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ABSTRACT
The problem of finding a pleasant layout for a given graph is a key
challenge in the field of information visualization. For graphs that
are biased towards a particular property such as tree-like,star-like,
or bipartite, a layout algorithm can produce excellent layouts—if
this property is actually detected.
Typically, a graph may not be of such a homogeneous shape but is
comprised of different parts, or it provides several levelsof abstrac-
tion each of which dominated by another property.

The paper in hand addresses the layout of such graphs. It presents
a meta heuristic for graph drawing, which is based on two ideas:
(i) The detection and exploitation of hierarchical cluster informa-
tion to unveil a graph’s inherent structure. (ii ) The automatic selec-
tion of an individual graph drawing method for each cluster.

Categories and Subject Descriptors
I.4.10 [Computing Methodologies]: IMAGE PROCESSING
AND COMPUTER VISION; I.2.6 [Computing Methodologies]:
ARTIFICIAL INTELLIGENCE

General Terms
Graph-drawing, Learning, Information-Visualization, Clustering

1. INTRODUCTION
Some of the recent graph drawing developments arm up layout al-
gorithms by the exploitation of cluster information: A graph is di-
vided into subgraphs, the so-called clusters, which can be laid out
rather independently from each other.1 Aside from a complexity
reduction of the layout process within an order of magnitude, a
clustering of the graph can also convey additional structural infor-
mation. For instance, when rendering the parts graph of a large
technical system, subgraphs that stand for assemblies can be iden-
tified and accentuated visually.

1Note that during the inter-cluster-layout process, linksbetween
clusters must also be taken into account.

Notice that the clustering idea entails two subproblems:
(i) The identification of appropriate clusters, and (ii ) the integration
of cluster information into a layout algorithm.
This paper provides new solutions for both problems. With respect
to problem (i) the Λ-maximization idea is utilized. This recently
developed clustering approach is based on a graph’s partialcon-
nectivity (theΛ-value) and is especially suited for the clustering of
non-distance graphs. With respect to problem (ii ) a strategy radi-
cally different to existing research is pursued: Instead ofadapting a
particular drawing method, we select heuristically, say knowledge-
based, the most suited drawing method from a set of methods for
each cluster. Since graph drawing methods make also heavy use
of heuristics, our approach can be regarded as a meta heuristic for
graph drawing.
The meta heuristic approach combines the power of clustering with
a differentiation between graph drawing methods: A graph isvisu-
alized at different levels of abstraction, and on each levelthe most
suitable layout technique is applied. Note, however, that the selec-
tion of a suitable layout technique for a given cluster posesa new
problem, which must be solved to make the meta heuristic approach
a working concept.

2. A META HEURISTIC APPROACH TO
GRAPH DRAWING

The following pseudo code defines the basic steps of the meta
heuristic.

Input. A graphG = 〈V, E〉. A functioncq, mapping
from graphs onto graph drawing methods.

Output. Positions for all vertices.

function meta heuristic (G = 〈V, E〉)

(1) Find clustersC1, . . . , Cn in G.
(2) Create the condensed graphG′ = 〈V ′, E′〉 with

V ′ = {C1, . . . , Cn},
E′ = {{Ci, Cj} | ∃vi ∈ Ci, vj ∈ Cj : {vi, vj} ∈ E}.

(3) VisualizeG′ by applying drawing methodcq(G
′).

(4) for all C ∈ {C1, . . . , Cn} with |C| > 1 do
(4a) AssignH the subgraph ofG induced byC.
(4b) meta heuristic(H).
(5) od

The algorithm decomposes a graphG into clustersCi and visual-
izes eachCi recursively. If no more clusters are found inG, every
node becomes its own cluster. Therefore the cluster sizes decrease
in each recursion step, i. e. after less than|V | steps only clusters of
the size1 exist and the algorithm terminates.



The following subsections engage in the key issues of the meta
heuristic: quality of a graph layout, graph clustering, anddraw-
ing method selection. The functioncq , which is responsible for
selecting a drawing method, plays a key role in the meta heuristic.
Section 3 explains howcq can be set up by a learning method.

2.1 The Quality of Graph Layouts
The quality of graph layouts and its quantization has been subject to
many research projects. In this place we will not pursue suchkind
of research but fall back onto existing and well accepted concepts.
Several criteria for evaluating the quality of a graph-layout exist:

• the number of edge crossings (e. g. in [6],[4],[10])

• the distribution of vertices (e. g. in [1],[2])

• the number of crossings between vertices and edges (e. g. in
[8])

• the area required for the layout (e. g. in [16])

• the edge lengths (e. g. in [1],[2])

• combinations of the above

Any of these quality measures can be expressed by a functionq,
mapping from graph layouts intoR. The overall goal of the meta
heuristic is to optimize a layout with respect to someq, which is
realized by means of the classification functioncq : For a graphG
the functioncq is intended to select that graph drawing method that
results in the maximum value ofq. Finding a suitable functioncq

for a givenq is subject to Section 3.

2.2 Graph Clustering
A model captures a lidded part of reality. When graphs are used as
a means of modeling, information is often coded into the structure
of the graph.
Such structures can be found by applying clustering algorithms
(step 1 of the meta heuristic). Clusters are used to reduce the graph
sizes handled by the graph drawing algorithms and to furtherthe
understanding of complex graphs by underlining its inherent struc-
ture.
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Figure 1: A hierarchically clustered graph.

The left-hand side of Figure 1 shows a clustered graph. On the
graph’s top level two clustersA andB have been identified; within
clusterB two subclustersB1 andB2 were found. The right-hand
side of Figure 1 shows the cluster hierarchy.
To detect structures in graphs we have developed the new method of
Λ-maximization, which is primarily based on a graph’s edge con-
nectivity. Λ-maximization poses a computational expensive prob-
lem, however, a good approximation of a graph’sΛ-value can be
computed by the fast algorithm MAJORCLUST (see [12]).

2.3 Drawing Method Selection
One of the original ideas of this paper is the classification of graphs
according to the most suitable visualization technique, given a qual-
ity measureq. Most graph drawing methods implicitly assume a
special quality measure and are adapted to special graph classes.
Other techniques can cope with all graphs, but their runtimebehav-
ior or their quality declines for some types of graphs. Therefore it
makes sense to choose for each graph and each quality measurethe
best layout method (step 3 of the meta heuristic).
Table 1 gives for some graph drawing algorithms the correspond-
ing quality measure and the most suited graph types. The table can
neither be complete nor can it take all versions or opinions into con-
sideration. More comprehensive overviews can be found in [5],[3]
or in the proceedings of the annual Symposia on Graph Drawing
(Springer, Lecture Notes in Computer Science).

Algorithm Quality
Measure

Suited Graph Class

Reingold’s algorithm [9] see [13] only trees
hierarchical graph drawing
[6]

edge
crossings

graphs easy to
transform into DAGs

force-directed approach
[1],[7],[2]

optimal
edge
lengths

small, symmetric
graphs

Tamassia’s algorithm [14]edge bendsplanar graphs
Wood’s algorithm [16] edge bendsplanar graphs
Seisenberger’s algorithm
[11]

symmetric
layout

Petri-Nets

Table 1: Graph drawing methods with related optimization crite-
rion and graph class.

One possible way to determine the best graph drawing method is
of course to test all and then to choose the method resulting in the
layout best rated by the quality measureq . For runtime reasons
this is hardly possible, and a different approach has been chosen
here.

Feature
number of connected components
edge connection
number of biconnected components
number of vertices
number of edges
maximum distance between two vertices
diameter
maximum vertex degree
minimum vertex degree
number of clusters as found by MAJORCLUST

Table 2: Important graph features for drawing purposes.

For each graphG a vector−→v (G) ∈ R
p comprising several graph

features is calculated. Table 2 shows important graph features. A
classification functioncq : R

∗ → {m1, . . . , mk} is assumed to
be given, wheremi denotes a graph drawing method.cq is used to
map from a feature vector−→v (G) onto the best layout technique.
Finding an optimalcq heavily depends on the quality measureq.
The functionq allows for rating features according to their sup-
port for a graph drawing method. Section 3 elaborates on how the
problem of finding a classification functioncq can be reduced to a
standard regression problem, making the automatic learning of cq

possible.



3. LEARNING THE DRAWING METHOD
SELECTION

The quality of the meta heuristic depends decisively on the choice
of the classification functioncq. As described abovecq is used to
map from a feature vector−→v (G) onto the layout technique best
suited to optimize the given quality criterionq. In this section a
novel method for learningcq by applying standard regression tech-
niques is given.

3.1 The learning process
For non-clustered graphs this learning process is quite simple: A
set of typical graphs{G1, . . . , Gp} has to be given. Each graphG
is visualized using all graph drawing methods
{m1, . . . , mk}. The best method according toq is calledm(G).
The feature vector−→v (G) is saved together withm(G). This results
in a databaseDB of classified feature vectorsDB = {< −→v (G1),
m(G1) >, . . . , < −→v (Gp), m(Gp) >}.
Databases likeDB are normal input for standard regression algo-
rithms (see also [15]), i. e.cq can be learned by applying regression
to DB. cq learns which features support or weaken the applica-
bility of a graph drawing method. For runtime reasons it may be
reasonable for large databases and complex feature-vectors to use
neural-networks as a heuristic to solve the regression problem.

The meta heuristic combines the learning process as described
above and the recursive clustering approach: Not the original
graphs but all graphs created by the recursive clustering are used
for parameterizing the classification function. This will now be
formally described.

Input. Graphs{G1, . . . , Gm}.
Output. A function cq mapping from graphs onto

graph drawing methods.

learning step I
(0) Choose an optimality criterionq
(1) for all graphsG ∈ {G1, . . . , Gm}, G = 〈V, E〉 do
(2) learn(G)

function learn (G = 〈V, E〉)
(3) Find clustersC1, . . . , Cn in G

(4) Create the condensed graphG′ = 〈V ′, E′〉 with
V ′ = {C1, . . . , Cn},
E′ = {{Ci, Cj} | ∃vi ∈ Ci, vj ∈ Cj : {vi, vj} ∈ E}.

(5) VisualizeG′ by applying all implemented
graph drawing methods.

(6) Create the databaseDB by calculating the
feature vector−→v (H) and saving it together
with the best graph drawing algorithm.

(7) for all C ∈ {C1, . . . , Cn} with |C| > 1 do
(7a) AssignH the subgraph ofG induced byC
(7b) learn(H)
(8) od

learning step II
(9) Learn a classificatorcq by applying regression toDB

Note that the resulting function exclusively relies on the graphs
used by the learning method, i. e. by choosing graphs from a special
domain, the algorithm specially adapts to this domain.

Figure 2: Graph of a configuration knowledge-base (left) andthe
abstract view on the knowledge-base clusters or system modules
(right).

Learning the functioncq can be seen as a preprocessing step for
the meta-heuristic. Since it is applied usually only once, runtime
considerations are less important here.

4. SOME EXPERIMENTAL RESULTS
The meta heuristic has been applied to several domains, two are
presented here.

4.1 Envisioning Configuration
Knowledge-Bases

The resource-based configuration paradigm is a successful ap-
proach in the field of automatic configuration of technical systems.
It allows for a local modeling of distributed systems.

From a visualization point of view, knowledge-bases for resource-
based configuration establish bipartite, undirected graphs. Because
most conventional graph drawing techniques fail with respect to
a purposeful representation, we have tested the meta-heuristic ap-
proach here.

The left-hand side of Figure 2 shows a part of a configuration
knowledge-base. The subgraphs, say, clusters, in the center were
visualized using a spring-embedder; for the other clustersa hierar-
chical layout algorithm has been employed. The right-hand side of
the figure shows the graph of clusters, i. e. an abstract view onto the
graph.

20 Graphs with 500 vertices and 5 graphs with 1000 vertices have
been visualized. The quality measure applied for the described ex-
periments was the number of edge crossing; other measures such
as the layout symmetry gave similar results. Two graph draw-
ing algorithms have been implemented, namely, a spring-embedder
[1],[7],[2] and a hierarchical graph-layout method [6],[10]. The
meta heuristic resulted in39% less edge crossings than the hier-
archical approach and in27% less edge crossing than the spring-
embedder solution.

4.2 Network Traffic Analysis
Network traffic analysis is substantial for administratingand ana-
lyzing computer networks. The amount of traffic between all pairs
of computers in the network is recorded in the so-called traffic ma-
trix: Each node in the computer network becomes a vertex and all
communication between two nodes results in an weighted edge.
The edge-weight is proportional to the amount of communication.

Figure 3 shows a network from its physical setup (left), a related
communication graph (middle), and a nicely drawn version ofthe
communication graph (right). Its two top clusters were visualized
by an spring-embedder, the bottom cluster graph shows the typical
hierarchical layout.
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Figure 3: A network from its physical setup (left-hand side).
The same network with communication links added (in the mid-
dle). Cluster detection and redrawing uncovers the communication
structure (right-hand side).

40 graphs with approximately 500 vertices have been visualized.
The same experiments as in the previous subsection have beencon-
ducted for these graphs. The meta heuristic resulted in22% less
edge crossings than the hierarchical approach and in29% less edge
crossing than the spring-embedder solution.

5. SUMMARY
The presented paper introduces a new meta-heuristic for drawing
large graphs. The meta-heuristic works by firstly clustering a graph
and then using for each subgraph the optimal drawing method.The
dynamic choice of a suited drawing algorithm allows for the visu-
alization of heterogeneous graphs as created by many applications,
whereof two are explained in more detail.

Two mains paradigms are defined and combined by the authors:

1. When visualizing graphs from real world applications, there
exists no drawing method that is suited for all graphs. Thus,
the graphs should be analyzed and the best layout algorithm
chosen dynamically.

2. The graph-inherent structure has to be emphasized by the
layout algorithm. To accomplish this job special clustering
algorithms are needed.

To find natural clusters within a graph the novel approach ofΛ-
maximization is applied. Clearly, clustering is a generic means to
cope with the complexity when layouting large graphs. Note how-
ever, that anatural clustering does also support the understanding
of complex graphs.

6. REFERENCES

[1] P. Eades. A heuristic for graph-drawing.Congressus
Numerantium, 42:149–160, 1984.

[2] T. Fruchterman and E. Reingold. Graph-drawing by
force-directed placement.Software-Practice and Experience,
21(11):1129–1164, 1991.

[3] R. T. G. DiBattista, P. Eades and I. Tollis. Algorithms for
drawing graphs: An annotated bibliography.Computational
Geometry, 4, 1994.

[4] germanErkki M"akinen. americanExperiments on drawing
2-level hierarchical graphs. InamericanIntern. J. Computer
Math. Vol. 36, germanGordon and Breach Science
Publishers, 1990.

[5] M. Himsolt. Konzeption und Implementierung von
Grapheneditoren. PhD thesis, University of Passau, 1991.

[6] S. T. K. Sugiyama and M. Toda. Methods for visual
understanding of hierarchical system structures.IEEE
Transactions on Systems, Man, and Cybernectics, 11(2),
1981.

[7] T. Kamada and S. Kawai. An algorithm for drawing general
undirected graphs.Information Processing Letters, 31:7–15,
1989.

[8] O. Niggemann, B. Stein, and M. Suermann. On
Resource-based Configuration—Rendering
Component-Property Graphs. In J. Sauer and B. Stein,
editors,12. Workshop “Planen und Konfigurieren”,
tr-ri-98-193, Paderborn, Apr. 1998. University of Paderborn,
Department of Mathematics and Computer Science.

[9] E. Reingold and J. Tilford. Tidier drawing of trees.IEEE
Transactions on Software Engineering, 7(2):223–228, 1981.

[10] G. Sander. americanGraph Layout through the VCG Tool.
americanTechnical Report A/03/94, 1994.

[11] K. Seisenberger. Komprimierte darstellung von planaren
graphen. Master’s thesis, University of Passau, 1991.

[12] B. Stein and O. Niggemann.25. Workshop on Graph Theory,
chapter On the Nature of Structure and its Identification.
Lecture Notes on Computer Science, LNCS. Springer,
Ascona, Italy, July 1999.

[13] K. Supowit and K. Misue. The complexity of drawing trees
nicely.Acta Informatica, 18:359–368, 1983.

[14] R. Tamassia. On embedding a graph in the grid with the
minimum number of bends.SIAM Journal of Computing,
16(3):421–444, 1987.

[15] T. Wonnacott and R. Wonnacott. Regression: a second
course in statistics. John Wiley & Sons, New York,
Chichester/Brisbane/Toronto, 1981.

[16] D. Woods. Drawing planar graphs. Technical Report
STAN-CS-82-943, Computer Science Department, Stanford
University, 1981.


