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Abstract
The diagnosis of Cyber-Physical Production Sys-
tems (CPPS) comprises two main steps: (1) The
identification of anomalous system behavior and
(2) the deduction of the underlying root cause.
While step 1 requires only models of the OK-
behavior of the system, step 2 requires models
that can predict the system behavior in OK and
especially in fault situations. Over the last years,
the question where such models originate has be-
come a major research topic—due to the highly
adaptable nature of CPPS which renders a manual
modeling infeasible.
Because of the infeasibility of manual modeling,
algorithms have been developed for step 1 which
learn an OK-model based on system observations.
Theoretically, also fault models for step 2 could
be learned, but practically we incur a dilemma
since fault events occur too seldom to learn a fault
model from them.
This paper introduces the new algorithm
MoSDA which shows a way out of this dilemma.
MoSDA does not use fault models but extracts
more information from learned OK-models than
previous algorithms: The main idea is to go
from easy-computable anomalies on the system
level to hard-computable anomalies on the
component level. In practice, efficient heuristics
for the deduction of root causes can be given if
anomalies are known on a component level while
a root cause analysis is hard if anomalies are only
known on a system level.

1 Motivation
The diagnosis of distributed production systems has gained
new attention due to research agendas such as Cyber-
physical Production Systems (CPPS) [Lee, 2008; Rajku-
mar et al., 2010] or its German pendant “Industrie 4.0”. In
these agendas, a major focus is on the self-diagnosis capa-
bilities for complex and distributed CPPS. Typical goals of
such self-diagnosis approaches are the detection of anoma-
lies, suboptimal energy consumptions, or wear [Chris-
tiansen et al., 2011; Isermann, 2004; Struss and Ertl, 2009;
Windmann et al., 2013]. As a technical solution approach,
model-based diagnosis approaches became the preferred

method [Niggemann et al., 2012; Struss and Ertl, 2009;
Christiansen et al., 2011], mainly due to the complex causal-
ities and the distributed architecture of such systems.

In the context of CPPS, model-based diagnosis must deal
with adaptable, changeable plants, leading to the problem
of both many and time-consuming model modifications and
model verification steps. So the challenge for the applica-
tion of model-based diagnosis approaches to CPPS is the
synchronization between system and model for fast chang-
ing systems.

One possible solution is to learn models automatically
from system observations. However, such learned models
capture mainly the normal behavior, i.e., the system behav-
ior if no fault has occurred. The learning of faulty behavior
would require a large number of fault cases and a manual an-
notation of these faults—both are unrealistic requirements
for most CPPS. Hence, learned models of normal behavior
are therefore traditionally used for anomaly detection only
[Niggemann et al., 2012], i.e., to detect non-normal situa-
tions.

If such learned models are used, the diagnosis task itself,
i.e., the identification of the root cause, is in such scenarios
normally left to the human expert. The reason for this lies
in the way model-based diagnosis identifies the root cause:
the use of models which can also predict or simulate faulty
behavior. For this, usually faults must be integrated into the
model to verify whether a hypothetical fault would cause
the observed symptoms. So the field of diagnosis faces a
challenge: On the one hand, only learned model can handle
modern production plants which are modified frequently.
On the other hand, such learned models can for very fun-
damental reasons not be used for a root cause analysis.

The major contribution of this paper is to present a new
algorithm MoSDA (Model Separation Diagnosis Algorithm)
which tries to use learned models, i.e., models of the normal
behavior, for the task of diagnosis and root cause analysis
in CPPS. For this, MoSDA exploits a situation typical for
CPPS: Anomalies often refer to an anomalous behavior of
the overall system, e.g., an anomalous energy consumption
of the production system. MoSDA leverages on the fact that
the system measurements create an over-determined system
and MoSDA can therefore break down—heuristically—the
system-related anomalies to component-related anomalies.
Starting from such component-related anomalies, heuristics
can be easily developed that compute a set of possible root
causes. So MoSDA does not implement a true root cause
analysis but it implements a compromise between the us-



age of learned models and root cause analysis. MoSDA can
limit heuristically the set of possible root causes to a small
number of anomalous system components which helps the
human expert significantly to repair the system and so to
reduce plant downtimes. Furthermore, unlike other ap-
proaches (see section 2), MoSDA uses a generic modeling
formalism that requires a minimum of system knowledge
and which can be learned automatically for a wide range of
production plants.

2 State of the Art
The diagnosis task can be structured into three steps, named
anomaly detection (symptom generation), hypothesis gen-
eration, and hypothesis discrimination (see e.g. [Benjamins
and Jansweijer, 1994]). The first step of anomaly detection
computes anomalies and symptoms based on system obser-
vations. For this step, several model-based approach exist:
Most of them are statical, i.e., they use time-invariant sys-
tem features (see e.g. [Ferracuti et al., 2011; Goernitz et
al., 2013; Chen et al., 2014]). For continuous systems, state
space equations are often employed for modeling the tempo-
ral transition of hidden process variables, e.g., Kalman filter-
based observers [Narasimhan and Biswas, 2007; Williams
and Henry, 2002; Zhao et al., 2005]) or particle filters (see
e.g. [Wang and Dearden, 2009]) are used. Kalman filters are
also used for the anomaly detection of energy consumption
in hybrid systems (see e.g. [Windmann et al., 2013]).

The next steps are the hypothesis generation and discrim-
ination. Some typical papers are summarized in table 1.
All solutions have in common that domain knowledge is
required to infer from anomalies and symptoms to possi-
ble root causes. The phenomenological approach directly
classifies hypotheses based on the symptoms, where a hy-
pothesis is one possible root cause for the symptom. Such
classificators use machine learning algorithms such as neu-
ral network or support vector machine [Berjaga et al., 2009;
Wang et al., 2000; Zhao et al., 2007], but some use hard-
coded rules [Blesa et al., 2013].

The model-based approach uses a model which mainly
describes the causalities from root causes to symptoms. The
knowledge for this approach, i.e., the causalities, are of-
ten modeled manually [Abidin et al., 2002; Klar et al.,
2011]. Sometimes, the model consists of a set of fault
models, where each model represents the behavior for one
hypothesis. All models are compared with the observa-
tions for the hypothesis generation, and the hypothesis of
a matched model is selected [Pomeranz and Reddy, 2009;
Minhas et al., 2014]). Other approaches use a single model
instead of several fault models. Such a model represents the
whole behavior of the system and is influenced by param-
eters controlling component failures. In these algorithms,
those parameters have to be identified which match the ob-
served behavior [de Kleer et al., 2013; Vemuri et al., 2001].
The plant could be modeled based on components from a li-
brary, where every component already includes the faulty
behavior modes. E.g., this has been done in Modelica,
a popular modeling and simulation language where in [de
Kleer et al., 2013]) the library is augmented with fault mod-
els. Furthermore, often fault probabilities are used to reduce
the number of hypothesis (see. e.g. [Stern et al., 2013]).

A special situation exists if the considered subsystems are
small. In that case, anomalies and root causes are closely
related—of course only in a heuristic manner. An example

is given in [Alippi et al., 2013], it deals with a distributed
sensor network in which faulty sensors are detected.

As can be seen, only model-based approaches are ap-
plied successfully to complex and distributed systems such
as CPPS. And most of these solutions require high man-
ual modeling efforts. However, this strategy is not accept-
able for CPPS because of their adaptable and variant nature.
On the other hand, machine learning and model learning is
so-far mainly applied to simple phenomenological diagno-
sis cases. The paper in hand shows how to combine model
learning and model-based diagnosis.

3 Solution Idea
The main idea of the MoSDA algorithm can be seen in figure
1: As mentioned before, for the diagnosis of CPPS we must
rely on automatically learned models. I.e. based on observa-
tions (step 0 in figure 1), system behavior models are learned
automatically. And since observations hardly comprise fault
situations, these models predict only OK-situations.

To learn such system behavior models, the HyBUTLA al-
gorithm [Niggemann et al., 2012; 2013] is used in step 1 of
figure 3. This algorithm splits the overall system behavior
into single states— the result is a Timed Probabilistic Hy-
brid Automaton (see section 4.1). Each state of this automa-
ton correspond to one specific production scenario, e.g. the
filling of a tank or one operation mode of a robot. The transi-
tions between states are often triggered by a control signal,
e.g. a signal to open a valve or to stop a drive. The ad-
vantage of separating the overall model into these separate
states is straightforward: Within such a state, the relation
between the continuous signals can be modeled and learned
much easier than for the overall system (see section 4.3).
And because the relation between continuous signals can be
expressed easier, generic model formalisms such as polyno-
mial functions can be used, i.e. the behavior can be learned
automatically and less manual modeling efforts, e.g. in form
of differential equations, are needed. Details for step 1 are
found in section 4.2. Based on such models, we can now
detect anomalies (symptoms) in the overall system behav-
ior: For this, system observations are compared to the model
predictions. Examples are given in [Faltinski et al., 2012;
Gilani et al., 2013; Maier et al., 2011].

But because only the overall system behavior is mod-
eled (and analyzed), such an approach does not allow for
an identification of the root causes. For this, the behavior
of individual components must be known. And this is not
possible using the aforementioned learning approach, since
in general continuous signals such as power consumptions
are only measured on the system and not on the component
level—a situation typical for production plants where a lot
of measurements such as power consumption, water con-
sumption, output, fluidic pressure are gathered by sensors
on a system-level.

If models for the individual component behavior would
exist, we could apply the principle of anomaly detection
on the component level. This would of course not al-
low for a precise root cause detection, but would allow
for good heuristic solutions. Good examples for this can
be seen in [Isermann, 2007; 2004; de Kleer et al., 2013;
Cermignani and Tornielli, 1994] which use manually mod-
eled differential equation systems—in these works, param-
eters are learned automatically while the equations are de-
fined manually. And because these models work on a com-



Table 1: Current state of the art regarding hypothesis generation.
Hypothesis generation

Reference Approach Techniques Knowledge base

[Alippi et al., 2013] Model-based Markov Model + Statistical Classifier Parametrized
[Cardenas et al., 2003] Model-based State Machine Manual
[de Kleer et al., 2013] Model-based System Discretion Language Parametrized
[Klar et al., 2011] Causal System Discretion Language Manual
[Struss and Ertl, 2009] Causal - Manuel
[Fries, 2013] Hybrid Fuzzy + Fault Propagation Tree Manual
[Berjaga et al., 2009] Phenomenological Case-based Reasoning KNN Learned
[Zhao et al., 2007] Phenomenological SVM Learned
[Azarian et al., 2011] Phenomenological Fault Tree (Network) Manual
[Pan et al., 2012] Phenomenological SE-Tree Manual
[Wang et al., 2000] Phenomenological Neural Network Learned
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Figure 1: The main idea of the MoSDA algorithm.

ponent level, parameter changes on the component level can
be detected and interpreted with regards to anomalies. In
most cases, heuristics could be given which relate behavior
changes in components to potential root causes. The disad-
vantage of these approaches are the high efforts needed for
the manual creation of the differential equation models.

The MoSDA algorithm presented in this paper combines
both solution approach: Generic model formalisms (here:
Timed Probabilistic Hybrid Automata and function approx-
imation) are employed, i.e. the models are learned automat-
ically and no expensive manual efforts are needed. And it
also computes models for the individual component behav-
iors, i.e. heuristics for the root causes can be given. For
this, the learned system behavior models from step 1 are
separated automatically into individual component models
(step 2 in figure 1), details are given in section 5.

The reader may notice that this automatic separation into
component models (step 2) is only possible because the
overall system behavior has been split in step 1 into sys-
tem states. As will be outlined in section 5, the separation
approach exploits the observations that normally only some
components are active in one state. I.e. this knowledge can
be used to compute the components’ influence on a state’s
behavior and to deduce the components’ (correct or incor-
rect) behavior.

4 Step 1: Learning the System States
The MoSDA algorithm presented in this paper in section 5
relies on a special kind of hybrid timed probabilistic au-
tomaton as a generic and learnable model formalism to de-
scribe a plant’s behavior. Both the formalism and the learn-
ing algorithm HyBUTLA have been introduced in [Nigge-
mann et al., 2012; 2013] and are shortly summarized in this
section. The application of these models and algorithms to

the task of root cause analysis is described in section 5.

4.1 Hybrid Timed Probabilistic Automata
An example of a hybrid timed automaton is given in Fig-
ure 2. It shows a simple container which is first emptied
and then filled. The automaton comprises 2 states. The first
state “State 0” is triggered by an event “empty”. This event
must occur 0 − 5 seconds after the system had entered the
previous state. In 20% of all cases the system takes this
transition. Within this state, the container is emptied, the
height of the bulk good in the container is modeled by a
continuous variable h(k) within the state. Unlike other hy-
brid automata formalisms, the continuous variables are here
modeled using a state space representation. When the con-
tainer is empty, a new event “fill” occurs with a probability
of 100% and “State 1” is entered. Again, this event must
occur 5 − 10 seconds after “State 0” has been entered, e.g.
timing is modeled relatively to each state entering.

h(k) = h(k) - 0.5 

h(k)

h(k) = h(k) + 0.5 

h(k)

P = 20%
empty: 

[0-5 sec]

fill: [5-10 sec]P = 100%

State 0

State 1

Figure 2: Example of a hybrid automaton.

Formally, hybrid timed automata are here defined as fol-



lows:
Definition 1. Hybrid Timed Automaton: A hybrid timed
automaton is a tuple A = (S, s0, F,Σ, T,∆, p, c, Y ), where

• S is a finite set of states, s0 ∈ S is the initial state.
States correspond to specific phases of the production
system such as “Valve A is open” or “Chemical reac-
tion B is running”.

• Σ is the alphabet comprising all relevant events. Often
events correspond to control signals which turn on/off
an actor such as a valve or drive.

• T ⊆ S × Σ × S gives the set of transitions. E.g. for a
transition 〈s, a, s′〉, s, s′ ∈ S are the source and desti-
nation states and a ∈ Σ is the trigger event.

• A set of relative transition timing constraints ∆ with
∀δ ∈ ∆ : δ : T → I , where I = R × R is the set
of time intervals. A transition (s0, ∗, ∗) with an asso-
ciated timing interval [t0, t1] can only be taken if the
automation has been between t0 and t1 time units in
state s0.

• Transition probabilities ∀e ∈ T : p : T → [0, 1],
all outgoing-transition probabilities of a state s must
summarize to a value ≤ 1, the difference to 1 defines
the probability that the automaton remains in s.

• A set of functions Y = {y0, . . . ,yns)}, ns ∈ N where
ys describes the continuous signals within states s ∈
S:

ys(t) = fps
s (ys(t),ys(t− 1), . . . ,ys(t− i)), (1)

i ∈ N,pi ∈ Rm,m ∈ N

I.e. fs computes the vector of continuous signals ys

based on the current and on older values for ys.
ps is a vector of parameters, these parameters are later
on learned automatically using system observations.

In contrast to the other definitions [Alur et al., 1995;
Henzinger, 1996], we have here opted for a single clock and
relative timing constraints ∆ because this ensures the effi-
cient learnability. In [Verwer, 2010] it is shown that, in con-
trast to n-clock automata, 1-clock automata can be learned
efficiently. Furthermore, we model continuous signals by
means of explicit state space models and not by means of
differential equations.

4.2 Learning the Discrete States
Learning the timed automaton comprises (i) the identifi-
cation of the states and transitions (described in this sec-
tion) and (ii) the identification of the continuous signals (de-
scribed in section 4.3). Input to the algorithm are system
observations where each observation is a sequence of timed
events.

The algorithm HyBUTLA is defined formally in [Nigge-
mann et al., 2012; 2013], its major steps are also sketched
in figure 3: Based on system observation (step 0 in figure
3), it computes in step (1) all relevant events Σ and their
timings. For this, each event appearing in the measurements
is analyzed whether it stems from a single-mode probability
density function (PDF). If not, new events are generated for
each separate mode of the PDF. Events usually correspond
to control signals, i.e. we can be sure that within a state no
control signals occur—a fact which will be essential for the
algorithm MoSDA .

Synchronized 

Signals

ControllerController

Network

Production Plant

Step 0: 
Network 

Measurements

Synchronized Signals 

+ Events

Step 1: 
Event

generation

Model

(Hybrid Timed Automation)

3UHÀ�[�7UHH
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Step 2: 
PTA 

construction
Step 3:

State merging

Events !

Figure 3: The main steps of the algorithm HyBUTLA.

In step (2) in the algorithm a prefix tree acceptor is cre-
ated, which stores each equal prefix of the incoming obser-
vations in a dense form. The prefix tree acceptor represents
therefore all used observations, but it does not generalize.
In order to generalize, i.e. to learn, similar nodes must be
merged into one node.

In step (3) in the algorithm, in bottom-up order each pair
of states v, w is checked for compatibility. If they are found
to be compatible, the states are merged. A very important
issue is the compatibility criterion: The used compatibility
check is following ALERGIA [Carrasco and Oncina, 1999].
The main idea is to check whether the probabilities for tak-
ing a specific transition or for stopping in the state are rather
similar for both states. If the two nodes are found to be com-
patible, the compatibility of the respective subtrees must be
checked too. This is done by applying the compatibility
check recursively to all nodes in the subtrees. Since af-
ter the merging a non-deterministic automaton could have
emerged, the resulting automation is determinized by merg-
ing states in the subtree.

4.3 Learning the continuous behavior in the
states of the hybrid automaton

The continuous signals, e.g. energy consumptions, in
each state S = {s0, . . . , sn−1} of a hybrid automaton
(see definition 1) are modeled by the functions ys(t) =
fpi
s (ys(t),ys(t−1), . . . ,ys(t−i)): Usually state-based ap-

proaches or polynomial function approximation approaches
are used.

The learning of the parameters pi is described in section 5
and is an essential part of the solution idea. Here it is worth
noting that learning these functions get much easier by split-
ting the overall system behavior into single states S—a state
may model the filling phase of a container, a chemical reac-
tion, the time intervall when a valve is open or a mainte-
nance phase. And only because the learning is eased, we
can use generic modeling formalisms such as Hybrid Timed
Automata.

5 Step 2: Automatic Model Separation
The MoSDA algorithm and the model separation step will
be explained first using figure 4, algorithm 1 defines it for-
mally: As outlined in section 3, first of all a timed hybrid
automaton is learned which models the overall system be-
havior. Algorithm 1 gets this automaton as an input in steps
(a).

Next we have to notice that most continuous variables θs
within the learned states s (see definition 1) model summa-
rized observations. E.g. at the top of figure 4 a production
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Figure 4: Model separation as a core idea of MoSDA .

plant’s power consumptions can be seen. This power con-
sumption is the sum of the power consumptions of n drives.
Other examples for such summarized variables are water
consumptions, buffers which are filled by the product flows
from several transport mechanisms or filling levels which
are caused by incoming and outcoming tubes.

The reader may note that this situation is typical: In pro-
duction plants, the number of sensors is limited due to en-
ergy and cabeling reasons. Therefore, most continuous sig-
nals are only measured in the form of summarized signals,
e.g. one energy sensors measures the energy consumptions
of a whole subsystem, time measurements capture the time
duration for several production steps or the measured water
consumption refers to a whole production plant.

In order to better locate the anomalous subsystems or
components, e.g. drive, we must separate the summarized
variable, e.g. power consumption, into the individual be-
havior of the components, e.g. into the individual power
consumptions of the drives. The easiest solution to this is
the installation of new power meters but for cost and effort
reasons this solution is pure theoretical and can not be im-
plemented in real-world plants. In step (b) of the algorithm
1 the components C and their individual, i.e. separated,
continuous signals (e.g. power consumptions) ys,c(t) are
defined.

So instead we separate the summarized variables using
mathematical methods: For this, we first have to notice that
at one point in time only a subset of drives are active, this
can be seen as interrupted power consumption functions at
the lower part of figure 4. Since drives are turned on and
off using control signals (e.g. event 0-2 in figure 4), the in-
tervals between the events correspond to the states of the
learned hybrid automaton in section 4.2. I.e. by analyz-
ing the learned discrete states (see section 4.2), we can de-
rive automatically for each state of the hybrid automaton
whether a drive is turned on or off: For this, only the events
on the path from the initial state to the current state must be
analyzed. As external knowledge, the algorithm only needs
to know which events, i.e. signals, refer to which actuator
(e.g. drive); this knowledge can easily be obtained from the
engineering tool and is available for all automation systems.
Algorithm 1 gets the computed information “component c
is on/off in state s” as an input f(s, c) in steps (c).

Algorithm MoSDA :
Given:
(a) Learned Automaton A = (S, s0, F,Σ, T,∆, p, c,Θ)
// Learned by HyBUTLA [Niggemann et al., 2012]

(b) subsystems C = {c0, . . . , ck−1} where for all states s ∈ S
ci adds ys,c(t) to ys(t) and
ys,c(t) = f

ps,c
s,c (ys,c(t),ys,c(t− 1), . . . ,ys,c(t− i))

is similar to equation 1
// I.e. ys,c(t) is that part of a cont. signals caused by component c
(c) function f : S × C → {0, 1} with ∀s ∈ S∀c ∈ C : f(s, c) =
1⇔ c is turn on in state s

function f is computed automatically based on input (a)
Result: possible root causes
(1) during learning phase:
(1) observe summarized continuous variables ˜ys(t)

(1) ps,c = separate(A, ˜ys(t), C, f)
(2 during operation phase:
(2) observe summarized continuous variables ˜ys(t)

′

(2) p′s,c = separate(A, ˜ys(t)
′, C, f)

(3) compute probable root causes based on ps,c − p′s,c

Subroutine separate:
Given:
(a) Learned Automaton A = (S, s0, F,Σ, T,∆, p, c,Θ)

(b) ˜ys(t), s ∈ S: observed summarized continuous variables
(c) subsystems C = {c0, . . . , ct−1}
(d) function f : S × C → {0, 1}
Result: the learned parameters ps,c for the functions ys,c

(i) compute argminps,c

∑
s∈S

∑
t

∣∣∣ ˜ys(t)−
∑

c∈C f(s, c)yc
s(t)

∣∣∣
// where || denotes a distance measure

Algorithm 1: Model separation algorithm MoSDA

Using methods from the field of mathematical optimiza-
tion, the MoSDA algorithm learns to which extent a drive
(i.e. components C = {c0, . . . , ck−1} in algorithm 1) is
responsible for the overall power consumption in a specific
state. E.g. given enough observations, we can derive math-
ematically the individual power consumptions of the drives.
This corresponds to virtual power meters seen in figure 4.

Using this approach, summarized variables can be math-
ematically separated into their single components. These
separated variables characterize in detail the individual com-
ponent’s behavior and allow therefore to detect a compo-
nent’s misfunction. In algorithm 1 the separation is done in
the subroutine separate by computing in step (i) the func-
tions fps,c

s,c . The structure of these functions fps,c
s,c is prede-

fined, so learning these functions means finding parameter
values ps,c which minimize the difference between observa-
tions and function values.

At this point, it must first be discussed how these learned
and separated subsystem behaviors fps,c

s,c can be used to
identify the root cause: The main idea is the comparison of
the learned behavior so-far (i.e. learned parameters ps,c in
step (1) of algorithm 1) with the currently observed behavior
(i.e. current parameters p′s,c in step (2) of algorithm 1). If
the learned and the observed component models differ (i.e.
the parameters ps,c and p′s,c), the component is classified as
anomalous in step (3) of algorithm 1.

By using MoSDA , we do not classify only the overall
plant behavior fps

s as anomalous, instead we now classify
the behavior fps,c

s,c of single components (e.g. drives) as



anomalous. This a significant advantage since those sub-
systems form the root causes and must be therefore ana-
lyzed separately. E.g. for the energy consumption example,
while we can classify normally only whole production lines
as anomalous, we can now classify single drives as anoma-
lous. Hence MoSDA does a major step towards a root cause
analysis with learned models: The learned models now refer
to individual components and not to overall systems.

But a major problem remains: Due to the chaining ef-
fect in CPPS, a root cause (or several root causes) can still
cause anomalous behavior in error-free but related subsys-
tems. But in CPPS, in most cases the root causes, i.e. the
broken components, can be identified by several heuristics:
(1) A-priori error probabilities, (2) often, the behavior of the
root causes degrade first, (3) manual expert knowledge can
be used.

6 Applications of the Algorithm
6.1 Diagnosis of a High Storage System
First, the MoSDA has been applied to a high storage sys-
tem. The system comprises real world components such
as drives, conveyer belts and automation devices. 5 con-
veyor belts and 7 drives are used to move objects from and
to 4 storage positions on two levels. 14 inductive sensors
are used to get the objects’ positions and an energy sensor
captures continuously the overall power consumption. Typ-
ically, wear and faults occur mainly in the drives, causing
too high energy consumptions, too long transport durations
and finally plant downtimes. To prevent this, any wear in a
drive must be detected as early as possible. This has been
implemented using the MoSDA algorithm from section 5.

For this, in each state of the hybrid automaton, 3 contin-
uous signals are modeled: power consumption p(k), veloc-
ity v(k) and acceleration a(k)—corresponding to functions
ys(k) in definition 1. The functions p(k) are modeled by a
function template p(k) = c+caa(k)+cvv(k)+ca2a

2(k)+
cv2v

2(k) + cava(k)v(k), c, ca, cv, ca2, cv2, cav ∈ R—i.e.
c, ca, cv, ca2, cv2, cav correspond to the parameters ps in
definition 1.

Figure 5: The results of the MoSDA algorithm.

The overall power consumption p(k) of the high storage
system is now split into the individual power consumptions
of the 7 drives—the drives are the components C in line (c)
of algorithm 5 and for each drive the power consumption
corresponds to ys,c(k) of algorithm 5 . The results of the

MoSDA algorithm are shown in figure 5: The first row of
figure 5 shows the 7 accelerations, the second row the 7 ve-
locities and the last row shows the measured overall power
consumption Pg and the 7 separated power consumptions
as computed by the MoSDA algorithm.

In the research high storage system (unlike in real plants),
the separated power consumptions can be compared to the
real power consumptions: 10 cycles have been measured,
the average prediction error was between 1.7% and 7.4%.
I.e. the separate power consumptions can be learned effec-
tively. Therefore, in this example, deviations of more than
7.4% from the normal behavior of the single drives can be
used to detect wear and faults. Furthermore, in this case the
root cause was always the first drive to show deviations.

6.2 Diagnosis of Drives
Next, the algorithm MoSDA has been evaluated using a set
of simulated drives, the same set of functions is used as in
section 6.1. Here, a state-based functional template is used:
p(k) = Ap(k − 1) + Bv(k), A,B ∈ R5 × R5, where
the total power consumption is summed up through y(k) =
Cp(k).

Figure 6 depicts a simulated scenario of 5 similar drives
with a predefined velocity for each drive as input parame-
ter. The resulting total energy consumption is shown in the
second row of Figure 6. Furthermore, the MoSDA algorithm
separates the energy into the individual power consumptions
of each drive by estimating the model parameters of the tem-
plate function.

Figure 6: Simulated scenario of 5 drives and result of the
MoSDA algorithm.

In this simple example, 5 drives are triggered with a pre-
defined velocity at different points in time. The MoSDA al-
gorithm estimates the parameters of the functional template
by iterating through states S1 to S8. The resulting aver-
age prediction error during the constant velocity phase is
< 0.5%.

The simulation setup in figure 7 is used to illustrate
anomaly detection and is similar to figure 6. Therefore, the
parameters of the estimated separated power consumptions
are used to detect anomalies. Figure 7 depicts occurring er-
rors in state S4 and S7. The simulated total energy differs
from the measured consumption. By using the estimated
model parameters and the given velocity as input data, the
simulated energy reveals to the normal behavior. This can
be used to detect faults, i.e. in state S4 the drive 5 con-
sumes more energy than normal. Also, small peaks can be
detected, as depicted in state S7, where the power consump-
tion of drive 2 differs from the expected power consumption.



Figure 7: Anomalies detected by the MoSDA algorithm.

7 Conclusion and Outlook
Only learned models are a basis for the diagnosis of Cyber-
physical Production Systems (CPPS) since no manual mod-
eling approach can keep up with the dynamics of modern
products and production systems. And in practice, learned
models cover only OK-situations. But such OK-models
can not be used for the root cause analysis step of tradi-
tional model-based diagnosis approaches–mainly because
they classify only the whole system behavior as anoma-
lous and not single components. Hence the design of
new diagnosis algorithms which only use OK-models is a
key research topic for CPPS. Such a new algorithm, the
MoSDA algorithm, is presented for the first time in this pa-
per. Furthermore, the MoSDA algorithm has been evaluated
using two first experimental setups.

In the future, the MoSDA algorithm will be evaluated us-
ing more production systems. Another focus will be the
support for more classes of technical devices such as valves,
pumps, and cylinders (so-far, the focus was on drives) and
the usage of other types of continuous summarized signals
such as water consumptions.
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