface between components
(in the example above v2 is not suitable). So vertices with
in-degree = out-degree = 1 are not used as starting points.

For some knowledge-bases a preprocessing step is useful:
In some graphs there exist a few functionalities or compo-
nents with an exceptional high degree, e.g. a functionality
“power consumption”, which is demanded by almost all
components. This functionality could feign a non-existing
module and therefore make a cluster detection difficult. To
overcome this problem vertices with an exceptional high
degree should be deleted.

4.3 The Cluster Arrangement Step

Having identified the clusters, the width and height neces-
sary for their graphical representation is estimated. Rest-
ing on empirical evaluations we developed heuristics for
this task. We call this graphical representation of a cluster
a box; two boxes are connected iff there exists at least one
edge between vertices from the corresponding clusters.

Definition 4.8 (Box representation of a Clustering). Let
C be a clustering of the graph G = (V, E). The box repre-
sentation B(C) = (VB , EB) of C consists of boxes VE =
{b1, . . . , bn} (each relating to a cluster) and of connections
EB ⊆ V 2

B , where (bi, bj) ∈ EB ⇔ ∃va ∈ bi, vb ∈ bj and
((vi, vj) ∈ E ∨ (vj , vi) ∈ E).

To arrange the boxes on the pane a local optimization strat-
egy is applied: Starting from reasonable initial positions
we allow random position changes, and if these moves re-
sult in a better layout, we restart the process with the new
arrangement. Of course, in order to optimize the layout
the notion “lucid layout” must be defined in mathematical
terms. We do not want boxes to intersect; we also would
like to avoid a box being between two connected boxes. Fi-
nally, connected boxes should be as close as possible. The
following optimization function f formalizes the desired
conditions:

Definition 4.9 (Quality of a box arrangement). Let A be
an arrangement of boxes on the pane, then the quality f

ON RESOURCE-BASED CONFIGURATION—RENDERING COMPONENT-PROPERTY GRAPHS 69

of the arrangement is defined as follows:

f(A) =















∞, if two boxes intersect—otherwise:
∑

(bi,bj)∈EB

dist(bi, bj) + λ ·
∑

(bi,bj)∈EB

num(bi, bj)

where dist(bi, bj) refers to the distance between two
boxes, λ is a constant (we use λ = screen size

5) and
num(bi, bj) relates to the number of boxes between bi and
bj . In Figure 6 and 7 the area between two boxes is shown
hatched.

Initially we place the boxes on a circular arc (cf. Figure 6),
in the course of the optimization process we decrease the
step size of the movements. ��

Figure 6: Initial arrangement of the clusters.

Figure 7 shows the result of the optimization process. ��

Figure 7: After the cluster arrangement step.

4.4 The Leveling Step

The last step of our visualization process determines the
positions for the vertices within a box. We apply a modi-
fied leveling approach (Eades and Wormald, 1994; Sander,
1996). At first, the vertices of a cluster are divided into lay-
ers; here it is desired having an edge only between neigh-
bored layers. Then the vertices of a layer are ordered, mini-
mizing the number of edge intersections. Both the division
into layers and the ordering within a layer take the global
arrangement of boxes into consideration: A vertex v1 in
box b1 connected to another vertex v2 in a different box
b2 should have a position within b1 close to b2. Ghost ver-
tices must be added for edges crossing layers. Finally the

ordering of vertices of a layer is mapped onto Euclidean
positions.

How can the division into layers be found? For acyclic
graphs a topological sorting is sufficient, but for our
mainly cyclic graphs the NP-complete feedback edge set
problem needs to be solved. We overcome this problem
by using a heuristic. For our domain it makes sense to al-
low only one type of vertex (functionality or component)
being in a layer. Thus we find the components or func-
tionalities with the smallest in-degree and choose one type
to be placed as first layer. As a decision criterion the ac-
cessibleness of all other vertices starting from the vertices
of the first layer is examined: The more vertices can be
reached, the better. Unaccessible vertices are simply put
into the appropriate of the first two layers. All other layers
are derived canonically from the first layer. Vertices with
connections to vertices in other boxes above (below) the
actual box are also moved into the appropriate of the first
(last) two layers.

How can the vertices within a layer be ordered? Here,
the well-known barycenter heuristic is employed. In a first
run, starting with the second layer, each vertex v obtains
a number bc(v) = 1

|Np|
·
∑

u∈Np
bc(u), where Np are the

predecessors of v belonging to the same cluster. The bc

values for the first layer are initialized in a reasonable way.
In a second run, going from the second last layer up to the
first layer, each vertex obtains a new bc value: bc(v) =

1
|Ns|

·
∑

u∈Ns
bc(u), where Ns denotes the successors of

v belonging to the same cluster. This standard procedure
is slightly modified; a vertex v1 in box b1 connected to
another vertex v2 in a different box b2 left (right) of b1 is
attracted to the left (right) side of its layer. This is achieved
by giving v2 a virtual bc value of 0 or maxx, where maxx

is the maximum number of vertices in a layer.

For each edge crossing a layer an additional ghost vertex
is added that prevents edges from crossing vertices. These
ghost vertices are treated like normal vertices.

The vertices in a layer are mapped onto real positions on
the pane as follows. We place all vertices on a given grid,
the y-position on the grid follows from the division of the
vertices into layers, we also use the bc value as a initial
value for the x-position and optimize the x-positions later.
Our optimization criteria is the overall edge length in a
cluster. The process starts at the first layer. In a first run,
we go through the vertices of a layer from the left to the
right. If moving a vertex v horizontally improves the over-
all edge length, we restart this process with the new x-
position for v. After going through the layer from the left
to the right, we rerun the procedure going from the right to
the left. This way, free space created by the first run can be
used to improve the positioning in the second run. Figure
8 shows the result.

70 Oliver Niggemann et al.

 ��

Figure 8: After the cluster arrangement step.

4.5 Realization

Our approach has been implemented under Windows NT
using Allegro Common Lisp. Note that recognizing the
clusters and their interfaces is quite easy. Nevertheless, for
a “creative” arrangement of the cluster much more time
needs to be spent. This can be considered as acceptable
since the process of visualization does happen only once
when importing a textual knowledge base.

Since the runtime behavior is dominated by the cluster ar-
rangement step, it can be scaled quite easily: The better the
cluster layout shall be, the more time must be spent.

The knowledge-bases that have been used to evaluate our
approach stem from real-world examples. These exam-
ples where analyzed respecting the distribution of the node
types, the node degrees, the components’ supply-demand
overhangs, and the functionalities’ supply-demand ratios.
Using this statistical information new knowledge bases
have been generated from the existing ones by merging,
deletion, and up-sizing rules.

5. EXISTING VISUALIZATION TOOLS

The next two subsections show layout results that have
been produced with VCG and Da Vinci for the component-
property graph in Figure 9. VCG and Da Vinci are uni-
versal graph visualization tools, and therefore they may
exploit less domain knowledge about resource-based con-
figuration graphs. Nevertheless, a comparison will give
some insight into graph visualization. The last subsec-
tion, 5.3, is on AKON, a resource-based configuration tool
that provides a graphical acquisition mode for component-
property graphs.

 ��

Figure 9: Graph generated with our approach.

5.1 VCG

The VCG tool was developed at the University of Saar-
brücken for the purpose of visualizing compiler graphs. It
is based on a leveling approach and can take cluster infor-
mation into consideration; these cluster information must
be part of the input.

Opposed to our cluster arrangement step, the cluster vi-
sualization of VCG is intertwined with the leveling algo-
rithm. This results in a fast runtime behavior, but confines
the freedom for arranging the clusters.

Figure 10 shows the visualization of our example. For fur-
ther information, please see (Sander, 1994) and (Sander,
1996). ��

Figure 10: Component-property graph generated by VCG.

5.2 Da Vinci

Another popular tool for graph visualization is Da Vinci.
Written at the university of Bremen, it is another real-
ization of the leveling approach. Figure 11 shows the
graph of Figure 10 and Figure 9 respectively, visualized by
Da Vinci. Detailed information on Da Vinci can be found
in (M. Fr hlich, M. Werner, 1994).

ON RESOURCE-BASED CONFIGURATION—RENDERING COMPONENT-PROPERTY GRAPHS 71

 ��

Figure 11: Graph generated by Da Vinci.

5.3 AKON

AKON is not graph visualization tool but a fully-fledged
configuration system that operationalizes the resource-
based configuration approach (Kleine Büning et al., 1994).

Within AKON, configuration knowledge cannot be entered
in textual form but is completely graphically specified,
by means of drag-and-drop operations. Different types of
lines indicate supply and demand relations respectively. A
supply (demand) connection between a functionality icon,
F , and a component icon, C, is established by dragging C

over F (F over C). In this way, complex knowledge bases,
say component-property graphs, can be formulated effi-
ciently while avoiding any syntactical mistake. Figure 12
depicts a section of a telecommunication knowledge base
formulated using AKON. ��

Figure 12: A telecommunication knowledge base in AKON.

Being in AKON’s acquisition mode, the layout of the
component-property graph can be organized reflecting
both configurational aspects and the knowledge engineer’s
flavor. As a matter of concept, the component-property
graph is not generated algorithmically but by the human
sense for design and usefulness.

To us, the knowledge bases in AKON define a measure-
ment respecting the quality of our automatically gener-
ated layouts. However, if all knowledge bases for resource-
based configuration problems were acquired by direct

building the component-property graph, there would be no
need for their graphical post-processing.

6. CONCLUSION

Components with supplied and demanded functionalities
form the backbone of each resource-based configuration
problem. This backbone can be illustrated by means of
a so-called component-property graph, where the set of
nodes is formed by the components and functionalities,
and the edges stand for supply and demand relations.

For different acquisition and maintenance tasks relat-
ing configuration knowledge-bases, a smart visualization
of component-property graphs is very useful. The paper
showed in which way and to which quality such a visu-
alization can be performed automatically. The developed
approach consists of three basic steps—cluster detection,
cluster arrangement, and inside-cluster leveling.

Within the configuration domain, the clusters play a spe-
cial role: they represent subsystems or modules of a larger
technical system. Their detection and visualization thus
gives insight into the technical structure of the system de-
fined in the knowledge-base.

Our approach has been realized and compared to the graph
visualization tools VCG and da Vinci. These visualization
tools generate clear layouts but require the definition of
clusters by the user, and the cluster arrangement is re-
stricted to hierarchical layouts only.

REFERENCES

Eades, Peter and Nicholas C. Wormald (1994). Edge
Crossing in Drawing of Bipartite Graphs. In:
Mathematica 1994. Springer Verlag.

M. Fr hlich, M. Werner (1994). The Graph Visualization
System daVinci - A User Interface for Applications.
Technical Report No. 5/94, Dept. of Computer
Science, University of Bremen.

Heinrich, M. and E. W. Jüngst (1991). A Resource-based
Paradigm for the Configuring of Technical Systems
for Modular Components. In: Proc. CAIA ’91.
pp. 257–264.

Kleine Büning, Hans, Daniel Curatolo and Benno Stein
(1994). Knowledge-Based Support within
Configuration and Design Tasks. In: Proc. ESDA
’94, London. pp. 435–441.

Laußermair, T. and K. Starkmann (1992). Konfigurierung
basierend auf einem Bilanzverfahren. In: 6.
Workshop “Planen und Konfigurieren”, München.
FORWISS, FR-1992-001.

72 Oliver Niggemann et al.

Sander, Georg (1994). Graph Layout through the VCG
Tool. Technical Report A/03/94.

Sander, Georg (1996). Layout of Compound Directed
Graphs. Technical Report A/03/96.

Stein, Benno (1995). Functional Models in Configuration
Systems. Dissertation. University of Paderborn,
Department of Mathematics and Computer Science.

Stein, Benno and Jürgen Weiner (1991). Model-based
Configuration. In: OEGAI ’91, Workshop for
Model-based Reasoning.

Tong, Christopher (1987). Towards an Engineering
Science of Knowledge-based Design. Artificial
Intelligence in Engineering 2(3), 133–166.

Weiner, Jürgen (1991). Aspekte der Konfigurierung
technischer Anlagen. Dissertation.
Gerhard-Mercator-Universität - GH Duisburg, FB 11
Mathematik / Informatik.

