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Abstra
tWhen working on systems of the real world, abstra
tions in the form of graphshave proven a superior modeling and representation approa
h. This paper ison the analysis of su
h graphs. Based on the paradigm that a graph of a sys-tem 
ontains information about the system's stru
ture, the paper 
ontributeswithin the following respe
ts:Starting with an informal introdu
tion of the term �stru
ture�, the role ofstru
ture identi�
ation in di�erent problem 
lasses is outlined. The 
entral
ontributions of this paper are (i) a formal stru
ture measure, the so-
alledweighted partial 
onne
tivity, Λ, whose maximization de�nes a graph's stru
-ture (Se
tion 2), and (ii) a fast algorithm that approximates a graph's optimum
Λ value (Se
tion 3).Moreover, the proposed stru
ture de�nition is 
ompared to existing 
lusteringapproa
hes, resulting in a new splitting theorem 
on
erning the well-knownminimum 
ut splitting measure. A key 
on
ept of the proposed stru
turede�nition is its impli
it determination of an optimum number of 
lusters.Two examples, whi
h illustrate the usability of the measure, round o� thepaper.
Keywords: stru
ture identi�
ation, graph analysis, 
lustering, knowledge-based methods.



1 WHAT IS STRUCTURE? 31 What is Stru
ture?�Stru
ture de�nes the organization of parts as dominated by the general
hara
ter of the whole.��Stru
ture de�nes the aggregate of elements of an entity in their relation-ships to ea
h other.� 1These informal de�nitions re�e
t the 
ommon sense understanding of the notion�stru
ture�. Stru
ture information is some kind of meta information and may take dif-ferent shapes. However, the nature of a graph often resembles stru
ture information�Figure 1 shows a gantry 
rane, its graph representation, and related stru
tural ab-stra
tions.
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Figure 1: Graph representation and stru
ture of a 
rane.To allow of a more formal de�nition of the term stru
ture, the following abstra
-tions are useful:1. The interesting system, in the above de�nition designated by the terms �whole�and �entity� respe
tively, is mapped onto a graph, G = 〈V, E〉.2 The system's1The Merriam-Webster's Collegiate Di
tionary, Tenth Edition.2See Appendix A for a 
on
ise de�nition of the graph-theoreti
al 
on
epts used in this paper.



1 WHAT IS STRUCTURE? 4elements form the set of nodes, V ; the relations between the elements are rep-resented by the set of edges, E.2. The system's stru
ture (its �general 
hara
ter�) is re�e
ted by the distributionof G's edges.Of 
ourse several 
on
epts are 
on
eivable that de�ne in whi
h way a system'sstru
ture is re�e
ted by the distribution of its graph edges. The understanding ofstru
ture as it is subje
t to this paper relies on the following paradigms:1. Domain 
on
epts. Asso
iated to G, a set of 1 ≤ i ≤ |V | domain 
on
epts cialong with a mapping from V to the ci 
an be stated.Ea
h domain 
on
ept 
orresponds to a parti
ular fun
tion, devision, module,or role of the system. All elements assigned to the same domain 
on
ept 
on-tribute to the same fun
tion, say, ea
h ci de�nes a unary predi
ate on the systemelements.2. Conne
tivity. Domain 
on
epts are de�ned impli
itly, merely exploiting thegraph-theoreti
al 
on
ept of 
onne
tivity:The 
onne
tivity between nodes assigned to the same domain 
on
ept ci isassumed to be higher than the 
onne
tivity between any two nodes v and w,where v, w are assigned to ci and cj,j 6=i respe
tively.3. Contra
tion. A system's stru
ture is de�ned as that 
ontra
tion of G where asingle node is substituted for all nodes of the same domain 
on
ept.Remarks. Point 1 re�e
ts hierar
hy or de
entralization aspe
ts of a system's or anorganization's stru
ture. Point 2 is based on the observation, that the elements withina module are 
losely related; the modules themselves, however, are 
oupled by nar-row interfa
es only. A similar observation 
an be made respe
ting organizational orbiologi
al stru
tures. Point 3 states that stru
ture information 
an be derived by arather simple abstra
tion method.These stru
turing paradigms may not apply to all kinds of systems�but, for abroad 
lass of (te
hni
al) systems they form a useful set of assumptions.1.1 The Role of Stru
ture Identi�
ation in Di�erentProblem ClassesStru
ture identi�
ation, as de�ned by the three paradigms above, 
ould be regarded asa weak (or basi
) problem solving method.3 Although the term �stru
ture identi�
ationby graph 
ontra
tion� does not imply a 
on
rete algorithm (a problem solving methodshould), it de�nes, on the other hand, a 
lear purpose respe
ting the pro
essing ofdomain knowledge. Moreover, stru
ture identi�
ation is related to weak methods3A problem solving method designates an algorithm that des
ribes in whi
h way domain knowl-edge is utilized to solve a problem. A weak problem solving method is less spe
ialized respe
tingknowledge representation, and thus its range of appli
ation is broader. Examples for weak problemsolving methods are forward-
haining-with-rules or the hypothesize-and-test strategy. Strong prob-lem solving methods 
an be 
onsidered as weak methods that have been tailored towards a parti
ulardomain or situation [16℄.



1 WHAT IS STRUCTURE? 5rather than to strong ones, sin
e it provides a basi
 (prepro
essing) step, whi
h isindependent from a domain or a problem 
lass. In the following, examples for agraph-based stru
ture identi�
ation in di�erent problem 
lasses are given.
• Diagnosis. Complex diagnoses problems are ta
kled by a hierar
hi
al approa
h,whi
h breaks up the entire problem by fo
using. The fo
using step may render aheuristi
 diagnosis step, while the remaining smaller problem may be solved bya model-based diagnosis step. Fo
using means 
on
entrating on a subsystem,whi
h 
ould be isolated by stru
ture identi�
ation. In [8℄ the authors pursuesu
h a strategy: Within a stru
ture identi�
ation step a 
omplex hydrauli
system is de
omposed into so-
alled hydrauli
 axes, whi
h in a se
ond step aretreated lo
ally.
• Con�guration. Resour
e-based 
on�guration is a promising approa
h for 
on-�guring modular te
hni
al systems [7, 21℄. In order to apply this 
on�gurationparadigm, ea
h 
omponent of the system is modeled lo
ally; the 
omponentsare 
onne
ted to ea
h other via so-
alled properties, whi
h they supply or de-mand. The 
on�guration algorithm tries to satisfy some given initial demandby 
hoosing a suitable set of 
omponents.When working on a resour
e-based 
on�guration problem, a domain-orientedinterpretation of the underlying 
omponent-property graph is of a great value[21℄. By smartly 
lustering this graph, a fun
tional stru
ture within a 
omplexte
hni
al system 
an be identi�ed, 
ru
ial points in the modeling exhibited, the
on�guration algorithm be tailored, or the knowledge base of a large systemorganized into useful parts [14℄.
• Visualization. To visualize 
omplex graphs, a prepro
essing in the form of node
lustering followed by graph 
ontra
tion has proven to be a key strategy [22℄.Several 
on
epts have been developed, whi
h rely on 
lustering when arranginga graph's nodes hierar
hi
ally [5, 18℄, on a grid [19, 4℄, or by means of simulatedannealing [14℄.
• Monitoring. When monitoring network tra�
, the 
ommuni
ation intensity isre�e
ted by the network 
ommuni
ation matrix. This matrix 
an be interpretedas a (weighted) virtual network graph, whi
h is embedded in the real network.Monitoring and analysing the network tra�
 
orresponds to the identi�
ationof the network graph's stru
ture.Se
tion 5 dis
usses a visualization and a monitoring appli
ation in greater detail.



2 QUANTIFYING A GRAPH'S STRUCTURE 62 Quantifying a Graph's Stru
tureThe stru
ture of a system G has been introdu
ed as some 
ontra
tion of G. Thisdes
riptive de�nition 
an be quanti�ed by means of a new measure 
alled �weightedpartial 
onne
tivity�, Λ, whi
h is introdu
ed now. The weighted partial 
onne
tivityis de�ned for a de
omposition of a graph G, and it is based on the graph-theoreti
al
on
ept of edge 
onne
tivity.Let G = 〈V, E〉 be the graph abstra
tion of the interesting system.1. C(G) = (C1, . . . , Cn) is a de
omposition of G into n subgraphs indu
ed on the
Ci, if ⋃

Ci∈C = V and Ci ∩ Cj,j 6=i = ∅. The indu
ed subgraphs G(Ci) are 
alled
luster. EC ⊆ E 
onsists of the set of edges between the 
lusters.2. The edge 
onne
tivity of a graph G denotes the minimum number of edges thatmust be removed to make G a not-
onne
ted graph (see Appendix A for details).De�nition 2.1 (Λ). Let G be a graph, and let C = (C1, . . . , Cn) be a de
ompositionof G. The weighted partial 
onne
tivity of C, Λ(C), is de�ned as
Λ(C) :=

∑n
i=1 |Ci| · λi,where λ(Ci) ≡ λi designates the edge 
onne
tivity of G(Ci).Figure 2 illustrates the weighted partial 
onne
tivity measure Λ.

1λ  = 2

2λ  = 1 3λ  = 2

Λ = 3∗2+2∗1+3∗2 = 14

Λ = 5∗1+3∗2 = 11

λ  = 11

2λ  = 2

1λ  = 2

2λ  = 3

Λ =Λ∗= 4∗2+4∗3 = 20Figure 2: Example for graph de
ompositions and related Λ values.De�nition 2.2 (Conne
tivity Stru
ture). Let G be a graph, and let C∗ be ade
omposition of G that maximizes Λ:



2 QUANTIFYING A GRAPH'S STRUCTURE 7
Λ(C∗)≡Λ∗ := max{Λ(C) | C is a de
omposition of G}Then the 
ontra
tion H = 〈C∗(G), EC∗〉 is 
alled 
onne
tivity stru
ture (or simply:stru
ture) of the system represented by G.Figure 3 shows that Λ maximization means stru
ture identi�
ation.

Unstructured graph Optimum structured graph respecting Λ Structure

Λ∗ =12

Λ∗ = 46

Λ∗ =16

Λ∗ =6

Λ
(decomposition at
 maximum     value
 is not definite)Figure 3: Examples for de
omposing a graph a

ording to our stru
ture de�nition.Remarks. A key feature of the stru
ture de�nition is that a stru
ture's number of
lusters is de�ned impli
itly.Two rules of de
omposition, whi
h are implied in the above stru
ture de�nition,are worth to be noted.(i) If for a (sub)graph G = 〈V, E〉 and a de
omposition (C1, . . . , Cn) the strongsplitting 
ondition

λ(G) < min{λ1, . . . , λn}



2 QUANTIFYING A GRAPH'S STRUCTURE 8is ful�lled, G will be de
omposed. Note that the strong splitting 
ondition is
ommensurate for de
omposition, and its appli
ation lessens the mean value of thestandard deviations of the 
lusters' 
onne
tivity values λi. Obviously this splittingrule follows the human sense when identifying 
lusters in a graph, and there is arelation to the Min-Cut splitting approa
h, whi
h is derived in Se
tion 4.(ii) If for no de
omposition C the strong splitting 
ondition holds, G will bede
omposed only, if for some C the 
ondition |V | · λ(G) < Λ(C) is ful�lled. Thisinequality forms a ne
essary 
ondition for de
omposition�it is equivalent to the fol-lowing spe
ial 
ase of the stru
ture de�nition: max{Λ({V }), Λ(C)} = Λ(C), be
ause
Λ({V }) ≡ |V | · λ(G).The weighted partial 
onne
tivity, Λ, 
an be made independent of the graph sizeby dividing it by the graph's node number |V |. The resulting normalized Λ value isdesignated by Λ̄ ≡ 1

|V |
· Λ.



3 OPERATIONALIZING STRUCTURE IDENTIFICATION 93 Operationalizing Stru
ture Identi�
ationIn this se
tion a fast 
lustering algorithm optimizing the weighted partial 
onne
-tivity Λ is presented. This algorithm implements a lo
al heuristi
 and is thereforesuboptimal.Initially, the algorithm assigns ea
h node of a graph its own 
luster. Withinthe following re-
lustering steps, a node adopts the same 
luster as the majorityof its neighbors belong to. If there exist several su
h 
lusters, one of them is 
hosenrandomly. If re-
lustering 
omes to an end or rather unlikely, the algorithm terminates.
Figure 4: A de�nite majority 
lustering situation.Figure 4 shows the de�nite 
ase; most of the neighbors of the 
entral node belongto the left 
luster, and the 
entral node be
omes a member of that 
luster. In thesituation of Figure 5 the 
entral node has the 
hoi
e between the left and the right
luster.

Figure 5: An unde
ided majority 
lustering situation.We now introdu
e this algorithm formally.Major
lust.Input. A graph G = 〈V, E〉.Output. A fun
tion c : V → N, whi
h assigns a 
luster number to ea
h node.(1) n = 0, t = false(2) ∀v ∈ V do n = n + 1, c(v) = n end(3) while t = false do(4) t = true(5) ∀v ∈ V do(6) c∗ = i if |{u : {u, v} ∈ E ∧ c(u) = i}| is max.(7) if c(v) 6= c∗ then c(v) = c∗, t = false(8) end(9) end



3 OPERATIONALIZING STRUCTURE IDENTIFICATION 10Remarks. If a node is neighbored to more than one maximum 
luster, there is anindetermina
y respe
ting the 
luster 
hoi
e in step 6. Figure 6 shows an extremesituation respe
ting su
h a random 
hoi
e. A verti
ally de
omposition as shown on theright hand side is unlikely, be
ause if some of the nodes at the 
orners is moved to theother 
luster, only that 
luster will be left at the end of the turn. Hen
e, this 
lusteringis unstable, whi
h is also mirrored by the fa
t that the presented de
omposition does,unlike the trivial de
omposition into only one 
luster, not maximize the weightedpartial 
onne
tivity Λ. However, a de
omposition by some horizontal splitting line asshown on the left side is more likely and more stable. Noti
eably, su
h a de
ompositionis also optimal regarding Λ.
Unlikely clustering

Likely clusterings

Figure 6: Likely and unlikely 
lusterings in the stando� 
ase.The runtime 
omplexity of Major
lust is Θ(|E| · |Cmax|), where Cmax ⊆ Vdesignates a maximum 
luster. In the While-loop (line 3 to 8) ea
h edge of G isinvestigated twi
e; within ea
h pass, a growing 
luster is enlarged by at least one node;if no node 
hanges its 
luster Major
lust terminates. Note that this evaluationnegle
ts �pathologi
al� 
ases, where the algorithm os
illates between two (or more)de
ompositions. However, su
h a situation 
onstitutes neither a 
lustering nor aruntime problem: It 
an be dete
ted easily sin
e all nodes are either stable or in anunde
ided 
onstellation. This advisements and experimental results (see Se
tion 5)show the usability of the algorithm for large graphs with several thousand nodes.The algorithm's greatest strength, its restri
tion to lo
al de
isions, is bound upwith its suboptimality. In every step only a node's neighbors are 
onsidered, resultingin an ex
ellent runtime behavior. On the other hand, by disregarding global 
riterialike the 
onne
tivity, Major
lust 
annot always �nd the optimum solution. Figure7 illustrates this.The optimum solution for graph (a) is one 
luster, whi
h is also the solution asfound by Major
lust. For graph (b), a splitting into the two 
lusters {v1} and
V \ {v1} is optimum. Major
lust 
annot �nd this de
omposition�working stri
tlylo
ally, it behaves exa
tly as on graph (a) and 
reates only one 
luster.



4 EXISTING CLUSTERING APPROACHES 11
(a)

MAJORCLUST resembles
Λ value maximization

(b)

MAJORCLUST clustering

Λ value maximization
v1

Figure 7: The lo
al nature of Major
lust.4 Existing Clustering Approa
hesThe problem of de
omposing a graph has emerged in di�erent areas. In this se
tionan overview and a demar
ation of similar problems and their solutions will be given.4.1 Arti�
ial Intelligen
eClustering data and data 
lassi�
ation have been a fo
us of resear
h in the arti�
ialintelligen
e 
ommunity for years. Data is normally given as a set of positions in anm-dimensional Eu
lidean feature spa
e, i.e. the distan
e between positions is wellde�ned. Transforming data into a graph means to model positions as nodes anddistan
es as edge 
apa
ities. Several attempts aim at dete
ting 
lusters in su
h agraph [24, 1, 9, 13℄, in
luding threshold graphs, measures 
ombining the number ofedges within and between 
lusters, and the number of nodes in ea
h 
lusters [1, 18℄,Fuzzy sets [25℄, minimum spanning tree, or neighborhood sets. Most approa
hesrequire domain knowledge about the graph or use more or less reasonable heuristi
s.Be
ause of its theoreti
al foundation and its general appli
ableness, we 
on
entratehere on a promising approa
h: 
lustering based on minimum 
uts [12, 24℄.By proving the following theorem, the idea of dividing a graph at its smallest 
utis related to the stru
turing 
riterion presented in this paper.Theorem 4.1 (Strong Splitting Condition). Applying the strong splitting 
on-dition (see Se
tion 2) results in a de
omposition at minimum 
uts.To proof this theorem we �rst show that λ(G) equals the 
ardinality of the mini-mum 
ut of G.Proof of Lemma. Let µ(G) denote the minimum 
ut of G. λ(G) ≤ |µ(G)| be
ause theremoval of all edges belonging to the 
ut splits G into two 
omponents. λ(G) ≥ |µ(G)|be
ause in G there exists v1, v2 ∈ V so that exa
tly λ(G) edge disjoint paths 
onne
t



4 EXISTING CLUSTERING APPROACHES 12them. By removing one edge from ea
h path, v1 will not be 
onne
ted to v2 anymore,therefore exists a 
ut with λ(G) edges.Proof of Theorem. Let cut(Vi, Vj) denote the edges between G(Vi) and G(Vj). From
λ(G) ≤ min{λ1, . . . , λr} follows |µ(G)| ≤ min{|µ(G(V1))|, . . . , |µ(G(Vr))|}, i.e. no
ut in G(Vi), i = 1, . . . , r is smaller than µ(G). Sin
e every 
ut µ′(G) ex
ept of
cut(V1, . . . Vr) de
omposes at least one G(Vi), µ′(G) must 
onsist of more than |µ(G)|edges. It follows that cut(V1, . . . Vr) must be minimum.When the strong splitting 
ondition does not hold, an optimum de
ompositiona

ording to the stru
turing value need not be the same de
omposition as found usingthe minimum 
ut. This is be
ause of the latter's disregard for 
luster sizes. Figure 8 issu
h an example. Here Cx refers to a 
lique with x ≥ 3 nodes. An optimum solutiona

ording to the weighted partial 
onne
tivity Λ (whi
h is also 
loser to human sense ofestheti
s) 
onsists of one 
luster {v1, v2, v3, v4} and a se
ond 
luster Cx. An algorithmusing the minimum 
ut would only separate v1.

Cx Clustering according to Min−CutClustering according toΛ

2v

3v

4v

1vFigure 8: Weighted partial 
onne
tivity (Λ) maximization versus Min-Cut 
lustering.The reader may also noti
e that, as mentioned before, maximizing the weightedpartial 
onne
tivity implies an optimum number of 
lusters, while the minimum 
utapproa
h la
ks any 
riterion for the number of ne
essary division steps.4.2 Parallel Computing and Cir
uit LayoutCru
ial to the �eld of parallel 
omputing is the task of dividing a given job or pro
essgraph into k disjoint subgraphs and mapping these subgraphs onto a known pro
essortopology (e. g. a grid). Here almost equally sized subgraphs are desirable, sin
e thisresults in a balan
ed utilization of the pro
essors. As edges 
orrespond to 
ommuni-
ation between pro
esses, minimizing the 
ut between subgraphs is another obje
tive.In 
onne
tion with 
ir
uit layout a very similar problem exists: Dividing a 
ir
uitinto equally sized parts while keeping a small 
ut between the parts obviously redu
esthe 
omplexity for an automati
 layout.One of the best known formulations of a graph division problem is the so-
alledPartitioning problem. It has been used intensively in the �elds of parallel pro
essingand 
ir
uit design.Partitioning.Input. A graph G = 〈V, E〉, a vertex weight fun
tion β : V → N, an edge 
ost



4 EXISTING CLUSTERING APPROACHES 13fun
tion γ : E → N, a number r ∈ N, maximum part sizes B(i) ∈ N, i = 1, . . . , r,and minimum part sizes B(i) ∈ N, i = 1, . . . , r.Output. A de
omposition C = (V1, . . . , Vr) of V , so that:
• ∀i = 1, . . . , r : b(i) ≤

∑
v∈Vi

β(v) ≤ B(i), and
• 1

2

∑
e∈E,e=(vi,vj),vi∈Vk∧vj 6∈Vk

γ(e) is minimum (
ut minimization).Partitioning is strongly NP-hart [12℄. This still applies if β(v) = 1 ∀v ∈ V ,
B(i) = |V | ∀i = 1, . . . , r and b(i) = 1 ∀i = 1, . . . , r.The probably most su

essful approa
h for solving Partitioning dates from 1970by B.W. Kernighan and S. Lin [11℄. In their paper they explain:�We 
an start with any arbitrary partition of the graph, 
alling oneset �A� and the other �B� (A 
ontains half the nodes, B the other half).If this solution isn't already minimum-
ost, we 
an 
ertainly get anotherpartition with a lower 
ost by moving some nodes from A to B, and othersfrom B to A, if we 
hoose the right ones.�A survey of other solutions 
an be found in [12℄.Unlike the problem treated in this paper, no existing stru
tures are 
onsideredby this related problem. An equally sized de
omposition into a prede�ned numberof subgraphs is a
hieved by a

epting a higher 
ut. This obviously redu
es the ap-pli
ableness of solutions to the Partitioning problem for dete
ting stru
tures ingraphs.4.3 Graph VisualizationDividing a graph also proved useful in the �eld of automati
 graph layout. E�ortshave been made to redu
e the 
omplexity of this problem by using Divide-and-Conquerapproa
hes [4, 19, 18℄. The authors rely on the known algorithms for Partitioningor exploit known features of their graphs su
h as bi
onne
ted 
omponents [23℄, 
ir
lesof 
liques [5℄, et
.Some authors, among others [4℄, use mathemati
al de�nitions for the term 
lusterin order to �nd a good de
omposition. Unfortunately there does not exist an agreedde�nition, 
f. [18℄:�In spite of the di�eren
es of opinion as to what 
onstitutes a 
luster,one idea is universally a

epted: the nodes belonging to a 
luster musthave a strong relationship between them in 
omparison with the nodesoutside the 
luster.�Most fun
tions for de�ning the quality of a 
luster try to express this statement inmathemati
al terms, often by 
ombining the demand for equally sized 
luster with asmall inter-
luster 
ut [4, 19, 18℄. Unlike the stru
ture de�nition given in this paper,these de�nitions often fail to de�ne an optimum number of 
lusters, or the use ofaverage values may lead to suboptimum 
lusters.



5 APPLICATION 145 Appli
ationThis se
tion outlines appli
ations for stru
ture identi�
ation from di�erent �elds. Notethat the presented problems are typi
ally ta
kled by knowledge-based 
on
epts, andthat stru
ture identi�
ation as shown here plays the role of a knowledge prepro
essor.5.1 MonitoringMonitoring the tra�
 is substantial for administrating and analyzing a modern 
om-puter network. Many tools support the re
ording and statisti
al analysis of inter-
omputer 
ommuni
ations. To make use of this information the network administra-tor is fa
ed with the interpretation of the so-
alled tra�
 matrix. In this matrix theamount of tra�
 between all pairs of 
omputers in the network is re
orded.The identi�
ation of network parts with a high inter-node 
ommuni
ation is in-teresting for planning and understanding a network. Knowing su
h 
ommuni
ationstru
tures helps the network administrator to de
ide e. g. whether it is reasonable tobundle su
h 
lusters in a single VLAN (virtual LAN), to 
hange the network topology,or to upgrade to swit
hing te
hnology.

Figure 9: A 
omputer network with 
lusters indi
ating a high amount of tra�
.Based on our stru
ture de�nition, a network matrix 
an be evaluated by unveilingits underlying tra�
 stru
ture. A prerequisite for this is a generalization of Λ(C) byintrodu
ing the edge 
onne
tivity λ̄ of a graph, whi
h 
onsiders edge weights that
orrespond to the network tra�
. In the same way the algorithm Major
lust isextended: Every node v now adapts the same 
luster as the weighted majority of itsneighbors, i. e. every neighbor is weighted by the amount of its tra�
 with v.Figure 9 shows a se
tion of a lo
al area network. Three 
ommuni
ation 
lustershave been dis
overed, one of them 
omprising 
omputers from two di�erent subnetsand thus 
ausing high tra�
 on the ba
kbone.



6 SUMMARY 155.2 VisualizationGraphs proved one of the most adaptable and most frequently used means of modeling.Examples 
an be found in several �elds, some of them mentioned in this paper. Asgraph size re�e
ts the 
omplexity of a problem, more 
omplex problems result in largergraphs. Understanding problems and their stru
ture turns out to be a key fa
tor forsolving them. Su
h an understanding 
an be supported by visualization, in parti
ularby visualizing graphs that represent the interesting problem, system, or domain.Sin
e being a part of the real world, these graphs inherit a (problem / system/ domain-) spe
i�
 stru
ture. By identifying this stru
ture, i. e. by de
omposing thegraph, the 
omplexity of an automati
 graph layout 
an be redu
ed using a divide-and-
onquer approa
h. Instead of visualizing a graph as a whole, 
lusters are visualizedseparately and 
onne
ted afterwards. Be
ause these 
lusters are not formed arbitrarilybut re�e
t 
on
epts of the domain (see se
tion 1), the fun
tional understanding is alsofurthered.In the �eld of automati
 graph drawing several standard algorithm exist, su
h ashierar
hi
al graph layout [3, 17, 6, 20℄, spring embedding [15℄, or 
ir
les [17℄. Also theuse of 
lustering has been strongly dis
ussed in the last years.Having analyzed the existing approa
hes, we propose a visualization algorithmthat is based on the idea of stru
ture identi�
ation, and that is 
omprised of thefollowing steps:1. Stru
ture identi�
ation = graph 
lustering2. Cluster arrangement on a grid3. Node positioning within the 
lustersStep 1 is a

omplished by Major
lust as introdu
ed in Se
tion 3, step 2 is doneby applying a simulated-annealing strategy, and respe
ting step 3, the algorithms forhierar
hi
al graph layout have been adapted. For details 
on
erning step 2 and 3, thereader may refer to [14℄.Figure 10 shows the stru
tured graph of a 
on�guration knowledge base of atele
ommuni
ation system.Figure 11 shows a simple hydrauli
 
ir
uit where two 
lusters representing a hy-drauli
 axis and a supply unit were dete
ted.6 SummaryThe paper presented a new approa
h to quantify the stru
ture of a graph. Follow-ing this approa
h, a domain, a problem, or a system 
an synta
ti
ally be analyzedregarding its stru
ture�provided that a graph 
onstitutes the adequate modelingparadigm.The proposed stru
ture measure, the weighted partial 
onne
tivity Λ, relies onsubgraph 
onne
tivity, whi
h is weighted with the subgraphs' sizes. The subgraphsin turn are determined by that de
omposition of a graph that maximizes Λ. Hen
e,
luster number as well as 
luster size of the stru
ture are de�ned impli
itly by theoptimization�a 
hara
teristi
 whi
h makes this approa
h superior to other 
luster-ing 
on
epts. Λ maximization resembles the human sense when trying to identify a
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Figure 10: Stru
ture of a tele
ommuni
ation knowledge base (s
reen snapshot).

Figure 11: Hydrauli
 
ir
uit with hydrauli
 axis (above) and supply unit (below).graph's stru
ture: Rather than sear
hing for a given number of 
lusters, the densitydistribution of a graph's edges is analyzed.Aside from the mathemati
al de�nition, a fast algorithm �Major
lust� opera-tionalizing Λ maximization has been developed. Appli
ations from the �eld of 
on�g-uration, monitoring, and visualization revealed both usability (the dete
ted stru
turesare reasonable) and appli
ability (e�
ient runtime behavior). Stru
ture pro
essing asproposed here thus provides a powerful knowledge prepro
essing 
on
ept.
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A GRAPH-THEORETICAL DEFINITIONS 19A Graph-theoreti
al De�nitionsThe following de�nitions of graph theory are adopted from [2, 12, 10℄; they are usedin their standard way.1. A graph G is a tuple 〈V, E〉 where V is an emptyset, and E ⊆ 2V is a subset ofthe two-elemented subsets of V . The elements v ∈ V are 
alled verti
es (nodes,points), the elements e = {v, w} ∈ E are 
alled edges, v, w are 
alled adja
entto ea
h other, and they are 
alled in
ident to e.A multigraph allows E ⊆ 2V to be a multiset of two-elemented subsets of V .Often, a multigraph is de�ned as a triple 〈V, E, g〉, where V, E 6= ∅ are �nitesets, V ∩E = ∅, and g : E → 2V is a mapping with 2V = {U : U ⊆ V, |U | = 2}.
g is 
alled the in
iden
e map.2. A graph H = 〈VH , EH〉 is 
alled subgraph of G = 〈V, E〉, if VH ⊆ V , EH ⊆ E.A subgraph is 
alled indu
ed subgraph on VH , if EH ⊆ E 
ontains all edgeswhose endpoints are both in VH . The subgraph indu
ed on VH is denoted with
G(VH).

1

2

3

4 5

6 7

V = {1,2,3,4,5,6,7} The induced subgraph on {1,2,4,5}

1

2 4 5

3. A (multi)graph G
′

= 〈V
′

, E
′

〉 that results from G = 〈V, E〉 by identifying twopoints v, w, {v, w} ∈ E is 
alled 
ontra
tion of G. V
′

= V \ {w}, E
′

= E \
{{v, w}}.

The graph G A contraction of G

4. A tuple (e1, . . . , en) is 
alled a walk from v0 to vn, if g(ei) = {vi−1, vi}, vi ∈ V ,
i = 1, . . . , n.
G is 
alled 
onne
ted, if for ea
h two points vi, vj ∈ V there is a walk from vi to
vj.5. λ(G) is 
alled the edge 
onne
tivity of G and is de�ned as follows: λ(G) =
min{|E

′

| : E
′

⊂ E and G
′

= 〈V, E \ E ′〉 is not 
onne
ted}.
G is 
alled m-fold line 
onne
ted, if λ(G) ≥ m.6. C(G) = (C1, . . . , Cn) is a 
alled de
omposition or 
lustering of G into n subgraphsindu
ed on the Ci, if ⋃

Ci∈C = V , Ci ∩Cj,j 6=i = ∅. The indu
ed subgraphs G(Ci)are 
alled 
luster. EC ⊆ E 
onsists of the set of edges between the 
lusters.
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A graph with edge connectivity 1.

A graph with edge connectivity 3.

7. Let G = 〈V, E〉 be a graph and let C1, C2 ⊆ V, C1 ∩ C2 = ∅. The 
ut between
C1, C2 is de�ned as the number of edges between these sets: cut(C1, C2) =
|{(v1, v2) : (v1, v2) ∈ E, v1 ∈ C1, v2 ∈ C2}|.The 
ut of a de
omposition (
lustering), cut(C), is de�ned as ∑

Ci,Cj∈C,i<j

cut(Ci, Cj).


