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Abstract

When working on systems of the real world, abstractions in the form of graphs
have proven a superior modeling and representation approach. This paper is
on the analysis of such graphs. Based on the paradigm that a graph of a sys-
tem contains information about the system’s structure, the paper contributes
within the following respects:

Starting with an informal introduction of the term “structure”, the role of
structure identification in different problem classes is outlined. The central
contributions of this paper are (i) a formal structure measure, the so-called
weighted partial connectivity, A, whose maximization defines a graph’s struc-
ture (Section 2), and (iz) a fast algorithm that approximates a graph’s optimum
A value (Section 3).

Moreover, the proposed structure definition is compared to existing clustering
approaches, resulting in a new splitting theorem concerning the well-known
minimum cut splitting measure. A key concept of the proposed structure
definition is its implicit determination of an optimum number of clusters.
Two examples, which illustrate the usability of the measure, round off the

paper.

Keywords: structure identification, graph analysis, clustering, knowledge-
based methods.
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1 What is Structure?

“Structure defines the organization of parts as dominated by the general
character of the whole.”

“Structure defines the aggregate of elements of an entity in their relation-
ships to each other.” !

These informal definitions reflect the common sense understanding of the notion
“structure”. Structure information is some kind of meta information and may take dif-
ferent shapes. However, the nature of a graph often resembles structure information—
Figure 1 shows a gantry crane, its graph representation, and related structural ab-
stractions.

Gantry crane @

Component-relation graph of the gantry crane
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Security motor 2 Axis 2a
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Hoist motor
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Two structural abstractions of the gantry crane
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Frame
Carriage 2

Figure 1: Graph representation and structure of a crane.

To allow of a more formal definition of the term structure, the following abstrac-
tions are useful:

1. The interesting system, in the above definition designated by the terms “whole”
and “entity” respectively, is mapped onto a graph, G = (V, E).? The system’s

! The Merriam-Webster’s Collegiate Dictionary, Tenth Edition.
2See Appendix A for a concise definition of the graph-theoretical concepts used in this paper.
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elements form the set of nodes, V; the relations between the elements are rep-
resented by the set of edges, F.

2. The system’s structure (its “general character”) is reflected by the distribution
of G’s edges.

Of course several concepts are conceivable that define in which way a system’s
structure is reflected by the distribution of its graph edges. The understanding of
structure as it is subject to this paper relies on the following paradigms:

1. Domain concepts. Associated to G, a set of 1 < i < |V| domain concepts ¢;
along with a mapping from V' to the ¢; can be stated.

Each domain concept corresponds to a particular function, devision, module,
or role of the system. All elements assigned to the same domain concept con-
tribute to the same function, say, each ¢; defines a unary predicate on the system
elements.

2. Connectivity. Domain concepts are defined implicitly, merely exploiting the
graph-theoretical concept of connectivity:

The connectivity between nodes assigned to the same domain concept ¢; is
assumed to be higher than the connectivity between any two nodes v and w,
where v, w are assigned to ¢; and c; ;.; respectively.

3. Contraction. A system’s structure is defined as that contraction of G where a
single node is substituted for all nodes of the same domain concept.

Remarks. Point 1 reflects hierarchy or decentralization aspects of a system’s or an
organization’s structure. Point 2 is based on the observation, that the elements within
a module are closely related; the modules themselves, however, are coupled by nar-
row interfaces only. A similar observation can be made respecting organizational or
biological structures. Point 3 states that structure information can be derived by a
rather simple abstraction method.

These structuring paradigms may not apply to all kinds of systems—but, for a
broad class of (technical) systems they form a useful set of assumptions.

1.1 The Role of Structure Identification in Different
Problem Classes

Structure identification, as defined by the three paradigms above, could be regarded as
a weak (or basic) problem solving method.> Although the term “structure identification
by graph contraction” does not imply a concrete algorithm (a problem solving method
should), it defines, on the other hand, a clear purpose respecting the processing of
domain knowledge. Moreover, structure identification is related to weak methods

3A problem solving method designates an algorithm that describes in which way domain knowl-
edge is utilized to solve a problem. A weak problem solving method is less specialized respecting
knowledge representation, and thus its range of application is broader. Examples for weak problem
solving methods are forward-chaining-with-rules or the hypothesize-and-test strategy. Strong prob-
lem solving methods can be considered as weak methods that have been tailored towards a particular
domain or situation [16].
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rather than to strong ones, since it provides a basic (preprocessing) step, which is
independent from a domain or a problem class. In the following, examples for a
graph-based structure identification in different problem classes are given.

e Diagnosis. Complex diagnoses problems are tackled by a hierarchical approach,
which breaks up the entire problem by focusing. The focusing step may render a
heuristic diagnosis step, while the remaining smaller problem may be solved by
a model-based diagnosis step. Focusing means concentrating on a subsystem,
which could be isolated by structure identification. In [8] the authors pursue
such a strategy: Within a structure identification step a complex hydraulic
system is decomposed into so-called hydraulic axes, which in a second step are
treated locally.

e Configuration. Resource-based configuration is a promising approach for con-
figuring modular technical systems [7, 21|. In order to apply this configuration
paradigm, each component of the system is modeled locally; the components
are connected to each other via so-called properties, which they supply or de-
mand. The configuration algorithm tries to satisfy some given initial demand
by choosing a suitable set of components.

When working on a resource-based configuration problem, a domain-oriented
interpretation of the underlying component-property graph is of a great value
[21]. By smartly clustering this graph, a functional structure within a complex
technical system can be identified, crucial points in the modeling exhibited, the
configuration algorithm be tailored, or the knowledge base of a large system
organized into useful parts [14].

e Visualization. To visualize complex graphs, a preprocessing in the form of node
clustering followed by graph contraction has proven to be a key strategy [22].
Several concepts have been developed, which rely on clustering when arranging
a graph’s nodes hierarchically [5, 18], on a grid [19, 4], or by means of simulated
annealing [14].

e Monitoring. When monitoring network traffic, the communication intensity is
reflected by the network communication matrix. This matrix can be interpreted
as a (weighted) virtual network graph, which is embedded in the real network.
Monitoring and analysing the network traffic corresponds to the identification
of the network graph’s structure.

Section 5 discusses a visualization and a monitoring application in greater detail.



2 QUANTIFYING A GRAPH’S STRUCTURE 6

2 Quantifying a Graph’s Structure

The structure of a system G has been introduced as some contraction of G. This
descriptive definition can be quantified by means of a new measure called “weighted
partial connectivity”, A, which is introduced now. The weighted partial connectivity
is defined for a decomposition of a graph G, and it is based on the graph-theoretical
concept of edge connectivity.

Let G = (V, E) be the graph abstraction of the interesting system.

1. C(G) = (Cy,...,Cy) is a decomposition of G into n subgraphs induced on the
Ci, if Ug,ec =V and C; N Cj j4 = 0. The induced subgraphs G(C;) are called
cluster. Eo C FE consists of the set of edges between the clusters.

2. The edge connectivity of a graph G denotes the minimum number of edges that
must be removed to make G a not-connected graph (see Appendix A for details).

Definition 2.1 (A). Let G be a graph, and let C = (C1, ..., C,) be a decomposition
of G. The weighted partial connectivity of C, A(C), is defined as

AC) ==L, |Gl - A
where A\(C;) = \; designates the edge connectivity of G(C;).

Figure 2 illustrates the weighted partial connectivity measure A.

)

AN =5010+32 =11

N=N\ZF 42+43 =20

Figure 2: Example for graph decompositions and related A values.

Definition 2.2 (Connectivity Structure). Let G be a graph, and let C* be a
decomposition of G that maximizes A:
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A(C*)=A*:= max{A(C) | C is a decomposition of G}

Then the contraction H = (C*(G), E¢+) is called connectivity structure (or simply:
structure) of the system represented by G.

Figure 3 shows that A maximization means structure identification.

Unstructured graph Optimum structured graph respecting A Structure

&
& - @,

@ § E @ z (decomposition at
O—O0—0O0—0O0—0—=0 W maximumA value
§ is not definite)
C=C=0=C=C0)nx6

Figure 3: Examples for decomposing a graph according to our structure definition.

Remarks. A key feature of the structure definition is that a structure’s number of
clusters is defined implicitly.

Two rules of decomposition, which are implied in the above structure definition,
are worth to be noted.

(7) If for a (sub)graph G = (V, E) and a decomposition (C4,...,C,) the strong
splitting condition

AMG) <min{Aq, ..., A}
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is fulfilled, G will be decomposed. Note that the strong splitting condition is
commensurate for decomposition, and its application lessens the mean value of the
standard deviations of the clusters’ connectivity values \;. Obviously this splitting
rule follows the human sense when identifying clusters in a graph, and there is a
relation to the Min-Cut splitting approach, which is derived in Section 4.

(74) If for no decomposition C the strong splitting condition holds, G will be
decomposed only, if for some C the condition |V|- A(G) < A(C) is fulfilled. This
inequality forms a necessary condition for decomposition—it is equivalent to the fol-
lowing special case of the structure definition: max{A({V'}),A(C)} = A(C), because
A{VH = V] AG).

The weighted partial connectivity, A, can be made independent of the graph size
by dividing it by the graph’s node number |V|. The resulting normalized A value is

designated by A = ﬁ A,
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3 Operationalizing Structure Identification

In this section a fast clustering algorithm optimizing the weighted partial connec-
tivity A is presented. This algorithm implements a local heuristic and is therefore
suboptimal.

Initially, the algorithm assigns each node of a graph its own cluster. Within
the following re-clustering steps, a node adopts the same cluster as the majority
of its neighbors belong to. If there exist several such clusters, one of them is chosen
randomly. If re-clustering comes to an end or rather unlikely, the algorithm terminates.

Figure 4: A definite majority clustering situation.

Figure 4 shows the definite case; most of the neighbors of the central node belong
to the left cluster, and the central node becomes a member of that cluster. In the
situation of Figure 5 the central node has the choice between the left and the right
cluster.

Figure 5: An undecided majority clustering situation.

We now introduce this algorithm formally.

MAJORCLUST.

Input. A graph G = (V| E).

Output. A function ¢ : V — N, which assigns a cluster number to each node.
(1) n =0, t = false

2)VveVdon=n+1, c(v)=n end

) while ¢ = false do

)t = true

) YveVdo

) ¢ =i if {u: {u,v} € EAc(u) =i} is max.

) if ¢(v) # ¢* then c(v) = c¢*,t = false

) end

)
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Remarks. If a node is neighbored to more than one maximum cluster, there is an
indeterminacy respecting the cluster choice in step 6. Figure 6 shows an extreme
situation respecting such a random choice. A vertically decomposition as shown on the
right hand side is unlikely, because if some of the nodes at the corners is moved to the
other cluster, only that cluster will be left at the end of the turn. Hence, this clustering
is unstable, which is also mirrored by the fact that the presented decomposition does,
unlike the trivial decomposition into only one cluster, not maximize the weighted
partial connectivity A. However, a decomposition by some horizontal splitting line as
shown on the left side is more likely and more stable. Noticeably, such a decomposition
is also optimal regarding A.

Unlikely clustering

Likely clusterings /

Figure 6: Likely and unlikely clusterings in the standoff case.

The runtime complexity of MAJORCLUST is O(|E| - |Craz|), where Crpe € V
designates a maximum cluster. In the While-loop (line 3 to 8) each edge of G is
investigated twice; within each pass, a growing cluster is enlarged by at least one node;
if no node changes its cluster MAJORCLUST terminates. Note that this evaluation
neglects “pathological” cases, where the algorithm oscillates between two (or more)
decompositions. However, such a situation constitutes neither a clustering nor a
runtime problem: It can be detected easily since all nodes are either stable or in an
undecided constellation. This advisements and experimental results (see Section 5)
show the usability of the algorithm for large graphs with several thousand nodes.

The algorithm’s greatest strength, its restriction to local decisions, is bound up
with its suboptimality. In every step only a node’s neighbors are considered, resulting
in an excellent runtime behavior. On the other hand, by disregarding global criteria
like the connectivity, MAJORCLUST cannot always find the optimum solution. Figure
7 illustrates this.

The optimum solution for graph (a) is one cluster, which is also the solution as
found by MAJORCLUST. For graph (b), a splitting into the two clusters {v;} and
V' \ {v1} is optimum. MAJORCLUST cannot find this decomposition—working strictly
locally, it behaves exactly as on graph (a) and creates only one cluster.
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MAJORCLUST resembles
A\ value maximization

»
|

A value maximization

MAJORCLUST clustering .

Figure 7: The local nature of MAJORCLUST.

4 Existing Clustering Approaches

The problem of decomposing a graph has emerged in different areas. In this section
an overview and a demarcation of similar problems and their solutions will be given.

4.1 Artificial Intelligence

Clustering data and data classification have been a focus of research in the artificial
intelligence community for years. Data is normally given as a set of positions in an
m-dimensional Euclidean feature space, i.e. the distance between positions is well
defined. Transforming data into a graph means to model positions as nodes and
distances as edge capacities. Several attempts aim at detecting clusters in such a
graph [24, 1, 9, 13|, including threshold graphs, measures combining the number of
edges within and between clusters, and the number of nodes in each clusters |1, 18],
Fuzzy sets [25], minimum spanning tree, or neighborhood sets. Most approaches
require domain knowledge about the graph or use more or less reasonable heuristics.
Because of its theoretical foundation and its general applicableness, we concentrate
here on a promising approach: clustering based on minimum cuts [12, 24].

By proving the following theorem, the idea of dividing a graph at its smallest cut
is related to the structuring criterion presented in this paper.

Theorem 4.1 (Strong Splitting Condition). Applying the strong splitting con-
dition (see Section 2) results in a decomposition at minimum cuts.

To proof this theorem we first show that A(G) equals the cardinality of the mini-
mum cut of G.
Proof of Lemma. Let 11(G) denote the minimum cut of G. A(G) < |u(G)| because the

removal of all edges belonging to the cut splits G into two components. A(G) > |u(G)|
because in G there exists vy, vy € V' so that exactly A\(G) edge disjoint paths connect
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them. By removing one edge from each path, v; will not be connected to vy anymore,
therefore exists a cut with A(G) edges.

Proof of Theorem. Let cut(V;,V;) denote the edges between G(V;) and G(V;). From
AMG) < min{A,..., A} follows |u(G)| < min{|u(G(V))|, ..., |n(G(V;))|}, i.e. no
cut in G(V;),i = 1,...,r is smaller than u(G). Since every cut u/'(G) except of
cut(Vy,...V,) decomposes at least one G(V;), ¢/(G) must consist of more than |u(G)|
edges. It follows that cut(Vi,...V,) must be minimum.

When the strong splitting condition does not hold, an optimum decomposition
according to the structuring value need not be the same decomposition as found using
the minimum cut. This is because of the latter’s disregard for cluster sizes. Figure 8 is
such an example. Here C, refers to a clique with = > 3 nodes. An optimum solution
according to the weighted partial connectivity A (which is also closer to human sense of
esthetics) consists of one cluster {v, ve, v3,v4} and a second cluster C,. An algorithm
using the minimum cut would only separate v;.

Clustering according # Clustering according to Min—Cut

Figure 8: Weighted partial connectivity (A) maximization versus Min-Cut clustering.

The reader may also notice that, as mentioned before, maximizing the weighted
partial connectivity implies an optimum number of clusters, while the minimum cut
approach lacks any criterion for the number of necessary division steps.

4.2 Parallel Computing and Circuit Layout

Crucial to the field of parallel computing is the task of dividing a given job or process
graph into k disjoint subgraphs and mapping these subgraphs onto a known processor
topology (e.g. a grid). Here almost equally sized subgraphs are desirable, since this
results in a balanced utilization of the processors. As edges correspond to communi-
cation between processes, minimizing the cut between subgraphs is another objective.

In connection with circuit layout a very similar problem exists: Dividing a circuit
into equally sized parts while keeping a small cut between the parts obviously reduces
the complexity for an automatic layout.

One of the best known formulations of a graph division problem is the so-called
PARTITIONING problem. It has been used intensively in the fields of parallel processing
and circuit design.

PARTITIONING.
Input. A graph G = (V| E), a vertex weight function # : V' — N, an edge cost
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function v : £ — N, a number r € N, maximum part sizes B(i) € N,i = 1,...,r,
and minimum part sizes B(i) € N,i =1,...,7.
Output. A decomposition C = (V1,...,V,) of V| so that:

o Vi=1,...,7:b(i) <X,y B(v) < B(i), and
o %ZeeE@:(wJ_)Mer,\wgvk v(e) is minimum (cut minimization).

PARTITIONING is strongly NP-hart [12|. This still applies if g(v) = 1 Vv € V,
B(i)=|V|Vi=1,...;rand b(i) =1Vi=1,...,r.

The probably most successful approach for solving PARTITIONING dates from 1970
by B. W. Kernighan and S. Lin [11]. In their paper they explain:

“We can start with any arbitrary partition of the graph, calling one
set “A” and the other “B” (A contains half the nodes, B the other half).
If this solution isn’t already minimum-cost, we can certainly get another
partition with a lower cost by moving some nodes from A to B, and others
from B to A, if we choose the right ones.”

A survey of other solutions can be found in [12].

Unlike the problem treated in this paper, no existing structures are considered
by this related problem. An equally sized decomposition into a predefined number
of subgraphs is achieved by accepting a higher cut. This obviously reduces the ap-
plicableness of solutions to the PARTITIONING problem for detecting structures in
graphs.

4.3 Graph Visualization

Dividing a graph also proved useful in the field of automatic graph layout. Efforts
have been made to reduce the complexity of this problem by using Divide-and-Conquer
approaches [4, 19, 18]. The authors rely on the known algorithms for PARTITIONING
or exploit known features of their graphs such as biconnected components |23, circles
of cliques [5], etc.

Some authors, among others [4], use mathematical definitions for the term cluster
in order to find a good decomposition. Unfortunately there does not exist an agreed
definition, cf. [18]:

“In spite of the differences of opinion as to what constitutes a cluster,
one idea is universally accepted: the nodes belonging to a cluster must
have a strong relationship between them in comparison with the nodes
outside the cluster.”

Most functions for defining the quality of a cluster try to express this statement in
mathematical terms, often by combining the demand for equally sized cluster with a
small inter-cluster cut [4, 19, 18]. Unlike the structure definition given in this paper,
these definitions often fail to define an optimum number of clusters, or the use of
average values may lead to suboptimum clusters.
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5 Application

This section outlines applications for structure identification from different fields. Note
that the presented problems are typically tackled by knowledge-based concepts, and
that structure identification as shown here plays the role of a knowledge preprocessor.

5.1 Monitoring

Monitoring the traffic is substantial for administrating and analyzing a modern com-
puter network. Many tools support the recording and statistical analysis of inter-
computer communications. To make use of this information the network administra-
tor is faced with the interpretation of the so-called traffic matrix. In this matrix the
amount of traffic between all pairs of computers in the network is recorded.

The identification of network parts with a high inter-node communication is in-
teresting for planning and understanding a network. Knowing such communication
structures helps the network administrator to decide e. g. whether it is reasonable to
bundle such clusters in a single VLAN (virtual LAN), to change the network topology,
or to upgrade to switching technology.

Figure 9: A computer network with clusters indicating a high amount of traffic.

Based on our structure definition, a network matrix can be evaluated by unveiling
its underlying traffic structure. A prerequisite for this is a generalization of A(C) by
introducing the edge connectivity A of a graph, which considers edge weights that
correspond to the network traffic. In the same way the algorithm MAJORCLUST is
extended: Every node v now adapts the same cluster as the weighted majority of its
neighbors, i.e. every neighbor is weighted by the amount of its traffic with v.

Figure 9 shows a section of a local area network. Three communication clusters
have been discovered, one of them comprising computers from two different subnets
and thus causing high traffic on the backbone.
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5.2 Visualization

Graphs proved one of the most adaptable and most frequently used means of modeling.
Examples can be found in several fields, some of them mentioned in this paper. As
graph size reflects the complexity of a problem, more complex problems result in larger
graphs. Understanding problems and their structure turns out to be a key factor for
solving them. Such an understanding can be supported by visualization, in particular
by visualizing graphs that represent the interesting problem, system, or domain.

Since being a part of the real world, these graphs inherit a (problem / system
/ domain-) specific structure. By identifying this structure, i.e. by decomposing the
graph, the complexity of an automatic graph layout can be reduced using a divide-and-
conquer approach. Instead of visualizing a graph as a whole, clusters are visualized
separately and connected afterwards. Because these clusters are not formed arbitrarily
but reflect concepts of the domain (see section 1), the functional understanding is also
furthered.

In the field of automatic graph drawing several standard algorithm exist, such as
hierarchical graph layout [3, 17, 6, 20|, spring embedding [15], or circles [17]. Also the
use of clustering has been strongly discussed in the last years.

Having analyzed the existing approaches, we propose a visualization algorithm
that is based on the idea of structure identification, and that is comprised of the
following steps:

1. Structure identification = graph clustering
2. Cluster arrangement on a grid
3. Node positioning within the clusters

Step 1 is accomplished by MAJORCLUST as introduced in Section 3, step 2 is done
by applying a simulated-annealing strategy, and respecting step 3, the algorithms for
hierarchical graph layout have been adapted. For details concerning step 2 and 3, the
reader may refer to [14].

Figure 10 shows the structured graph of a configuration knowledge base of a
telecommunication system.

Figure 11 shows a simple hydraulic circuit where two clusters representing a hy-
draulic axis and a supply unit were detected.

6 Summary

The paper presented a new approach to quantify the structure of a graph. Follow-
ing this approach, a domain, a problem, or a system can syntactically be analyzed
regarding its structure—provided that a graph constitutes the adequate modeling
paradigm.

The proposed structure measure, the weighted partial connectivity A, relies on
subgraph connectivity, which is weighted with the subgraphs’ sizes. The subgraphs
in turn are determined by that decomposition of a graph that maximizes A. Hence,
cluster number as well as cluster size of the structure are defined implicitly by the
optimization—a characteristic which makes this approach superior to other cluster-
ing concepts. A maximization resembles the human sense when trying to identify a
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Figure 11: Hydraulic circuit with hydraulic axis (above) and supply unit (below).

graph’s structure: Rather than searching for a given number of clusters, the density
distribution of a graph’s edges is analyzed.

Aside from the mathematical definition, a fast algorithm “MAJORCLUST” opera-
tionalizing A maximization has been developed. Applications from the field of config-
uration, monitoring, and visualization revealed both usability (the detected structures
are reasonable) and applicability (efficient runtime behavior). Structure processing as
proposed here thus provides a powerful knowledge preprocessing concept.
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A Graph-theoretical Definitions

The following definitions of graph theory are adopted from |2, 12, 10]; they are used
in their standard way.

1. A graph G is a tuple (V, E) where V is an emptyset, and E C 2" is a subset of
the two-elemented subsets of V. The elements v € V are called vertices (nodes,
points), the elements e = {v,w} € E are called edges, v, w are called adjacent
to each other, and they are called incident to e.

A multigraph allows £ C 2V to be a multiset of two-elemented subsets of V.
Often, a multigraph is defined as a triple (V, E, g), where V, E # () are finite
sets, VNE =0, and g : E — 2" is a mapping with 2V = {U : U C V, |U| = 2}.
g is called the incidence map.

2. A graph H = (Vy, Ey) is called subgraph of G = (V. E), if Vy CV, Ey C E.

A subgraph is called induced subgraph on Vg, if Ey C E contains all edges
whose endpoints are both in V. The subgraph induced on Vy is denoted with
G(Va).

V={1234567} The induced subgraph ¢4.2.4.5}
4 4
m

3. A (multi)graph G' = (V', E) that results from G' = (V, E) by identifying two
points v, w, {v,w} € E is called contraction of G. V' = V\ {w},E' = E\
{{v.w}}.

The graph G A contraction of G

T L

4. A tuple (eq,...,e,) is called a walk from vy to vy, if g(e;) = {vi_1, v}, v; € V),
1=1,...,n.
G is called connected, if for each two points v;, v; € V' there is a walk from v; to
Uj.
5. A(G) is called the edge connectivity of G and is defined as follows: A(G) =
min{|E'| : E' C E and G' = (V, E\ E') is not connected}.

G is called m-fold line connected, if A\(G) > m.

6. C(G) = (C4,...,C,) isacalled decomposition or clustering of G into n subgraphs
induced on the C;, if Ug,cc =V, C;NCj j4 = 0. The induced subgraphs G(C;)
are called cluster. E- C FE consists of the set of edges between the clusters.
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A graph with edge connectivity 1.

A K K

A graph with edge connectivity 3.

7. Let G = (V, E) be a graph and let C;,Cy C V,C; N Cy = 0. The cut between
C1,Cy is defined as the number of edges between these sets: cut(Cy,Cy) =
{(v1,v9) : (v1,v2) € E,v1 € C1,v9 € Co}.

The cut of a decomposition (clustering), cut(C), is defined as Y ¢, ¢ cciic;
cut(C;, C).



