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1 Introduction

This paper is subjected to wave digital structures, shoilSNThe concepts of wave digital struc-
tures have their origins in the field of filter design, whereyttare designated more specifically
as wave digital filters [Fettweis, 1971, 1986]. Generallgapng, wave digital structures can be
viewed as a powerful modeling and analysis tool, which mtesiinteresting properties.

The contributions of this paper include an introduction tavev digital structures as well as
new aspects that relate to WDS theory and WDS operatiotialigathe paper is organized in the
following five parts.

(1) Introduction (this section).

Aside from this overview the introduction presents a genembdel abstraction hierarchy.
The hierarchy then is used to classify both the models ofghger and the underlying model
construction approaches.

(2) WDS as modeling tool (Sectidmh 2).

This section outlines the concept of WDS and its use for thdetiog and analysis of elec-
trical circuits. The special contribution of this sectiarthat it develops a global algorithmic
view to WDS with respect to modeling and simulation purposésreover, special emphasis
has been put on a plain but concise presentation of the yitgideas in order to address
both readers with and without background in classical netweeory.

(3) Foundations of WDS (Secti@h 3).

The first part of this section presents a succinct but compteddeling tool box for WDS.
The second part discusses the special numerical advartBgé3sS as well as their passivity
properties.

(4) Design of WDS (Sectionl 4).

WDS come along with interesting properties—their creatioowever, is not a trivial task
and usually is not taught in communications engineerings $&ction presents efficient algo-
rithms for the automatic generation of an optimum WDS fonegielectrical circuit.

(5) Numerics based on WDS (Sectidn 5).

This section points out the relation between WDS and imghéegration methods. In partic-
ular it is shown, in which way WDS can be used to construcgiraon methods that provide
a useful numerical property, which is called the “passipitgperty” here.

1.1 From a System to a Computer Model

The term “system” can be defined in different ways and with leasfs on different aspects. For our
purposes, it is sufficient to consider a system as a spatipdaeally closed and logically intercon-
nected unityl[Kowalkl, 1996, pg. 27]. A system is recursivalyit up from subsystems and relations.
The relations divide into internal relations, which conrgdsystems, and external relations, which
connect subsystems and objects beyond the system boutidsng, objects from the environment.
Both subsystems and relations are characterized by aésipoalled variables, which may change
over time. Variables that are necessary to prescribe theraysehavior are called states.

Variables that characterize external relations divide input variables and output variables.
Input variables are extraneous; they act from the envirovimie the system and modify the system’s
states. Input variables and state variables determineydters’s output variables, which in turn
affect the environment.



Creating a model of a technical systeSnmeans to shape its underlying concept or idea—a
process that is first of all mental, and that always invol\ieed major steps.

(1) Identification of the system’s boundary.
(2) Identification of the subsystems and relation$'e# structure model.

(3) Characterization of constraints between the variablébhe subsystems and relatioas be-
havior model.

The transformation of a mental model into a computer modealls happens within several
steps, wherein intermediate models are constructed: etwteumodel, a behavior model, and an
algorithmic model (see Figuld 1, which shows a modified wersf{Wallaschek’s presentation
[Wallaschek| 1995]).

High abstraction | Mental model |

Interpretation of the
l concrete model in terms
of the abstract model.

| Structure model

!

| Behavior model |

l

| Algorithmic model |

Low abstraction
v | Computer model |

Figure 1: A hierarchy of models. Top-down model construction meansiép abstract models onto less
abstract models. Final objective is the operationaliratibthe mental model in the form of a computer
program.

Typically, the human designer materializes his mental rhage textual or graphical structure
model, for instance as a drawing or a diagram representafitre systemS. The structure model,
which defines subsystems and relation$' gbecomes a behavior model $y specifying a behav-
ior prescription for each subsystem. Since behavior desanis are often defined in a mathematical
form, behavior models are also designated as mathematicdélm [Wallaschek, 1995, Kailath,
1980, Vidyasagat, 1993]. In the majority of cases the bemawviodel must be prepared with re-
spect to the simulation algorithms employed. This steputhe$ the introduction of a causal order
for the behavior equations, the normalization of behavipragions, or other algebraic operations.
The specification of an algorithmic model within a compugrguage or a simulation language like
ACSL [Mitchell and Gauthien, 1976, Cellier, 1991] yields @ngputer model, say, a program.

1.2 The Models in this Paper

Structure Model Starting point for several analysis tasks is a structure @hodthe form of
an electrical circuit. Here, the building blocks of an eleetl circuit are voltage sources, current
sources, resistances, capacitances, inductances, atesdi@n electrical circuit is usually defined
graphically, in the form of a circuit diagram, and may be th&uit of very different modeling tasks:

e Filter Design.Filter design deals with the creation of (passive) eleatriircuits, as they are
used for signal processing in audio and video applicati®ugh circuits transform, say filter,
a continuous-time input signal towards a specified contisttome output signal.



e Mechanical System ModelingMechanical systems, as well as other non-electrical physi-
cal systems can be modeled as electrical circuits (see [Kub®1, Paap et Al., 1993] or
[Meerkoétter and Scholz, 198D, Meerkétter and Felderhd921 | Fettwels| 1992]). By em-
ploying so-called electrical equivalent networks for theamanical building blocks, one is
able to construct an electrical set-up for the mechanicstesy. The simulation results then
can be interpreted in terms of mechanical quantities.

e Solving Differential EquationsElectrical circuit analysis has shown success as a mathemat
ical instrument. When given a set of complex (partial) défgtial equations, this problem
specification can be transformed into a related electricalii¢. Like the construction of an
equivalent network as described before, the rationale df sutransformation is based on the
observation that a tailored circuit simulation algorithnaymperform better than a general-
purpose solution approach.

Behavior Model A behavior model of a structure model comprises local corapbdescriptions
as well as the continuity and the compatibility constragimich define the connections of the
components. In case of an electrical circuit, the compodestriptions are given by the respective
voltage/current (differential) equations, such@g) = R - i(t) (resistance)di(t)/dt = 1/L - v(t)
(inductance), ordv(t)/dt = 1/C - i(t) (capacitance).

The continuity constraints are defined by Kirchhoff's catréaw, and the compatibility con-
straints are defined by Kirchhoff’s voltage IBw.

The overall objective is to analyze the behavior of a giveatteical circuit. Clearly, by con-
structing the circuit as a real set-up of electronic compts)dts behavior could be determined by
measuring all interesting signals. Typically this appfoacnot pursued but a circuit is “realized”
in the form of a computer program: The program emulates thawier of the circuit by running a
virtual set-up. A prerequisite is the conversion of the oardus-time signal towards a digital signal,
i.e., a sequence of numbers.

To go the outlined way, aalgorithmic modelmust be constructed from the circuit's behavior
model, and at this place several possibilities stand tooreaa model of node or loop equations, a
state space model, or a wave digital structure (see Figure 2)

Electrical circuit

|

Component descriptions + connection constraints

/l\\.___

Node/loop State space Wave digital
equations model model

Figure 2:The electrical circuit defines a structure model of the igting system which is to be transformed
into an algorithmic model: a model of node or loop equatianstate space model, or a wave digital model.

Algorithmic Model The construction of an algorithmic model from a behavior eidd often
the hardest job of the entire model construction procesge Mt within the behavior model the
component constraints and the connection constraintsoameufated locally; howeveprocessing
these constraints means to find a globally consistent solufihis happens by reformulating the

Primarily, the concepts of electrical continuity and coiiitity reflect a single-port viewpoint (see Subsectio,2.
pg.[@). They may not be applied to particular multport eletsdike the girator (see Subsection311.2,[pgd. 16).
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local constraints into some kind of normal form, which thensed by special algorithms to compute
a globally consistent solution_[Cellier, 1991]:

e Node/Loop Equations.These commonly used algorithmic models are based on a kpecia
selection of node equations and loop equations respectiBsfore these equations can be
set up, the electrical circuit must eventually be prepaneadrder to fulfill certain consistency
conditions (conversion of voltage sources or independement sources, etc.). If all sources
operate with the same frequency, the computation of thestaly quantities involves only
algebraic operations.

Itis advisable then to describe the equations in a nornahtizatrix form using complex terms
[Eettweis and Hemetsberger, 1995]. Note that the proogssithese normal forms requires
the symbolic inversion of polynomial matrices.

e State Space Model.he previously mentioned cutset potential method or loapetii method
are appropriate for a stationary investigation of the eleait circuit, where all signal sources
operate at the same frequengy To investigate the circuit for arbitrary signals in the ¢&im
domain, setting up a state space model may provide a usgitbagh [Kailath| 1980]. The
model is of the following normal formk(¢) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t).

x(t), u(t), andy(t) denote the state vector, the input vector, and the outputnes, B, C,
and D denote the system matrix, the input matrix, the output matmnd the straight-way
matrix. Additionally, a system of algebraic equations maygiven.

In the general case, the processing of normal forms reqtiressolution of a nonlinear
differential-algebraic system (DAE) [Petzold, 1994, \édwmgar, 1993]. Note however, that
structural singularities in the electrical circuit may den the construction of a state space
model difficult, if not impossible.

e Wave Digital Structure.Wave digital structures (WDS) differ within two points frothe
algorithmic models mentioned before:

(1) Thew/i (voltage/current) domain is mapped onto thé-wave domain.

(2) The connection constraints are treated explicitly: Kirehhoff interconnecting network
is partitioned according to series and parallel connestion

Wave digital structures establish models in the discrete tdomain; they can be used to
describe both linear and nonlinear systems. Due to theirenical properties wave digital
structures are specially tailored with respect to a hardwaplementation. The next section
shows how WDS are constructed.



2 Introduction to Modeling with Wave Digital Structures

Wave digital structures (WDS) are a means for modeling aatyais. Targeted especially on readers
with less background knowledge in classical network the@orgignal theory, this section introduces
the underlying ideas. Readers who are familiar with wavéaligtructures may skip this section.

2.1 Road Map

Given is an electrical circuitS; it is assumed that this circuit is passive and that it cangisly
of voltage and current sources, resistances, capacitamckgtivities, ... From such a circuit an
algorithmic model in the form of a wave digital structure dancreated, which is a rather complex
reformulation where several constraints are to be met. €f@mulation involves the following
principal steps:
(1) Topological analysis of with respect to subcircuits that are connected in series patallel
to each other, and reformulation 8fusing special series and parallel connectors.

(2) Transfer of the component descriptions from thié domain to the:/b-wave domain.

(3) Discretization of the continuous signals by numericalbproximating the differential equa-
tions.

(4) Transfer from the time domain to the frequency domain eplacement of the complex
frequency variable by the equivalent complex frequency variahle

Remarks.The above reformulation steps divide into local operati(@tep[2E8), which act on the
components of the electrical circuit in an isolated manared, into the global topology reformulation
in Sted1.
From a syntactical point of view, the entire reformulatidran electrical circuit into a wave digital
structure is accomplished within in the stépEl 1-3. Also ribé¢ Sted P and Stdp 3 are orthogonal
to each other; i.e., their order of application can be imtanged. Stefpl4 is essential though: It
provides insight into the passivity property of the circuit

In a nutshell, a wave digital structure is a particular kirficsignal flow graph. Its topology is
constructed by means of series and parallel connectorsjghals that are processed when traveling
along the signal flow graph are wave quantities. Figlire 3tiltes the principal reformulation steps
from an electrical circuit to a WDS.

Electrical circuit Series/parallel graph WDS

Gobal reformulation
/
\ +++¢¢|:] Local reformulation

’

a/b equivalents

Y

Figure 3:From an electrical circuit to a WDS; the principal reforntida steps.

In the following subsections, examples to each of the abefeemulation steps will be presented
and the rationale will be discussed.

2.2 Topology Reformulation

An electrical circuit,S, consists of a set of components, which are connected bycalkat Kirch-
hoff interconnecting network. A reformulation of a KirchHhoetwork here means the identification
of subcircuits inS that are either connected in series or in parallel to eaa#r.oth
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Both series connections and parallel connections areajzations of a concept callgabrt, Port Condition
as much as each component with two terminals establishéagdesport as well. A port fulfills
the port condition which claims that the currents at terminal 1 and terminal 2ndi,, fulfill the
constrainti; = —i5 at any instant (see Figuié 4).

Figure 4:The port condition claims that = —i5 holds.

Note that any series and parallel combination of ports agglis a port. This observation
suggests a bottom-up approach for the identification anthegis of ports, resulting in a single top-
level port for the entire interconnecting network. As a @qgence, the interconnecting network
can be expressed in a new form, where particular construeiements—the series and parallel
connectors—are used to connect the respective buildingk®lm S. Such a representation of the
Kirchhoff interconnecting network could be called porusture ofS.

The replacement of the original interconnecting networkabport structure that employsGlobal vs.
only series and parallel connections leads to a special ankta@nalysis approach. Commothocal .
network analysis approaches are based on mesh equatiots, egpiations, or state equationgompUtat'ons
[Eettweis and Hemetsberger, 1995, Celller, 1991, Unbahal®94]. Following a common ap-
proach means to set up and transform matrices, in a way the-mesence matrix, the branch-
impedance matrix, the node-incidence matrix, the bramthitance matrix, or the state space ma-
trix.

Computations on matrices agéobal computations in the sense that a system of equations must
be treated at the same time to find the equations’ solutiopgoBtrast, a computation will be called
local, if a single equation at a time is sufficient to compute a smtubf that equation, and if this
solution is coded explicitly in the equation. See [Schulalst2001] for an in-depth discussion of
different behavior model types and locality.

If the topology of a circuit is realized solely by means ofiegrand parallel connections, th&ignal Flow
model processing effort for this circuit can decisively leeiased: Due to the special topolog@raph
computational effort can be made up front—during model tonton time—resulting in a new be-
havior model whose equations can be processed locally. tNata behavior model whose equations
can be processed locally establishdeedback-free signal flow graplh feedback-free signal flow
graph is a processing prescription that defines the conipatah signals in a definite order while
employing only explicit computation rules. A feedbackefrsignal flow graph thus establishes an
algorithmic model that can be processed easily on a computer

The following example illustrates the idea behind the togwgl reformulation. Given is the
electrical circuit shown in Figurd 5. Here, the voltagiorms the input, the currents, s, i3, and
the voltages; andwv, are to be determined?;, Ry, and R3 are given. To handle the generic case,
a global network analysis approach is necessary, whereod# equations, mesh equations, and
component equations are treated within a global equatistesy

In the example, the global investigation is inevitable tmpaoite the total resistance (impedance
in the complex analysis) of the series-parallel connecfimm which in turni; and the voltagess,
vg, andwvs can be computed. The underlying equations of the circujt, ismmathematical model,
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Figure 5:Electrical circuit with three resistances.

are the following.

V1 R1 0 0 ’il
ZUV =0, wvy3=e, 11 =192+ 13, Vo = 0 Ry O 19
v=1 (] 0 0 Rg ’i3

The signal flow graph depicted on the left-hand side of Fifiskows a graphical representation
of the mathematical model. Note that this graph establisbedgorithmic model: It contains a loop
and hence defines no causal ordering amongst the quantitiee had computed in advance the
total resistance of the network, all quantities could be potedlocally. As a consequence, the
computations can be formulated by means of a feedback-fgealslow graph, as shown in the
same figure on the right. This graph defines an algorithmicatiod the above circuit.

Figure 6:Two signal flow graphs of the above electrical circuit. Thi¢ éme contains a feedback loop, the
right one is feedback-free.

Recall that a feedback-free signal flow graph can only betoaeted for an equation systemAlgebraic Loop
if all subsets of depending equations, the so-called adgelwops, have beeserializedor “broken
open”. It is no sheer coincidence that ports can be trangfdrtowards a signal flow graph in a
straightforward way: The resistances and conductancesrtd pan be combined to a total value.
In the example, the serialization became possible afteéngasomputed the total resistance of the
network; of course, in case of mono-frequent excitationis, tan be extended to impedances and
admittances as well.

In fact, if we restrict ourselves to circuit topologies tleae composed of series and parall8eries and
connections only, the construction of the related feedtiek signal flow graphs can be performegarallel
canonically. As mentioned above, it is useful to introduae auxiliary building blocks for this Connectors
purposes, a series connector and a parallel connectohwiiliguarantee that Kirchhoff’s laws are
obeyed. Figurgl7 shows a connector realization of the @acttrircuit example from Figuré 5.

In this context the series and parallel connectors carrfh@utomputation of the total impedance
or admittance of the connected components. This compntéi@ncoded within the connector
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Figure 7:A possible connector realization of the electrical circuit
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coefficientsy,, v, and the port unification constraint: When attaching two eators, it must be
guaranteed that the port resistances of the adjacent perigemtified (see the conditiaR, = R, in
Figurell). Observe that series and parallel connectiorfsmitre than two elements can be realized
by attaching several connectors of the respective type.

If the electrical circuit contains reactive elements, theal propagation property of the signatxplicit
flow graph is hold up if an explicit integration rule is empéayfor the approximation of differentiaiMethods
relationships. Taking a capacity, for instance, the bafrdarr continuous-time and its approxima-
tion by the explicit Euler rule is given with the equations

1 [ T
v(tg) = v(tp—1) + —/ i(r)dr and vg:=vg_1 + —=ig_1,
C ., C

whereu(t;_1) denotes the known voltage @t | with ¢, := to + kT, k € IN, while v;,_; andiy_,
denote the approximate values for the exact valés 1) andi(¢;_1) respectively.

Figurel® shows for the parallel connection of a resistandeaarapacitance an algorithmic model
in the form of a parallel connector, which employs the exphwler rule.

- . .
Zl(=) ____Zi> ng o vpk—l
R i
_
va(t) L
j v L yy v "o R=TC"!
12, Up,.
ia(t) o™ fai ~ (1)
Go Vpy, A V2 (t)

Figure 8:A possible connector realization of a resistance with aljgdi@pacitance.

Note that the use of amplicit integration method entails decisive humerical advantbgess
bought with the lost of the local computability of the abovgnsl flow graph.—At this place we
anticipate an issue of the next subsection: When the etattiuantities are expressed by wave quan-
tities, the application of an explicit method to this refaated model yields an implicit integration
in the original electrical formulation.

Remarks.(1) Connectors for Kirchhoff networks can be constructedtiver ways than depicted in
FigurelT or Figurél8. (2) Connectors for wave digital streesumodel the connection constraints in
thea/b-wave domain, and consequently they must have a differénipsthan the connectors shown
here. Note, however, that the underlying idea is the same:pFéscription of a local computation
rule for the global behavior of a series-parallel structoyemeans of a smart computation of the
elements’ port resistances. Again, this computation iséed within the connector coefficients and
the port unification constraint.



2.3 Transfer to thea/b-Wave Domain and Discretization

The electrical quantities voltage, and currentj, can be expressed in terms of other quantities, e. g.
by so-called wave quantities, b, which are linear combinations efandi. The transformation
pursued here is defined as follows.

a=v+ Ri b=v— Ri (2.2)

The wave quantities defined in the equatidnsl(2.1) are catitdge waves, where andb rep- Voltage Waves
resent the incident and reflected wave respectivilis calledport resistance R must be positive,
but apart from that its value can be chosen arbitrarily farheport. In practice, one will select
that particular value oRR which leads to the simplest overall expressions for the Iprotat hand
[Eettweis)| 1986, p. 273].

In the following we discuss the transfer from thgi-domain to thez/b-domain at a reactive
element, the capacitance. Starting point is the followilfigigntial relationship between the current
and the voltage at a capacitance, whefig._;) designates the known voltagetat ;.

1 [t
v(tg) = v(tg—1) + 5/ i(T)dr, wherety :=tyo+ kT, k € N (2.2)
te—1

Equation [ZR) must be translated into the discrete-timaalo. In this place, the integral is ap-
proximated by means of the trapezoid rule, for reasons thiabevdiscussed later on and especially
in Sectiorb:

T ,. .
v(ty) = vg 1= vp—1 + %(lk + ik-1), (2.3)

wherew,_1,1x, andii_; denote the approximate values for the respective exacesalit;_1),
’i(tk), andi(tk,l).

Equation [ZB) can be translated to th&-wave domain, for instance by using the identities
(Z4), which follow from the equationg1(2.1).

a+b a—2>b
) = 2.4
2 ‘TR (2.4)

However, because of the special (and simple) form of theetraig rule, equatior{2.3) can be
directly expressed in terms afandb, since from equatiori{d.3) follows:

v — Rigp = vp_1 + Rigp_q (25)

T
b = aj_ ith R := — 2.6
= k ap—1, with R °C ( )

ChoosingR as port resistance for a capacitance obviously leads tartipdest overall expres-
sion. FigurdP shows the capacitance in#liétime domain and the related wave flow diagram.

o—p—— a o—p—
v = C R T
o— | b o—¢—

Figure 9:Capacitance and related wave flow diagram wiith- 5.
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Remarks. Equation [Zb) shows that a reformulation of the electropadntities in terms of wave
guantities is bound up with the fact that an implicit intdgrma in v and: by means of the trapezoid
method becomes explicit i andb. Note that this powerful concept, the combination of an-inte
gration method’s stability properties with a simplified nenical representation, can be generalized
towards other integration methods. Secfibn 5 dwells upahshbject.

2.4 Combining Topology Reformulation and Transfer to thea/b-Wave Domain

In this subsection we consider the circuit shown in Fiduied apply the outlined reformulation
steps at once: The modeling of the connection constraintadgns of connectors and the transfer
of the electrical quantities into the/b-wave domain.

Figure 10:Electrical circuit with two resistances and a capacity.

The connectors in the/b-wave domain get a special name—they are called seriesadapt Adaptors
parallel adaptor respectively. The circuit in Figliré 1GabBshes a series connection, and conse-
qguently, we will exemplary derive the determing equatiamsa series adaptor. Figurel11 contrasts
a generic electrical series connection with voltage drgpand currents,, (left-hand side) with the
related series adaptor, where the port resistaftes = 1, ..., 3, indicate the port resistances of
the electrical components’ wave digital counterpartshirigand side).

U2 az

ba
| '_T ™y
< a1 op— >0 b3

TUS R | —e—— Rg
o

b10—4— 4o a3

Figure 11:Electrical series connection with three elements (left) symbol of the series adaptor with three
ports (right).

Each of the three electric components can be charactenizéek ithea /b-wave domain, using
the voltage wave transformation introduced by Equafiofi)(PagéT0.

a, =v, + Ry, b,=v,—Ryi,, v=1,...,3

To write these equations in vector form, we define the poiist@sce matrixR and the port
conductance matriG := R

_ . VvV = 1
f; - ngi} o 2, R=[0 B 0 2.7)
= i = G 0 0 Ry
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Using Kirchhoff’s current law for series connections,= i5 = i3 = ig, the equationd{2.7) can
be transformed as follows.

a = v+Ri . _ - . o T
bo— V—Ri} b=a—-2Ri = a—2Reip, e:=(1,1,1) (2.8)

Using Kirchhoff’s voltage law for series connectio@s:,i:1 v, = 0, equation[(ZIB) foan can be
transformed, resolved fap and put into the equation fds.

a = v+ Rei
efa = elv+e’Rei
T . .
22 = iy, sinceelv=3 " v,=0
_ Re T _
b = (1-2g%.e¢')a = Sa

The vectory := Qeﬁﬁe is called the vector of adaptor coefficients, and the gerderal of an Adaptor
elementy, is Coefficients

2R,

= =, 7/:1,2,3.
Ri+ Ry + R3

%
If we make use of the relatios’ v = v; + 72 + 73 = 2 between they,, the mappindS between
b anda can be written as follows.
L—m M M
b=Sa, S= —72 I =72 —72
Mm+r—2 n+tr—-2 ntr-1

Figure[I2 shows the symbol for the series adaptor definetldnd the related signal flow graph,
which encodes the equation systbm= Sa.

a1 op— o b3

1

2
b1 o— " <o a3

Figure 12:Symbol and signal flow graph of a series adaptor.

Also the component equations are transfered intodtftedomain. For the capacitance this
has already be shown on Pdgé 10, for the resistance and iiiveegoltage source the respective
equations are derived now. We start by resolving the equafiara andb towardsv ands.

y a+b

a = v+ R = 2
b:v—Ri}‘:’ . a=b
2R

Replacingv andi in the resistance equatian= Ry - i yields the following dependency between
the incident waveg, and the reflected wave,
a-+b a—1>b - Ry—R

2 9R Ro+ R”
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Setting the port resistande to R, as declared above,can be chosen arbitrarily aridd= 0.
The wave signal flow graph on the right-hand side of Figuie d8els this connectior: vanishes
in a sink, and is realized by a source with zero output.

) ao—b—D
v RO RO
bH_CIO

Figure 13:Resistance and the related wave flow diagram.

For the component equation of the resistive voltage souree¢ + Ry - i, the substitution yields
the dependency = ¢, if Ry is chosen as port resistance. Figurk 14 illustrates thisexdion.

O | "
— ek

Figure 14:Resistive voltage source and the related wave flow diagram.

Finally, the series adaptor and the components’ signal flaplts can be composed to the entire
signal flow graph, say, wave digital structure, as depictefFigure[I5. This signal flow graph
represents an algorithmic model for the electrical cirofiiFigure[I0. The signal forms the input
from which all unknown wave guantities can be computed incalléashion. The desired output
values forig, v1, v, andvc are obtained by evaluating the equatidnsl(2.7).

Ry

eD—p—o—p—
Y1

Rl |—e——| R [T
(101 V2

Figure 15:Wave digital structure of the electrical circuit from Figlll) with R¢c: = 5.

2.5 Transfer from the Time Domain to the Frequency Domain

The transformation step described in this subsection iglinettly necessary for the construction of
a wave digital structure, but it provides insights resprrthe stability behavior of the constructed
WDS. Starting point is equatioh{2.3), Pdgé 10; it approxasdhe differential relationship between

13



the current and the voltage at a capacitance by means ofiweztid rule and reads as follows:
Vg 1= R(Zk + ’L'kfl) + Vk_—1

with .
R:=—.
2C
By restricting ourselves to complex-valued signals of thef X e??, the above equation obtains
the following form:

v, = ReVellk, ir, = Relel

VePlh = RIeP 4 RIeP'—1 + VePte-1 (2.9)

V and I denote complex amplitudep, denotes the complex frequency. A multiplication by
e~Pt along with a rearrangement yields:

1+e Pl 1
— + € R

I =——RI (2.10)

V=_-rc"
1—e T tanh p—zT

Rewriting equation[{Z10) in terms of the equivalent comfiequencyy yields:

V= EI & I= EV, with ¢ := tanh% (2.11)

¥ R

Figure[I® comprises the different models (views) of the att@ristic impedance of a capaci-
tance that have been derived so far.

I I
o—Pp— o—Pp—— a o—p—
— 1 — R
v = 0 V = R T
o— | o— b o—e—

Figure 16:Three models of the capacitance. From left to right: comtirastime, discrete-time with trapezoid
rule employed as integration method, and wave flow diagram.

Equation [[(ZT11) states something about the passivity ohtemu [Z3). We start with the fol- Passivity
lowing definition of an electrical circuit's effective powe. of Models

P=RelI'V

For reactive elements, the powEris a function of the frequency, and a linear, time-invariant
systemsS is called passive if it fulfills the following implication.

Rey >0 = P@)>0 (2.12)

We use this implication to verify the passivity of the capaci

SR v

P()) =Rel'V = Rey’ — i

Rey > 0
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Obviously does the algorithmic model of a capacitance awageassivity, since for each capac-
itance element hold§' > 0.

Remarks.Remind of the fact that the algorithmic model of the capaditywave flow diagram in
Figure[I6, encodes a particular integration method. If aeiknow something about this algorith-
mic model, we know immediately something about the appligegration method—the trapezoid
rule in our case. To become specific, the numerical propenfithe algorithmic model are the same
as of the integration method.

The interesting aspect is the following. If we have an intetation of the algorithmic model
as a circuit, numerical properties can be directly be refdhdf circuit. E.g., for the algorithmic
model of the capacitance it was simple to determine its pi@g$iy checking the compliance of this
model with implication[[Z.112). In other words, it could bepen that the chosen integration method
conserves the passivity property of the capacity.

Though it is of a local nature, this passivity analysis carapplied easily to all wave digital
structures that model a linear, time-invariant systgmf each element of the wave digital struc-
ture fulfills inequation[[Z12), and if the wave digital stture emerges from a port-wise connection
of these elements, then it does reproduce the passivityepsopf the systenmS during simula-
tion [Fettweis| 1971].

Sectiorb picks up this thread and extends it to nonlinedesys In this regard, the concept of a
circuit’s characteristic impedance is introduced and @segltool for passivity analysis [Ochs, 2001].
Moreover, the interpretation of the algorithmic model—thesults from applying an integration
method—as a circuit is used to construct new integratiohotet. The guiding idea keeps the same
as above: Numerical properties of the integration methedladuced from circuit properties.
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3 Wave Digital Structures Reviewed

3.1 Synthesis of Wave Digital Structures

This section recapitulates wave digital structures, whioasic theory has been developed by
Fettweis, [[Fettweid, 1971]. The starting point for the fsis of wave digital structures, is an
electrical circuit whose electrical components are dididi®o sources and elements. For now,
only linear elements are considered while the modeling aflinear elements can be found in
[Meerkétter and Schalz, 1980, Meerkdtter and Felderh&2]. All linear elements are assumed
to be passiver-ports, and their interconnections obeyRKHHOFFS law, i. e., we restrict ourselves
to structural passive electrical circuits. To each porthef ¢ircuit we assign a so-called port resis-
tance being a positive constant.

The first step for the synthesis of the related wave digitatstire is the description of the electri-
cal behavior of the components in the wave digital domaim ttie purpose, we distinguish between
sources, nonreactive elements, reactive elements andrtaning interconnecting network.

3.1.1 Sources

Sources of the electrical circuit can be divided into ideatent and ideal voltage sources, cf. Fig-
ure[LT, which are described by

v=e <= a=2e-—0b (3.1)
and i=j5 <= a=2Rj+Vb (3.2)

respectively. From these equations it is clear that theseiredal sources do not lead to pure wave
sources but to combinations efandb.

{ {

—>—0 —»—0 —>»—0
+
e C) v 2e D—»@ R ]T v 2Rj D—»G) R

Figure 17: Ideal voltage and current source

Naturally, ideal sources never occur in electrical ciguiln fact, we have to deal with many
physical phenomena but for most practical problems the nedfiect can be taken into consideration
if each ideal source is connected to an additional resifae to HELMHOLTZ’S theorem, such a
resistive current source is always equivalent to a resistoltage source so that it is sufficient to
consider a resistive voltage source only:

v=e—Ri <= a=ce. (3.3)

Here, the port resistance has been chosen equal tehereas the port resistance of an ideal
source can be chosen arbitrarily. As a result, both type®sistive sources correspond to wave
sources.

3.1.2 Nonreactive Elements

The simplest example of a nonreactive element is a residi@hwan be derived from the resistive
voltage source if the trivial case= 0 is considered. It is described by

v=Ri <= b=0 (3.4)
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Figure 18: Resistive voltage and current source
i ao—»—D
v R R
bo——(]0
Figure 19: Resistor

when the port resistance is equal to the value of the resistiéself.

Beside the resistor there exists a variety of nonreactiements, i. e., of elements which cannot
store energy. The most important elements are the gyramgitculator, and the ideal transformer
each of which is lossless. Such nonreactive and losslesseats are also called nonenergetic.

11 R 19
o o ajo—>—oby
U1 ) C (%) R R
-1
o o b1 o (O—o0 a2

Figure 20: Gyrator

If both port resistances of the gyrator are equal to the gyragesistance this yields wave digital
flow diagrams with no directed path between the terminalsohegort and the realization becomes
very simple, cf. Figur€20. A similar result is achieved foe tirculator if all of its port resistances
are equal to the circulation resistance, cf. Fidude 21. Teesponding equations for the gyrator,

V1 = *RZ'Q b1 = —az
vs = Riy } = { by = ay., (3.5)
and the 3-port-circulator,
UQ*’Ug:R’L'l b2:a1
V3 — V1 = Rio e b3 = a9 (36)
v] — vy = Rig b1 = as,

show that they are closely related. As a consequence, ivsyalpossible to describe a gyrator via
a circulator and vice versa.

The ideal transformer with turns ratiois described by

1
V2 = Ny } — { by = EQQ (37)

= by = naz,

if the port resistances fulfill the relationshify = n2R;. In contrast to the gyrator and the circulator,
the ideal transformer does not relate voltages with cusrefor this reason, ideal transformers play
an important role for generalized interconnecting network
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Figure 21: 3-port-circulator
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Figure 22: Ideal transformer

3.1.3 Reactive Elements

In contrast to sources and nonreactive elements, whosageolind current relations are of pure

algebraic type, reactive elements are additionally deedrby differential equations. Since we can

only approximate an integration of these differential diques on a computer system, there is a need
to introduce a method which approximates the exact solution

Instead of using the differential equations directly, ttemady state equations of the linear elec-
trical components are used in wave digital filter theory. this, the complex frequency variabbe
is replaced by the equivalent complex frequency variaple,

z—1

¥ = tanh(pT'/2) = Pt

z =T, (3.8)
whereT" denotes the sampling period. This transformation mapsfhaalf plane ofp onto the left
and the right half plane af. As a consequence, the stability properties of the distimten-ports
are the same as those they were derived from.

Applying this tangent hyperbolic transformation to theaslg state equations of a capacitance
C and an inductancé we get the following equations

V= %I e bk)=alk-1) (3.9)
and V=Rl <= bk) =—alk—1) (3.10)

where the port resistancéd® = T7'/(2C) and R;, = 2L/T has been chosen. The resulting wave
flow diagrams are shown in Figui€l23 and they differ by a sigerision only. This is because an
inductance can always be represented by a gyrator and aiteayeas cf. FigureE20 aid23.

O—> ao
R

| === Re v
4

o— | bo

Figure 23: Capacitance and Inductance
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In addition to the capacitance and inductance, unit elesremet often used in wave digital struc-
tures.

3.1.4 Adaptors

Beside the electrical components we have to transfer thagmland current relations of the inter-
connecting network to the wave digital domain. In many técdirapplications, e. g. digital filters,
these topological constraints define parallel and seriesextions, cf. Figure—24. The correspond-
ing equivalences in wave digital domain are the so-callgdlfeh and series adaptors respectively,
which are basic types of adaptors.

(Y (%)
—>0 B S
. Z'2 . . iQ
11 13 1
o0—>—6 <—0

U1 i V3 U1 V3

]
|

’ —
| v13
. i . :
iv A | wA ’
0— >0 60— >0
Vy Vy

Figure 24: Parallel- and series connection

The electrical equations for the parallel connection otiFé{P3 are

eli=0 and v = ew, (3.11)

where all voltagesy,,, and currents,,, are collected iy and, and where vectoe is of proper
dimension with every element equal to one.

After introducing voltage wave vectore and b with the port conductance matri&c :=
diag(G,) one can find the scattering matrix ofigoort parallel adaptor

b=(erT —1)a, with T := £ G (3.12)
- ’Y ) ’Y L eTGe’ -
where~ denotes the vector of the so-called adaptor coefficieptsTheir property
ely=2 (3.13)

always allows to drop one of these adaptor coefficients isidneal flow diagram of this adaptor, cf.
Figure[Z5h.

Moreover, if the adaptor coefficient with greatest valuexisressed by the others, all remaining
(positive) adaptor coefficients are bounded by one, beaafysesitive port resistances.

At first glance, there is no restriction for the choice of parhductances of parallel adaptors,
besides of positiveness of course. But for reasons of edality, there is often a need to have
one port with no directed path between its terminals. Thisstraint is fulfilled, if the associated
port conductance is chosen equal to the sum of the remaimirigcpnductances. In Figutel26 this
reflection-free port of the constrained adaptor is assigwidua stroke and one can check that the
signal flow diagram contains no directed path between iscésed terminals.

With respect to the series connection, the parallel coioredt a dual in sense of that the roles
of voltages and currents are interchanged:

elv=0 and i= ei. (3.14)
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Figure 25: Symbol and wave flow diagram o3-gort parallel adaptor
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Figure 26: Symbol and wave flow diagram o$-gort parallel adaptor with reflection-free part

Again, after introducing voltage wave quantities we obtidia scattering matrix of a-port
series adaptor

Re

b=(1—~ye" =2 3.15
(1-reta, 7:=2-4p-, (3.15)
were the adaptor coefficients meet the conditiod{3.13).
O as
ba as
; ? ao @ 0 a2
a1 O—>— O b3 ‘ -1 —Y2
D=<O=<9e>0>0
st Y2
\ \
b1 o—— oa3 bjo—= @ o by
\
—10O—>ob3

Figure 27: Symbol and wave flow diagram o3-gort series adaptor

The close relation between these two types of adaptors saralseen via a comparison of their
scattering matrices. They are identical up to a sign ingarand a transposition. In consequence, the
signal flow diagram of a parallel adaptor is the same as thekftpw diagram of a series adaptor
except for a sign of the incident waves and a signal flow inearsf. Figure$2b and 27.

The situation for the constrained series adaptor is jussémee as for the constrained parallel
adaptor. The symbol of the series adaptor and its signal fiegram are shown in Figule128
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Figure 28: Symbol and wave flow diagram o3-gort series adaptor with reflection-free part

where the port resistance of the reflection-free port isrdéteed by the sum of the remaining port
resistances.

For the wave digital concept, every needegort adaptor with more than three ports is prefer-
ably realized by interconnecting-port adaptors of the same type. On the other hand;pbrt
adaptors are needed of series or parallel type it is used ptogra more symmetric type of adaptor,
as is shown in Figurle_29.

—<—00a9

a1 o—>—

4l

® D
b1 o——] <0 a9 b10—<—><>—o by

Figure 29: Symbol and wave flow diagram of an alternative 2-parallel adaptor

Its adaptor coefficient is given by

R — Ry

" Rt R

(3.16)

with a magnitude that is bounded by one.

Finally, parallel and series adaptors with only one portethegate to open- and short-circuits
respectively, cf. FigurE-30.

1 1=0
o ao o—>— ao—>—
v=20 R 0O-1 v R
o— bo—e o—— bo—

Figure 30: Short- and open-circuit

3.2 Some Basic Properties of Wave Digital Structures

Now, let us assume we have already synthesized a wave digit@ture for a given electrical cir-
cuit. In order to discuss some properties of these modelsyilmgartition the electrical into resistive
sources, reactive elements, and the remaining source-yarahic-free network as shown in Fig-
ure[31.
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Figure 31: Discrete-time represention of the electricatieto

Without loss of generality, resistive sources and reaatieenents of the electrical circuit are
represented by resistive voltage sources and capacitaresgsectively. In correspondence with
this partition, the related wave digital model is dividetbinvave sources, delay elements and the
remaining source- and dynamic-free wave digital networthwthe input signalg, output signals
y, and statesw, cf. Figure[32.

a
z DI Source- and
G

dynamic-free
WD network Ge T:l

yG:-c a=g(b )

Figure 32: Discrete-time represention of the WD model

In order to define passivity, we will first write the power ofigreal = as
|z)* = 2" G, (3.17)

with its positive-definite port conductance matéx:= R~!. Having this in mind, a time-discrete
model is called passive if the inequality

lw(k + D)1 — lw®)[* < flak)|* — [ly (k)| (3.18)

holds. In other words, a time-discrete system is passiveifricrease of its stored energy is bounded
by the difference of the energy which is supplied into theesysand the energy which is extracted
from the system.

Here, one great advantage of passivity for those time-elis@ystems occurs: The equilibrium
pint of passive systems are always stable in the sensenefunov [Hahn, 1967], where a suitable
LiapuNoV function is given by

V(w(k)) = lw (k).
In order to verify this statement, we notice thatw(k)) is bounded by
Geminllw(R)I* < lw(k)|* < Gomaxllw(®)]*.
Additionally, if a free model is considerdd(w(k)) satisfies also the condition
AV(w(k)) :==V(w(k+1)) — V(w(k)) <O0.
As a consequence, the model has the equilibrium fbimhich is stable in the sense ofAPuNOV.

Next, let us examine two passive wave digital models whiehisterconnected at some of their
ports, cf. Figur¢-33.
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Figure 33: Coupling of two wave digital models

Due to passivity, each of both models satisfies the inequ@ifl8), wherea, a; andb, b,
have to be assigned to the input and output signals, regplctiUnder the assumption that the
interconnected ports fulfill the port condition

Gi2=Gyy = ax=0b a;=by,

one can prove that the inequality still remains true for therall model. As a result, we have found
that passivity of a wave digital model follows from passivif its elements, which are port-wise
interconnected. Models with this property are called $tmat passive. As a consequence wave
digital algorithms are robust in this sense by means of timparameters can vary in a wide range
without destroying passivity.

The special form for the energies is of major relevance i§pity has to be ensured even under
the finite word-length conditions which always appear fondations on computer systems. With
a look at the definition of passivity (3118), one can easilgaththat this inequality still holds if the
norms||lw(k + 1)|| and||y(k)|| are decreased. To this end, these quantities are reforhisttsign
magnitude truncation in order to ensure passivity. Pleatieethat this reformation can be done at
every port because every particutaport is also a wave digital model [Meerkotter, 1979].

If we have to deal with linear time-invariant systems onlg @an deduce a necessary criterion
for passivity from definition[(3118). To this end, we considespecial input signal having the form
z(t,) = XeP and an initial state so that the states and consequentlyutpetcsignals are of the
same form. Substituting these quantities in Eq.{3.18) wéogesome arbitrary complex frequency
the inequality

(Pt — WP < | X7 - Y )?
where|| X ||* denotes the steady-state power in correspondence th&d).(For a passive system
we thus must have
Rep>0 = |Y|?<|X|?.

Let us assume that the relation between the steady-staiedand output quantities can be de-
scribed via a scattering matri¥. Then, passivity implies a unitarily bounded scatteringrima

Reyp >0 =[S <1 (3.19)

where the induced matrix norm

IS]:= sup [[SX|
1X[j=1

has been used. Provided the impedance matrix,
Z=(1+8@1-95"'R, (3.20)
exists, then eq[{3.19) is equivalent to the implication:

Rey) >0 = Z*(¥)+ Z(1)>0. (3.21)
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A matrix satisfying this condition is called a positive niatr

Of course, the equations(3121) br(3.19) provide only nesmgsconditions for passivity. But, it
is known that for a unitarily bounded scattering matrixsilways possible to synthesize a corre-
sponding concretely passive electrical circuit [Beldviit963].
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4 Topological Analysis of Electrical Circuits

Objective of the topological analysis described here isgiieeration of the adaptor structure for
a given electrical circuitS. Such an adaptor structure is represented by a special gesidin
tree. The algorithm for setting up this decomposition treguires several definitions and is a bit
extensive; it is based on the graph-theoretical conceptemfectivity, independent subnetworks,
triconnected components, series-parallel graphs, aadigeomposition.

First of all, subsectioh 4l 1 develops the necessary gragbrétical concepts and illustrates their
role in the electrical domain. Subsectionl4.2 presentsitieal-time algorithm AAPTORS which
constructs an optimum adaptor structure for a given etsdtdircuit S.

4.1 Graph-Theoretical Concepts for Effort-Flow-Systems

A coupling between two—not necessarily electrical—syst@an be represented by a pair of sys-
tem variables whose product is the instantaneous poweg liginsmitted trough an energy port
[Wellstead| 1979, pg. 12]. For each port these system \asgativide into one intensive flow vari-
able (current, fluid flow, velocity, etc.) and one extensifferé variable (voltage, pressure, force,
etc.). Figurd_34 illustrates such a generic port, from whiaure[d on PagEl 7 shows the electrical

interpretation.
oI+
System 1 \ l ¢ / System 2
f

Figure 34: Energy transmittal in effort-flow-systems is realized byame of ports each of which being
characterized by an effort variable,and a flow variablef.

It is reasonable to stipulate that each basic system elethanprovides a pair of terminalsPort Property
establishes a one-port. When joining together one-pomehs, new constraints are introduced—
the aforementioned connection constraints—which retatbe elements’ effort variables and flow
variables. There exist only two ways by which two one-poenmetnts can be interconnected: in
series or in parallel, as shown in Figlird 35.

€1 .
f f1 — 2 — fi
S
€1 g () g
f2 ]

€2
Figure 35:Connecting two one-ports in series (left-hand side) anchmalel (right-hand side).

The related connection constraints are called compayitzilid continuity constraints upon the
effort and flow variables; they are of the following form:

e=e]+ e f=f=/fe (series connection)
e=e; =ey f=fA+/f (parallel connection)
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For electrical systems, compatibility and continuity doaisits are known as Kirchhoff’s voltage
and current law respectively.

Note that the series as well as the parallel connection ofvts again yields a port. This fact,
along with the plain form of the connection constraints, l#@s us to easily combine the charac-
teristics of the basic system elements. And, as alreadytqubiout in Subsection 2.2, Pade 6, this
gives rise to an algorithm that computes the system vasdbtea given systen§ by means of local
propagation. IfS is formulated within the:/b-wave domain and if differential characteristics are
approximated by means of the trapezoid rule, this algoritiirepresent a WDS; i. e., it defines a
feedback-free signal flow graph whose processing reserttidedynamic behavior of.

Prerequisite for the design of a WDS from an electrical systethus is the detection of the
ports within S. Clearly, if S is constructed from bottom-up by applying only series aniclfs
connections, the topology & will be isomorphic to a series-parallel graph, and all poda be
easily found. However, typically this is not the case, &rmbntains “closely connected” subsystems.

A solution of this problem is described ih_[Sieln, 1995] astmH a network preprocessing
approach: The port concept is extended towards so-calleghendent subnetworks, and the relation
between independent subnetworks and triconnected comisoiteexploited to identify all ports
within a flow networlE We will follow the same idea here; the remainder of the segiesents the
necessary definitions.

Definition 1 (Corresponding Graph of an Electrical Circuit) LetS be an electrical circuit. The
corresponding graph &f is a multigraphG = (V, E, g) whose elements are defined as follows.
is the set of segments of the interconnecting network that form areas of equal potentidl, is
the set of one-port elements # andg is a mappingg : E — P(V') whereg(e) — {v,w} iff e
connects the potential areasndw. E is called the set of edges, is called the set of points, and
g is called the incidence map.

Remarks. (1) Typically, numbers are used to designate the elements. ir(2) Without loosing
generality, the incidence mapis often omitted, and the elements in the multiseare denoted as
two-element set$v, w} € P(V): Itis obvious that a bijective mapping between the elements
and in £ can be maintained.

R
L AT 1 2 3
N

|

Figure 36:Electrical circuit with corresponding graph. The shadegiames in the circuit indicate the areas
of equal potential in the interconnecting network.

Example. Given the electrical circuiS depicted in Figuré_36; a corresponding gra@hof S is
defined on the set of poins = {1, 2, 3,4}, the edge sekl = {e, L, Ry, Ry, C1,C5, Cs}, and the

2There, the ports are identified to reformulate a global madei fluidic network into a new model that can be
processed by local propagation. However, with respectstouittime O(|E| - |V|) the used detection algorithm for
triconnected components is suboptimum.
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incidence mapy = {(R17 {17 2})’ (67 {17 4})’ (L7 {27 3})! (037 {27 3})1 (Clv {27 4})! (027 {37 4})’
(R2,{3,4})}.

In the case the incidence map is droppEds described by the following multisét = {{1, 2},
{1,4}, {2,3}, {2,3}, {2.4}, {3.4}, {3,4}}.

Definitiond enables us to disburden our considerations feteatrical circuits and use their
graph equivalents instead.

Definition 2 (Two-Terminal Graph, Flow) A two-terminal labeled graph is a tripléG, s,t),
whereG = (V, E) is a (multi)graph and,t € V, s # t. s andt are called source and sink of
G respectively.

Amappingf : E —V xR, f({v,w}) — (u,z),u € {v,w}, on a two-terminal labeled graph
(G, s,t) Is called flow onGG if the conservation law holds for every pointv # s,t in G:

' x if fle) = (v,z
s

eckEy,
E, Cc E comprises the edges incidentuo If the function f does also depend on the parameter
time, the conservation law must hold for any element in thetdomain.

Remarks.Standard flow definitions refer to directed graphs and aigedibw function f. In the
presented definition the flow function prescribes both florection and flow value since we are
dealing with undirected graphs. Of course, a non-positio® function can be made positive by
partially redefining it:({v, w}, (v, x)) is replaced with({v, w}, (w, —x)) if x < 0.

Ports are characterized by the property that they possestetminals where for each point inndependent
time the related flow values are of equal amount and opposietin. In this sense, a terminafSubnetwork
of a port corresponds to the graph-theoretical concept afdg®. For our analysis of graphs it is
necessary to extend the port concept towards so-callegpémdient subnetworks whose terminals
correspond to nodes.

Definition 3 (Independent Subnetwork [Stein| 1995])Let G = (V, E) be a graph, and lgi be
a subgraph of; induced bV C V with |V| > 2. A two-terminal labeled grapbH, sy, tr) IS
called independent subnetwork@f if the following condition holds:

(1) Every walk from a pointiry/ \ Vy to a point inVy contains eithegy orty.

An independent subnetwoit will be called minimum, if there exists no independent suwoek
which is induced on a proper subsefigf.

Let (H, sy, ty) be an independent subnetwork of a two-terminal labeledhgtéh s, ¢). Ob-
serve that the topology dff guarantees that an energy exchange betW£endG can happen only
via the nodes g andty. Moreover, KRCHHOFFS node rule states the conservation of the electric
current, which thus defines a flow in the sense of Definifilon Bonfthis conservation property
follows that for each current flow oA the sum of all in-going currents at; equals the sum of
all outgoing currents aty [Jungnickel| 1990, pg. 106]. Together both aspects enabte anclose
independent subnetworks with a hull, say, to investigagentin an isolated manner. An important
conseguence is that the concepts “port” and “independdmietwork” can be used interchangeably
(see Figur&37).

Remarks(1) Since each part of a systesithat corresponds to an independent subnetwork must be
treated by a global numerical procedure, we are interesteddecomposition of into minimum
independent subnetworks. (2) Independent subnetworksoaraultiports. The physical concept of
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Independent
subnetwork

Port

Figure 37:Substituting an independent subnetwork (left) for a poiti(ite) does not violate the conservation
law.

a multiport can be entirely reproduced by adding to the dédimbf a multigraphG a decomposition
C of the edge seE. Each set” € C stands for a subset df and defines a multiport in a definite
way.

Definition 4 (Series-Parallel Graph [Booth and Tarjan,|1993|Brandstaedt et al.| 1999]) Let Series-Parallel
(G,s,t) be a two-terminal labeled grapt. is called two-terminal series-parallel with souscand Graph
sinkt if it can be built by means of the following three rules:

(1) Base Graph. Any graph of the forth = ({s,t},{{s,t}}) is a two-terminal series-parallel
with sources and sinkt.

Let Gy = (Vi, Ey) be two-terminal series-parallel with souree and sinkt,, and letGs =
(Va, Ey) be two-terminal series-parallel with sourgeand sinkt;.

(2) Series Composition. The graph formed fréimandG, by unifyingt, ands, is two-terminal
series-parallel, with sourcg and sinkt,.

(3) Parallel Composition. The graph formed fraf andG, by unifying s1 ands, and unifying
t1 andt, is two-terminal series-parallel, with souree= sy and sinkt; = to.

Two-terminal series-parallel graphs can be representedebgmposition trees, also called sp-
trees, cf. [de Fluiter, 1997], which generalize the series the parallel composition to more than
two operands.

Definition 5 (sp-tree) An sp-tre€el , ,, of a two-terminal series-parallel grap@, s, ) is a rooted
tree whose nodes are either of type s-node, p-node, or ¢etdf-nEach node is labeled by a pair
(u,v), u,v € V; the children of an s-node are ordered; the Iea;‘,f(gf&t) correspond one-to-one
to the edges df;.

Every node of an sp-tree corresponds to a unique two-tetraéraes-parallel graphH, u,v),
where H is a subgraph otz and(u,v) is the label of the node. The root @, has label
(s,t) and corresponds to the grapfi, s, t). The two-terminal series-parallel graph defined by an
s-node is the result of the series composition applied tohilgiren in their given order. The two-
terminal series-parallel graph defined by a p-node is thdtrethe parallel composition applied to
its children.

Figure[38 exemplifies the definition.

The composition rules laid down in Definitigh 4 make appatieat a series-parallel graph whose
sp-tree has a root node label of series-node and paraliid-type has a vertex connectivity of one
and two respectively. Graphs of a higher vertex connegtaiié the result of either connecting more
than three two-terminal graphs at the same time or by comgetto-terminal graphs by a different
rule. Formally, the vertex connectivity of a graph is defimsdollows.
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(s,1)

(1,3) /8\ s-node
4,3) /3\ p-node

O leaf-node

Figure 38:Series-parallel graph (left) and its sp-tree represantdtight).

Definition 6 (Vertex Connectivity x(G)) LetG = (V, E) be a graph.x(G) is called vertex con-
nectivity of G and is defined as follows:(G) = min{|T'| | T C V andG[V \ T is not connected
}. G is calledk-connected, if(G) > k.

G[V’] denotes the subgraph @fthat is induced by’ C V.

RemarksA cut point (or articulation point) of a grapfi is a pointv € V for whichG[V'\ {v}] has
more connected components th@n A connected graph without cut points is called biconnected
a connected graph with cut points is called separable; thénmuan inseparable induced subgraphs
of a graphG are called biconnected components. The separation of & g¥apto its biconnected
components is unique_[Tarjan, 1972]. This fact, togethéi tie fact that each biconnected compo-
nent is analyzed on its own, we can assume without loss ofglityahat the considered graphs are
biconnected.

The subsequent definition extends the cut point constiustdéerived from_ Hopcroft and Tarjan
[1973].

Definition 7 (Separation Pair) Let{a,b} be a pair of vertices in a biconnected multigraphand
let the edges afi be divided into equivalence classBs, . . . , F,, such that two edges which lie on
a common path not containing any vertex{afb} except as an endpoint are in the same class.

The classeg; are called separation classesbivith respect td a,b}. If there are at least two
Separation classes, théa, b} is a separation pair @& unless (1) there are exactly two separation
classes, and one class consists of a single edge, or (2)dteeesactly three classes, each consisting
of a single edge.

If G is a biconnected multigraph such that no p@irb} is a separation pair af7, thenG is
triconnected.

While the triconnectivity of a grap&' follows canonically from Definitiofl6 dil 7, the characterfriconnected
ization of a graph’s triconnected components is more ireaIVThe reason for this difficulty is thaComponents

triconnected components possess no property that peimitsdetection by a divide-and-conquer
approach. Instead, it is necessary to investigate theaelaf A with respect ta7 if a subgraphH

of G forms a suspect triconnected component. Moreaver, Hobanof Tarjan introduce different

types of triconnected components, and hence the relatiomeba H and G must be investigated

relating different properties [Hopcroft and Taijan, 197Bheir definitions are given now.

Definition 8 (Split Graph, Splitting, Split Component) Let G be a multigraph with separation
pair {a,b} and related separation classés, ..., E,. Moreover, letE’ = |Jf_ | E; and E" =
Ui—.1 Ei be such thatE'| > 2, |[E"| > 2, and letG, = (V(E'),E’' U {(a,b)}), and
Go = (V(E"),E" U{(a,b)}). Then the graphs:; and G- are called split graphs a& with
respect tda, b}. ReplacingG by two split graphs is called splitting.
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If the split graphs are further split, in a recursive mannoetjl no more splits are possible, the
remaining graphs are called split componentsé; of

Remarks(1) The new edgeéa, b} added taz; andG- are called virtual edges; they can be labeled
to identify the split. (2) IfG is biconnected then any split graph@fis also biconnected. (3) The
split components of a multigraph are not necessarily unique

The split components of a multigraph are of three typesagtizs of the form{a, b, ¢}, {{a, b},
{a,c}, {b,c}}), triple bonds of the forn{{a, b}, {{a, b}, {a,b}, {a,b}}), and triconnected graphs.
To obtain unique triconnected components, the split coraptsnmust be partially reassembled.

Reassembling is accomplished by merging. Suppose&ithat (V1, E1) andGy = (Vs, E») are
two split components containing an equally labeled viredde{a, b}. Then the result of a merging
operation is a graptr; 1o with node sel/; ;o = V; UV, and edge sef o = E; \ {{a,b}} UE>\
{{a,b}}.

Definition 9 (Triconnected Component) Let G be a multigraph whose split components are a set
of trianglesSs, a set of triple bond®s, and a set of triconnected grapis If the triangles are
merged as much as possible to give a set of polygqrand if the triple bonds are merged as much
as possible to give a set of bon#s then the set of graphs U P U C forms the set of triconnected
components of.

Remarks. (1) The triconnected components of a graghare unique (see_[Tarjan and HoparofSeries and
1972]). (2) The “triconnected components”share not triconnected in the sense of Definitign arallel
They establish generic series connections: Virtual edgsigdate the connection of a subgraph; t duction
other edges designate single elementS§.irf-rom the viewpoint of a KRCHHOFF interconnecting
network the non-virtual incident edges can be replaced avitimgle edge of appropriate impedance.
This process is called series reduction. (3) The tricomtecbmponents i are defined on two
points only. They establish generic parallel connectioviistual edges designate the connection
of a subgraph; the other edges designate single elemests-finom the viewpoint of a KRCH-
HOFF interconnecting network they can be replaced with a sindigeeof appropriate admittance.
This process is called parallel reduction. (4) The tricatee components i@ establish minimum
independent subnetworks (see [Stein, 1995]).

Figure[39 shows a graph and its split components. Exceptitimgtes(1, 3,4) and(1, 2, 3), the
split components establish triconnected components etihef sriconnected components is complete
if the triangles are merged.

1 2 1 1 2
D QO Q (Ko Q. —0 Q¢
4 ./ ANE S .
3 3 3

O First separation pair
@ Second separation pair

Figure 39:A graph and its split components. When the triangles, 4) and(1, 2, 3) are merged, the right
hand side shows all triconnected components of the graph.

The algorithm presented in [Hopcroft and Tarjan, 1973)wde the triconnected components as
defined above and runs (| E|). We will rely on it in the next section. The algorithm origtea
from AUSLANDER and RARTER's idea for an efficient planarity test [Hopcroft and Tarjd®.73,
Auslander and Parier, 1961]. Root of its efficiency is theest@nt of necessary conditions for
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separation pairs along with a clever computation of thesditions within several depth-first search
runs.

Hopcroft and Tarjan’s algorithm does not consider the seicgnf independent subnetworkslnadmissible
As a consequence, independent subnetworks can be torkjngsn inadmissible segmentationsSegmentation
Figurel4D shows two isomorphic graphs with a differgntlabeling. A decomposition of this graph
into its split components tears the independent subnetwilksources, and sinkts.

S1 t1

Figure 40:Two isomorphic graphs with a differentt-labeling (left) and the related split components (right).
The independent subnetwork with the labelingt; is torn.

Obviously all triconnected components of a two-terminaklad graph G, s, t) establish inde-
pendent subnetworks if there is a triconnected componertaitong boths andt¢. The following
definition and LemmABl1 formalize this assertion.

Definition 10 (Elementary Contraction, s-t-Contractible) Let (G, s,t), G = (V, E), be a con-
nected two-terminal labeled graph (not necessarily spaesllel), let{v, w} € E, and letV,, C V
comprise the nodes adjacentito Then the grapty’ = (V', E') is called an elementary contraction
of G respectingu, if V' := V\{w}, andE’ := E\ {{w,z} | 2 € Vi, }U{{v,z} | x € Vi, # v}.

G is calleds-t-contractible towards a graghf = (V', E'), if G’ is the result of a sequence of
elementary contractions, and{i§,t} € E'.

The s-t-contractibility states that the flow conservation betweeand¢ remains intact for a two-
terminal labeled grapliGG, s, t). It can be ensured by simply adding the edget} to G if s andt

are not adjacent. This modification @fdoes not restrict its segmentation into independent subnet
works.

Lemma 1 (s-t-Contractibility) Let (G,s,t), G = (V, E), be a connected two-terminal labeled
graph (not necessarily biconnected) with souremd sinkt, and let{s,t} ¢ E. Moreover lelG’ be
(V,E U{{s,t}}), and letG", ... G, be the triconnected components@f Then the following
holds:

(1) 3G}, which iss-t-contractible,
(2) G’ can be decomposed into the same independent subnetwaks. lik

Proof of Lemmd11.Point (1). Follows immediately from the fact that there mibstsome graph
G that contains the edgfs, ¢t}. Point (2). Observe that for an independent subnetw6tk a, b)
that hass (or t) amongst its nodes one of the following equations must hald= s or b = s.
This follows from the independent subnetwork definition. Gtf cannot be decomposed into the
same independent subnetworks likethen this must be on account of the edget}. It prohibits

a segmentation of son@, into the independent subnetworks;, s, a) and (G}, t, b), which could
be formed when segmenting the original graghSince(G;, s, a) and(G;, t,b) form independent
subnetworksa andb must be articulation points @, which in turn means thats, a} and{s,b}
establish separation pairs@1. Hence, an independent subnetw6rk can be formed that contains
{s,t} as its only non-virtual edge. Conversely, the edgef} does not prohibit the formation of
independent subnetworks that can be forme@in o
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As outlined in the remarks on Paf€l 30, the three types ofrtniected components form thédecomposition
backbone for the segmentation of a circdit Based on the the setS, P, andC, a connector Tree
structure, or as the case may be, an adaptor structure g easstructed. In this connection it is
useful and quite natural to extend the concept of sp-treefirfifion[T1) towards spc-trees.

Definition 11 (spc-tree) An spc-tre€T s Of a two-terminal (multi)grapHG, s, t) is a rooted
tree whose nodes are either of type s-node, p-node, c-nottsafeanode. A c-node is labeled by the
graph(V, Ex,u,v) it stands for; the other nodes are labeled by a faaiv). The children of an
s-node are ordered; the leafsiof; , , correspond one-to-one to the edges.of

Every node of an spc-tree corresponds to a unique two-tetrgiaph(H, u,v); the root of
Tg,s,1) COrresponds to the graggty, s, t). The two-terminal graph defined by an s-node is the result
of the series composition applied to its children in theiregi order, and the two-terminal graph
defined by a p-node is the result of the parallel compositapiiad to its children. The two-terminal
graph defined by a c-node is triconnected, has more than tle@es, and follows no construction
rule.

The spc-tre€l’ o1y, Tiasy = (Vr, Er) is easily constructed.Vy = {1,...,n + [Eg|}
wheren denotes the number of triconnected components| Aad denotes the number of edges in
G, the nodes in(1,...,n} correspond one-to-one to the triconnected components randlzeled
respecting the triconnected component’s typeSasode, P-node, andC-node respectively.Fr
contains an edgév, w} if and only if one of the following conditions is fulfilled: jlv andw
correspond to triconnected components and have a commialvidge, (2 corresponds to a
triconnected component andis an edge in.

Remarks.Since both the series adaptor and the parallel adaptor @iee@ as three-port adaptors,
the nodes of the spc-tree that are labele@asde orS-node may be expanded again to account for
their restricted number of ports. Moreover, observe thatigight of the decompoaosition tree defines
the longest propagation path of the adaptor structure. €pently the root of the decomposition
tree should be defined as some node leading to a minimum tiglet.h&he subsequent definition
picks up both aspects and introduces a normalized spc-tree.

Definition 12 (Normalized spc-tree) Let T\ .y = (Vr, Er) be an spc-tree.Tq ) is called
normalized spc-tree if each nodes Vi labeledS or P has at most two successors, and if the root
v of Tiq 5.1y represents a center dfq , ,, and has a degree larger than

Remarks.(1) T\ s+ is normalized by replacing each nodec V7 labeledsS or P that has more
than two successors with the root of a balanced binary Trigayhose leafs are the successors;of
the inner nodes df’, get the same label as (2) The center of a tre€ = (V, E') can be computed
in O(|V]) [Mitchell Hedetniemi et 21/, 1981].

4.2 Generating the Adaptor Structure for Electrical Circui ts

The previous subsection provides the theoretical undeimmnfor the following adaptor synthesis
algorithm.

Input. An electrical circuit,S.

Output. A normalized spc-tree defining the optimum adaptor scherddyqes,
the port resistances, and the adaptor coefficients.

Algorithm. ADAPTORS

(1) Generate the corresponding graptof S.
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(2) PartitionG respecting its biconnected compone@ts . . . , G,,. For each’; do:
(a) Check for inadmissible segmentation.
(b) Detect triconnected components.
(c) Construct an spc-tree.

(3) Construct an spc-tréE , 4y for the entire grapld.
(4) NormalizeT 1)

(5) Compute the port resistances and adaptor coefficients.

Theorem 1 Given an electrical circui containingn elements. ThemM\DAPTORS computes a
normalized spc-tree defining the optimum adaptor schemdygad, the port resistances, and the
adaptor coefficients i (n).

Proof 1 The runtime bounds for the Stepd 1+2b follow from the consiitens and algorithms
pointed out in the previous section. Skép 3, the connecfitiiedforest of then spc-treesin < n, is
linear. Finally, the adaptor computations within 9fep ®iwe only a constant number of operations
for each of thex elements (see Sectibh 2 did 3).

In the sequel, some steps obApTORSare illustrated at the sample graph of Figure 41, which
establishes the corresponding gra&plof some electrical circuif.

AN
YAV

Figure 41:Corresponding grapty' of some electrical circuis.

Stepl[2. Partition G respecting its biconnected componerds,, ..., G,,. Label the articulation
points of theG; by s; ort;, such that each biconnected component contains a seuacel a sink;.

o N
Gl Gg \9 \ @
o———oO
@ Avrticulation point 82 t2 o——O0—
S t3

$1 tq 3

Figure 42:Decomposition of7s respecting its biconnected components and relabelingedbitonnected
as two-terminal graphs.

Step[Z&. Check for inadmissible segmentations. In the sample grapbdae{s,, -} is intro-
duced. However, in electrical circuits this step is superftuif s andt¢ are incident to the signal
source.

Step[Zh. Detect inG, the three sets of different triconnected compone$its?, andC.
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Gy

@ Node of separation pair
---- Virtual edge

Figure 43:Detection of the triconnected components.

Step[2¢. Construct an spc-tre€q, ., +,) for Gs; the left-hand side of Figuig ¥4 shows the re-
sult. At this place the previously mentioned series redustiand parallel reductions are ideally
performed: Engineering knowledge on useful reductions lmaformulated by means of simple
contraction rules, which may even investigate the contbancelement

Ps

© Adaptor

Figure 44:An unnormalized spc-tree @f5 (left) and its normalized counterpart (right); the leafstuf trees
correspond to the edges@y.

Step[3. Construct an spc-treB; , 4 for the entire grapld-. This accomplished by connecting the
roots of the tree§ g, , ;,) with a new node that is labeled as simode.

Step[4. Normalize the decomposition tré&  ,; the right-hand side of Figuig44 shows the
result. Obviously, the ideal adaptor for having no reflacficee port is associated with the root of
the normalized the decomposition tree.

Step[®. Based on the component parameters icompute the port resistances for the adaptors as
described in Sectidd 2 afdl 3.

Extension The algorithm AbAPTORScan be extended with respect to multiports. To this end each
subgraph that is induced by a multiport is completed suchittfi@ams a clique.

Of course there are other concepts for a special treatmesprgressing) of multiports. The
usage of cliques may establish the most elegant solutiae sirloes not require a modification of
the presented procedures.

3Such rules may treat the introduction of resistive souroeshe comprisal of elements of the same type. Note that
design graph grammars provide an ideal means to encodgpei®f knowledge [Schulz etial., 2001].
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5 Passive Linear Multistep Methods

This section extends the passivity considerations outlineSubsectiof 215, pa@€ell13. In particular
it is shown, in which way numerical integration methods fasgive nonlinear electrical circuits
can be developed that conserve the passivity propertyHeftieis| 1971, Felderhoif, 1994, Ochs,
2001)).

To this end, we will restrict our considerations towardslim@ar electrical circuits that are built
up from resistive sources and, as the only reactive elentemt;apacitance, which can be used to
realize the other reactive elements. Note that even nanlireactive element can be put down to an
appropriately controlled capacitance.

A formulation of such an electrical circuit as differentejuation system is given by
v(t) = C7li(t) (5.1)

where the capacitances have been collected in the diag@teki@. The equation systeri($.1) can
be written as a function of a voltage vectoft) and the vector of signal sources(t).

v(t) =£(v(t),x(t)),  v(to) = vo, (5.2)

This notation corresponds to a separation of the reactarmehts from the remaining network.

The sequel of this section is organized as follows. The neksection introduces the new
concept of the characteristic impedance, which then is ils8dbsectiofi 512 and Subsect[onl5.3 to
develop conditions for consistency orders of linear mdpsmethods.

Note that the results of this section can be transferred sysiems whose behavior model can
be formulated as a source- and dynamic-free (nonlineagbadic network that is coupled with a set
of linear capacitances.

5.1 Characteristic Impedance

A linear multistep method is an integration method whichragpnates the solution of ed.{%.2) by
the rule

Vp = — Z QgVg—o + Tc_l Z Baikfa (53)
o=1 o=0

with the separated (nonlinear) algebraic equations
C i == f(vp, xp) (5.4)

wherea, and 3, are arbitrary parameters. With regard to the underlyingtetal circuit, this
separation is natural because we have divided the cirdaitreactive elements and the remaining
network, cf. Fig[33lL. On this account, the nonlinear algetguations can be implemented with the
aforementioned concepts but we have to find proper realizafor the linear difference equations.

For this purpose, let us consider the steady-state voltagent relation of a single reactive
elementC, i. e., its signals are of the formy, := VeP'* andi; := IeP'*. Putting these quantities
into the linear difference equation(b.3) we get

T 2 i 50_6*0'])71
V= %Z(eﬂ)f, Z(eTy = — = : (5.5)
1+ Y age—oPT
o=1

cf. [Nitsche,[ 1993, Fischer, 1984, Felderhoff, 1994, Cet®i73]. In this paper, the rational
fraction is designated as the (normalized) characteristiedance of a linear multistep methods.
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Source- and 0=
+ dynamic-free
x network v Z1(¢¥),Ge,
Cli= f(v,z)

Figure 45:Discrete-time representation of a reference circuit ofiadir multistep method..

As will be exposed later on, it will be convenient to emplog thquivalent complex frequency
variabley instead ofp. If we make use of the transformatidn{3.8), we obtain

S

Z CO‘¢O—
206) = 2 (i * Z) _ =0 (5.6)
5 o

where one of these coefficients can be normalized. Heragrlmeltistep methods having a positive
characteristic impedancé(«)) will be called passive.

With regard to a realization of (), we will focus on methods having a canonic realization of
the characteristic impedance. In particular, we will ortysider irreducible methods, i. e., methods
whose numerator and denominator polynomials have no conatinsor.

A linear multistep method as defined by dg.15.3) is calledieikff v; depends only on past
values ofv andi. Clearly, the method as given by ef1.{5.3) is explicit if amiyaf 5, = 0. But
the passivity of linear multistep methods excludes expii@thods becausé) = 0 <= Z(1) =0
implies thatZ (1)) has a zero in the right half-plane in contradiction to properties of positive
functions, cf.l[Belevitch, 1968]. Since we are interestegassive integration methods only, we will
restrict ourselves to implicit linear multistep methods.

5.2 Consistency Order

In order to have a measure of quality for linear multistephuds, it is appropriate to inspect the
so-called local error being defined by

€k = Z oV — Tﬁacilikfo (57)
o=0

whereag := 1 has been adopted. The goal for the design of a linear myltistthod is to determine
the free parameters in order to minimize the local error irt@ain manner. To this end, we will
again make use of steady-state quantities at a complexeinegiy whereV, I and E denote the
complex amplitudes of, 7 ande, respectively. According to ed_{.1), and [ are related to each
other bypV = C~'I and eq.[[5J7) becomes

E=V Z(aa — pT'B,)e P, (5.8)
o=0

Now, the sum is expanded into aAdLAURIN series with respect tpl'. The parametera,,
and g, are typically chosen so that as many as possible of the firastef the MACLAURIN series
vanish. In fact, we place as many as possible zeros at thim anigorder to have a maximal flat
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approximation of zero for the local error. If the multiptigiof this zero isg + 1 thengq is called the
consistency order.

A suggestive method should have a bounded local errof ifends towards zero. In view of
eq. [58), the parameters have then to fulfill the relation

iag =0. (5.9
o=0

Next, let us make use of thealnDAU order symbolO in order to enable a condense formulation:

s

> (e — pT ) PT = O((pT)*H). (5.10)

o=0

Regardless of the steady-state considerations, the &eslud this equation leads to the consis-
tency equations being the same as for the classical approiafffelderhoif| 1994].

However, these consistency equations are somewhat butkyadditionally, we have to deter-
mine the parameters &f(¢)) from the parameters of the difference equation. For thessores, we
will directly derive consistency equations formulated epdndence of the parametegsandd,, as

appearing in eq[{516).
Primarily, we can state that for an irreducible method [ed)(Bnplies

> Bs #0. (5.11)
o=0

With regard to the equation§(5.5) ahd{5.6), the relatibi) @nd [511) are equivalent to
dy=0 and ¢ 75 0. (5.12)
Sincecy cannot vanish and one coefficientdfcan be normalized, [et us choasggeequal to one.
Having this in mind, eq[{5:10) divided by the numerator poiyial of Z(e?T) leads to
1 pT

Fem 2 - oenT.

Before we reformulate this equation in dependence of theptenequivalent frequency variable
1, we will recall the MACLAURIN series of theartanh function:

00 1 2ut1
Pt

artanh(y) = Z 21

u=0

forall || < 1. (5.13)

Now, we can state that a linear multistep method can be irgteng as a frequency transformation
wherel/Z (1)) approximates thertanh function:

1
——— — artanh() = O(y?). 5.14
Finally, we will make use of the concept of aBt approximation in order to derive consistency
conditions in dependence af andd,,. For this purpose, we multiply ed.{5114) with the numerator
polynomial of Z(v)) where the right side remains unchanged becausg of1:

PILELEDD
o=0

pu=0

S

D et =6 + O . (5.15)

o=0

wQu—f—l
2u+1

Here, the constanf. # 0 has been adopted which is designated as the local erroracnst
By comparing both sides of this equation, we obtain the sbémimulation of the consistency
conditions depending on the parameters of the charaaterigtedanceZ (1)) given in TabldlL.
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q>0:] dg=0

q>1.| di=cy:=1

q=2. | dy=01

q>3:| d3z=co+co/3
g>4 | dy=c3+c1/3
q>5 | ds=cqs+c2/3+¢o/b
6: | d¢ =c5+c3/3+c1/5

Table 1: Consistency conditions of linear multistep meghod

5.3 Maximum Consistency Order

Unfortunately, passive linear multistep methods possésstad accuracy with respect to numerical
integration. In order to show this, let us assume a lineatistep method having a consistency order
g > 1. As aresultZ () has a single pole with residuen the origin which will be extracted now.
Here, it is important to note that — for a passive linear rstépp method -Z(+)) remains positive
after extracting this pole. In other words,

S

2 (Ca—l - da)waiz + Cswkgil

o=2

1+ > dyyo—t
o=2

also satisfies conditiof (321) under this assumption.

Altogether, the linear multistep method of least impleragon effort is the trapezoidal rule
having a characteristic impedanggv) = 1/¢, compare Figd_31 arid132. Due to its accuracy of
q = 2, its local error constant of 1/3 with respect ta), and in particular its simple realization, this
rule is customary used for wave digital structures, cf. Fe{RER.

Except for the trapezoidal rule, linear multistep methodschmore than one step in order to
achieve a consistency order of at least two. If we focus ortistelh methods witls > 2 only, we
can realize that the consistency conditiondor 2 requiresd, = ¢; or, according ta7’ (1),

Z'(0) = 0. (5.16)

Finally, we examine the reciprocal vald€ := 1/Z’ having a pole in the origin with residue
1/(cq — ds). Now, if the method is passive theff and consequently alsSé’ are positive functions.
For this reason, it is necessary to have a positive residuhifopole, i. e.,

co > ds. (5-17)

As a conclusion from Tablgl 1, passive linear multistep mdghoannot achieve a consistency
order of three and their local erraf; — co — ¢y /3, has minimal magnitude for the trapezoidal rule.

Of course, this result is not new. Because passivity of atlimeultistep method is equivalent
to A-stabilit;H [Eelderhofif,1 1994] the result in fact is well known ag\BLQUIST’S second barrier
[Dahlquist, 1963]. However, the line of arguments presgtiiethis paper establishes yet another
proof of this barrier, cfl[Genin, 1973, Grigorieff, 1977alder and Wanner, 1996].

4This is in particular true for linear multistep methods, fut more general integration methods it can be shown
that passivity is stronger than A-stability. A detailedatission of some stability properties of passiveN®E-KuTTA
methods will be given elsewheiie [Ochs, 2001, Franken ane (€01 ].
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6 Summary and Outlook

The paper presents an approach for the systematic syntifesiave digital structures for given
reference circuits. Based on our ideas, the synthesis opimam wave digital structure can be
realized inO(n), wheren denotes the number of elements in the corresponding referarcuit.
The concepts presented here are exemplified for one-palsts lwowever, they can be transferred
easily to the case of using multi-ports (see the Remarks ge[P#).

The paper recapitulates wave digital modeling and someafmeatal properties. Special em-
phasis has been put on the generation of suited adaptonsgscwhich forms a crucial point during
the WDS synthesis procedure. The method proposed heredd baghe graph-theoretical concept
of triconnected components playing a role in graph plapaeists and for which Hopcroft and Tar-
jan developed an efficient detection algorithm. Althougeirtlalgorithm has been invented for a
very different problem, it provides us with an efficient madhfor identifying the three elementary
types of minimum independent subnetworks: parallel, seaad closely connected components,
designated by capital letters S, P, and C respectively. @hdtrof our structure synthesis algorithm
is a special graph, called SPC-tree, which indicates ttaioakhip between the aforementioned
components.

The SPC-tree is a powerful representation of the topolbgitarconnection structure allowing
for a direct derivation of the adaptor structure. Moreoit&an be used for rule-based simplifications
as well as for searching structural singularities.

Current and further research concentrates on the folloaspgcts.

e Operationalization of the presented ideas in the form obéopypic synthesis work bench for
wave digital structures.

e Algorithms for a systematic detection of structural siragities.

e Alibrary with predefined special adaptor structures odngrtypically in electrical networks,
such as bridged-T configurations.
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