Solving Modeling Problems with Machine Learning

A Classification Scheme of Model Learning Approaches for Technical Systems
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Abstract: The manual creation and maintenance of appropriate behavior models is
a key problem of model-based development for technical systems such as vehicles
or production systems. Currently, two main approaches are considered promising to
overcome this bottleneck: (a) The fields of software and system engineering try to
develop better methods and tools to synthesize models manually. (b) The field of
machine learning tries to learn such models automatically, by analyzing observations
from running systems. While software and system engineering approaches are suited
for new systems for which modeling expertise is at hand, machine learning approaches
are suited for the handling of running systems such as monitoring, diagnosis, and
system optimization.

Given this background our contributions are as follows: To organize existing re-
search, Section 2 introduces a classification scheme of models and model learning
algorithms. Section 3 reports on two different case studies to illustrate the power of
the machine learning approach.
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1 Introduction

Learning models based on observations is a promising approach to overcome the modeling
bottleneck. Learning is for many modeling formalisms state-of-the-art; but there exist also
several formalisms for which learning is still a challenge: Especially formalisms com-
prising aspects such as timing or hybrid signals are a challenge for an automatic model
generation.

So in this paper, first of all a classification schema for model formalisms is given which
allows for a qualification of formalisms with regard to their learnability (section 2). Then,
in section 3, two case studies present learning algorithms for formalisms which are at the
edge of the current state of the art of model learnability.



2 A Classification Scheme of Model Synthesis

2.1 Classification of Model Formalisms

In all engineering fields, models are, among other things, used to predict a system’s be-
havior. Such predictions are the basis for fundamental tasks such as planning, verification,
diagnosis, or optimization. These tasks can be subsumed as model-based engineering.

The automatic learning of models for technical systems could be the next big step in
model-based development. Automatic model learning would relieve an engineer from the
difficult job of constructing a behavior model for a task in question. But, not all models
can be learned automatically: In some cases, the models are too complex. In other cases,
not enough observations exist to learn the model.

In this section, first of all a classification scheme for models of technical systems is
presented which is later on used to define the theoretical capability to learn a model
automatically. Our scheme is oriented at two widely-used model classification princi-
ples in engineering and system theory: at a model’s structural variance of time as ex-
pressed by its number of modes and at the different forms of a model’s state space
[Wym76, ZPKOO, SteO1]. In addition, we will explicitly distinguish models whose be-
havior is governed by stochastic elements.

How can such a classification scheme for models be developed? For this, a technical
system’s most distinguishing feature is exploited: its time-dependence.

Time has mainly two manifestations in a technical system:

1. Smooth Changes: All technical systems show a specific behavior over time. This is
visible by the change of physical values such as temperature or positions. Usually, these
changes over time are smooth—"Natura non facit saltus” (nature does not make jumps,
Poseidonios) has been a main axiom of science since Aristotle. E.g. the flight curve of a
cannon ball has clearly a smooth form.

In engineering, this behavior is usually modeled using the notion of states. A technical
system is always in one precise state and the next state is computed based on external
inputs/events and on the previous states.

Table 1’s bottom row classifies this time behavior by the means of five classes:

Memoryless models Given a constant input signal, memoryless models do not show a
behavior variation over time. Models of this type are also called stationary models.

Dynamic models (with finite state number) The system behavior is comprised of a se-
quence of signal values where time is modeled explicitly. Each new model state is
computed based on the state’s predecessors. Examples include temporal automata
and temporal logic.

Dynamic models (with infinite state number) Given a constant input signal and some
internal arbitrary state, the behavior over time is created by iteratively computing all
signal values along with their derivatives. L.e. the time characteristic is computed
implicitly by a numerical solver.

Dynamic stochastic models (with finite state number) Dynamic stochastic models
show a non-deterministic behavior. This may be caused by random effects such as



Table 1: Classification of models oriented at the dimensions model dynamics and model function.
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errors or by asynchronous parts of the systems that run independently and show
therefore a stochastic timing behavior.

Dynamic stochastic models (with infinite state number) These models are similar to
the class of “dynamic stochastic models with finite state number” but comprise an
infinite number of states.

2. Disruptive Changes: A system may, at some point in time, fundamentally change its
behavior, e.g. the cannon ball from above hits the the ground. Or a vehicle changes its
gear or a valve in a chemical reactor is opened. These disruptive changes correspond to
a system’s modes. A mode is a discontinuity of the system, a point in time at which the
model must be changed significantly because the system behavior changes significantly
[Bue09].

Table 1 therefore differentiates between uni-modal and multi-modal systems. To the for-
mer belong all models which can can be described using a constant set of (differential)
equations. The later may change their equation system as a reaction to specific events
(discontinuity).

Hybrid automata are an example for a formalism wich can explicitly express different
system modes: Hybrid automata [ACH"95] are finite state machines which model a con-
tinuous system behavior within each state [ACHT95], i.e. each state comprises the model
of one mode. At the occurrence of a specific input/events, the model goes from one state
(mode) to the next state (mode).

2.2 Classification of Model Learning Algorithms

For these different model types, different learning algorithms are available. Table 2 charac-
terizes some common machine learning algorithms according to the scheme from above:

All uni-modal, memoryless models can be learned using function approximation ap-
proaches: For this, a function template is given a-priori and is then parameterized by
minimizing the prediction error of the function on the observations. Generally speaking
such approaches are well studied (e.g. in [MS03a, MS03b]). E.g. model formalisms such



Table 2: On the learnability of model behavior, considering the model types shown in Table 1.
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as Neural Networks or Support Vector Machines rely on optimization approaches [Alp10];
however, usually a large number of observations is required.

Uni-modal, dynamic models are harder to learn because the states have to be identified.
Since states capture the system timing behavior, all observations must be analyzed in-
cluding their progression over time. So while memoryless model learning algorithms
simply have to analyze all observations, dynamic models also have to analyze the tem-
poral relations between observations. It is therefore not surprising that the learning of
dynamic models is still an on-going research topic: E.g. the learning of timed automata
[MVNI11, VdAWW10] or the learning of (temporal) rules [FGS02, WF05].

For uni-modal dynamic models with an infinite number of modes, the problem is even
harder: Only a few projects try to identify such equation system. As a work-around, often
an a-priori model comprising all modes is defined manually. Such model identification ap-
proaches identify missing model parameters by means of optimization algorithms [Ise04].

For multi-modal models, almost no learning algorithms exist: For hybrid automata, a
first algorithm is presented in [VBNM11] which learns both the states and the temporal
transitions of the automaton.

In general, no learning algorithms exist for stochastic dynamic models. E.g. it is not pos-
sible to identify asynchronous system parts based on observations of the overall system.
Again as a work-around, often the model structure is defined manually and then parame-
terized by means of optimization algorithms, e.g. for Markovian Chain [P. 99].

3 Case Studies

In the following, two case studies are given which describe approaches for learning mod-
els based on observations. Both case studies learn model formalisms which have been
characterized in section 2 as being on the edge of learnability.
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Figure 1: Detecting Energy Anomalies using Hybrid Automata

3.1 Case Study: Energy Anomaly Detection of Production Plants

Use Case

The automatic detection of suboptimal energy consumptions in production plants is a key
challenge for the European industry in the next years [Gro06, VDI09]. Currently, operators
are mainly concerned about a plant’s correct functioning; energy aspects are still regarded
as of secondary importance. And even if energy aspects are seen as a problem, operators
mainly replace single hardware components, e.g. the installation of an energy-optimized
drive. Details about these passive approaches can be found e.g. in [EWO, EnH] or even in
combination with simulation in [eS].

But a large optimization potential lies on the system level: Plant modules, engines, drives
should be controlled in a way which takes energy aspects in consideration. E.g. the syn-
chronized start of drives should be avoided because it can cause harmonics which have
to be paid by the operators. Or a prediction of the energy price can be used to save on
energy-intensive production steps. And furthermore, plant errors leading to suboptimal
energy consumptions can be detected and repaired, e.g. blocked pipes, worn drives, or
broken sensors. Such active approaches, implemented in the automation systems, can be
found e.g. in [CKTO09, DV08]. As a first step, suboptimal situations should be detected
automatically.

Suboptimal energy situations can be detected by means of model-based anomaly detection
systems as depicted in figure 1:

A model is used to simulate the normal energy consumption of a plant. For this, the sim-
ulation model, here a timed hybrid automaton, needs all input of the plant, e.g. product
information, plant configuration, plant status, etc. If the actual energy measurements vary
significantly from the simulation results, the energy consumptions is classified as anoma-
lous. The details of this anomaly detection algorithm ANODA is given in [VBNMI11].

But the manual creation of such a timed hybrid automaton is hardly feasible. Therefore, in
[VBNMI11, MVNI11] a method is given which allows for an automatic learning for these
models. The general idea can be seen in figure 2: During a plant’s normal operation, all
sensor/actor data is measured by accessing directly the industrial networks; this data is



extended by data from the MES and the ERP systems. As a result, all data is stored in a
database. For this, the time synchronization of the data is essential. Next, the algorithms
BUTLA and HyBUTLA are used to learn a timed hybrid automaton from these data.

In [VBNM11], some energy errors are detected which are caused by errors such as broken
sensors (value offset by 10%) or incorrect control signal timing. The accuracy of this
anomaly detection has been better than 93%.

Classification according to the Taxonomy

Production plants are multi-mode systems: E.g. production modules are turned on and off
or gates of transportation systems are changed. So any learning algorithm must be able to
detect mode changes.

Unlike approaches such as the learning of Markovian Chains, here the states of the hybrid
automaton themselves must be learned. If only probabilities or the timing of existing
transitions are parametrized, the learning problem resembles a function approximation
problem and can be solved by means of optimization algorithm. The learning of the states
moves the problem into the class of dynamic model learning.

Parts of such plants are often coupled in an asynchronous manner: Effectively, this leads
to stochastic relations between the observations. So far, no learning algorithm is able to
learn which parts of a plants are coupled asynchronously. In [VBNM11], this information
is therefore given as input to the learning algorithm.

3.2 Case Study: Learning timing behavior by means of timed automata

Learning the timing behavior of discrete manufacturing plants is currently a big challenge
(e.g. in [PHO9], [JKO1], [Ver10]). Such timing models can be used to analyze a system’s
timing behavior and are the basis for tasks such as system optmization or diagnosis. Here,
several algorithmic challenges exist:

(1) One challenge in learning the timing behavior is the trade-off between abstraction and
preciseness. The behavior of the plant has to be observed over a period of time. All these
observations are then compiled into a more concise model, e.g. as timed automata. First,
all observed event sequences are stored in a so-called prefix tree. Now compatible states
are merged until the wanted trade-off between abstraction and preciseness is reached. Tim-
ing is an important criterion for defining the compatibility between states. Figure 3 shows
an example: If timing is ignored, states 2 and 3 are compatible. But if the probability den-
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Figure 2: Learning Models for the Energy Consumption using Hybrid Automata
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Figure 3: Check for compatibility of timed events

sity functions at the transitions are taken into consideration, the new edge between 1 and
the merged state 2, 3 shows a multi-modal probability density function, i.e. it is obviously
created by two different technical processes and should not have been merged for the most
cases.

(2) Two system states are similar if they define a starting point for a similar future plant
behavior. So in order to learn a unique state of a plant, the learning algorithm must analyze
all state’s successor states. L.e. learning algorithms can not operate locally but must take
the whole set of observations into consideration.

(3) The timing behavior of a production plant can vary with the operating phase. E.g.
during startup a plant often shows a different timing behavior than in regular operation
because individual components must first reach the operating temperature. Furthermore,
the timing behavior can change suddenly, e.g. after opening a valve or after closing a
switch. Using normal timed automata, multi mode systems are hard to model; as a work-
around, the mode switches can be turned into a specific event which leads to different
sub-automata for each mode, i.e. to hierarchical automata (see also figure 2).

[MVNI11] describes an algorithm (BUTLA) to learn the normal behavior by means of
timed automata using probability density functions. Similar to the case study "Energy
Anomaly Detection of Production Plants" the applicability has been shown on the use case
of timing anomaly detection. Here, the identified automaton was able to detect 88% of the
timing failures correctly. In the remaining 12% an error was detected but the error cause
was not identified correctly.

Classification according to the Taxonomy

Timed automata belong to the class of dynamic models and are normally used to model
single mode systems; hierarchical automata are also able to model multi mode systems.
Generally speaking, in the last years algorithms have been developed which are able to
learn such models on the basis of observations from a running plant.

4 Summary and Future Work

The automatic learning of models helps to solve the key problem of the model-based devel-
opment of technical systems: The modeling bottleneck—caused by high modeling efforts
and the lack of domain experts.

Currently, most projects choose the learning algorithm in a rather ad-hoc manner which
leads to suboptimal learning results. But system, model, and learning algorithm must
match. So in this paper a classification scheme of models is developed which may be used
to assess the learnability of the model and which is related to a corresponding scheme of
learning algorithms.
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