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1 Introduction

This paper is subjected to wave digital structures, short: WDS. The concepts of wave digital struc-
tures have their origins in the field of filter design, where they are designated more specifically
as wave digital filters [Fettweis, 1971, 1986]. Generally speaking, wave digital structures can be
viewed as a powerful modeling and analysis tool, which provides interesting properties.

The contributions of this paper include an introduction to wave digital structures as well as
new aspects that relate to WDS theory and WDS operationalization; the paper is organized in the
following five parts.

(1) Introduction (this section).

Aside from this overview the introduction presents a generic model abstraction hierarchy.
The hierarchy then is used to classify both the models of thispaper and the underlying model
construction approaches.

(2) WDS as modeling tool (Section 2).

This section outlines the concept of WDS and its use for the modeling and analysis of elec-
trical circuits. The special contribution of this section is that it develops a global algorithmic
view to WDS with respect to modeling and simulation purposes. Moreover, special emphasis
has been put on a plain but concise presentation of the underlying ideas in order to address
both readers with and without background in classical network theory.

(3) Foundations of WDS (Section 3).

The first part of this section presents a succinct but complete modeling tool box for WDS.
The second part discusses the special numerical advantagesof WDS as well as their passivity
properties.

(4) Design of WDS (Section 4).

WDS come along with interesting properties—their creation, however, is not a trivial task
and usually is not taught in communications engineering. This section presents efficient algo-
rithms for the automatic generation of an optimum WDS for a given electrical circuit.

(5) Numerics based on WDS (Section 5).

This section points out the relation between WDS and implicit integration methods. In partic-
ular it is shown, in which way WDS can be used to construct integration methods that provide
a useful numerical property, which is called the “passivityproperty” here.

1.1 From a System to a Computer Model

The term “system” can be defined in different ways and with emphasis on different aspects. For our
purposes, it is sufficient to consider a system as a spatio-temporally closed and logically intercon-
nected unity [Kowalk, 1996, pg. 27]. A system is recursivelybuilt up from subsystems and relations.
The relations divide into internal relations, which connect subsystems, and external relations, which
connect subsystems and objects beyond the system boundary,that is, objects from the environment.
Both subsystems and relations are characterized by attributes, called variables, which may change
over time. Variables that are necessary to prescribe the system behavior are called states.

Variables that characterize external relations divide into input variables and output variables.
Input variables are extraneous; they act from the environment on the system and modify the system’s
states. Input variables and state variables determine the system’s output variables, which in turn
affect the environment.
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Creating a model of a technical systemS means to shape its underlying concept or idea—a
process that is first of all mental, and that always involves three major steps.

(1) Identification of the system’s boundary.

(2) Identification of the subsystems and relations ofS ⇒ structure model.

(3) Characterization of constraints between the variablesof the subsystems and relations⇒ be-
havior model.

The transformation of a mental model into a computer model usually happens within several
steps, wherein intermediate models are constructed: a structure model, a behavior model, and an
algorithmic model (see Figure 1, which shows a modified version of Wallaschek’s presentation
[Wallaschek, 1995]).

Mental model

Structure model

Algorithmic model

Computer model

Behavior model

Interpretation of the 

concrete model in terms

of the abstract model.

High abstraction

Low abstraction

Figure 1: A hierarchy of models. Top-down model construction means tomap abstract models onto less
abstract models. Final objective is the operationalization of the mental model in the form of a computer
program.

Typically, the human designer materializes his mental model as a textual or graphical structure
model, for instance as a drawing or a diagram representationof the systemS. The structure model,
which defines subsystems and relations ofS, becomes a behavior model ofS by specifying a behav-
ior prescription for each subsystem. Since behavior descriptions are often defined in a mathematical
form, behavior models are also designated as mathematical models [Wallaschek, 1995, Kailath,
1980, Vidyasagar, 1993]. In the majority of cases the behavior model must be prepared with re-
spect to the simulation algorithms employed. This step includes the introduction of a causal order
for the behavior equations, the normalization of behavior equations, or other algebraic operations.
The specification of an algorithmic model within a computer language or a simulation language like
ACSL [Mitchell and Gauthier, 1976, Cellier, 1991] yields a computer model, say, a program.

1.2 The Models in this Paper

Structure Model Starting point for several analysis tasks is a structure model in the form of
an electrical circuit. Here, the building blocks of an electrical circuit are voltage sources, current
sources, resistances, capacitances, inductances, and diodes. An electrical circuit is usually defined
graphically, in the form of a circuit diagram, and may be the result of very different modeling tasks:

• Filter Design.Filter design deals with the creation of (passive) electrical circuits, as they are
used for signal processing in audio and video applications.Such circuits transform, say filter,
a continuous-time input signal towards a specified continuous-time output signal.
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• Mechanical System Modeling.Mechanical systems, as well as other non-electrical physi-
cal systems can be modeled as electrical circuits (see [Kumar, 1991, Paap et al., 1993] or
[Meerkötter and Scholz, 1989, Meerkötter and Felderhoff, 1992, Fettweis, 1992]). By em-
ploying so-called electrical equivalent networks for the mechanical building blocks, one is
able to construct an electrical set-up for the mechanical system. The simulation results then
can be interpreted in terms of mechanical quantities.

• Solving Differential Equations.Electrical circuit analysis has shown success as a mathemat-
ical instrument. When given a set of complex (partial) differential equations, this problem
specification can be transformed into a related electrical circuit. Like the construction of an
equivalent network as described before, the rationale of such a transformation is based on the
observation that a tailored circuit simulation algorithm may perform better than a general-
purpose solution approach.

Behavior Model A behavior model of a structure model comprises local component descriptions
as well as the continuity and the compatibility constraints, which define the connections of the
components. In case of an electrical circuit, the componentdescriptions are given by the respective
voltage/current (differential) equations, such asv(t) = R · i(t) (resistance),di(t)/dt = 1/L · v(t)
(inductance), ordv(t)/dt = 1/C · i(t) (capacitance).

The continuity constraints are defined by Kirchhoff’s current law, and the compatibility con-
straints are defined by Kirchhoff’s voltage law.1

The overall objective is to analyze the behavior of a given electrical circuit. Clearly, by con-
structing the circuit as a real set-up of electronic components, its behavior could be determined by
measuring all interesting signals. Typically this approach is not pursued but a circuit is “realized”
in the form of a computer program: The program emulates the behavior of the circuit by running a
virtual set-up. A prerequisite is the conversion of the continuous-time signal towards a digital signal,
i. e., a sequence of numbers.

To go the outlined way, analgorithmic modelmust be constructed from the circuit’s behavior
model, and at this place several possibilities stand to reason: a model of node or loop equations, a
state space model, or a wave digital structure (see Figure 2).

Structure model

Algorithmic model

Behavior model

Electrical circuit

Component descriptions + connection constraints

State space

model


Wave digital

model


Node/loop

equations


...


Figure 2:The electrical circuit defines a structure model of the interesting system which is to be transformed
into an algorithmic model: a model of node or loop equations,a state space model, or a wave digital model.

Algorithmic Model The construction of an algorithmic model from a behavior model is often
the hardest job of the entire model construction process. Note that within the behavior model the
component constraints and the connection constraints are formulated locally; however,processing
these constraints means to find a globally consistent solution. This happens by reformulating the

1Primarily, the concepts of electrical continuity and compatibility reflect a single-port viewpoint (see Subsection 2.2,
pg. 6). They may not be applied to particular multport elements like the girator (see Subsection 3.1.2, pg. 16).
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local constraints into some kind of normal form, which then is used by special algorithms to compute
a globally consistent solution [Cellier, 1991]:

• Node/Loop Equations.These commonly used algorithmic models are based on a special
selection of node equations and loop equations respectively. Before these equations can be
set up, the electrical circuit must eventually be prepared in order to fulfill certain consistency
conditions (conversion of voltage sources or independent current sources, etc.). If all sources
operate with the same frequency, the computation of the stationary quantities involves only
algebraic operations.

It is advisable then to describe the equations in a normalized matrix form using complex terms
[Fettweis and Hemetsberger, 1995]. Note that the processing of these normal forms requires
the symbolic inversion of polynomial matrices.

• State Space Model.The previously mentioned cutset potential method or loop current method
are appropriate for a stationary investigation of the electrical circuit, where all signal sources
operate at the same frequencyω. To investigate the circuit for arbitrary signals in the time-
domain, setting up a state space model may provide a useful approach [Kailath, 1980]. The
model is of the following normal form:̇x(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t).

x(t), u(t), andy(t) denote the state vector, the input vector, and the output vector; A,B,C,
andD denote the system matrix, the input matrix, the output matrix, and the straight-way
matrix. Additionally, a system of algebraic equations may be given.

In the general case, the processing of normal forms requiresthe solution of a nonlinear
differential-algebraic system (DAE) [Petzold, 1994, Vidyasagar, 1993]. Note however, that
structural singularities in the electrical circuit may render the construction of a state space
model difficult, if not impossible.

• Wave Digital Structure.Wave digital structures (WDS) differ within two points fromthe
algorithmic models mentioned before:

(1) Thev/i (voltage/current) domain is mapped onto thea/b-wave domain.

(2) The connection constraints are treated explicitly: TheKirchhoff interconnecting network
is partitioned according to series and parallel connections.

Wave digital structures establish models in the discrete time domain; they can be used to
describe both linear and nonlinear systems. Due to their numerical properties wave digital
structures are specially tailored with respect to a hardware implementation. The next section
shows how WDS are constructed.
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2 Introduction to Modeling with Wave Digital Structures

Wave digital structures (WDS) are a means for modeling and analysis. Targeted especially on readers
with less background knowledge in classical network theoryor signal theory, this section introduces
the underlying ideas. Readers who are familiar with wave digital structures may skip this section.

2.1 Road Map

Given is an electrical circuit,S; it is assumed that this circuit is passive and that it consists only
of voltage and current sources, resistances, capacitances, inductivities, . . . From such a circuit an
algorithmic model in the form of a wave digital structure canbe created, which is a rather complex
reformulation where several constraints are to be met. The reformulation involves the following
principal steps:

(1) Topological analysis ofS with respect to subcircuits that are connected in series or in parallel
to each other, and reformulation ofS using special series and parallel connectors.

(2) Transfer of the component descriptions from thev/i domain to thea/b-wave domain.

(3) Discretization of the continuous signals by numerically approximating the differential equa-
tions.

(4) Transfer from the time domain to the frequency domain andreplacement of the complex
frequency variablep by the equivalent complex frequency variableψ.

Remarks.The above reformulation steps divide into local operations(Step 2-4), which act on the
components of the electrical circuit in an isolated manner,and into the global topology reformulation
in Step 1.
From a syntactical point of view, the entire reformulation of an electrical circuit into a wave digital
structure is accomplished within in the steps 1-3. Also notethat Step 2 and Step 3 are orthogonal
to each other; i. e., their order of application can be interchanged. Step 4 is essential though: It
provides insight into the passivity property of the circuit.

In a nutshell, a wave digital structure is a particular kind of signal flow graph. Its topology is
constructed by means of series and parallel connectors; thesignals that are processed when traveling
along the signal flow graph are wave quantities. Figure 3 illustrates the principal reformulation steps
from an electrical circuit to a WDS.

Electrical circuit Series/parallel graph WDS

Gobal reformulation

Local reformulation
equivalentsa/b

T


T


0

0

Figure 3:From an electrical circuit to a WDS; the principal reformulation steps.

In the following subsections, examples to each of the above reformulation steps will be presented
and the rationale will be discussed.

2.2 Topology Reformulation

An electrical circuit,S, consists of a set of components, which are connected by a so-called Kirch-
hoff interconnecting network. A reformulation of a Kirchhoff network here means the identification
of subcircuits inS that are either connected in series or in parallel to each other.
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Both series connections and parallel connections are specializations of a concept calledport, Port Condition
as much as each component with two terminals establishes a (single) port as well. A port fulfills
theport condition, which claims that the currents at terminal 1 and terminal 2,i1 andi2, fulfill the
constrainti1 = −i2 at any instant (see Figure 4).




i1

i2

v

Figure 4:The port condition claims thati1 = −i2 holds.

Note that any series and parallel combination of ports againyields a port. This observation
suggests a bottom-up approach for the identification and synthesis of ports, resulting in a single top-
level port for the entire interconnecting network. As a consequence, the interconnecting network
can be expressed in a new form, where particular construction elements—the series and parallel
connectors—are used to connect the respective building blocks inS. Such a representation of the
Kirchhoff interconnecting network could be called port structure ofS.

The replacement of the original interconnecting network bya port structure that employsGlobal vs.
Local
Computations

only series and parallel connections leads to a special network analysis approach. Common
network analysis approaches are based on mesh equations, node equations, or state equations
[Fettweis and Hemetsberger, 1995, Cellier, 1991, Unbehauen, 1994]. Following a common ap-
proach means to set up and transform matrices, in a way the mesh-incidence matrix, the branch-
impedance matrix, the node-incidence matrix, the branch-admittance matrix, or the state space ma-
trix.

Computations on matrices areglobal computations in the sense that a system of equations must
be treated at the same time to find the equations’ solutions. By contrast, a computation will be called
local, if a single equation at a time is sufficient to compute a solution of that equation, and if this
solution is coded explicitly in the equation. See [Schulz etal., 2001] for an in-depth discussion of
different behavior model types and locality.

If the topology of a circuit is realized solely by means of series and parallel connections, theSignal Flow
Graphmodel processing effort for this circuit can decisively be decreased: Due to the special topology,

computational effort can be made up front—during model construction time—resulting in a new be-
havior model whose equations can be processed locally. Notethat a behavior model whose equations
can be processed locally establishes afeedback-free signal flow graph. A feedback-free signal flow
graph is a processing prescription that defines the computation on signals in a definite order while
employing only explicit computation rules. A feedback-free signal flow graph thus establishes an
algorithmic model that can be processed easily on a computer.

The following example illustrates the idea behind the topology reformulation. Given is the
electrical circuit shown in Figure 5. Here, the voltagee forms the input, the currentsi1, i2, i3, and
the voltagesv1 andv2 are to be determined,R1, R2, andR3 are given. To handle the generic case,
a global network analysis approach is necessary, where all node equations, mesh equations, and
component equations are treated within a global equation system.

In the example, the global investigation is inevitable to compute the total resistance (impedance
in the complex analysis) of the series-parallel connection, from which in turni1 and the voltagesv1,
v2, andv3 can be computed. The underlying equations of the circuit, say, its mathematical model,
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R1

R2 R3

v1
v2

i1

i2

i3

e

Figure 5:Electrical circuit with three resistances.

are the following.

3
∑

ν=1

vν = 0, v3 = e, i1 = i2 + i3,





v1
v2
v2



 =





R1 0 0
0 R2 0
0 0 R3









i1
i2
i3





The signal flow graph depicted on the left-hand side of Figure6 shows a graphical representation
of the mathematical model. Note that this graph establishesno algorithmic model: It contains a loop
and hence defines no causal ordering amongst the quantities.If we had computed in advance the
total resistance of the network, all quantities could be computed locally. As a consequence, the
computations can be formulated by means of a feedback-free signal flow graph, as shown in the
same figure on the right. This graph defines an algorithmic model for the above circuit.

1

R

R1R1

G2
G2

G3
G3

v1v1 v2v2 i1i1

i2i2

i3i3

ee

−1

−1
G2 = 1

R2

G3 = 1

R3

R = R1 + 1

G2+G3

Figure 6:Two signal flow graphs of the above electrical circuit. The left one contains a feedback loop, the
right one is feedback-free.

Recall that a feedback-free signal flow graph can only be constructed for an equation system,Algebraic Loop
if all subsets of depending equations, the so-called algebraic loops, have beenserializedor “broken
open”. It is no sheer coincidence that ports can be transformed towards a signal flow graph in a
straightforward way: The resistances and conductances of ports can be combined to a total value.
In the example, the serialization became possible after having computed the total resistance of the
network; of course, in case of mono-frequent excitations, this can be extended to impedances and
admittances as well.

In fact, if we restrict ourselves to circuit topologies thatare composed of series and parallelSeries and
Parallel
Connectors

connections only, the construction of the related feedback-free signal flow graphs can be performed
canonically. As mentioned above, it is useful to introduce two auxiliary building blocks for this
purposes, a series connector and a parallel connector, which will guarantee that Kirchhoff’s laws are
obeyed. Figure 7 shows a connector realization of the electrical circuit example from Figure 5.

In this context the series and parallel connectors carry outthe computation of the total impedance
or admittance of the connected components. This computation is encoded within the connector
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R1

G2

G3

Ra Rb

v1

vp

vp

vp

i2

i3
is

isis

S P
γs

γp

e

γs = 1

R1+Ra

γp = 1

G2+G3

Rb = γp

Ra = Rb

is = i1
vp = v2

Figure 7:A possible connector realization of the electrical circuit.

coefficientsγs, γp and the port unification constraint: When attaching two connectors, it must be
guaranteed that the port resistances of the adjacent ports are identified (see the conditionRa = Rb in
Figure 7). Observe that series and parallel connections with more than two elements can be realized
by attaching several connectors of the respective type.

If the electrical circuit contains reactive elements, the local propagation property of the signalExplicit
Methodsflow graph is hold up if an explicit integration rule is employed for the approximation of differential

relationships. Taking a capacity, for instance, the behavior for continuous-time and its approxima-
tion by the explicit Euler rule is given with the equations

v(tk) = v(tk−1) +
1

C

∫ tk

tk−1

i(τ)dτ and vk := vk−1 +
T

C
ik−1,

wherev(tk−1) denotes the known voltage attk−1 with tk := t0 + kT, k ∈ N, while vk−1 andik−1

denote the approximate values for the exact valuesv(tk−1) andi(tk−1) respectively.

Figure 8 shows for the parallel connection of a resistance and a capacitance an algorithmic model
in the form of a parallel connector, which employs the explicit Euler rule.






G2

R2 C
R

−1
T

v2(t)

i1(t)

i2(t)

i3(t)

vpk
vpk

vpk

vpk−1

i2k

i3k
isk

R = TC−1

isk
≈ i1(tk)

vpk
≈ v2(tk)

Figure 8:A possible connector realization of a resistance with a parallel capacitance.

Note that the use of animplicit integration method entails decisive numerical advantagesbut is
bought with the lost of the local computability of the above signal flow graph.—At this place we
anticipate an issue of the next subsection: When the electrical quantities are expressed by wave quan-
tities, the application of an explicit method to this reformulated model yields an implicit integration
in the original electrical formulation.

Remarks.(1) Connectors for Kirchhoff networks can be constructed inother ways than depicted in
Figure 7 or Figure 8. (2) Connectors for wave digital structures model the connection constraints in
thea/b-wave domain, and consequently they must have a different set up than the connectors shown
here. Note, however, that the underlying idea is the same: The prescription of a local computation
rule for the global behavior of a series-parallel structureby means of a smart computation of the
elements’ port resistances. Again, this computation is encoded within the connector coefficients and
the port unification constraint.
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2.3 Transfer to thea/b-Wave Domain and Discretization

The electrical quantities voltage,v, and current,i, can be expressed in terms of other quantities, e. g.
by so-called wave quantities,a, b, which are linear combinations ofv and i. The transformation
pursued here is defined as follows.

a = v +Ri b = v −Ri (2.1)

The wave quantities defined in the equations (2.1) are calledvoltage waves, wherea andb rep- Voltage Waves
resent the incident and reflected wave respectively.R is calledport resistance; R must be positive,
but apart from that its value can be chosen arbitrarily for each port. In practice, one will select
that particular value ofR which leads to the simplest overall expressions for the problem at hand
[Fettweis, 1986, p. 273].

In the following we discuss the transfer from thev/i-domain to thea/b-domain at a reactive
element, the capacitance. Starting point is the following differential relationship between the current
and the voltage at a capacitance, wherev(tk−1) designates the known voltage attk−1.

v(tk) = v(tk−1) +
1

C

∫ tk

tk−1

i(τ)dτ, wheretk := t0 + kT, k ∈ N (2.2)

Equation (2.2) must be translated into the discrete-time domain. In this place, the integral is ap-
proximated by means of the trapezoid rule, for reasons that will be discussed later on and especially
in Section 5:

v(tk) ≈ vk := vk−1 +
T

2C

(

ik + ik−1

)

, (2.3)

wherevk−1, ik, and ik−1 denote the approximate values for the respective exact values v(tk−1),
i(tk), andi(tk−1).

Equation (2.3) can be translated to thea/b-wave domain, for instance by using the identities
(2.4), which follow from the equations (2.1).

v =
a+ b

2
i =

a− b

2R
(2.4)

However, because of the special (and simple) form of the trapezoid rule, equation (2.3) can be
directly expressed in terms ofa andb, since from equation (2.3) follows:

vk −Rik = vk−1 +Rik−1 (2.5)

⇔ bk = ak−1, with R :=
T

2C
(2.6)

ChoosingR as port resistance for a capacitance obviously leads to the simplest overall expres-
sion. Figure 9 shows the capacitance in thev/i-time domain and the related wave flow diagram.


Cv

i

R

a

b

T

Figure 9:Capacitance and related wave flow diagram withR = T
2C

.
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Remarks.Equation (2.5) shows that a reformulation of the electricalquantities in terms of wave
quantities is bound up with the fact that an implicit integration in v andi by means of the trapezoid
method becomes explicit ina andb. Note that this powerful concept, the combination of an inte-
gration method’s stability properties with a simplified numerical representation, can be generalized
towards other integration methods. Section 5 dwells upon that subject.

2.4 Combining Topology Reformulation and Transfer to thea/b-Wave Domain

In this subsection we consider the circuit shown in Figure 10and apply the outlined reformulation
steps at once: The modeling of the connection constraints bymeans of connectors and the transfer
of the electrical quantities into thea/b-wave domain.

+

R1 R2

Cv1

v2
vC

i0

e

Figure 10:Electrical circuit with two resistances and a capacity.

The connectors in thea/b-wave domain get a special name—they are called series adaptor and Adaptors
parallel adaptor respectively. The circuit in Figure 10 establishes a series connection, and conse-
quently, we will exemplary derive the determing equations for a series adaptor. Figure 11 contrasts
a generic electrical series connection with voltage dropsvν and currentsiν (left-hand side) with the
related series adaptor, where the port resistancesRν , ν = 1, . . . , 3, indicate the port resistances of
the electrical components’ wave digital counterparts (right-hand side).








v1

v2

v3

i1

i2

i3

R1

R2

R3

a1

a2

a3b1

b2

b3

Figure 11:Electrical series connection with three elements (left) and symbol of the series adaptor with three
ports (right).

Each of the three electric components can be characterized in the thea/b-wave domain, using
the voltage wave transformation introduced by Equation (2.1), Page 10.

aν = vν +Rνiν bν = vν −Rνiν , ν = 1, . . . , 3

To write these equations in vector form, we define the port resistance matrixR and the port
conductance matrixG := R−1.

a = v + Ri

b = v − Ri

}

⇔











v =
a + b

2

i = G
a − b

2

, R :=





R1 0 0
0 R2 0
0 0 R3



 (2.7)
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Using Kirchhoff’s current law for series connections,i1 = i2 = i3 = i0, the equations (2.7) can
be transformed as follows.

a = v + Ri

b = v − Ri

}

⇒ b = a − 2Ri = a − 2Rei0, e := (1, 1, 1)T (2.8)

Using Kirchhoff’s voltage law for series connections,
∑3

ν=1
vν = 0, equation (2.8) fora can be

transformed, resolved fori0 and put into the equation forb.

a = v + Rei0

eTa = eTv + eTRei0

eT a

eT Re
= i0, since eTv =

∑3

ν=1
vν = 0

b = (1− 2 Re

eT Re
eT )a = Sa

The vectorγ := 2 Re

eT Re
is called the vector of adaptor coefficients, and the generalform of an Adaptor

Coefficientselementγν is

γν =
2Rν

R1 +R2 +R3

, ν = 1, 2, 3.

If we make use of the relationeTγ = γ1 + γ2 + γ3 = 2 between theγν , the mappingS between
b anda can be written as follows.

b = Sa, S =





1 − γ1 −γ1 −γ1

−γ2 1 − γ2 −γ2

γ1 + γ2 − 2 γ1 + γ2 − 2 γ1 + γ2 − 1





Figure 12 shows the symbol for the series adaptor defined byS and the related signal flow graph,
which encodes the equation systemb = Sa.

γ1

−γ1

γ2

−γ2

−1

a1

a1

a2

a2

a2

a3 b1b1 b2

b2

b2

b3

Figure 12:Symbol and signal flow graph of a series adaptor.

Also the component equations are transfered into thea/b-domain. For the capacitance this
has already be shown on Page 10, for the resistance and the resistive voltage source the respective
equations are derived now. We start by resolving the equations fora andb towardsv andi.

a = v +Ri
b = v −Ri

}

⇔











v =
a+ b

2

i =
a− b

2R

Replacingv andi in the resistance equationv = R0 · i yields the following dependency between
the incident wave,a, and the reflected wave,b.

a+ b

2
= R0

a− b

2R
⇔ b =

R0 −R

R0 +R
a

12



Setting the port resistanceR to R0, as declared above,a can be chosen arbitrarily andb = 0.
The wave signal flow graph on the right-hand side of Figure 13 models this connection:a vanishes
in a sink, andb is realized by a source with zero output.

R0 R0v

i
a

b 0

Figure 13:Resistance and the related wave flow diagram.

For the component equation of the resistive voltage source,v = e+R0 · i, the substitution yields
the dependencya = e, if R0 is chosen as port resistance. Figure 14 illustrates this connection.

+

R0

R0
v

i
a

b

e

e

Figure 14:Resistive voltage source and the related wave flow diagram.

Finally, the series adaptor and the components’ signal flow graphs can be composed to the entire
signal flow graph, say, wave digital structure, as depicted in Figure 15. This signal flow graph
represents an algorithmic model for the electrical circuitof Figure 10. The signale forms the input
from which all unknown wave quantities can be computed in a local fashion. The desired output
values fori0, v1, v2, andvC are obtained by evaluating the equations (2.7).

R1

R2

R
γ1

γ2

e

0

T

Figure 15:Wave digital structure of the electrical circuit from Figure 10 withRC = T
2C

.

2.5 Transfer from the Time Domain to the Frequency Domain

The transformation step described in this subsection is notdirectly necessary for the construction of
a wave digital structure, but it provides insights respecting the stability behavior of the constructed
WDS. Starting point is equation (2.3), Page 10; it approximates the differential relationship between

13



the current and the voltage at a capacitance by means of the trapezoid rule and reads as follows:

vk := R
(

ik + ik−1

)

+ vk−1

with

R :=
T

2C
.

By restricting ourselves to complex-valued signals of the formXept, the above equation obtains
the following form:

vk = ReV eptk , ik = ReIeptk

V eptk = RIeptk +RIeptk−1 + V eptk−1 (2.9)

V and I denote complex amplitudes,p denotes the complex frequency. A multiplication by
e−ptk along with a rearrangement yields:

V =
1 + e−pT

1 − e−pT
R I =

1

tanh pT
2

R I. (2.10)

Rewriting equation (2.10) in terms of the equivalent complex frequencyψ yields:

V =
R

ψ
I ⇔ I =

ψ

R
V, with ψ := tanh

pT

2
(2.11)

Figure 16 comprises the different models (views) of the characteristic impedance of a capaci-
tance that have been derived so far.

II

VV 1

pC
R
ψ

a

b

R T

Figure 16:Three models of the capacitance. From left to right: continuous-time, discrete-time with trapezoid
rule employed as integration method, and wave flow diagram.

Equation (2.11) states something about the passivity of equation (2.3). We start with the fol-Passivity
of Modelslowing definition of an electrical circuit’s effective power P .

P = ReI∗V

For reactive elements, the powerP is a function of the frequency, and a linear, time-invariant
systemS is called passive if it fulfills the following implication.

Reψ > 0 ⇒ P (ψ) ≥ 0 (2.12)

We use this implication to verify the passivity of the capacity.

P (ψ) = ReI∗V = Reψ∗ |V |2

R
=

|V |2

R
Reψ > 0

14



Obviously does the algorithmic model of a capacitance conserve passivity, since for each capac-
itance element holdsC > 0.

Remarks.Remind of the fact that the algorithmic model of the capacity, its wave flow diagram in
Figure 16, encodes a particular integration method. I. e., if we know something about this algorith-
mic model, we know immediately something about the applied integration method—the trapezoid
rule in our case. To become specific, the numerical properties of the algorithmic model are the same
as of the integration method.

The interesting aspect is the following. If we have an interpretation of the algorithmic model
as a circuit, numerical properties can be directly be read off this circuit. E. g., for the algorithmic
model of the capacitance it was simple to determine its passivity by checking the compliance of this
model with implication (2.12). In other words, it could be proven that the chosen integration method
conserves the passivity property of the capacity.

Though it is of a local nature, this passivity analysis can beapplied easily to all wave digital
structures that model a linear, time-invariant systemS: If each element of the wave digital struc-
ture fulfills inequation (2.12), and if the wave digital structure emerges from a port-wise connection
of these elements, then it does reproduce the passivity property of the systemS during simula-
tion [Fettweis, 1971].

Section 5 picks up this thread and extends it to nonlinear systems. In this regard, the concept of a
circuit’s characteristic impedance is introduced and usedas a tool for passivity analysis [Ochs, 2001].
Moreover, the interpretation of the algorithmic model—that results from applying an integration
method—as a circuit is used to construct new integration methods. The guiding idea keeps the same
as above: Numerical properties of the integration method are deduced from circuit properties.
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3 Wave Digital Structures Reviewed

3.1 Synthesis of Wave Digital Structures

This section recapitulates wave digital structures, whosebasic theory has been developed by
Fettweis, [Fettweis, 1971]. The starting point for the synthesis of wave digital structures, is an
electrical circuit whose electrical components are divided into sources and elements. For now,
only linear elements are considered while the modeling of nonlinear elements can be found in
[Meerkötter and Scholz, 1989, Meerkötter and Felderhoff, 1992]. All linear elements are assumed
to be passiven-ports, and their interconnections obey KIRCHHOFF’s law, i. e., we restrict ourselves
to structural passive electrical circuits. To each port of the circuit we assign a so-called port resis-
tance being a positive constant.

The first step for the synthesis of the related wave digital structure is the description of the electri-
cal behavior of the components in the wave digital domain. For this purpose, we distinguish between
sources, nonreactive elements, reactive elements and the remaining interconnecting network.

3.1.1 Sources

Sources of the electrical circuit can be divided into ideal current and ideal voltage sources, cf. Fig-
ure 17, which are described by

v = e ⇐⇒ a = 2e− b (3.1)

and i = j ⇐⇒ a = 2Rj + b (3.2)

respectively. From these equations it is clear that these electrical sources do not lead to pure wave
sources but to combinations ofa andb.

v

i

e

a

b

R2e

−1

v

i

j

a

b

R2Rj

Figure 17: Ideal voltage and current source

Naturally, ideal sources never occur in electrical circuits. In fact, we have to deal with many
physical phenomena but for most practical problems the major effect can be taken into consideration
if each ideal source is connected to an additional resistor.Due to HELMHOLTZ’s theorem, such a
resistive current source is always equivalent to a resistive voltage source so that it is sufficient to
consider a resistive voltage source only:

v = e−Ri ⇐⇒ a = e. (3.3)

Here, the port resistance has been chosen equal toR, whereas the port resistance of an ideal
source can be chosen arbitrarily. As a result, both types of resistive sources correspond to wave
sources.

3.1.2 Nonreactive Elements

The simplest example of a nonreactive element is a resistor which can be derived from the resistive
voltage source if the trivial casee = 0 is considered. It is described by

v = Ri ⇐⇒ b = 0 (3.4)
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i

e
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a

b
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Rj

Figure 18: Resistive voltage and current source

v

i
a

b

RR

0

Figure 19: Resistor

when the port resistance is equal to the value of the resistance itself.

Beside the resistor there exists a variety of nonreactive elements, i. e., of elements which cannot
store energy. The most important elements are the gyrator, the circulator, and the ideal transformer
each of which is lossless. Such nonreactive and lossless elements are also called nonenergetic.

v1

i1

v2

i2 a1

b1 a2

b2

RR

R

−1

Figure 20: Gyrator

If both port resistances of the gyrator are equal to the gyration resistance this yields wave digital
flow diagrams with no directed path between the terminals of each port and the realization becomes
very simple, cf. Figure 20. A similar result is achieved for the circulator if all of its port resistances
are equal to the circulation resistance, cf. Figure 21. The corresponding equations for the gyrator,

v1 = −Ri2
v2 = Ri1

}

⇐⇒

{

b1 = −a2

b2 = a1,
(3.5)

and the 3-port-circulator,

v2 − v3 = Ri1
v3 − v1 = Ri2
v1 − v2 = Ri3







⇐⇒







b2 = a1

b3 = a2

b1 = a3,
(3.6)

show that they are closely related. As a consequence, it is always possible to describe a gyrator via
a circulator and vice versa.

The ideal transformer with turns ration is described by

v2 = nv1
i1 = −ni2

}

⇐⇒

{

b1 =
1

n
a2

b2 = na1,
(3.7)

if the port resistances fulfill the relationshipR2 = n2R1. In contrast to the gyrator and the circulator,
the ideal transformer does not relate voltages with currents. For this reason, ideal transformers play
an important role for generalized interconnecting networks.
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i1
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b3
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Figure 21: 3-port-circulator

v1

i1

v2

i2
1 : n

a1

b1 a2

b2

R n2R

n

1/n

Figure 22: Ideal transformer

3.1.3 Reactive Elements

In contrast to sources and nonreactive elements, whose voltage and current relations are of pure
algebraic type, reactive elements are additionally described by differential equations. Since we can
only approximate an integration of these differential equations on a computer system, there is a need
to introduce a method which approximates the exact solution.

Instead of using the differential equations directly, the steady state equations of the linear elec-
trical components are used in wave digital filter theory. Forthis, the complex frequency variablep
is replaced by the equivalent complex frequency variable,ψ,

ψ := tanh(pT/2) =
z − 1

z + 1
, z := epT , (3.8)

whereT denotes the sampling period. This transformation maps the left half plane ofp onto the left
and the right half plane ofψ. As a consequence, the stability properties of the discrete-timen-ports
are the same as those they were derived from.

Applying this tangent hyperbolic transformation to the steady-state equations of a capacitance
C and an inductanceL we get the following equations

V =
RC

ψ
I ⇐⇒ b(k) = a(k − 1) (3.9)

and V = RLψI ⇐⇒ b(k) = −a(k − 1) (3.10)

where the port resistancesRC = T/(2C) andRL = 2L/T has been chosen. The resulting wave
flow diagrams are shown in Figure 23 and they differ by a sign inversion only. This is because an
inductance can always be represented by a gyrator and a capacitance, cf. Figures 20 and 23.

v

i

RC

ψ

a

b

RC T v

i

RLψ

a

b

RL T

−1

Figure 23: Capacitance and Inductance
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In addition to the capacitance and inductance, unit elements are often used in wave digital struc-
tures.

3.1.4 Adaptors

Beside the electrical components we have to transfer the voltage and current relations of the inter-
connecting network to the wave digital domain. In many technical applications, e. g. digital filters,
these topological constraints define parallel and series connections, cf. Figure 24. The correspond-
ing equivalences in wave digital domain are the so-called parallel and series adaptors respectively,
which are basic types of adaptors.

v1

i1

v2

i2

v3

i3

vν

iν

v1

i1

v2

i2

v3

i3

vν

iν

Figure 24: Parallel- and series connection

The electrical equations for the parallel connection of Figure 24 are

eTi = 0 and v = ev0, (3.11)

where all voltages,vν , and currentsiν , are collected inv and i, and where vectore is of proper
dimension with every element equal to one.

After introducing voltage wave vectorsa and b with the port conductance matrixG :=
diag(Gν) one can find the scattering matrix of an-port parallel adaptor

b = (eγT − 1)a, with γT := 2
eTG

eTGe
, (3.12)

whereγ denotes the vector of the so-called adaptor coefficients,γν . Their property

eTγ = 2 (3.13)

always allows to drop one of these adaptor coefficients in thesignal flow diagram of this adaptor, cf.
Figure 25.

Moreover, if the adaptor coefficient with greatest value is expressed by the others, all remaining
(positive) adaptor coefficients are bounded by one, becauseof positive port resistances.

At first glance, there is no restriction for the choice of portconductances of parallel adaptors,
besides of positiveness of course. But for reasons of realizability, there is often a need to have
one port with no directed path between its terminals. This constraint is fulfilled, if the associated
port conductance is chosen equal to the sum of the remaining port conductances. In Figure 26 this
reflection-free port of the constrained adaptor is assignedwith a stroke and one can check that the
signal flow diagram contains no directed path between its associated terminals.

With respect to the series connection, the parallel connection is a dual in sense of that the roles
of voltages and currents are interchanged:

eTv = 0 and i = ei0. (3.14)
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Figure 25: Symbol and wave flow diagram of a3-port parallel adaptor
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b1b1

a2
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b3

−1

−γ1
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Figure 26: Symbol and wave flow diagram of a3-port parallel adaptor with reflection-free port3

Again, after introducing voltage wave quantities we obtainthe scattering matrix of an-port
series adaptor

b = (1− γeT)a, γ := 2
Re

eTRe
, (3.15)

were the adaptor coefficientsγν meet the condition (3.13).

a1

a1

b1b1

a2

a2

b2

b2

a3

b3

a3

b3

−1

γ1 γ2

−γ1 −γ2

Figure 27: Symbol and wave flow diagram of a3-port series adaptor

The close relation between these two types of adaptors can also be seen via a comparison of their
scattering matrices. They are identical up to a sign inversion and a transposition. In consequence, the
signal flow diagram of a parallel adaptor is the same as the signal flow diagram of a series adaptor
except for a sign of the incident waves and a signal flow inversion, cf. Figures 25 and 27.

The situation for the constrained series adaptor is just thesame as for the constrained parallel
adaptor. The symbol of the series adaptor and its signal flow diagram are shown in Figure 28
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Figure 28: Symbol and wave flow diagram of a3-port series adaptor with reflection-free port3

where the port resistance of the reflection-free port is determined by the sum of the remaining port
resistances.

For the wave digital concept, every neededn-port adaptor with more than three ports is prefer-
ably realized by interconnecting3-port adaptors of the same type. On the other hand, if2-port
adaptors are needed of series or parallel type it is used to employ a more symmetric type of adaptor,
as is shown in Figure 29.

a1

a1

b1b1

a2

a2 b2

b2

−1

γ1

γ1

Figure 29: Symbol and wave flow diagram of an alternative 2-port parallel adaptor

Its adaptor coefficient is given by

γ1 =
R1 −R2

R1 +R2

(3.16)

with a magnitude that is bounded by one.

Finally, parallel and series adaptors with only one port degenerate to open- and short-circuits
respectively, cf. Figure 30.

v = 0

i
a

b

R −1 v

i = 0
a

b

R

Figure 30: Short- and open-circuit

3.2 Some Basic Properties of Wave Digital Structures

Now, let us assume we have already synthesized a wave digitalstructure for a given electrical cir-
cuit. In order to discuss some properties of these models, wewill partition the electrical into resistive
sources, reactive elements, and the remaining source- and dynamic-free network as shown in Fig-
ure 31.
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Figure 31: Discrete-time represention of the electrical model

Without loss of generality, resistive sources and reactiveelements of the electrical circuit are
represented by resistive voltage sources and capacitances, respectively. In correspondence with
this partition, the related wave digital model is divided into wave sources, delay elements and the
remaining source- and dynamic-free wave digital network with the input signalsx, output signals
y, and statesw, cf. Figure 32.
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b = w

GC

Source- and
dynamic-free
WD network

a = g(b,x)

Figure 32: Discrete-time represention of the WD model

In order to define passivity, we will first write the power of a signal x as

‖x‖2 := xTGx, (3.17)

with its positive-definite port conductance matrixG := R−1. Having this in mind, a time-discrete
model is called passive if the inequality

‖w(k + 1)‖2 − ‖w(k)‖2 ≤ ‖x(k)‖2 − ‖y(k)‖2 (3.18)

holds. In other words, a time-discrete system is passive if the increase of its stored energy is bounded
by the difference of the energy which is supplied into the system and the energy which is extracted
from the system.

Here, one great advantage of passivity for those time-discrete systems occurs: The equilibrium
pint of passive systems are always stable in the sense of LIAPUNOV [Hahn, 1967], where a suitable
L IAPUNOV function is given by

V (w(k)) := ‖w(k)‖2.

In order to verify this statement, we notice thatV (w(k)) is bounded by

GCmin‖w(k)‖2 ≤ ‖w(k)‖2 ≤ GCmax‖w(k)‖2.

Additionally, if a free model is consideredV (w(k)) satisfies also the condition

∆V (w(k)) := V (w(k + 1)) − V (w(k)) ≤ 0.

As a consequence, the model has the equilibrium point0 which is stable in the sense of LIAPUNOV.

Next, let us examine two passive wave digital models which are interconnected at some of their
ports, cf. Figure 33.
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Figure 33: Coupling of two wave digital models

Due to passivity, each of both models satisfies the inequality (3.18), wherea1, a2 andb1, b2

have to be assigned to the input and output signals, respectively. Under the assumption that the
interconnected ports fulfill the port condition

G12 = G21 =⇒ a2 = b1 a1 = b2,

one can prove that the inequality still remains true for the overall model. As a result, we have found
that passivity of a wave digital model follows from passivity of its elements, which are port-wise
interconnected. Models with this property are called structural passive. As a consequence wave
digital algorithms are robust in this sense by means of that the parameters can vary in a wide range
without destroying passivity.

The special form for the energies is of major relevance if passivity has to be ensured even under
the finite word-length conditions which always appear for simulations on computer systems. With
a look at the definition of passivity (3.18), one can easily check that this inequality still holds if the
norms‖w(k + 1)‖ and‖y(k)‖ are decreased. To this end, these quantities are reformatted by sign
magnitude truncation in order to ensure passivity. Please notice that this reformation can be done at
every port because every particularn-port is also a wave digital model [Meerkötter, 1979].

If we have to deal with linear time-invariant systems only, we can deduce a necessary criterion
for passivity from definition (3.18). To this end, we consider a special input signal having the form
x(tk) = Xeptk and an initial state so that the states and consequently the output signals are of the
same form. Substituting these quantities in eq. (3.18) we get for some arbitrary complex frequency
the inequality

(e2Re pT − 1)‖W ‖2 ≤ ‖X‖2 − ‖Y ‖2

where‖X‖2 denotes the steady-state power in correspondence to eq. (3.17). For a passive system
we thus must have

Re p > 0 =⇒ ‖Y ‖2 ≤ ‖X‖2 .

Let us assume that the relation between the steady-state input and output quantities can be de-
scribed via a scattering matrixS. Then, passivity implies a unitarily bounded scattering matrix:

Reψ > 0 =⇒ ‖S(ψ)‖ ≤ 1 (3.19)

where the induced matrix norm
‖S‖ := sup

‖X‖=1

‖SX‖

has been used. Provided the impedance matrix,

Z = (1 + S)(1 − S)−1R, (3.20)

exists, then eq. (3.19) is equivalent to the implication:

Reψ > 0 =⇒ Z∗(ψ) + Z(ψ) ≥ 0 . (3.21)
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A matrix satisfying this condition is called a positive matrix.

Of course, the equations (3.21) or (3.19) provide only necessary conditions for passivity. But, it
is known that for a unitarily bounded scattering matrix, it is always possible to synthesize a corre-
sponding concretely passive electrical circuit [Belevitch, 1968].
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4 Topological Analysis of Electrical Circuits

Objective of the topological analysis described here is thegeneration of the adaptor structure for
a given electrical circuit,S. Such an adaptor structure is represented by a special decomposition
tree. The algorithm for setting up this decomposition tree requires several definitions and is a bit
extensive; it is based on the graph-theoretical concepts ofconnectivity, independent subnetworks,
triconnected components, series-parallel graphs, and tree decomposition.

First of all, subsection 4.1 develops the necessary graph-theoretical concepts and illustrates their
role in the electrical domain. Subsection 4.2 presents the linear-time algorithm ADAPTORS, which
constructs an optimum adaptor structure for a given electrical circuitS.

4.1 Graph-Theoretical Concepts for Effort-Flow-Systems

A coupling between two—not necessarily electrical—systems can be represented by a pair of sys-
tem variables whose product is the instantaneous power being transmitted trough an energy port
[Wellstead, 1979, pg. 12]. For each port these system variables divide into one intensive flow vari-
able (current, fluid flow, velocity, etc.) and one extensive effort variable (voltage, pressure, force,
etc.). Figure 34 illustrates such a generic port, from whichFigure 4 on Page 7 shows the electrical
interpretation.

f

f

e
System 1

System 2

Figure 34: Energy transmittal in effort-flow-systems is realized by means of ports each of which being
characterized by an effort variable,e, and a flow variable,f .

It is reasonable to stipulate that each basic system elementthat provides a pair of terminalsPort Property
establishes a one-port. When joining together one-port elements, new constraints are introduced—
the aforementioned connection constraints—which relate to the elements’ effort variables and flow
variables. There exist only two ways by which two one-port elements can be interconnected: in
series or in parallel, as shown in Figure 35.
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Figure 35:Connecting two one-ports in series (left-hand side) and in parallel (right-hand side).

The related connection constraints are called compatibility and continuity constraints upon the
effort and flow variables; they are of the following form:

e = e1 + e2 f = f1 = f2 (series connection)

e = e1 = e2 f = f1 + f2 (parallel connection)
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For electrical systems, compatibility and continuity constraints are known as Kirchhoff’s voltage
and current law respectively.

Note that the series as well as the parallel connection of twoports again yields a port. This fact,
along with the plain form of the connection constraints, enables us to easily combine the charac-
teristics of the basic system elements. And, as already pointed out in Subsection 2.2, Page 6, this
gives rise to an algorithm that computes the system variables for a given systemS by means of local
propagation. IfS is formulated within thea/b-wave domain and if differential characteristics are
approximated by means of the trapezoid rule, this algorithmwill represent a WDS; i. e., it defines a
feedback-free signal flow graph whose processing resemblesthe dynamic behavior ofS.

Prerequisite for the design of a WDS from an electrical system S thus is the detection of the
ports withinS. Clearly, if S is constructed from bottom-up by applying only series and parallel
connections, the topology ofS will be isomorphic to a series-parallel graph, and all portscan be
easily found. However, typically this is not the case, andS contains “closely connected” subsystems.

A solution of this problem is described in [Stein, 1995] as part of a network preprocessing
approach: The port concept is extended towards so-called independent subnetworks, and the relation
between independent subnetworks and triconnected components is exploited to identify all ports
within a flow network.2 We will follow the same idea here; the remainder of the section presents the
necessary definitions.

Definition 1 (Corresponding Graph of an Electrical Circuit) Let S be an electrical circuit. The
corresponding graph ofS is a multigraphG = 〈V,E, g〉 whose elements are defined as follows.V
is the set of segments of the interconnecting network inS that form areas of equal potential,E is
the set of one-port elements inS, andg is a mapping,g : E → P(V ) whereg(e) 7→ {v,w} iff e
connects the potential areasv andw. E is called the set of edges,V is called the set of points, and
g is called the incidence map.

Remarks. (1) Typically, numbers are used to designate the elements inV . (2) Without loosing
generality, the incidence mapg is often omitted, and the elements in the multisetE are denoted as
two-element sets{v,w} ∈ P(V ): It is obvious that a bijective mapping between the elementsin S
and inE can be maintained.
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Figure 36:Electrical circuit with corresponding graph. The shaded regions in the circuit indicate the areas
of equal potential in the interconnecting network.

Example. Given the electrical circuitS depicted in Figure 36; a corresponding graphG of S is
defined on the set of pointsV = {1, 2, 3, 4}, the edge setE = {e, L,R1, R2, C1, C2, C3}, and the

2There, the ports are identified to reformulate a global modelof a fluidic network into a new model that can be
processed by local propagation. However, with respect to its runtimeO(|E| · |V |) the used detection algorithm for
triconnected components is suboptimum.
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incidence mapg = {(R1, {1, 2}), (e, {1, 4}), (L, {2, 3}), (C3, {2, 3}), (C1, {2, 4}), (C2, {3, 4}),
(R2, {3, 4})}.

In the case the incidence map is dropped,E is described by the following multisetE = {{1, 2},
{1, 4}, {2, 3}, {2, 3}, {2, 4}, {3, 4}, {3, 4}}.

Definition 1 enables us to disburden our considerations fromelectrical circuits and use their
graph equivalents instead.

Definition 2 (Two-Terminal Graph, Flow) A two-terminal labeled graph is a triple〈G, s, t〉,
whereG = 〈V,E〉 is a (multi)graph ands, t ∈ V , s 6= t. s and t are called source and sink of
G respectively.

A mappingf : E → V ×R, f({v,w}) 7→ (u, x), u ∈ {v,w}, on a two-terminal labeled graph
〈G, s, t〉 is called flow onG if the conservation law holds for every pointv, v 6= s, t in G:

∑

e∈Ev

y = 0 with y =

{

x if f(e) = (v, x)
−x if f(e) = (w, x)

Ev ⊂ E comprises the edges incident tov. If the functionf does also depend on the parameter
time, the conservation law must hold for any element in the time domain.

Remarks.Standard flow definitions refer to directed graphs and a positive flow functionf . In the
presented definition the flow function prescribes both flow direction and flow value since we are
dealing with undirected graphs. Of course, a non-positive flow function can be made positive by
partially redefining it:({v,w}, (v, x)) is replaced with({v,w}, (w,−x)) if x < 0.

Ports are characterized by the property that they possess two terminals where for each point inIndependent
Subnetworktime the related flow values are of equal amount and opposite direction. In this sense, a terminal

of a port corresponds to the graph-theoretical concept of anedge. For our analysis of graphs it is
necessary to extend the port concept towards so-called independent subnetworks whose terminals
correspond to nodes.

Definition 3 (Independent Subnetwork [Stein, 1995])Let G = 〈V,E〉 be a graph, and letH be
a subgraph ofG induced byVH ⊂ V with |VH | > 2. A two-terminal labeled graph〈H, sH , tH〉 is
called independent subnetwork ofG, if the following condition holds:

(1) Every walk from a point inV \ VH to a point inVH contains eithersH or tH .

An independent subnetworkH will be called minimum, if there exists no independent subnetwork
which is induced on a proper subset ofVH .

Let 〈H, sH , tH〉 be an independent subnetwork of a two-terminal labeled graph 〈G, s, t〉. Ob-
serve that the topology ofH guarantees that an energy exchange betweenH andG can happen only
via the nodessH andtH . Moreover, KIRCHHOFF’s node rule states the conservation of the electric
current, which thus defines a flow in the sense of Definition 2. From this conservation property
follows that for each current flow onH the sum of all in-going currents atsH equals the sum of
all outgoing currents attH [Jungnickel, 1990, pg. 106]. Together both aspects enable us to enclose
independent subnetworks with a hull, say, to investigate them in an isolated manner. An important
consequence is that the concepts “port” and “independent subnetwork” can be used interchangeably
(see Figure 37).

Remarks.(1) Since each part of a systemS that corresponds to an independent subnetwork must be
treated by a global numerical procedure, we are interested in a decomposition ofS into minimum
independent subnetworks. (2) Independent subnetworks arenot multiports. The physical concept of
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Figure 37:Substituting an independent subnetwork (left) for a port (middle) does not violate the conservation
law.

a multiport can be entirely reproduced by adding to the definition of a multigraphG a decomposition
C of the edge setE. Each setC ∈ C stands for a subset ofE and defines a multiport in a definite
way.

Definition 4 (Series-Parallel Graph [Booth and Tarjan, 1993, Brandstaedt et al., 1999]) Let Series-Parallel
Graph〈G,s, t〉 be a two-terminal labeled graph.G is called two-terminal series-parallel with sources and

sink t if it can be built by means of the following three rules:

(1) Base Graph. Any graph of the formG = 〈{s, t}, {{s, t}}〉 is a two-terminal series-parallel
with sources and sinkt.

Let G1 = 〈V1, E1〉 be two-terminal series-parallel with sources1 and sinkt1, and letG2 =
〈V2, E2〉 be two-terminal series-parallel with sources2 and sinkt2.

(2) Series Composition. The graph formed fromG1 andG2 by unifying t1 ands2 is two-terminal
series-parallel, with sources1 and sinkt2.

(3) Parallel Composition. The graph formed fromG1 andG2 by unifying s1 ands2 and unifying
t1 andt2 is two-terminal series-parallel, with sources1 = s2 and sinkt1 = t2.

Two-terminal series-parallel graphs can be represented bydecomposition trees, also called sp-
trees, cf. [de Fluiter, 1997], which generalize the series and the parallel composition to more than
two operands.

Definition 5 (sp-tree) An sp-treeT〈G,s,t〉 of a two-terminal series-parallel graph〈G, s, t〉 is a rooted
tree whose nodes are either of type s-node, p-node, or leaf-node. Each node is labeled by a pair
(u, v), u, v ∈ V ; the children of an s-node are ordered; the leafs ofT〈G,s,t〉 correspond one-to-one
to the edges ofG.

Every node of an sp-tree corresponds to a unique two-terminal series-parallel graph〈H,u, v〉,
whereH is a subgraph ofG and (u, v) is the label of the node. The root ofT〈G,s,t〉 has label
(s, t) and corresponds to the graph〈G, s, t〉. The two-terminal series-parallel graph defined by an
s-node is the result of the series composition applied to itschildren in their given order. The two-
terminal series-parallel graph defined by a p-node is the result of the parallel composition applied to
its children.

Figure 38 exemplifies the definition.

The composition rules laid down in Definition 4 make apparentthat a series-parallel graph whose
sp-tree has a root node label of series-node and parallel-node type has a vertex connectivity of one
and two respectively. Graphs of a higher vertex connectivity are the result of either connecting more
than three two-terminal graphs at the same time or by connecting two-terminal graphs by a different
rule. Formally, the vertex connectivity of a graph is definedas follows.
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Figure 38:Series-parallel graph (left) and its sp-tree representation (right).

Definition 6 (Vertex Connectivity κ(G)) Let G = 〈V,E〉 be a graph.κ(G) is called vertex con-
nectivity ofG and is defined as follows.κ(G) = min{|T | | T ⊂ V andG[V \ T ] is not connected
}. G is calledk-connected, ifκ(G) ≥ k.

G[V ′] denotes the subgraph ofG that is induced byV ′ ⊆ V .

Remarks.A cut point (or articulation point) of a graphG is a pointv ∈ V for whichG[V \ {v}] has
more connected components thanG. A connected graph without cut points is called biconnected;
a connected graph with cut points is called separable; the maximum inseparable induced subgraphs
of a graphG are called biconnected components. The separation of a graph G into its biconnected
components is unique [Tarjan, 1972]. This fact, together with the fact that each biconnected compo-
nent is analyzed on its own, we can assume without loss of generality that the considered graphs are
biconnected.

The subsequent definition extends the cut point construct, it is derived from Hopcroft and Tarjan
[1973].

Definition 7 (Separation Pair) Let {a, b} be a pair of vertices in a biconnected multigraphG, and
let the edges ofG be divided into equivalence classesE1, . . . , En such that two edges which lie on
a common path not containing any vertex of{a, b} except as an endpoint are in the same class.

The classesEi are called separation classes ofG with respect to{a, b}. If there are at least two
separation classes, then{a, b} is a separation pair ofG unless (1) there are exactly two separation
classes, and one class consists of a single edge, or (2) thereare exactly three classes, each consisting
of a single edge.

If G is a biconnected multigraph such that no pair{a, b} is a separation pair ofG, thenG is
triconnected.

While the triconnectivity of a graphG follows canonically from Definition 6 or 7, the character-Triconnected
Componentsization of a graph’s triconnected components is more involved. The reason for this difficulty is that

triconnected components possess no property that permits their detection by a divide-and-conquer
approach. Instead, it is necessary to investigate the relation ofH with respect toG if a subgraphH
of G forms a suspect triconnected component. Moreover, Hopcroft and Tarjan introduce different
types of triconnected components, and hence the relation betweenH andG must be investigated
relating different properties [Hopcroft and Tarjan, 1973]. Their definitions are given now.

Definition 8 (Split Graph, Splitting, Split Component) Let G be a multigraph with separation
pair {a, b} and related separation classesE1, . . . , En. Moreover, letE′ =

⋃k
i=1

Ei andE′′ =
⋃n

i=k+1
Ei be such that|E′| ≥ 2, |E′′| ≥ 2, and letG1 = 〈V (E′), E′ ∪ {(a, b)}〉, and

G2 = 〈V (E′′), E′′ ∪ {(a, b)}〉. Then the graphsG1 andG2 are called split graphs ofG with
respect to{a, b}. ReplacingG by two split graphs is called splittingG.
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If the split graphs are further split, in a recursive manner,until no more splits are possible, the
remaining graphs are called split components ofG.

Remarks.(1) The new edges{a, b} added toG1 andG2 are called virtual edges; they can be labeled
to identify the split. (2) IfG is biconnected then any split graph ofG is also biconnected. (3) The
split components of a multigraph are not necessarily unique.

The split components of a multigraph are of three types: triangles of the form〈{a, b, c}, {{a, b},
{a, c}, {b, c}}〉, triple bonds of the form〈{a, b}, {{a, b}, {a, b}, {a, b}}〉, and triconnected graphs.
To obtain unique triconnected components, the split components must be partially reassembled.

Reassembling is accomplished by merging. Suppose thatG1 = 〈V1, E1〉 andG2 = 〈V2, E2〉 are
two split components containing an equally labeled virtualedge{a, b}. Then the result of a merging
operation is a graphG1+2 with node setV1+2 = V1 ∪ V2 and edge setE1+2 = E1 \ {{a, b}} ∪E2 \
{{a, b}}.

Definition 9 (Triconnected Component) LetG be a multigraph whose split components are a set
of trianglesS3, a set of triple bondsP3, and a set of triconnected graphsC. If the triangles are
merged as much as possible to give a set of polygonsS, and if the triple bonds are merged as much
as possible to give a set of bondsP, then the set of graphsS ∪ P ∪ C forms the set of triconnected
components ofG.

Remarks. (1) The triconnected components of a graphG are unique (see [Tarjan and Hopcroft,Series and
Parallel
Reduction

1972]). (2) The “triconnected components” inS are not triconnected in the sense of Definition 6.
They establish generic series connections: Virtual edges designate the connection of a subgraph; the
other edges designate single elements inS. From the viewpoint of a KIRCHHOFF interconnecting
network the non-virtual incident edges can be replaced witha single edge of appropriate impedance.
This process is called series reduction. (3) The triconnected components inP are defined on two
points only. They establish generic parallel connections:Virtual edges designate the connection
of a subgraph; the other edges designate single elements inS—from the viewpoint of a KIRCH-
HOFF interconnecting network they can be replaced with a single edge of appropriate admittance.
This process is called parallel reduction. (4) The triconnected components inC establish minimum
independent subnetworks (see [Stein, 1995]).

Figure 39 shows a graph and its split components. Except the triangles(1, 3, 4) and(1, 2, 3), the
split components establish triconnected components; the set of triconnected components is complete
if the triangles are merged.

First separation pair

Second separation pair

1 11 22

3 33

44

Figure 39:A graph and its split components. When the triangles(1, 3, 4) and(1, 2, 3) are merged, the right
hand side shows all triconnected components of the graph.

The algorithm presented in [Hopcroft and Tarjan, 1973] delivers the triconnected components as
defined above and runs inO(|E|). We will rely on it in the next section. The algorithm originates
from AUSLANDER and PARTER’s idea for an efficient planarity test [Hopcroft and Tarjan,1973,
Auslander and Parter, 1961]. Root of its efficiency is the statement of necessary conditions for
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separation pairs along with a clever computation of these conditions within several depth-first search
runs.

Hopcroft and Tarjan’s algorithm does not consider the semantics of independent subnetworks.Inadmissible
SegmentationAs a consequence, independent subnetworks can be torn, resulting in inadmissible segmentations.

Figure 40 shows two isomorphic graphs with a differents, t-labeling. A decomposition of this graph
into its split components tears the independent subnetworkwith sources2 and sinkt2.

s1s1 t1t1

s2

s2

t2

t2

Figure 40:Two isomorphic graphs with a differents, t-labeling (left) and the related split components (right).
The independent subnetwork with the labelings1, t1 is torn.

Obviously all triconnected components of a two-terminal labeled graph〈G, s, t〉 establish inde-
pendent subnetworks if there is a triconnected component containing boths andt. The following
definition and Lemma 1 formalize this assertion.

Definition 10 (Elementary Contraction, s-t-Contractible) Let 〈G, s, t〉, G = 〈V,E〉, be a con-
nected two-terminal labeled graph (not necessarily series-parallel), let{v,w} ∈ E, and letVw ⊂ V
comprise the nodes adjacent tow. Then the graphG′ = 〈V ′, E′〉 is called an elementary contraction
ofG respectingw, if V ′ := V \{w}, andE′ := E \{{w, x} | x ∈ Vw}∪{{v, x} | x ∈ Vw, x 6= v}.

G is calleds-t-contractible towards a graphG′ = 〈V ′, E′〉, if G′ is the result of a sequence of
elementary contractions, and if{s, t} ∈ E′.

The s-t-contractibility states that the flow conservation betweens and t remains intact for a two-
terminal labeled graph〈G, s, t〉. It can be ensured by simply adding the edge{s, t} toG if s andt
are not adjacent. This modification ofG does not restrict its segmentation into independent subnet-
works.

Lemma 1 (s-t-Contractibility) Let 〈G, s, t〉, G = 〈V,E〉, be a connected two-terminal labeled
graph (not necessarily biconnected) with sources and sinkt, and let{s, t} 6∈ E. Moreover letG′ be
〈V,E ∪ {{s, t}}〉, and letG′

1, . . . , G
′
m be the triconnected components ofG′. Then the following

holds:

(1) ∃G′
i which iss-t-contractible,

(2) G′ can be decomposed into the same independent subnetworks likeG.

Proof of Lemma 1.Point (1). Follows immediately from the fact that there mustbe some graph
G′

i that contains the edge{s, t}. Point (2). Observe that for an independent subnetwork〈Gi, a, b〉
that hass (or t) amongst its nodes one of the following equations must hold:a = s or b = s.
This follows from the independent subnetwork definition. IfG′ cannot be decomposed into the
same independent subnetworks likeG then this must be on account of the edge{s, t}. It prohibits
a segmentation of someG′

i into the independent subnetworks〈Gi, s, a〉 and〈Gj , t, b〉, which could
be formed when segmenting the original graphG. Since〈Gi, s, a〉 and〈Gj , t, b〉 form independent
subnetworks,a andb must be articulation points ofG, which in turn means that{s, a} and{s, b}
establish separation pairs inG′. Hence, an independent subnetworkG′

k can be formed that contains
{s, t} as its only non-virtual edge. Conversely, the edge{s, t} does not prohibit the formation of
independent subnetworks that can be formed inG. ⋄
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As outlined in the remarks on Page 30, the three types of triconnected components form theDecomposition
Treebackbone for the segmentation of a circuitS: Based on the the setsS, P, andC, a connector

structure, or as the case may be, an adaptor structure is easily constructed. In this connection it is
useful and quite natural to extend the concept of sp-trees (Definition 11) towards spc-trees.

Definition 11 (spc-tree) An spc-treeT〈G,s,t〉 of a two-terminal (multi)graph〈G, s, t〉 is a rooted
tree whose nodes are either of type s-node, p-node, c-node, or leaf-node. A c-node is labeled by the
graph〈VH , EH , u, v〉 it stands for; the other nodes are labeled by a pair(u, v). The children of an
s-node are ordered; the leafs ofT〈G,s,t〉 correspond one-to-one to the edges ofG.

Every node of an spc-tree corresponds to a unique two-terminal graph〈H,u, v〉; the root of
T〈G,s,t〉 corresponds to the graph〈G, s, t〉. The two-terminal graph defined by an s-node is the result
of the series composition applied to its children in their given order, and the two-terminal graph
defined by a p-node is the result of the parallel composition applied to its children. The two-terminal
graph defined by a c-node is triconnected, has more than threenodes, and follows no construction
rule.

The spc-treeT〈G,s,t〉, T〈G,s,t〉 = 〈VT , ET 〉 is easily constructed.VT = {1, . . . , n + |EG|}
wheren denotes the number of triconnected components and|EG| denotes the number of edges in
G; the nodes in{1, . . . , n} correspond one-to-one to the triconnected components and are labeled
respecting the triconnected component’s type asS-node,P -node, andC-node respectively.ET

contains an edge{v,w} if and only if one of the following conditions is fulfilled: (1) v andw
correspond to triconnected components and have a common virtual edge, (2)v corresponds to a
triconnected component andw is an edge inv.

Remarks.Since both the series adaptor and the parallel adaptor are realized as three-port adaptors,
the nodes of the spc-tree that are labeled asP -node orS-node may be expanded again to account for
their restricted number of ports. Moreover, observe that the height of the decomposition tree defines
the longest propagation path of the adaptor structure. Consequently the root of the decomposition
tree should be defined as some node leading to a minimum tree height. The subsequent definition
picks up both aspects and introduces a normalized spc-tree.

Definition 12 (Normalized spc-tree) Let T〈G,s,t〉 = 〈VT , ET 〉 be an spc-tree.T〈G,s,t〉 is called
normalized spc-tree if each nodev ∈ VT labeledS or P has at most two successors, and if the root
v of T〈G,s,t〉 represents a center ofT〈G,s,t〉 and has a degree larger than1.

Remarks.(1) T〈G,s,t〉 is normalized by replacing each nodev ∈ VT labeledS or P that has more
than two successors with the root of a balanced binary tree,Tv, whose leafs are the successors ofv;
the inner nodes ofTv get the same label asv. (2) The center of a treeT = 〈V,E〉 can be computed
in O(|V |) [Mitchell Hedetniemi et al., 1981].

4.2 Generating the Adaptor Structure for Electrical Circui ts

The previous subsection provides the theoretical underpinning for the following adaptor synthesis
algorithm.

Input. An electrical circuit,S.
Output.A normalized spc-tree defining the optimum adaptor scheme and types,

the port resistances, and the adaptor coefficients.

Algorithm. ADAPTORS

(1) Generate the corresponding graphG of S.
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(2) PartitionG respecting its biconnected componentsG1, . . . , Gm. For eachGi do:

(a) Check for inadmissible segmentation.

(b) Detect triconnected components.

(c) Construct an spc-tree.

(3) Construct an spc-treeT〈G,s,t〉 for the entire graphG.

(4) NormalizeT〈G,s,t〉.

(5) Compute the port resistances and adaptor coefficients.

Theorem 1 Given an electrical circuitS containingn elements. ThenADAPTORS computes a
normalized spc-tree defining the optimum adaptor scheme andtypes, the port resistances, and the
adaptor coefficients inO(n).

Proof 1 The runtime bounds for the Steps 1–2b follow from the considerations and algorithms
pointed out in the previous section. Step 3, the connection of the forest of them spc-trees,m < n, is
linear. Finally, the adaptor computations within Step 5 involve only a constant number of operations
for each of then elements (see Section 2 and 3).

In the sequel, some steps of ADAPTORSare illustrated at the sample graph of Figure 41, which
establishes the corresponding graphG of some electrical circuitS.

s t

Figure 41:Corresponding graphG of some electrical circuitS.

Step 2. PartitionG respecting its biconnected components,G1, . . . , Gm. Label the articulation
points of theGi by si or ti, such that each biconnected component contains a sourcesi and a sinkti.

s1 t1

s2 t2
s3 t3

G1 G2

G3

Articulation point

Figure 42:Decomposition ofGS respecting its biconnected components and relabeling of the biconnected
as two-terminal graphs.

Step 2a. Check for inadmissible segmentations. In the sample graph an edge{s2, t2} is intro-
duced. However, in electrical circuits this step is superfluous if s and t are incident to the signal
source.

Step 2b. Detect inG2 the three sets of different triconnected components,S, P, andC.
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S1
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P3

C1

C2

Node of separation pair
Virtual edge

Figure 43:Detection of the triconnected components.

Step 2c. Construct an spc-treeT〈G3,s3,t3〉 for G3; the left-hand side of Figure 44 shows the re-
sult. At this place the previously mentioned series reductions and parallel reductions are ideally
performed: Engineering knowledge on useful reductions canbe formulated by means of simple
contraction rules, which may even investigate the context of an element.3

S11

S12
S13

S14
S15

S16
S17

S1

S2

S2 P1

P1

P2

P2

P3

P3

C1

C1

C2

C2

Adaptor

Figure 44:An unnormalized spc-tree ofG3 (left) and its normalized counterpart (right); the leafs ofthe trees
correspond to the edges inG3.

Step 3. Construct an spc-treeT〈G,s,t〉 for the entire graphG. This accomplished by connecting the
roots of the treesT〈Gi,si,ti〉 with a new node that is labeled as anS-node.

Step 4. Normalize the decomposition treeT〈G,s,t〉; the right-hand side of Figure 44 shows the
result. Obviously, the ideal adaptor for having no reflection-free port is associated with the root of
the normalized the decomposition tree.

Step 5. Based on the component parameters inS compute the port resistances for the adaptors as
described in Section 2 and 3.

Extension The algorithm ADAPTORScan be extended with respect to multiports. To this end each
subgraph that is induced by a multiport is completed such that it forms a clique.

Of course there are other concepts for a special treatment (preprocessing) of multiports. The
usage of cliques may establish the most elegant solution since it does not require a modification of
the presented procedures.

3Such rules may treat the introduction of resistive sources,or the comprisal of elements of the same type. Note that
design graph grammars provide an ideal means to encode this type of knowledge [Schulz et al., 2001].
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5 Passive Linear Multistep Methods

This section extends the passivity considerations outlined in Subsection 2.5, page 13. In particular
it is shown, in which way numerical integration methods for passive nonlinear electrical circuits
can be developed that conserve the passivity property (cf. [Fettweis, 1971, Felderhoff, 1994, Ochs,
2001]).

To this end, we will restrict our considerations towards nonlinear electrical circuits that are built
up from resistive sources and, as the only reactive element,the capacitance, which can be used to
realize the other reactive elements. Note that even nonlinear reactive element can be put down to an
appropriately controlled capacitance.

A formulation of such an electrical circuit as differentialequation system is given by

v̇(t) = C−1i(t) (5.1)

where the capacitances have been collected in the diagonal matrix C. The equation system (5.1) can
be written as a function of a voltage vectorv(t) and the vector of signal sources,x(t).

v̇(t) = f(v(t),x(t)), v(t0) = v0, (5.2)

This notation corresponds to a separation of the reactive elements from the remaining network.

The sequel of this section is organized as follows. The next subsection introduces the new
concept of the characteristic impedance, which then is usedin Subsection 5.2 and Subsection 5.3 to
develop conditions for consistency orders of linear multistep methods.

Note that the results of this section can be transferred to all systems whose behavior model can
be formulated as a source- and dynamic-free (nonlinear) algebraic network that is coupled with a set
of linear capacitances.

5.1 Characteristic Impedance

A linear multistep method is an integration method which approximates the solution of eq. (5.2) by
the rule

vk = −

s
∑

σ=1

ασvk−σ + TC−1

s
∑

σ=0

βσik−σ (5.3)

with the separated (nonlinear) algebraic equations

C−1ik := f(vk,xk) (5.4)

whereασ andβσ are arbitrary parameters. With regard to the underlying electrical circuit, this
separation is natural because we have divided the circuit into reactive elements and the remaining
network, cf. Fig. 31. On this account, the nonlinear algebraic equations can be implemented with the
aforementioned concepts but we have to find proper realizations for the linear difference equations.

For this purpose, let us consider the steady-state voltage-current relation of a single reactive
elementC, i. e., its signals are of the formvk := V eptk andik := Ieptk . Putting these quantities
into the linear difference equation (5.3) we get

V =
T

2C
Ẑ(epT )I, Ẑ(epT ) :=

2
s

∑

σ=0

βσe−σpT

1 +
s

∑

σ=1

ασe−σpT

, (5.5)

cf. [Nitsche, 1993, Fischer, 1984, Felderhoff, 1994, Genin, 1973]. In this paper, the rational
fraction is designated as the (normalized) characteristicimpedance of a linear multistep methods.
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C−1i = f(v,x)

Z1(ψ),GC1

Figure 45:Discrete-time representation of a reference circuit of a linear multistep method..

As will be exposed later on, it will be convenient to employ the equivalent complex frequency
variableψ instead ofp. If we make use of the transformation (3.8), we obtain

Z(ψ) := Ẑ

(

1 + ψ

1 − ψ

)

=

s
∑

σ=0

cσψ
σ

s
∑

σ=0

dσψσ

(5.6)

where one of these coefficients can be normalized. Here, linear multistep methods having a positive
characteristic impedanceZ(ψ) will be called passive.

With regard to a realization ofZ(ψ), we will focus on methods having a canonic realization of
the characteristic impedance. In particular, we will only consider irreducible methods, i. e., methods
whose numerator and denominator polynomials have no commondivisor.

A linear multistep method as defined by eq. (5.3) is called explicit if vk depends only on past
values ofv andi. Clearly, the method as given by eq. (5.3) is explicit if and only if β0 = 0. But
the passivity of linear multistep methods excludes explicit methods becauseβ0 = 0 ⇐⇒ Z(1) = 0
implies thatZ(ψ) has a zero in the right halfψ-plane in contradiction to properties of positive
functions, cf. [Belevitch, 1968]. Since we are interested in passive integration methods only, we will
restrict ourselves to implicit linear multistep methods.

5.2 Consistency Order

In order to have a measure of quality for linear multistep methods, it is appropriate to inspect the
so-called local error being defined by

εk :=
s

∑

σ=0

ασṽk−σ − TβσC−1ı̃k−σ (5.7)

whereα0 := 1 has been adopted. The goal for the design of a linear multistep method is to determine
the free parameters in order to minimize the local error in a certain manner. To this end, we will
again make use of steady-state quantities at a complex frequencyp whereṼ , Ĩ andE denote the
complex amplitudes of̃v, ı̃ andε, respectively. According to eq. (5.1),̃V andĨ are related to each
other bypṼ = C−1Ĩ and eq. (5.7) becomes

E = Ṽ

s
∑

σ=0

(ασ − pTβσ)e−σpT . (5.8)

Now, the sum is expanded into a MACLAURIN series with respect topT . The parametersασ

andβσ are typically chosen so that as many as possible of the first terms of the MACLAURIN series
vanish. In fact, we place as many as possible zeros at the origin in order to have a maximal flat
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approximation of zero for the local error. If the multiplicity of this zero isq + 1 thenq is called the
consistency order.

A suggestive method should have a bounded local error ifpT tends towards zero. In view of
eq. (5.8), the parameters have then to fulfill the relation

s
∑

σ=0

ασ = 0. (5.9)

Next, let us make use of the LANDAU order symbolO in order to enable a condense formulation:
s

∑

σ=0

(ασ − pTβσ)e−σpT = O((pT )q+1). (5.10)

Regardless of the steady-state considerations, the evaluation of this equation leads to the consis-
tency equations being the same as for the classical approach, cf. [Felderhoff, 1994].

However, these consistency equations are somewhat bulky and, additionally, we have to deter-
mine the parameters ofZ(ψ) from the parameters of the difference equation. For these reasons, we
will directly derive consistency equations formulated in dependence of the parameterscσ anddσ as
appearing in eq. (5.6).

Primarily, we can state that for an irreducible method eq. (5.9) implies
s

∑

σ=0

βσ 6= 0. (5.11)

With regard to the equations (5.5) and (5.6), the relations (5.9) and (5.11) are equivalent to

d0 = 0 and c0 6= 0 . (5.12)

Sincec0 cannot vanish and one coefficient ofZ can be normalized, let us choosec0 equal to one.
Having this in mind, eq. (5.10) divided by the numerator polynomial ofẐ(epT ) leads to

1

Ẑ(epT )
−
pT

2
= O((pT )q+1).

Before we reformulate this equation in dependence of the complex equivalent frequency variable
ψ, we will recall the MACLAURIN series of theartanh function:

artanh(ψ) =

∞
∑

µ=0

ψ2µ+1

2µ+ 1
for all |ψ| < 1 . (5.13)

Now, we can state that a linear multistep method can be interpreted as a frequency transformation
where1/Z(ψ) approximates theartanh function:

1

Z(ψ)
− artanh(ψ) = O(ψq+1). (5.14)

Finally, we will make use of the concept of a PADÉ approximation in order to derive consistency
conditions in dependence ofcσ anddσ . For this purpose, we multiply eq. (5.14) with the numerator
polynomial ofZ(ψ) where the right side remains unchanged because ofc0 = 1:

s
∑

σ=0

dσψ
σ −

∞
∑

µ=0

ψ2µ+1

2µ+ 1

s
∑

σ=0

cσψ
σ = δεψ

q+1 + O(ψq+2) . (5.15)

Here, the constantδε 6= 0 has been adopted which is designated as the local error constant.
By comparing both sides of this equation, we obtain the sought formulation of the consistency
conditions depending on the parameters of the characteristic impedanceZ(ψ) given in Table 1.
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q ≥ 0: d0 = 0

q ≥ 1: d1 = c0 := 1

q ≥ 2: d2 = c1

q ≥ 3: d3 = c2 + c0/3

q ≥ 4: d4 = c3 + c1/3

q ≥ 5: d5 = c4 + c2/3 + c0/5

q ≥ 6: d6 = c5 + c3/3 + c1/5
...

...

Table 1: Consistency conditions of linear multistep methods.

5.3 Maximum Consistency Order

Unfortunately, passive linear multistep methods possess alimited accuracy with respect to numerical
integration. In order to show this, let us assume a linear multistep method having a consistency order
q ≥ 1. As a result,Z(ψ) has a single pole with residue1 in the origin which will be extracted now.
Here, it is important to note that – for a passive linear multistep method –Z(ψ) remains positive
after extracting this pole. In other words,

Z ′(ψ) := Z(ψ) −
1

ψ
=

s
∑

σ=2

(cσ−1 − dσ)ψσ−2 + csψ
s−1

1 +
s

∑

σ=2

dσψσ−1

also satisfies condition (3.21) under this assumption.

Altogether, the linear multistep method of least implementation effort is the trapezoidal rule
having a characteristic impedanceZ(ψ) = 1/ψ, compare Figs. 31 and 32. Due to its accuracy of
q = 2, its local error constant of−1/3 with respect toψ, and in particular its simple realization, this
rule is customary used for wave digital structures, cf. Figure 32.

Except for the trapezoidal rule, linear multistep methods need more than one step in order to
achieve a consistency order of at least two. If we focus on multistep methods withs ≥ 2 only, we
can realize that the consistency condition forq ≥ 2 requiresd2 = c1 or, according toZ ′(ψ),

Z ′(0) = 0. (5.16)

Finally, we examine the reciprocal valueY ′ := 1/Z ′ having a pole in the origin with residue
1/(c2 − d3). Now, if the method is passive thenZ ′ and consequently alsoY ′ are positive functions.
For this reason, it is necessary to have a positive residue for this pole, i. e.,

c2 > d3. (5.17)

As a conclusion from Table 1, passive linear multistep methods cannot achieve a consistency
order of three and their local error,d3 − c2 − c0/3, has minimal magnitude for the trapezoidal rule.

Of course, this result is not new. Because passivity of a linear multistep method is equivalent
to A-stability4 [Felderhoff, 1994] the result in fact is well known as DAHLQUIST’s second barrier
[Dahlquist, 1963]. However, the line of arguments presented in this paper establishes yet another
proof of this barrier, cf. [Genin, 1973, Grigorieff, 1977, Hairer and Wanner, 1996].

4This is in particular true for linear multistep methods, butfor more general integration methods it can be shown
that passivity is stronger than A-stability. A detailed discussion of some stability properties of passive RUNGE-KUTTA

methods will be given elsewhere [Ochs, 2001, Fränken and Ochs, 2001].
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6 Summary and Outlook

The paper presents an approach for the systematic synthesisof wave digital structures for given
reference circuits. Based on our ideas, the synthesis of an optimum wave digital structure can be
realized inO(n), wheren denotes the number of elements in the corresponding reference circuit.
The concepts presented here are exemplified for one-ports only; however, they can be transferred
easily to the case of using multi-ports (see the Remarks on Page 27).

The paper recapitulates wave digital modeling and some fundamental properties. Special em-
phasis has been put on the generation of suited adaptor structures, which forms a crucial point during
the WDS synthesis procedure. The method proposed here is based on the graph-theoretical concept
of triconnected components playing a role in graph planarity tests and for which Hopcroft and Tar-
jan developed an efficient detection algorithm. Although their algorithm has been invented for a
very different problem, it provides us with an efficient method for identifying the three elementary
types of minimum independent subnetworks: parallel, series, and closely connected components,
designated by capital letters S, P, and C respectively. The result of our structure synthesis algorithm
is a special graph, called SPC-tree, which indicates the relationship between the aforementioned
components.

The SPC-tree is a powerful representation of the topological interconnection structure allowing
for a direct derivation of the adaptor structure. Moreover,it can be used for rule-based simplifications
as well as for searching structural singularities.

Current and further research concentrates on the followingaspects.

• Operationalization of the presented ideas in the form of a prototypic synthesis work bench for
wave digital structures.

• Algorithms for a systematic detection of structural singularities.

• A library with predefined special adaptor structures occurring typically in electrical networks,
such as bridged-T configurations.
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