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Abstract This work introduces PASSPHONE, a new smartphone-based authen-
tication scheme that outsources user verification to a trusted third party without
sacrificing privacy: neither can the trusted third party learn the relation between
users and service providers, nor can service providers learn those of their users
to others. When employed as a second factor in conjunction with, for instance,
passwords as a first factor, our scheme maximizes the deployability of two-factor
authentication for service providers while maintaining user privacy. We conduct
a twofold formal analysis of our scheme, the first regarding its general security,
and the second regarding anonymity and unlinkability of its users. Moreover, we
provide an automatic analysis using AVISPA, a comparative evaluation to existing
schemes under Bonneau et al.’s framework, and an evaluation of a prototypical
implementation.

1 Introduction
Two-factor authentication is an effective means to strengthen user authentication on the In-
ternet. In particular, the use of software-based second-factor tokens is attractive for service
providers since it relieves them from considerable costs that come along with developing
and delivering custom hardware tokens. For their users, phone-based two-factor solutions
have the advantage of employing the nowadays omnipresent smartphone, avoiding the in-
convenience of carrying around yet another device for the sole purpose of authentication.
However, offering two-factor authentication is not at all the default, yet.

Meanwhile, small and medium enterprises, and especially startups, outsource user ver-
ification. This is due to the fact that the proper implementation of a secure authentication
solution is a non-trivial task, and that many struggle to get even basic password authen-
tication right [12]. Hence, delegating user verification to a competent trusted third party
appears reasonable. In the context password authentication, corresponding infrastructures
have been successfully established via OpenID [37] and OAuth [24] (e.g., Google, Yahoo,
and Wordpress for OpenID and Twitter, Facebook, and PayPal for OAuth). On the upside,
outsourcing user verification is convenient for users and reduces development costs for ser-
vice providers, mitigating the risks of developing a custom solution from scratch. On the
downside, however, outsourcing authentication has been justly criticized for its impact on
privacy: the authentication provider serving as trusted third party gains precise information
about a user’s preferred services, her usage behavior, as well as the success of a given ser-
vice. While undesirable for both service providers and their users, the former often choose
user convenience and development speed over privacy, whereas most of the latter apparently
do not care. Clearly, there is a lot of room for improving the outsourcing of authentication in
terms of user privacy. The privacy of phone-based three-party authentication, however, has
not been considered until now.



This paper proposes PASSPHONE, a smartphone-based two-factor authentication scheme
which outsources user verification to a trusted third party while protecting user privacy. To
the best of our knowledge, our scheme is the first smartphone-based one to incorporate
anonymity and unlinkability despite employing a trusted third party. We conduct a system-
atic analysis of our scheme in terms of its security, privacy, feasibility, and competitiveness.
In particular, we analyze its security and privacy properties formally, report on a practical im-
plementation, and evaluate its competitiveness under the framework of Bonneau et al. [11].
We also conduct an automatic security analysis using the well-known computer-aided proof
system AVISPA [4]. In what follows, after a brief review of related work, Section 3 in-
troduces our authentication scheme. Section 4 formally analyzes its authentication security
and privacy properties and Section 5 reports results from an automatic security analysis. Sec-
tion 6 discusses insights gained from implementing our scheme, Section 7 compares it to a
selection of existing phone-based solutions, and Section 8 discusses its practical application.

2 Related Work
Privacy in federated authentication. Dey and Weis [17] propose PseudoID, which can
be considered the complement of our scheme for traditional password authentication. Their
scheme also employs blinding to render users unlinkable across service providers. Dey and
Weis show the unlinkability of their authentication scheme, but give neither an actual proto-
col nor an analysis. A proof of concept had been published, but the associated web page has
disappeared. Otherwise, the privacy issues of federated authentication services have been
highlighted in many contexts: for example, Urueña et al. [44] consider a privacy problem
that concerns OpenID and Facebook Connect. They find that the unique identifier assigned to
users by both services may leak to third parties, allowing to track users across web services
since they encode user identifiers in the GET parameters of URLs. Riesch and Du [38] and
Nuñez et al. [33] propose ways to solve the privacy issues of OpenID; Nuñez and Agudo [32]
finally proposed a blinded version of OpenID called BlindIdM.
Phone-based two-factor authentication. Banks have been among the first to roll out two-
factor authentication schemes for transactions, whereas online games and Google first de-
ployed this technology at scale for web user authentication [22]. In light of recent security
breaches [21,27,28], a shift toward two-factor authentication can be observed since several
major companies such as Microsoft, Apple, and Facebook, some of which suffered attacks,
rolled out their own implementations [3,31,40].

In the literature, Dodson et al. propose SNAP2PASS [19,20] and van Rijswijk and
van Dijk propose TIQR [45]: both are phone-based schemes that use QR codes to trans-
mit a challenge from a service provider via a user’s browser to her phone, which responds
to the challenge. Dodson et al. also consider outsourcing authentication to a trusted third
party (an OpenID provider); though, they do not tackle the privacy issues associated with
this approach. The authentication schemes by Aloul et al. [1] and Hallsteinsen et al. [23]
are also phone-based challenge-response protocols based on one-time passwords (OTPs)
that are generated using a previously shared secret between a user and a key server. This
OTP is then transmitted to the device and used as a second means of authentication. In both
two-factor authentication schemes, the key server can learn precisely which user tries to
authenticate at which service. Karapanos et al.’s SOUNDPROOF [26] aims at increasing the
adoption of two-factor authentication by avoiding the need for user interaction with their
device. Instead, their authentication detects the physical proximity of the smartphone via
matching the ambient sound of their environment. While the approach puts forth usability, it
can protect neither against physical nor against man-in-the-middle or phishing attacks, and
it is not easily deployable for service providers. Shirvanian et al. [39] categorize smartphone-
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based two-factor authentication schemes concerning the amount of data transmitted between
client and phone. They concern four challenge/response formats: (1) a low-bandwidth vari-
ant which uses a PIN as second factor, (2) a mid-bandwidth variant with a QR-code chal-
lenge, a full-bandwidth variant which transmits challenge and response via Bluetooth, and
another full-bandwidth variant which transmits challenge and response via WiFi. Their pro-
tocols are simpler and applicable on a wide range of devices; however, their low-bandwidth
variants provide only 20 bits of additional security from a PIN or a low-resolution QR code,
and the mid-bandwidth and the full-bandwidth versions require a complex setup with either
a webcam, Bluetooth, or WiFi channel controlled by the client.

While the above schemes are those closely related to ours, a number of other schemes
concern transaction authentication via untrusted devices, such as the ones of Clarke et al.
[14], Wu et al. [46], Parno et al.’s PHOOLPROOF [35], Starnberger et al.’s QR-TAN [41],
Mannan and van Oorschot’s MP-AUTH [29,30], and Czeskis et al.’s PHONEAUTH [16]. Al-
together, however, we are unaware of any phone-based authentication scheme that improves
deployability for service providers via outsourcing while incorporating user privacy.

3 The PASSPHONE Authentication Scheme
This section introduces our authentication scheme. We overview the three parties involved,
the devices at their disposal, and how they interact within protocols for bootstrapping and
authentication. For completeness, we also introduce protocols for key management.
Parties and their devices. Our scheme involves the following parties:

– P A prover who wants to use a service provided by S .
– S A service provider, who wants to authenticate P .
– T A trusted third party of prover P and service provider S .

The prover is a human, while the service provider and the trusted third party host server-side
services. The prover uses the following means to interact with these services:

– PS The prover’s browser to access a service of S .
– PT The prover’s phone to authenticate with T .
– PM The prover’s mail box.

We assume that servers and the prover’s devices have computational power at least com-
parable to that of current commercial off-the-shelf computer hardware and that they can
communicate with each other via the Internet. The prover has all her devices under her full
control (i.e., they are not compromised).

3.1 Bootstrapping
To get started, a prover P completes two bootstrapping steps: registration with the trusted
third party T , and activation of our authentication scheme at her service provider S.
Registration protocol. For registration, P installs an authentication App PT on her phone
(authenticator, for short). The App may be shipped by T and is ideally available open source.
When P launches PT for the first time, PT generates a new key pair (Kp

PT ,K
s
PT ), asks

for P ’s mail address IDPM , and then initiates the registration protocol. Table 1 lists the
protocol’s communication steps; each step is denoted as:

(<step>) <sender>→ <receiver> ∶ <message>,

where a message is optionally encrypted and consists of a header, a payload, and an optional
signature:

<message> ∶∶= EK((<header>, <payload>)<signature>),
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Table 1. Protocol to register with the trusted third party.

Protocol 1: Registration of P at T
Parties: PT , PM , and T
Pre-conditions: PT is blank, T is ignorant of PT
Post-conditions: PT stores (Kp

PT ,K
s
PT ) and obtained IDPT ,

P received tickets for rekeying and key transfer,
T verified IDPM and stores (IDPT ,K

p
PT ,IDPM )

(1) PT → T ∶ TLS(([REG,1,v,0], Kp
PT , IDPM , hPT )PT )

(2) PM ← T ∶ ([REG,2,v, IDT ], NT )T
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

X

(3) PM → PT ∶ X
(4) PT → T ∶ TLS(([REG,3,v,0], X)PT )
(5) PT ← T ∶ TLS(([REG,4,v, IDT ], N ′T )T )
(6) PT → PM ∶ TLS(([REKEY,1,v, IDPT ],NPT ,N

′

T ,K
p
PT )PT )

where EK denotes an encryption scheme with key K. The <header> contains a domain
identifier, step number, protocol version, and sender identifier:

<header> ∶∶= [<domain>,<step>,<version>,<sender>].

In Step (1) of the registration protocol, the authenticator chooses uniformly at random a
nonce NPT and derives the hash value hPT = H(NPT ). Prior, it generates a key pair
with a secret part Ks

PT and a public part Kp
PT ; the public part, together with IDPM and

hPT , is signed by PT and sent to the trusted third party T . Since the identifier IDPT has
not been verified by T , yet, we reserve the zero byte value as sender identifier. To verify
the prover’s mail box PM , the trusted third party sends a signed challenge containing a
nonce NT in Step (2). The prover forwards this message X to her authenticator in Step (3),
which responds to the challenge by signing X and sending it back to T in Step (4). After
successful verification, the trusted third party generates a new unique nonce N ′T , generates
IDPT = H(N ′T , hPT ), and sends N ′T to PT in Step (5), which henceforth uses IDPT

to identify itself. PT completes the bootstrapping protocol by sending an encrypted key-
management ticket for rekeying to its mail account in Step (6). The prover keeps the ticket
secret for later recovery of her account. Since T is not aware of NPT , it cannot regenerate
the tickets nor be compelled to do so, e.g., by law enforcement.
Activation protocol. To activate our scheme, the prover P creates an account at S using PS .
S initiates the activation protocol shown in Table 2, the purpose of which is to verify that P
is capable of authenticating via T , and to learn the blinded identifier hPT of PT .

In Step (1) of the activation protocol, S sends a nonce NS . Next, PS computes the
hash hS = H(IDS∥NS) to hide the identity of S from T . In Step (2), PS sends hS
to T . Note that for messages from PS , we use a constant 1 that is identical for all users.
In Step (3), T responds with a signed challenge, consisting of the nonce NT along with
the blinded identifier hS . In Step (4), PS forwards the entire previous message X to PT
along with IDS and NS . PT checks the message, and in particular if hS found in X ful-
fills hS = H(IDS∥NS). Meanwhile, the prover has to confirm manually that she wants to
sign up for the service provider S . In that case, PT responds to T ’s challenge by sending
a copy of the message X in Step (5). After verification, in Step (6), the trusted third party
computes hPT = H(IDPT ∥NT ) to blind the prover’s identity, IDPT , and sends a signed
authentication ticket to PS which consists of the blinded identifiers hPT and hS . Hence-
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Table 2. Protocol to activate two-factor authentication.

Protocol 2: Activation of the second factor for P at S
Parties: PS , PT , S , and T
Pre-conditions: S is ignorant of PT , T is ignorant of P using S
Post-conditions: S has verified that P uses hPT , and S stores hPT

T stores (IDPT , hPT ); T is ignorant ofP usingS

(1) PS ← S ∶ TLS([ACTIVATE,1,v, IDS ], NS)
(2) PS → T ∶ TLS([ACTIVATE,2,v,1], hS)
(3) PS ← T ∶ TLS(([ACTIVATE,3,v, IDT ], hS , NT )T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
X

))

(4) PS → PT ∶ ([ACTIVATE,4,v,1], X, NS , IDS)
(5) PT → T ∶ TLS(([ACTIVATE,5,v, IDPT ], X)PT )
(6) PS ← T ∶ TLS(([ACTIVATE,6,v, IDT ], hPT , hS)T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Y

)

(7) PS → S ∶ TLS([ACTIVATE,7,v,1], Y )

forth, the trusted third party maps hPT to IDPT . In Step (7), PS forwards the ticket to S .
Finally, if the ticket is valid, S assigns hPT to the prover’s user account and activates our
authentication scheme.

This protocol ensures the privacy properties of our authentication scheme by two means:
first, the identifier IDS of the service provider is blinded to obtain hS , so that the trusted
third party cannot figure out which service provider the prover uses. Second, the trusted third
party blinds IDPT to obtain a provider-specific identifier hPT . This way, colluding service
providers cannot identify shared users by comparing authenticator identifiers.

3.2 Authentication
A prover P authenticates herself at her service provider S , e.g., when signing in for a new
session. Here, the second factor is checked using the authentication protocol shown in Ta-
ble 3. While all other protocols of our scheme are invoked only occasionally, this protocol
is run on a regular basis.

S initiates the authentication protocol. This protocol is designed similar to the afore-
mentioned activation protocol, with the difference that the prover’s provider-specific iden-
tifier hPT is carried through all steps. In Step (1), the service provider sends a session
nonce NS to ensure freshness along with hPT to PS . In Step (2), PS blinds the service
provider’s identifier by computing hS =H(IDS∥NS), and sends it together with hPT to T .
In Step (3), T responds with a signed challenge containing NT , hPT , and hS . PS forwards
the entire previous message X along with IDS and NS to PT in Step (4), which verifies
the incoming message. The prover then is asked to confirm that she wants to authenticate
herself at the service provider S . In the affirmative, PT responds to T ’s challenge by send-
ing a signed copy of the message X in Step (5). After successful verification, in Step (6),
T sends a signed authentication ticket consisting of hPT and hS to PS , which forwards it
to the service provider S in Step (7). Finally, if the ticket is valid, S grants P access to her
service.

Again, the trusted third party never obtains information about the service provider’s iden-
tity. Each time the prover logs into her service provider, the provider’s identifier is blinded
using a fresh nonce. Thus, from the perspective of the trusted third party, every run of the
authentication protocol is unique.
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Table 3. Protocol to authenticate the second factor.

Protocol 3: Authentication of P at S
Parties: PS , PT , S , and T
Pre-conditions: S is ignorant of P using PS
Post-conditions: S has verified that P uses PS

(1) PS ← S ∶ TLS([AUTH,1,v, IDS ], hPT , NS)
(2) PS → T ∶ TLS([AUTH,2,v,1], hPT , hS)
(3) PS ← T ∶ TLS(([AUTH,3,v, IDT ], hPT , hS , NT )T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
X

)

(4) PS → PT ∶ ([AUTH,4,v,1], X, NS , IDS)
(5) PT → T ∶ TLS(([AUTH,5,v, IDPT ], X)PT )
(6) PS ← T ∶ TLS(([AUTH,6,v, IDT ], hPT , hS)T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Y

)

(7) PS → S ∶ TLS([AUTH,7,v,1], Y )

3.3 Key Management
The prover’s private key is stored on her phone. Losing it locks her out of service providers
where she activated our authentication scheme, whereas the lost authenticator may still be
used by an adversary to gain access to the prover’s accounts. To react in case of such an
emergency, corresponding protocols for key revocation and rekeying are provided, which
are concerned in the following.
Key-revocation protocol. As an immediate reaction upon the loss of her authenticator, the
prover turns to her service provider and logs in with her first factor. When the service
provider initiates the authentication protocol, its first three steps are executed automatically.
In Step (4), however, instead of proceeding, the prover initiates the key-revocation protocol
shown in Table 4 (top). In this case, PS sends a revocation request to T , including the previ-
ous messageX , and then cancels the login attempt at S . Meanwhile, T revokes the prover’s
public key if the signature of the revocation request could be verified with the prover’s old
key. Finally, a confirmation mail is sent to the prover’s mail box PM .
Rekeying protocol. To regain control of her accounts after key revocation, the prover uses
a rekeying ticket that was generated during registration (see Table 1, Step (6)). Using this
ticket, the prover initiates the rekeying protocol shown in Table 4 (bottom) to exchange her
revoked public key with a new one at the trusted third party. To do so, the prover orders a
new, blank authenticator PT from T and forwards the rekeying ticket to PT in Step (1).
PT checks the ticket’s validity by verifying that IDPT = H(NT ∥ H(NPT )) and then
generates a new key pair (K′sPT ,K

′p
PT ). PT samples a new nonce N ′PT at random and

computes h′PT = H(N ′PT ). In Step (2), the new public key K′pPT is sent along with the
ticket and h′PT to T . The message is signed using the new secret key K′sPT . From the ticket,
T extracts IDPT , and verifies if IDPT =H(NT ∥H(NPT )) holds and if IDPT corresponds
toKp

PT in T ’s database. If successful, T registersK′pPT as P ’s new public key and generates
a new unique identifier ID ′PT = H(N ′T ∥h′PT ), using a fresh nonce N ′T . In Step (3), N ′T
is sent to PT , which also computes ID ′PT and uses it as its new identifier. Rekeying is
completed by sending a new rekeying ticket to the prover’s mail box PM in Step (4).

Altogether, from a prover’s perspective, the infrequently invoked key-management pro-
tocols provide for a consistent experience since manual actions (i.e., passing challenges to
the authenticator) are unified with those of registration and authentication.
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Table 4. Protocols for key revocation and rekeying.

Protocol 4: Key revocation via PS

Parties: PS , PM , S , and T
Pre-conditions: T considers Kp

PT active; T is ignorant ofP usingS
Post-conditions:T has revoked Kp

PT ; T is ignorant of P using S

Steps 1-3 of Protocol 3, the authentication protocol.
(4) PS → T ∶ TLS([REVOKE,1,v,1], X)
(5) PS → S ∶ TLS(Cancel login)
(6) PM ← T ∶ ([REVOKE,2,v, IDT ], X)T

Protocol 5: Rekeying for PT

Parties: P , PT , PM , and T
Pre-conditions: PT may be blank
Post-conditions: T revoked Kp

PT and stores (ID ′PT ,K ′pPT , IDPM )
P received new tickets for rekeying and key transfer

(1) P → PT ∶ ([REKEY,1,v, IDPT ],NPT ,NT ,K
p
PT )PT

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
X

(2) PT → T ∶ TLS(([REKEY,2,v,0],K′pPT , h
′

PT , X)PT )
(3) PT ← T ∶ TLS(([REKEY,3,v, IDT ],N ′T )T )
(4) PT → PM ∶ TLS(([REKEY,1,v, ID ′PT ],N ′PT ,N ′T ,K ′pPT )PT )

4 Formal Security Analysis
This section summarizes the results of an in-depth analysis of the security and privacy of the
PASSPHONE scheme when employed as second factor in a two-factor-authentication setup.
Due to space limitations, we omit the proofs to our theorems in this section and provide
them in the full version of this paper [36].

4.1 Authentication-Attack Resistance
Notation. The quality of an adversary A against a security notion sec is measured by its
success probability Pr[Succsec] in winning a game Gsec that models sec. Let x ↞ X
denote the sampling of x uniformly at random from a distribution X and let {0,1}n denote
the set of all n-bit strings. We consider a set of provers P and a set of service providers S,
where we define that each prover P i ∈ P has a browser instance PS i and her authenticator
PT i under her control. The set U denotes the union of P ∪ S ∪ {T}.
Assumptions. We follow the standard assumption that legitimate parties (provers and ser-
vice providers in our case) behave honestly: they do not understand the semantics of a mes-
sage before a protocol run completed successfully. We assume that provers, service provid-
ers, and the trusted third party communicate over the open Internet, relying on the existing
Public-Key Infrastructure (PKI) of TLS for establishing a secure channel with one-sided
authentication of S and T towards the prover (PS , PT ). This means, we assume that all ser-
vice providers S and the trusted third party T possess a public key encoded in a valid TLS
certificate. The PKI trust assumption is a current best practice for securing the communica-
tion between web services and their users. Further, our cryptographic model assumes that
the client PS does not manage any permanent state, which is reasonable for a web browser,
and that PS executes a correct version of the protocols (e.g., code that was signed by T ).
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We recommend that all honest parties employ certificate or public-key pinning for the
trusted third party and for service providers (i.e., mapping the hosts to their expected X.509
certificate or public key by explicit whitelisting). Moreover, we propose to bind TLS con-
nections to specific channels by employing a fixed version of either the tls-unique approach
from RFC 5929 [2] or Google’s Channel ID [6] (see [8,9,25] for attacks and fixes).
Adversarial model. The goal of the probabilistic polynomial-time (PPT) adversary A is
to authenticate as some honest prover P i at some honest service provider S j . A is aware
of the behavioral limitations of honest parties and tries to exploit them. The adversary can
eavesdrop, intercept, insert, modify, or delete all communication that is transmitted over the
network, but cannot modify the communication transmitted from the prover’s browser to
her authenticator, which is a fair assumption when using, e.g., scanned QR codes. A can
impersonate a prover, a service provider, or both. The use of TLS prevents it from acting as
T or as an honest S in the view of the prover. Moreover, we assume that the cryptographic
primitives used are secure. So,A cannot recover a secret key, predict a random value, find a
hash-value’s preimage, a collision, or forge a signature with significant advantage. Prior to
registration and activation, all parties agree on a security parameter τ ,1 so that all signatures
are of length at least τ bits, all nonces and hash values created by H have 2τ bits, and all
symmetric and asymmetric secret keys for encryption (again, for TLS) and signing have an
effective key length of at least τ bits.

We define an authentication game denoted GAuth, which takes as input a tuple (τ , qexe,
qsend, qtest), and provides A with access to the following queries:

– Setup(1τ): The registration and activation steps are executed once to generate the se-
crets of all involved parties.

– Execute(P i,S j ,T): Models a passive adversary A who eavesdrops a correct execu-
tion of the authentication protocol between a prover P i, a service provider S j , and T .
The output is given by the transcript of the protocol between P i, S j , and T .

– Send(U,U ′,m): Models an active attack, wherein the adversary A intercepts, mod-
ifies, replays, forwards, or creates a message m in the name of party U to party U ′,
where U,U ′ ∈ U . The output of such a query is the message that U ′ would generate
after receiving m. A special message Start can be sent in the name of a prover to a
service provider to initiate a session between them with the trusted third party.

– Corrupt(P i,S j): Models that the secret for the first factor pwdi,j of P i at S j has been
compromised. The output of this query is pwdi,j .

– Test(P i,S j): Models an authentication request of A in the name of P i at service
provider S j . The output is a bit b, which is 1 if and only if the authentication succeeds
and P i and S j are honest; otherwise b is 0.

For all inputs, the output bit b of Test(P i,S j) after a correct execution of the authentication
protocol between honest P i and S j will always be 1. We define that any honest party im-
mediately aborts a protocol run if it detects an invalid message, i.e., an incorrect signature,
unexpected service provider, incorrect ID, non-matching hash, or invalid message format.

Theorem 1. Let the employed public-key signature scheme be EUF-CMA-secure andH be
a random oracle. Then, for any PPT adversaryA whose run time is bounded by t and whose
number of execute, send, and test queries are bounded by qexe, qsend and qtest, respectively,
it holds for a random execution of GAuth on our protocol P that Pr[SuccAuth] ≤ q ⋅ 4/2τ ,
where q = qexe + qsend + qtest.

1 In practice, τ ≥ 128 is fixed a-priori by the protocol (version).
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4.2 Anonymity
In the context of an outsourced three-party protocol, user anonymity refers to the goal that
an honest but curious trusted third party is unable to learn which service provider(s) an
individual prover has registered with and wants to authenticate to. We model this goal by a
game GAnon and an adversary A who plays the role of T , i.e., A has access to IDs, public
keys, and blinded IDs ⟨ID i

PT ,K
p

PT i , ⟨hjPT i⟩⟩ of all provers P i. We define that at least one
honest prover P and two honest service providers S0 and S1 exist in the game. At setup,
the challenger tosses a fair coin to obtain a bit b. Depending on b, P registers with S b, and
generates a secret pwd for the first factor. We define a special service provider Ŝ which
wraps S0 and S1 and appears as a black box to A. So, every time S0 or S1 are involved in
an execution of our protocols, the game models it as an execution with Ŝ in the view of A.
A is given access to the queries Setup(1τ), Execute(π, P i, S j , T), Send(π, U , U ′,

m), which work similarly to their equivalents in the authentication game above. As a dif-
ference, A must provide a parameter π ∈ {REG, ACTIVATE, AUTH, REKEY, REVOKE}
to execute the different protocols. A is not given access to Corrupt queries, assuming an
honest but curious adversary. Wlog., we assume that A asks no Send queries to T since it
can always answer them without interaction from other parties with the help of T ’s private
key. Moreover, we define that A is prohibited from using S0 or S1 in its send or execute
queries, and may only use Ŝ instead. At the end of the game, A makes a Test(b′) query,
to which it must provide a bit b′. A wins the game GAnon if and only if b′ = b, i.e., if it
successfully guesses which service provider P has registered with. We denote this event by
SuccAnon and define the anonymity advantage of A against a protocol scheme P as

AdvAnon
P (A) = 2 ⋅ ∣Pr [SuccAnon] − 0.5 ∣ .

Theorem 2 (Anonymity). Let the employed public-key signature scheme be EUF-CMA-
secure and H be a random oracle. Then, for any PPT adversary A whose run time is
bounded by t and which asks at most qexe execute and qsend send queries, respectively, it
holds for a random execution of GAnon on our protocol P:

AdvAnon
P (A) ≤ (qexe + qsend) ⋅ 1/22τ .

4.3 Unlinkability
For authenticated key-exchange schemes, Tsudik and Xu [42] define unlinkability as the
property that no adversaryA can associate two handshakes involving the same honest party
even ifA participated in both executions. In the context of web authentication, unlinkability
means that no set of colluding service providers is able to link a prover registered with
multiple of their services. Clearly, there must be at least two uncorrupted users to prevent
the adversary from deducing trivially which two executions involve the same party.

We define a third game GUnlink whereinA plays the role of two disjoint service providers
S0 and S1. The challenger plays the role of two honest provers P0 and P1 and T . At the
beginning, the challenger tosses a fair coin to obtain a bit b; if b = 1, the challenger registers
P0 with both S0 and S1, and P1 with none of them. If b = 0, the challenger registers P0

with S0 but not with S1, and P1 with S1 but not with S0. Likewise to the anonymity game,
we define a special prover P̂ which wraps P0 and P1 and appears as a black box to A. So,
every time P0 or P1 is involved in an execution of a protocol, the game models this as an
execution with P̂ instead of P0 or P1 in the view ofA. As before, this configuration can be
augmented by many more honest provers and service providers. Additionally,A can control
a set of malicious provers EP as well as malicious service providers ES .
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A is given access to queries of the types Setup(1τ), Execute(π,P i, S j , T), and
Send(π,U,U ′,m), for parties U,U ′ ∈ U , which work similar to their equivalents in the
anonymity game above. This time, A is prohibited from using P0 or P1 in its queries, and
must use P̂ as a replacement. WhenA uses P̂ and either of S0 and S1 in an execute or send
query, the challenger uses the prover as a replacement for P̂ that can process the execution
of the protocol correctly. Moreover, if A invokes the registration, activation, rekeying, or
revocation protocol for P̂ , the challenger executes it for both P0 and P1. At the end of the
game, A makes a Test(b′) query and has to provide the bit b′. A wins the game GUnlink if
and only if b′ = b. We denote this event by SuccUnlink and define the unlinkability advantage
of an adversary A against a protocol scheme P as

AdvUnlink
P (A) = 2 ⋅ ∣Pr [SuccUnlink] − 0.5 ∣ .

Theorem 3 (Unlinkability). Let the employed public-key signature scheme be EUF-CMA-
secure and H be a random oracle. Then, for any PPT adversary A whose run time is
bounded by t and which asks at most qexe execute and qsend send queries, it holds for a
random execution of GUnlink on our protocol P:

AdvUnlink
P (A) ≤ (qexe + qsend) ⋅ 1/22τ .

5 Automatic Security Analysis
Besides the formal security analysis, we also conducted an automatic security analysis of
PASSPHONE using the well-known computer-aided proof system AVISPA. After a brief
overview of AVISPA’s capabilities, we describe the HLPSL implementations of our pro-
tocols and the results obtained from feeding them to AVISPA. Moreover, we conduct ex-
periments by deliberately removing security features from our protocols and observing the
results from the proof system.
Background. AVISPA provides four backends for protocol verification: a Constraint-Logic-
based ATtack SEarcher (CL-ATSE) [43], an On-the-Fly Model Checker (OFMC) [7], a SAT-
based Model Checker (SAT-MC) [5], and a Tree-Automata-based backend (TA4SP) [10].
We rely on the widespread CL-ATSE, OFMC, and SAT-MC backends; TA4SP does not sup-
port our setup. As input to AVISPA, protocols must be implemented in the High-Level Pro-
tocol Specification Language (HLPSL) [13]. HLPSL is a role-centric language well-suited
for software engineers and protocol designers.
Implementation details. All of PASSPHONE’s protocols have been implemented in HLPSL.
The full version of this paper lists the protocol implementations, and the source code is also
available via PASSPHONE’s web page at http://www.passphone.org. Special care
was taken to align the implementation as closely as possible with the protocol specifications
found in this paper so as to ensure that the results obtained from AVISPA allow for drawing
conclusions about them. For consistency and where the syntax allowed it, variable names
have been chosen to correspond with those used in the formal specification as well. The
two communication channels send (SND) and receive (RCV) are defined in terms of the
Dolev-Yao model (dy).

Since our protocols make use of TLS, this has to be reflected in our HLPSL implemen-
tation. However, at present, neither AVISPA nor HLPSL support modularization of protocol
implementations, so that the implementation of the TLS protocol in HLPSL cannot be in-
voked from ours. When mixing both protocol implementations into one file, this severely
affects legibility. Therefore, for simplicity, we model TLS by means of public keys assigned
to each party, which ensure both encryption and sender authenticity. This approach is sound
and has been applied in several other high-level protocol implementations using TLS.
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Table 5. Results from AVISPA when omitting TLS in individual protocols. A ● indicates that TLS
is mandatory to uphold security, and a ○ that TLS is optional.

Protocol Communication step
(1) (2) (3) (4) (5) (6) (7)

Registration ● n/a n/a ● ● n/a
Activation ● ● ● n/a ○ ● ●
Authentication ● ● ● n/a ○ ● ●
Key Revocation ● ● ● ● ●
Rekeying n/a ● ● n/a

Experiments and results. We fed each protocol’s HLPSL implementation to AVISPA and
found that all of the aforementioned backends report that they cannot identify any attacks.
However, since implementations can be erroneous and since there is currently no standard-
ized unit-testing framework for HLPSL protocol implementations, we conduct experiments
and sanity checks in order to verify that our implementation meets our expectations from the
manual security analysis. First, we changed each protocol’s implementation in a deliberate
attempt to make it insecure. The flaws introduced include the removal of TLS for data-origin
authentication, signatures, and nonces which opened various attack vectors. We then fed the
flawed versions to AVISPA in order to check whether it picks up the vulnerabilities. With-
out fail, AVISPA identified them. This experiment serves to raise confidence both that the
authentication scheme comprises little redundancy and that our implementation reflects well
our scheme’s formal specification. Second, we were particularly interested whether and to
what extent TLS is required to secure our protocols. We employ TLS mainly as a means
for data-origin authentication, whereas message encryption is optional. Since TLS is the
de facto standard in secure web communications, using a different protocol would severely
limit the applicability and acceptance of our authentication scheme in practice. We system-
atically disabled TLS in a given step of a protocol, re-running AVISPA each time to identify
potential attacks that result from doing so. Table 5 summarizes the results for each protocol.
As expected, turning TLS off allows for man-in-the-middle attacks in most steps that result
from missing data-origin authentication.

6 Prototype Implementation
We implemented all of PASSPHONE’s protocols as a proof-of-concept prototype, which is
freely available at https://www.passphone.org. This section discusses a selection
of implementation details.
Trusted third party T . The trusted third party is a web service that offers an API used by
authenticators and the prover’s browser PS . We implemented it as a Java Servlet to share
the implementations for message encoding and cryptography between T and that from our
current smartphone implementation. To protect the signing key, we recommend the use of
a cryptographic module—e.g., according to the FIPS-140 standard [34]—which protects
the signing key of the trusted third party from being copied and which would accelerate
cryptographic computations for scalability. This would render compromising the trusted
third party’s key much more difficult compared to keeping it on hard disk.
Service provider S and client PS . For our prototype, we implemented two service provider
stacks: one as a Ruby-based service running on an nginx server with a MySQL database,
and a similar second service provider as a Java Servlet. The trusted third party provides
plugins for the most widely-used web software stacks (LEMP/ LAMP, Ruby on Rails, etc.),

11

https://www.passphone.org


authentication libraries, and web applications. However, given the large number of possible
configurations, it is difficult to provide a plugin for each one right away. To minimize the
development overhead, we divide plugins into a major, canonical part, and a lightweight,
stack-specific part. The major components may be deployed into a virtual machine or on a
dedicated server to be run next to an existing service. The lightweight plugins offer the stack-
specific API to handle our authentication scheme so that the required changes to existing
services are minimally invasive.
Authenticator PT . We implemented the prover’s mobile authenticator as a smartphone App
for Android devices with SDK 16 and above which currently supports more than 96% of
Android smartphones on the market.2 The widespread distribution of Android smartphones
made this design decision straightforward in terms of usability since they are among the few
things many people carry with them at all times. We employed the BouncyCastle library3 for
cryptographic primitives, using SHA-256 as hash function and 256-bit EC-DSA as signature
scheme, and the ZXing library4 for handling QR codes.
Challenge encoding and transmission. We resort to QR codes for encoding challenges to
reduce the typing effort for the user [20,39,41,45]. QR codes exploit the physical proximity
of the prover’s devices by changing the communication medium in a way so that an ad-
versary cannot intercept a transmitted message unless looking over the prover’s shoulder. In
general, the more coarse-grained a QR code can be made, the more robust it is with regard to
legibility in various situations of screens, lighting, and camera quality. In our setup, we keep
the messages that are transmitted via QR codes small by the use of EC-DSA instead of, for
example, RSA-based signatures. Our tests show that scanning QR codes is a robust channel
when employing version-10 codes (which can encode up to 213 bytes) and medium-level
error correction (15% of codewords can be restored).
Performance and usability. To estimate the performance of our implementation, we evalu-
ate the run times needed for the authentication protocol. We use two dual-core mobile phones
with 1.2 GHz (Samsung-Intrinsity Exynos S5PV310) and 1.7 GHz (Qualcomm Snapdragon
400) processors and cameras with resolutions of eight megapixels. We conduct 20 authen-
tication processes. Besides logging in with the first factor, the majority of time was spent
to align the QR code, which took trained smartphone users about 3-5 seconds on average,
whereas the ZXing library picks up a QR code as soon as it is in view.

In terms of usability, our implementation adopts the current best practices—e. g., scan-
ning of QR codes—employed in phone-based authentication. Since the required user actions
do not differ from those of other authentication schemes employed in practice, we omit a
detailed discussion of usability. Nevertheless, we have tested and used our implementation
on human test subjects. Our prototype has been deployed as an exhibit at a recent open
house presentation. On that occasion, laymen from the general public as well as interested
colleagues from other universities for a total of 55 people have tried our prototype. We
observed that all visitors expressed concern for their own security, and understood the con-
cept and importance of privacy preservation in authentication. All regular smartphone users
among our testers had little to no difficulty in following the instructions given by our App,
as all of them said they occasionally scan QR codes, and, with little explanation (i.e., within
less than three minutes), all interested visitors also managed to perform a test run of the
rekeying protocol. Altogether, in terms of usability, our prototype is on par with the state of
the art in that it adopts their best practices, but of course a lot has still to be done to achieve
maturity.

2
https://developer.android.com/about/dashboards, State of Aug 1, 2016.

3
http://bouncycastle.org/

4
https://github.com/zxing/zxing
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7 Comparative Evaluation
This section compares PASSPHONE to others from the literature under the framework of
Bonneau et al. [11]. Table 6 summarizes the results of comparing our scheme to 10 other
smartphone-based two-factor authentication schemes with respect to 25 common features
an authentication scheme can offer.5 The features have been collected by Bonneau et al.,
and while their names may seem self-explanatory, some of their definitions are intricate. For
many features, Bonneau et al. also specify a quasi-variant, where an authentication scheme
offers a feature with some reservations. In what follows, we discuss PASSPHONE’s rating in
comparison to that of the others.
Usability. As outlined above, PASSPHONE is on par with previously published schemes
in terms of usability since it adopts their best practices (i.e., transmitting QR codes via
smartphones has been studied already). Therefore, we consider our scheme Quasi-Scalable-
for-Users since it reduces the risks of password reuse similar to PHONEAUTH, and Quasi-
Nothing-To-Carry, based on the assumption that smartphones will continue to spread. Like-
wise, our scheme is quite Easy-to-Learn since scanning QR codes is a daily routine for
regular smartphone users. During authentication, the user has to enter only her password as
a first factor, which results in Quasi-Infrequent-Errors, and which makes it Quasi-Efficient-
to-Use. More generally, our scheme provides equivalent usability compared to GOOGLE
2-STEP, but performs better than PHOOLPROOF, CRONTO, and TIQR, because it features
Easy-Recovery-From-Loss based on our extensive key management protocols. Arguably, key
management may be added to these schemes, but corresponding research is still missing.
Deployability. Concerning deployability, PASSPHONE outperforms most other solutions.
PHONEAUTH and TIQR have the highest ratings with respect to Bonneau et al.’s frame-
work, whereas TIQR is more mature. Our scheme is Quasi-Accessible since it is compatible
with screen readers on both desktop and mobile. Moreover, it has Quasi-Negligible-Cost-
per-User since no SMS need to be delivered. Our scheme requires only small changes at
service site (i.e., the integration of a plugin), which renders it Quasi-Server-Compatible. In
this regard, our scheme is comparable to PHOOLPROOF, which has been similarly assessed
in [11]. Beyond JavaScript, our scheme has no requirements to the prover’s browser, which
sets it apart from PHONEAUTH or PHOOLPROOF.

We do not fully agree with the rating of PHONEAUTH provided by its authors regarding
Maturity as well as Browser-Compatibility: currently, the research prototype seems unavail-
able at any public outlet, and the scheme works only with an experimental version of Google
Chrome. Thus, we demoted PHONEAUTH’s ratings accordingly, compared to those reported
in [16]. Obviously, being a research prototype, our scheme is also not mature, yet.
Security. Concerning security, PASSPHONE is almost on par with the two best-performing
schemes PHOOLPROOF and CRONTO, the only difference being that our scheme involves
a trusted third party. While resorting to trusted third parties is often avoided in security
protocols, we argue that including a trusted third party becomes a lot less detrimental when
incorporating user privacy. It is an open question if this consideration merits introducing
the feature Quasi-No-Trusted-Third-Party into Bonneau et al.’s framework, but we refrained
from doing so in our evaluation. In general, our scheme covers all security-related features,
but we cannot guarantee Resilience-to-Internal-Observation; if an adversary has full control
over the prover’s device, she might be able to recover the secret key. Our threat model does
not cover this case and we leave it for future work. Finally, we would like to point out that
our scheme features Unlinkability despite the fact that it uses a trusted third party.

5 Regarding GOOGLE 2-STEP, we adopt the rating from [16] since one of that paper’s authors works at Google Security
and may have deeper insights into their scheme; regarding the proposals from [39], we consider the mid-bandwidth and
the full-bandwidth schemes with a similar security level as ours.
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Table 6. Comparison of phone-based two-factor authentication schemes according to the evaluation
framework for authentication schemes by Bonneau et al. [11]. The framework considers 25 features
an authentication scheme can offer with respect to usability, deployability, and security. Each
column names one feature, and each scheme is rated based on whether it offers the feature (●), it
quasi offers the feature with reservations (○), or it does not offer the feature (–).
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#● #○
CRONTO [15] – – ○ – ● ○ ○ – – ○ – ● ● – ● ● ● ● ○ ● ● ● ● ● ● 13 5
FBD-BT-BT/WF-WF [39] – ○ ○ – ● ● ● – ○ ○ – – – ● ● ● ● ● ● ● – ● ● – ● 13 4
FBD-QR-BT/WF [39] – ○ ○ – ● ● ○ – ○ ○ – – – ● ● ● ● ● ● ● – ● ● ● ● 13 5
GOOGLE 2-STEP [22] – – ○ – ● ○ ○ ○ ○ – – ● ● – – ○ ● – – ● ● ● ● ● ● 10 6
MBD-QR-QR [39] – ○ ○ – ○ ○ – – ○ ○ – ○ – ● – ● ● ● – ● – ● ● ● ● 9 7
MP-AUTH [30] – – ○ – ● ○ – ○ ○ ○ – – – ● – ○ – – – – ● ● ● ● ● 7 6
PHONEAUTH (opportunistic) [16] – ○ ○ – ● ● ○ ● ● ● ○ – ○ ● ○ ○ ○ ○ ○ ○ ○ ● ● ● ○ 9 13
PHOOLPROOF [35] – – ○ – ● ○ ○ – ○ ○ ○ – – ● ● ● ● ● ○ ● ● ● ● ● ● 12 7
SOUNDPROOF [26] – – ○ – ● ● ○ ○ ● ● – ● – ● ○ – ● ● – ● ● ● ● ● – 13 4
TIQR [45] – – ○ – ● ○ ○ – ○ ○ ○ ● ● ● – ● – – ○ ● ○ ● ● ● ● 10 8

PASSPHONE (this paper) – ○ ○ – ● ○ ○ ● ○ ○ ○ ● – ● ● ● ● ● – ● ● ● – ● ● 13 7

For ease of comparison, Column “Summary” in Table 6 gives the counts of features
and quasi-features. Altogether, our scheme offers as many full features as the competition
despite suffering losses for introducing a trusted third party and for not being mature, yet.
This is encouraging since this evaluation demonstrates the potential of our authentication
scheme for future research and development as well as for transfer into practice.

8 Practical Application
Choosing the first factor. Similar to other phone-based two-factor authentication schemes
from the literature, PASSPHONE does not aim at replacing the still prevalent password au-
thentication, but at strengthening it in a two-factor setup. The option of outsourcing the
verification of the second factor plus the privacy properties of our scheme, however, renders
it attractive for small service providers since it enables them to add two-factor authentica-
tion with comparably small development overhead to their existing authentication solution.
The first factor used in conjunction with our protocols is therefore not at all tied to the use
of login and password; for example, it can be based on physical tokens, biometric proper-
ties, or another challenge-response protocol. In practice, however, most service providers
still employ passwords as a first factor, exchanging passwords over TLS, processing them
with a password-hashing function, and storing them at server side as salted password hashes.
Nevertheless, PASSPHONE’s security does not rest with the first factor employed.
Limitations of web-based authentication. Regarding authentication for web services, we
concede that privacy-unaware users may still easily be tracked by means not related to our
protocol (e.g., by searching for reused mail addresses or credentials). Moreover, users should
be aware that their browser and OS configuration is used by many tracking services. Anony-
mous communication techniques, such as TOR [18], can be combined with PASSPHONE
to also provide IP-level anonymity and unlinkability; however, securing the user from all
privacy perils is clearly beyond the scope of what a web-based authentication protocol can
address. We stress, however, that PASSPHONE does not introduce yet another angle of de-
anonymizing users, which is a first in the domain of web authentication.

14



9 Conclusion
This work introduces PASSPHONE, a new phone-based two-factor authentication scheme,
consisting of all protocols necessary for bootstrapping, authentication, and key manage-
ment. PASSPHONE is designed with a focus on deployability: it allows for easy integra-
tion at service providers by outsourcing authentication to a trusted third party. Moreover,
it is the first web-based three-party authentication scheme that protects the privacy of its
users by minimizing the amount of information shared among the parties involved, hiding
the relation of users and service providers from the trusted third party, and rendering users
unlinkable among service providers. We analyze PASSPHONE’s security, show its privacy
properties, and present insights from a proof-of-concept implementation. Under the authen-
tication scheme evaluation framework of Bonneau et al., our scheme competes with the
best-performing ones from the literature. In conclusion, with the success of outsourcing first-
factor authentication, also outsourcing the second-factor authentication in a two-factor setup
is reasonable, albeit, ideally using different trusted third parties for each factor to spread
risks. We hope that PASSPHONE’s privacy properties will inspire more privacy-awareness in
future protocol designs.
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