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Abstract

Existing cross-encoder re-rankers can be cate-
gorized as pointwise, pairwise, or listwise mod-
els. Pair- and listwise models allow passage
interactions, which usually makes them more
effective than pointwise models but also less
efficient and less robust to input order permuta-
tions. To enable efficient permutation-invariant
passage interactions during re-ranking, we pro-
pose a new cross-encoder architecture with
inter-passage attention: the Set-Encoder. In
Cranfield-style experiments on TREC Deep
Learning and TIREx, the Set-Encoder is as
effective as state-of-the-art listwise models
while improving efficiency and robustness to
input permutations. Interestingly, a point-
wise model is similarly effective, but when
additionally requiring the models to consider
novelty, the Set-Encoder is more effective
than its pointwise counterpart and retains its
advantageous properties compared to other
listwise models. Our code and models are
publicly available at https://github.com/
webis-de/set-encoder.

1 Introduction

Existing cross-encoders for passage re-ranking
(Nogueira et al., 2019; Nogueira and Cho, 2020;
Nogueira et al., 2020; Pradeep et al., 2021, 2022;
Zhuang et al., 2022) lack a central desirable prop-
erty of learning-to-rank models (Pang et al., 2020):
permutation-invariant interactions between the in-
put passages. Passage interactions help to improve
the ranking effectiveness through information ex-
change, while permutation invariance ensures that
the same ranking is output independent of the or-
dering of the input passages.

Pointwise cross-encoders process passages inde-
pendently of one another (Nogueira and Cho, 2020;
Nogueira et al., 2020; Pradeep et al., 2022; Zhuang
et al., 2022). As such, they are permutation-in-
variant by design but cannot cannot model pas-
sage interactions. Previous pairwise (Nogueira
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Figure 1: Comparison of our Set-Encoder architecture
with state-of-the-art listwise re-rankers for three input
passages. List-wise re-rankers concatenate the input
passages, leading to potentially inconsistent rankings.
Many (or all) permutations are re-ranked for optimiza-
tion. Instead, the Set-Encoder uses novel [INT] tokens
for permutation-invariant inter-passage attention.

et al., 2019; Pradeep et al., 2021) and listwise cross-
encoders (Sun et al., 2023; Pradeep et al., 2023a,b;
Tamber et al., 2023) model passage interactions
by concatenating passages in the input sequence.
While these models are often more effective, the
derived rankings depend on the order in which the
input passages are concatenated. To avoid poten-
tially inconsistent rankings for different input per-
mutations, many (or all) permutations are re-ranked
to optimize a final fused re-ranking’s effectiveness;
visualized in Figure 1 (right).

1

mailto:ferdinand.schlatt@uni-jena.de
https://github.com/webis-de/set-encoder
https://github.com/webis-de/set-encoder


We propose the Set-Encoder, a new cross-
encoder architecture that models passage interac-
tions in a permutation-invariant way; visualized in
Figure 1 (left). Instead of concatenating the input
passages, the Set-Encoder processes them like a
poitnwise cross-encoder as different sequences in
a batch. To enable passage interactions, the Set-
Encoder lets each sequence aggregate information
in special [INT] interaction embedding tokens that
all other sequences can attend to. The model is
permutation-invariant as all [INT] tokens share the
same positional encoding. We call this new atten-
tion pattern inter-passage attention.

In experiments on the TREC 2019 and 2020
Deep Learning tracks (Craswell et al., 2019, 2020)
and in TIREx (Fröbe et al., 2023), our Set-Encoder
is as effective as state-of-the-art LLM-based re-
rankers (Zhuang et al., 2022; Pradeep et al., 2023b).
At the same time, it is robust to ranking permuta-
tions and orders of magnitude more efficient. How-
ever, contrasting previous work (Nogueira et al.,
2020; Pradeep et al., 2021; Buyl et al., 2023), we
find inter-passage attention to not be necessary, as
a pointwise model (Schlatt et al., 2024) is simi-
larly effective. To demonstrate the advantages of
listwise models, we fine-tune the Set-Encoder to
re-rank passages not just according to relevance but
also novelty and find the Set-Encoder to then be
more effective than its pointwise counterpart.

2 Related Work

Pre-trained transformer-based language models are
currently the most effective passage re-rankers (Lin
et al., 2022). The models can roughly be divided
into two types: bi-encoders and cross-encoders.
Bi-encoders process the query and passage sep-
arately, aggregate the semantic information into
embeddings, and compare these embeddings for
similarity (Reimers and Gurevych, 2019). Cross-
encoders receive a query and a passage as input and
output a relevance score (Nogueira and Cho, 2020).
Note that, for brevity, we refer to all transformer-
based language models that process a query and
a passage simultaneously, be they encoder-only
(Nogueira and Cho, 2020), decoder-only (Zhuang
et al., 2022; Pradeep et al., 2023a,b), or encoder–
decoders (Nogueira et al., 2020; Zhuang et al.,
2022), as cross-encoders.

Cross-encoders are especially effective as they
can explicitly model query–passage interactions.
However, current cross-encoders lack a central

property that previously improved the effective-
ness and efficiency of feature-based learning-to-
rank models (Lee et al., 2019; Pang et al., 2020;
Pobrotyn et al., 2020; Pasumarthi et al., 2020; Buyl
et al., 2023): modelling passage interactions in a
permutation-invariant way. Passage interactions
improve the effectiveness of re-ranking models by
allowing passages to exchange information and
permutation invariance is essential for efficiency.
Without permutation invariance, a model is sensi-
tive to ranking perturbations and must test multiple
permutations to achieve a good effectiveness.

Previous work demonstrated that passage inter-
actions can improve cross-encoders’ effectiveness.
For example, duo cross-encoders concatenate the
query with two passages to predict which passage
of the pair should be ranked higher (Pradeep et al.,
2021; Nogueira et al., 2019). However, predictions
of duo cross-encoders are neither symmetric nor
transitive (Gienapp et al., 2022); switching the or-
der of the input pair can lead to a different ranking
preference. Therefore, duo cross-encoders must
score all passage pairs for maximum effectiveness.

More recently, decoder-only LLMs simultane-
ously re-rank up to 20 passages (Sun et al., 2023;
Pradeep et al., 2023a,b). However, next to being
expensive to run, LLM-based cross-encoders are
also sensitive to ranking perturbations. Several
permutations need to be tested for maximum effec-
tiveness, despite heuristics to minimize the number
of permutations to test (Tang et al., 2023).

Existing cross-encoders that model passage inter-
actions are not permutation-invariant because they
concatenate passages in the input. Our Set-Encoder
follows a different strategy and processes passages
in parallel. Like a bi-encoder, the Set-Encoder en-
codes the semantic information of a passage in a
single embedding vector. This embedding vector
is shared with all other passages, enabling passage
interactions while ensuring permutation invariance.
Our respective inter-passage attention pattern is
somewhat similar to the attention pattern of the
Fusion-in-Encoder (FiE) model proposed for ques-
tion answering (Kedia et al., 2022). FiE enables
passage interactions within an encoder by adding
additional so-called global tokens to which all pas-
sage tokens can attend to, and the global tokens can
attend to all passage tokens. However, no direct
interaction between passage tokens is possible. In
contrast, our Set-Encoder allows for direct passage
interactions as all passage tokens can attend to a
single new [INT] token of each other passage.
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3 The Set-Encoder Model

Our Set-Encoder introduces inter-passage attention,
a novel attention pattern to model permutation-
invariant interactions between passages. Inter-
passage attention addresses three challenges: (1) in-
put passages must be able to attend to each other,
(2) the interactions between the passages must not
encode any positional information about the pas-
sage ordering, and (3) the interactions should be
“lightweight” enough for efficient fine-tuning.

Previous work has addressed the first challenge
(attention between passages) by concatenating the
query and multiple passages into one input se-
quence, visualized in Figure 1 (right). However,
concatenation violates the second challenge: the
language model’s positional encodings (used to
determine a token’s position) span across passage
boundaries and thus encode the order of passages
in the sequence. Furthermore, concatenation also
violates the third challenge (efficiency), as the lan-
guage model’s computational cost scales quadrati-
cally with the length of the input sequence.

Instead of concatenating passages, inter-passage
attention processes the passages in parallel with in-
dividual input sequences per passage, as visualized
in Figure 1 (left). Each input sequence’s positional
encodings start from zero, so no information about
the passage order is encoded (second challenge).
To still let the passages attend to each other (first
challenge), we use a special passage interaction
[INT] token that aggregates semantic information
about its passage and to which tokens from other
sequences can attend. The Set-Encoder allows pas-
sage interactions solely through these [INT] tokens,
making inter-passage attention computationally ef-
ficient (third challenge).

3.1 Permutation-Invariant Input Encoding
The standard cross-encoder computes a relevance
score for query–passage pairs (q, d) given as to-
ken sequences t1q . . . tmq and t1d . . . tmd

. In this
work we use BERT-style encoding (Devlin et al.,
2019), meaning the final tokens tmq and tmd

are
special [SEP] separator tokens. The concatenated
sequence is prepended by a special [CLS] clas-
sification token tc. The resulting input sequence
tc t1q . . . tmq t1d . . . tmd

is then passed through a
transformer-based encoder model. Finally, the rel-
evance score of d for q is computed by a linear
transformation on the final contextualized embed-
ding of the [CLS] token tc.

The Set-Encoder receives a query q and a set
of passages {d1, . . . , dk} as input and computes
a relevance score for each passage. To this end,
the Set-Encoder builds a set of input sequences by
prepending a [CLS] token, an [INT] token, and
the query sequence to each passage individually.
The set of input sequences is then processed si-
multaneously, similar to batched processing with
a standard cross-encoder, but with attention from
an input sequence’s tokens to the [INT] tokens of
the other input sequences (see Section 3.2). The
batched input sequences are passed through an en-
coder, and the relevance scores of the passages di
for q are computed by a linear transformation on
the passage’s final [CLS] token embedding.

Our batched input encoding is permutation-
invariant as each input sequence’s positional encod-
ings start from zero. For example, the [INT] token
is always at position 1 and the first token of each
passage at position mq +1. The model then cannot
distinguish between different permutations of the
input sequences and, therefore, also not between
different permutations of the passages.

3.2 Inter-Passage Attention
The Set-Encoder allows every sequence to attend
to the [INT] tokens of every other sequence. Our
intuition is that these [INT] tokens aggregate the
semantic information from their sequence and can
share it with all other sequences.

Using single tokens for passage interactions is
on the efficiency end of a spectrum of possible vari-
ants for exchanging information between passages.
The other extreme is allowing all tokens to attend to
one another, as is done by previous listwise cross-
encoder by concatenating input passages. Sharing
more tokens can make the information exchange
between passages more fine-grained but makes it
computationally more expensive. Increasing the
number of passage interaction tokens increases the
computational cost quadratically. We hypothesize
that using single tokens for information exchange
suffices for effective passage interactions while be-
ing drastically more efficient.

Our hypothesis is motivated by the token-based
semantic information aggregation in many model
architectures. For instance, the [CLS] token cap-
tures a query or passage’s semantic information
in bi-encoders. In standard cross-encoders, the
[CLS] token aggregates query–passage informa-
tion to compute a relevance score. We hypothesize
that our additional [INT] token can also aggregate
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semantic information and share this information
with other passages. Note that we tested directly
using the [CLS] token for passage interactions. We
found this variant of passage interaction to pro-
duce effective re-rankers but incapable of learning
passage interactions (see Section 4.2).

To implement inter-passage attention, we modify
the original dot-product attention function of the
transformer (Vaswani et al., 2017):

Attention(Q,K, V ) = softmax
(
QKT

√
h

)
V ,

where Q, K, and V are matrices of embedding vec-
tors and h is the dimensionality of the embeddings.
Each vector in the matrices corresponds to a token
from the encoder’s input sequence.

In the Set-Encoder’s input representation, we in-
stead have vector matrices Q(i), K(i), and V (i) for
each passage di’s input sequence. To allow the i-th
input sequence to attend to the [INT] tokens of all
other input sequences, we append the [INT] token’s
embedding vectors from the other input sequences’
embedding matrices K(j) and V (j) to the input
sequence’s embedding matrices K(i) and V (i).

Specifically, let K̄(i) = [K
(j)
2 : j ̸= i] and

V̄ (i) = [V
(j)
2 : j ̸= i] be the concatenated matri-

ces of the [INT] token’s embedding vectors from
K(j) and V (j) of every passage dj ̸= di, with
[· ·] denoting column-wise vector / matrix concate-
nation (i.e., [MM ′] is equal to a matrix whose
“left” columns come from M and whose “right”
columns come from M ′). Once the [INT] to-
kens from the other passages’ embedding vec-
tors have been appended to the sequence matri-
ces, we obtain the inter-passage attention pattern:
Attention(Q(i), [K(i)K̄(i)], [V (i)V̄ (i)]).

3.3 Fine-tuning
We mostly follow the two-stage cross-encoder fine-
tuning approach proposed by Schlatt et al. (2024) to
fine-tune the Set-Encoder. See Appendix B for de-
tails on hyperparameters. In the first stage, a cross-
encoder is fine-tuned on MS MARCO (Nguyen
et al., 2016) relevance labels using Localized Con-
trastive Estimation (LCE) (Gao et al., 2021):

LLCE = − log
exp(s+)∑k
i=1 exp(si)

.

For a single query, the loss is computed over the
predicted relevance scores si for a set of passages

{d1, . . . dk} of which one is a labeled relevant pas-
sage d+. The other k−1 passages are sampled from
the top 200 passages retrieved by ColBERTv2 for
the training query (Santhanam et al., 2022).

In the second stage, the model is distilled from
LLM-based cross-encoder rankings using the Rank-
DistiLLM dataset (Schlatt et al., 2024) and the
RankNet loss (Burges et al., 2005):

LRankNet =
n∑

i=1

n∑
j=1

1ri<rj log(1 + esi−sj ) ,

where 1 is the indicator function and ri is the
rank of a passage di assigned by an RankZephyr
(Pradeep et al., 2023b), a state-of-the-art LLM-
based cross-encoder.

3.4 Fine-tuning to Detect Duplicates
In our experiments, we found the Set-Encoder does
not require passage interactions to be effective
and, therefore, does not make use of the [INT]
token to share information between passages (see
Section 4.1 for more details). To ensure the Set-
Encoder learns to model passage interactions, we
modify the first-stage fine-tuning step to include a
duplicate detection loss.

We randomly sample a passage d× from the set
of input passages, duplicate it, and add it to the
set of input passages as passage dk+1. We then
add a binary classification head to the model that
outputs a probability pi whether a passage di is
the duplicate passage. Our duplicate-aware LCE is
then LCE plus the binary cross-entropy loss over
the model’s output probabilities:

LDA-LCE = LLCE +
k∑

i=1

1di=d× log pi+

1di ̸=d× log(1− pi) .

3.5 Fine-tuning to Rank According to Novelty
To demonstrate the advantages of listwise mod-
els, we fine-tune the Set-Encoder to rank passages
according to relevance and novelty, meaning a pas-
sage’s utility to a user depends on its relevance and
if it provides novel information compared to pas-
sages ranked above it (Clarke et al., 2008). Due to
a lack of large-scale training datasets for this task,1

we create a new dataset, Rank-DistiLLM-Novelty.
1We attempted to fine-tune the Set-Encoder using the diver-

sity tracks from TREC Web 2009–2014 but found the dataset
to be too small to yield effective models.
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It takes advantage of the fact that MS MARCO
contains many near-duplicate passages. See Ap-
pendix C for examples. For a ranking from the
Rank-DistiLLM dataset, we use scikit-learn’s (Pe-
dregosa et al., 2011) agglomerative clustering al-
gorithm to group all passages with a word-based
Jaccard similarity greater than 0.5. We apply the
same strategy to the relevance labels of the TREC
Deep Learning 2019 and 2020 tasks for evaluation
(Craswell et al., 2019, 2020).

To fine-tune a model to rank passages according
to relevance and novelty, we propose a new novelty-
aware RankNet loss function. Intuitively, the loss
penalizes a model if it ranks a less relevant passage
higher than a more relevant one or a near-duplicate
passage higher than a non-duplicate one. Let ci be
the cluster of near-duplicate passages to which di
belongs. The novelty-aware RankNet loss then is

LNA-RankNet =

k∑
i=1

k∑
j=1

1r̄i<r̄j log(1 + esi−sj ) ,

r̄i = ri · (1− max
j=1...k

1ci=cj · 1si<sj ) ,

where r̄i is an adjusted relevance label that sets the
relevance of a passage to zero if the model ranks a
near-duplicate passage higher.

4 Evaluation

To evaluate the effectiveness of the Set-Encoder,
we conduct experiments on the TREC Deep Learn-
ing (DL) 2019 and 2020 passage tracks (Craswell
et al., 2019, 2020) and the TIREx platform (Fröbe
et al., 2023). We refer to Appendix D for details on
the corpora and tasks in TIREx. For TREC DL, we
report nDCG@10 when re-ranking the top 100 pas-
sages retrieved by either BM25 (Robertson et al.,
1994) or ColBERTv2 (Santhanam et al., 2022).
For our novelty-based ranking task, we report α-
nDCG@10 (Clarke et al., 2008) with α = 0.99 and
consider all passages from a near-duplicate clus-
ter to belong to a subtopic. With a high α value,
only the first passage from a set of near-duplicates
contributes to the gain. See Section 3.5 for further
details on how we determine near-duplicate pas-
sage clusters. For TIREx, we report nDCG@10
micro-averaged across all tasks from a corpus and
the macro-averaged arithmetic and geometric mean
across all corpora.

We compare the Set-Encoder with RankGPT-
4o (Sun et al., 2023) and RankZephyr (Pradeep

Table 1: Comparison of the effectiveness in nDCG@10
of various cross-encoders on the TREC DL 2019 and
2020 tracks using BM25 or ColBERTv2 as the first stage
retrieval models. The highest and second-highest scores
per track are bold and underlined, respectively. Model
sizes are given in number of parameters. † denotes
a significant difference (p < 0.05, Holm-Bonferroni-
corrected) to the Set-Encoder with 330M parameters.

Model Parameters TREC DL 19 TREC DL 20

First Stage BM25 CBv2 BM25 CBv2

First Stage – 0.480† 0.732† 0.494† 0.724†

RankGPT-4o ? 0.725 0.784 0.719 0.793
RankGPT-4o Full ? 0.732 0.781 0.711 0.796
RankZephyr 7B 0.719 0.749 0.720 0.798
LiT5-Distill 220M 0.696 0.753 0.679† 0.744†

monoELECTRA 110M 0.720 0.768 0.711† 0.770
330M 0.733 0.765 0.727 0.799

Set-Encoder 110M 0.724 0.788 0.710† 0.777
330M 0.727 0.789 0.735 0.790

et al., 2023b), two state-of-the-art listwise LLM-
based cross-encoders. RankGPT-4o uses OpenAI’s
most recent GPT-4o model, while RankZephyr
is open-source and uses a fine-tuned 7B LLaMa
model (Touvron et al., 2023). Due to limited input
length, LLM-based cross-encoders commonly use
a windowed strategy to re-rank passages. Since
GPT-4o has a maximum input length of up to
128k tokens, we also test a version that re-ranks
all 100 passages simultaneously. We refer to this
model as RankGPT-4o Full. We also compare
the Set-Encoder with LiT5-Distill (Tamber et al.,
2023), a recently proposed smaller LLM-based
cross-encoder based on the T5 model (Raffel et al.,
2020) and distilled from RankGPT-3.5 rankings.
Finally, we include a pointwise monoELECTRA
model that is identical to the Set-Encoder but does
not use inter-passage attention (Schlatt et al., 2024).

4.1 Effectiveness of Inter-Passage Attention
In-domain Re-ranking Table 1 reports the ef-
fectiveness on TREC DL. The Set-Encoder is on
par with substantially larger state-of-the-art LLM-
based cross-encoders. None of the differences to
LLM-based cross-encoders are statistically signif-
icant (p < 0.05, Holm-Bonferroni-corrected), but
the 330M parameter variant is the most effective
model in two of four retrieval settings. The smaller
110M-parameter Set-Encoder is slightly less effec-
tive in most settings but significantly worse than its
larger variant in only a single setting.
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Table 2: Effectiveness in nDCG@10 of various cross-encoders micro-averaged across all queries from a collection
from the TIREx framework (Fröbe et al., 2023). Macro-averaged arithmetic and geometric means are computed
across all corpora. Model sizes are given in the number of parameters. The highest and second-highest averaged
scores and scores per corpus are bold and underlined, respectively.

Model Parameters
Antique

Args.me

ClueWeb09

ClueWeb12

CORD-19

Cranfield

Disks4+5
GOV

GOV2

MEDLINE

NFCorpus

Vaswani
WaPo

A. Mean
G. Mean

First Stage – 0.510 0.404 0.177 0.364 0.586 0.008 0.436 0.235 0.466 0.358 0.268 0.447 0.364 0.356 0.385

RankZephyr 7B 0.528 0.363 0.213 0.303 0.767 0.006 0.556 0.294 0.560 0.457 0.299 0.512 0.508 0.413 0.453
LiT5-Distill 220M 0.571 0.394 0.214 0.275 0.686 0.008 0.509 0.266 0.534 0.334 0.278 0.429 0.470 0.382 0.419

m.ELECTRA 110M 0.587 0.375 0.209 0.295 0.692 0.007 0.521 0.264 0.541 0.326 0.291 0.522 0.458 0.391 0.430
330M 0.570 0.368 0.221 0.313 0.716 0.006 0.559 0.288 0.572 0.376 0.301 0.526 0.504 0.409 0.448

Set-Encoder 110M 0.588 0.374 0.216 0.299 0.683 0.007 0.534 0.272 0.543 0.321 0.291 0.523 0.461 0.393 0.431
330M 0.600 0.408 0.226 0.310 0.702 0.006 0.553 0.285 0.573 0.348 0.297 0.530 0.508 0.411 0.450

Interestingly, the pointwise monoELECTRA
model features similar effectiveness. The model
using 330M parameters is the most effective in
the other two out of four settings, and the smaller
model is again only slightly less effective. The fact
that a pointwise monoELECTRA model is on par
with the Set-Encoder and state-of-the-art listwise
LLM re-rankers suggests passage interactions are
unnecessary for effective in-domain re-ranking.

Out-of-domain Re-ranking We find this result
also translates to out-of-domain re-ranking. Table 2
reports the results for out-of-domain re-ranking
across the diverse corpora contained in TIREx.
We had to exclude RankGPT-based models since
TIREx requires models be executed in a sandboxed
environment without internet access. We want to
highlight two noteworthy results.

First, the Set-Encoder and monoELECTRA are
again on par with the current state-of-the-art model
on TIREx, RankZephyr. On average, the large
330M-parameter Set-Encoder is slightly more ef-
fective than the large monoELECTRA model, but
both feature very similar effectiveness compared
to RankZephyr. This result suggests that passage
interactions are also unnecessary for effective out-
of-domain re-ranking. We attribute this in part to
the TREC-style relevance assessments—Assessors
judge query–passage pairs independently of one
another. Therefore, a model can also score the pas-
sages independently to be effective. Passage inter-
actions are beneficial in tasks where, for example,
fairness, diversity, or novelty are considered, and
we investigate this in more detail in Section 4.2.

Second, despite being fine-tuned on RankZephyr
rankings, the Set-Encoder and monoELECTRA are
more effective in most out-of-domain re-ranking

tasks than their teacher model. The Set-Encoder
achieves a higher effectiveness than RankZephyr
on 6 out of 13 corpora, RankZephyr is more effec-
tive on 5 corpora, and they reach same effectiveness
on 2. The results are similar for monoELECTRA,
which is more effective than RankZephyr on 8 cor-
pora and less effective on 4 with 1 tie. RankZephyr
only reaches marginally higher average effective-
ness than the other two cross-encoers by being
substantially more effective on the two medical
corpora, CORD-19 and MEDLINE. We attribute
this to RankZephyr not being permutation invariant.
Consequently, it is sensitive to the quality of the
first-stage retrieval, as we investigate in Section 4.3.

4.2 Novelty Ranking
To better investigate the effect of passage interac-
tions on re-ranking effectiveness, we compare the
cross-encoders on a novelty ranking task. Models
should rank passages according to relevance and
place all but one of a set of lexically near-duplicate
passages at the bottom of the ranking.

We fine-tune 110M parameter variants of the Set-
Encoder and monoELECTRA on this task using
our newly proposed novelty-aware RankNet loss
(see Section 3.5). We also test the effect of fine-
tuning our Set-Encoder to detect duplicate passages
during first-stage fine-tuning using our newly pro-
posed duplicate-aware LCE loss (see Section 3.4).
Since monoELECTRA is incapable of detecting du-
plicates by design, we refrain from fine-tuning it on
duplicate detection. For comparison, we also test
augmenting the prompt for the LLM-based cross-
encoders to account for novelty. See Appendix E
for details on the prompt. Table 3 compares the
nDCG@10 and α-nDCG@10 of various models.
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Table 3: Comparison of nDCG@10 and α-nDCG@10
(α = 0.99) of various cross-encoders on the TREC
Deep Learning 2019 and 2020 tracks clustered into near-
duplicate subtopics. The highest and second-highest
scores per track are bold and underlined, respectively.
† denotes a significant difference (p < 0.05, Holm-
Bonferroni-corrected) compared to the Set-Encoder fine-
tuned using LDA-LCE and then LNA-RN.

Model Prompt nDCG α-nDCG

2019 2020 2019 2020

First Stage – 0.732 0.724 0.700†0.722†

R.GPT-4o Relevance 0.784†0.793†0.750 0.759
Novelty 0.778†0.806†0.741 0.773

R.GPT-4o Full Relevance 0.781†0.796†0.738 0.763
Novelty 0.785†0.803†0.750 0.771

RankZephyr Relevance 0.749 0.798†0.699†0.765
Novelty 0.753 0.800†0.700†0.760

Model 1. L 2. L

monoELEC. LLCE
LRN 0.768†0.770†0.718†0.745†

LNA-RN 0.704 0.675 0.785 0.753

Set-Encoder
LLCE

LRN 0.780†0.757†0.733†0.747†

LNA-RN 0.714 0.651 0.779 0.743†

LDA-LCE
LRN 0.788†0.777†0.740†0.752†

LNA-RN 0.710 0.690 0.821 0.803

Set-Enc. [INT] LDA-LCE LNA-RN 0.707 0.670 0.773 0.748†

Relevance Unsurprisingly, we find that fine-
tuning for relevance and novelty reduces the effec-
tiveness of models when only evaluating relevance.
Regarding nDCG@10, the Set-Encoder first fine-
tuned with duplicate-aware LCE and fine-tuned
with novelty-aware RankNet is significantly worse
(p < 0.05, Holm-Bonferroni-corrected) than when
fine-tuned with normal RankNet and also signifi-
cantly worse than most LLM-based cross-encoders.
The LLM-based cross-encoders do not seem to
be affected by our novelty-aware prompt and only
show minor differences in effectiveness.

Relevance and Novelty While the pointwise
monoELECTRA has no access to listwise infor-
mation, the model still improves in terms of α-
nDCG@10 when fine-tuned with novelty-aware
RankNet. The model learns to assign higher ranks
to short passages and lower ranks to long passages,
as short passages are less likely to have lexical near-
duplicates in MS MARCO. See Appendix F for
details. In contrast, the LLM-based cross-encoders
are again largely unaffected by the novelty prompt.

The Set-Encoder is noticeably more effective
than all other cross-encoders. While the differ-

ences are only significant for a subset of compar-
isons, it has a 0.036 and 0.030 higher α-nDCG@10
than the second-best models on the 2019 and
2020 tracks, respectively—the largest difference
between two neighboring models when sorted by
effectiveness.

However, the Set-Encoder is only effective when
initially fine-tuned with duplicate-aware LCE to
detect exact duplicates. When initially fine-tuned
with normal LCE, the Set-Encoder cannot profit
from inter-passage attention and is on par with a
pointwise monoELECTRA model. In other words,
when initially only fine-tuned with a relevance sig-
nal, the Set-Encoder does not learn to use inter-
passage attention. Only when “priming” the model
during initial fine-tuning to exchange information
via inter-passage attention can it learn passage in-
teractions and improve on the novelty ranking task.

Ablation Finally, we investigate the effectiveness
of the Set-Encoder without adding an additional
[INT] token and using the [CLS] token for interac-
tion. Table 3 shows the model is unable to learn to
detect duplicates during initial fine-tuning and is
on par with the Set-Encoder fine-tuned with normal
LCE. This result suggests that the [INT] token is
crucial for the model to learn passage interactions.

4.3 Permutation Invariance
Positional Biases All previous listwise cross-
encoders have an implicit positional bias by con-
catenating input passages. Most LLM-based cross-
encoders also have an explicit positional bias due
to the limited input length. For example, to re-
rank 100 passages, the original RankGPT model,
RankZephyr, and LiT5-Distill use a windowed
strategy and re-rank only 20 passages at a time.

We visualize these explicit and implicit biases
in Figure 2. It shows the average proportional
rank changes for various cross-encoders when re-
ranking the top 100 passages retrieved by BM25 for
TREC DL 2019 and 2020. The lighter a pixel, the
more frequently the model ranks a passage from a
particular position to another particular position.

For RankGPT-4o, RankZephyr, and LiT5-Distill,
the explicit bias from the windowed strategy is
immediately evident in a distinct step pattern.
RankGPT-4o Full, which does not use the win-
dowed strategy and re-ranks all 100 passages at
once, does not exhibit the step pattern but instead
has a distinct diagonal line. The line indicates that
the model tends to keep passages in the same po-
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Figure 2: Proportional rank changes of various cross-encoders for re-ranking BM25 averaged across all queries
from the TREC Deep Learning 2019 and 2020 tracks.
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Figure 3: Effectiveness in terms of nDCG@10 for dif-
ferent permutations of BM25 rankings.

sition as in the original ranking. The Set-Encoder
does not exhibit any immediately obvious posi-
tional biases; only a clustering of lighter pixels
in the lower left corner and darker areas and the
upper left and lower right quadrants show the Set-
Encoder’s ranking correlates to some degree with
the original BM25 ranking.

Ranking Perturbations To test how these posi-
tional biases affect a cross-encoder’s ranking effec-
tiveness, we generate several “corrupted” perturba-
tions of the top 100 passages retrieved by BM25 on
the TREC DL 2019 and 2020 tracks: a random per-
mutation, an ideal permutation, and a reverse-ideal
permutation. Ideal and reverse-ideal permutations
are generated by reordering the passages according
to their relevance judgments. Figure 3 visualizes
nDCG@10 of various LLM-based cross-encoders
and our Set-Encoder on the different permutations.

The Set-Encoder is robust to the order of input
passages and achieves the same effectiveness ir-
respective of the permutation. All other listwise
cross-encoders are affected by the ranking permu-
tations. RankGPT-4o, RankGPT-4o Full, and LiT5-
Distill lose a substantial portion of their effective-
ness when re-ranking the inverse ideal ranking and
improve with increasingly better initial rankings.
Only RankZephyr is comparatively robust to pertur-
bations because it is fine-tuned to counteract posi-
tional biases, but it nonetheless fluctuates slightly.

We additionally emphasize that the Set-Encoder
reaches a higher nDCG@10 than all LLM-based
cross-encoders on the inverse ideal, random, and
the original BM25 rankings. The LLM-based cross-
encoders only achieve higher effectiveness when re-
ranking the ideal permutation. Due to the positional
biases, most LLM-based cross-encoders require a
good initial ranking to be effective.

This result also explains how the Set-Encoder
and monoELECTRA are more effective than their
RankZephyr teacher model on most corpora in
TIREx. In the distillation dataset, RankZephyr is
applied to ColBERTv2, an already effective first-
stage retriever. The distilled models learn from
these very effective rankings and are then more
effective than the teacher model when re-ranking
lower quality initial rankings.

5 Conclusion

In this paper, we have introduced the Set-Encoder,
a new cross-encoder architecture that models pas-
sage interactions in a permutation-invariant way.
Contrasting previous work, our empirical results
show that passage interactions do not necessarily
improve a cross-encoder’s re-ranking effectiveness:
a pointwise model can be as effective as the Set-
Encoder or other state-of-the-art LLM-based cross-
encoders when only relevance is measured.

To demonstrate the benefits of passage interac-
tions, we also evaluate the Set-Encoder on a novelty
ranking task and show it is more effective in this
more complex setting than its pointwise counter-
part and previous listwise cross-encoders.

We also show that permutation invariance is cru-
cial for effective listwise cross-encoders. Explicit
and implicit positional biases in previous listwise
cross-encoders lead to inconsistent and subopti-
mal effectiveness across ranking settings, while the
Set-Encoder with no positional biases by design
is on par or more effective than previous listwise
cross-encoders, irrespective of the ranking setting.
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6 Limitations

In this paper, we have evaluated the Set-Encoder
with our new inter-passage attention pattern against
previous pointwise and listwise cross-encoders. To
our knowledge, our new pattern is the first to allow
direct permutation-invariant interactions between
input passages. Other patterns, like the Fusion-in-
Encoder (Kedia et al., 2022) for question answer-
ing, model passage interactions indirectly using
global tokens. As we were unable to find pub-
lished models or code for the Fusion-in-Encoder
approach, reproduction was difficult, so we instead
opted to compare against state-of-the-art LLMs.

To demonstrate the advantages of listwise re-
rankers over pointwise re-rankers, we introduced a
new semi-synthetic novelty-ranking task. We are
aware that our task is not fully representative of a
real-world novelty ranking task and, additionally,
it could be addressed by simply ranking passages
according to relevance and then removing near-
duplicate passages in a second step. Still, our goal
was not to create a realistic ranking task but rather,
due to a lack of suitable large-scale realistic novelty
ranking datasets, we created a semi-synthetic task
to demonstrate the potential benefits of passage
interactions.

Finally, the LLM-based cross-encoder’s effec-
tiveness could be improved by tuning the prompt.
Additional more thorough experiments are needed
to further analyze this hypothesis.

7 Ethical Considerations

Fine-tuning and running large transformer-based
language models requires considerable amounts of
energy and thus may contribute to climate change.
In our research, we have tried to minimize the envi-
ronmental impact by fine-tuning models with (com-
paratively) few parameters.

Additionally, while our work derives from pub-
licly available and widely used datasets and mod-
els, these may contain biases. We release our data,
code, and models to the public but caution that they
may contain biases that could be harmful if used in
production systems.
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Maik Fröbe, Jan Heinrich Reimer, Sean MacAvaney,
Niklas Deckers, Simon Reich, Janek Bevendorff,
Benno Stein, Matthias Hagen, and Martin Potthast.
2023. The Information Retrieval Experiment Plat-
form. In Proceedings of SIGIR 2023, pages 2826–
2836.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. Re-
think Training of BERT Rerankers in Multi-stage
Retrieval Pipeline. In Proceedings of ECIR 2021,
pages 280–286.
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B Fine-Tuning Settings
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3 (Clark et al., 2020) checkpoints
from HuggingFace (Wolf et al., 2020) as starting
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2google/electra-base-discriminator
3google/electra-large-discriminator
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from the MS MARCO passage dataset (Nguyen
et al., 2016) and the ColBERTv2 (Santhanam et al.,
2022) hard negatives from Rank-DistiLLM (Schlatt
et al., 2024) for first-stage fine-tuning. We trun-
cate queries to at most 32 tokens and passages to
256 tokens and fine-tune monoELECTRA and Set-
Encoder models for 20k steps with a batch size of
32 using LCE loss (Gao et al., 2021) and 7 neg-
ative examples per query. We also fine-tune the
Set-Encoder using our newly proposed duplicate-
aware LCE for at least 20k steps but at most 60k
steps or until the duplicate-detection cross-entropy
loss is smaller than 0.05 for at least 100 steps. The
models are then further fine-tuned for 3 epochs on
the ColBERTv2-then-RankZephyr distillation data
also from Rank-DistiLLM using the RankNet loss
function (Burges, 2010). For the novelty ranking
task, we fine-tune models for 10 epochs, using α-
nDCG@10 on TREC DL 2021 as a validation set.
We use the AdamW (Loshchilov and Hutter, 2019)
optimizer with a learning rate of 10−5. All mod-
els were trained on a single NVIDIA A100 40GB
GPU.

C MS MARCO Duplicates

Figure 5 shows the top 8 passages from the Rank-
DistiLLM dataset (Schlatt et al., 2024) for the query
“which organelle contains the majority of the cell’s
genetic materials in an animal cell?”. The pas-
sages are clustered based on their lexical similarity.
If the word-based Jaccard similarity between two
passages is greater than 0.5, we consider them as
near-duplicates.

D TIREx

Table 4 provides an overview of the 31 retrieval
tasks over 14 corpora contained in TIREx (Fröbe
et al., 2023) used for evaluation. Citations for each
corpus (except for Vaswani and WaPo, which do
not have specific references) are provided below:

• Antique — QA Benchmark (Hashemi et al., 2020)

• Args.me — Touché (Bondarenko et al., 2021, 2022)

• ClueWeb09 — TREC Web Tracks (Clarke et al., 2009,
2010, 2011, 2012)

• ClueWeb12 — TREC Web Tracks, Touché (Collins-
Thompson et al., 2013, 2014; Bondarenko et al., 2021,
2022)

• CORD-19 — TREC-COVID (Voorhees et al., 2020;
Wang et al., 2020)

• Cranfield — Fully Judged Corpus (Cleverdon, 1991)

• Disks4+5 — TREC-7/8, Robust04 (Voorhees and Har-
man, 1998, 1999; Voorhees, 2004)

Table 4: Overview of the retrieval tasks in TIREx (Fröbe
et al., 2023) used for evaluation. The number of tasks
per corpus, number of queries, average judgments per
query, and average document length are provided.

Corpus Tasks Queries Docs.

Details # Judg. # Length

Antique QA Benchmark 1 32.9 200 49.9
Args.me Touché 2020–2021 2 60.7 99 435.5
ClueWeb09 Web Tracks 2009–2012 4 421.8 200 1132.6
ClueWeb12 Web Tracks, Touché 4 163.8 200 5641.7
CORD-19 TREC-COVID 1 1386.4 50 3647.7
Cranfield Fully Judged Corpus 1 8.2 225 234.8
Disks4+5 TREC-7/8, Robust04 3 1367.4 350 749.3
GOV Web tracks 2002–2004 3 603.9 325 2700.5
GOV2 TREC TB 2004–2006 3 902.3 150 2410.3
MEDLINE Genomics, PM 4 518.3 180 309.1
MS MARCO DL 2019–2020 2 212.8 97 77.1
NFCorpus Medical LTR Benchmark 1 48.7 325 364.6
Vaswani Scientific Abstracts 1 22.4 93 51.3
WaPo Core 2018 1 524.7 50 713.0

• GOV — TREC Web Tracks (Craswell and Hawking,
2002; Craswell et al., 2003; Craswell and Hawking,
2004)

• GOV2 — TREC TB (Clarke et al., 2004, 2005; Büttcher
et al., 2006)

• MEDLINE — TERC Genomics, TREC Precision
Medicine (Hersh et al., 2004, 2005; Roberts et al., 2017,
2018)

• MS MARCO — TREC Deep Learning (Craswell et al.,
2019, 2020)

• NFCorpus — Medical LTR Benchmark (Boteva et al.,
2016)

• Vaswani — Scientific Abstracts

• WaPo — Core ’18

E Novelty Prompt

We add additional instructions to the original
RankGPT prompt (Sun et al., 2023) (which is also
used by RankZephyr (Pradeep et al., 2023b)) to
also take novelty into account. The novelty prompt
is shown in Figure 4.

F Relationship between Passage Length
and Near-Duplicates

MS MARCO contains many instances of near-
duplicates where two (or more) passages are iden-
tical, but another passage simply contains one or
two additional sentences appended at the end. See
Figure 5 for examples. Even without inter-passage
information, a pointwise model can then learn to
rank short passages at the top of the ranking and
long passages at the bottom to avoid ranking near-
duplicates at the top.
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System: You are RankGPT, an intelligent assistant that can rank passages based on their relevancy
and novelty to the query.

User: I will provide you with {num} passages, each indicated by number identifier [].
Rank the passages based on their relevance and novelty to the query: {query}.

Assistant: Okay, please provide the passages.

. . .

User: Search Query: {query}. Rank the {num} passages above based on their relevance to the
search query. The passages should be listed in descending order using identifiers. The
most relevant passages should be listed first. For near-duplicate passages, put all but
one of the passages at the bottom of the ranking. The output format should be [] > [],
e.g., [1] > [2]. Only respond with the ranking results, do not say any word or explain.

Figure 4: Novelty prompt for RankGPT and RankZephyr.

We see this behavior for the monoELECTRA
model. Pearson’s correlation coefficient between
passage rank and length in tokens rises from a
moderate 0.28 when fine-tuning with RankNet to
a strong 0.73 when fine-tuning with novelty-aware
RankNet (both statistically significant p < 0.05).
Pearson’s correlation coefficient also rises for the
Set-Encoder, from 0.36 to 0.54 (both statistically
significant p < 0.05), but is substantially less se-
vere.
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Query: which organelle contains the majority of the cell’s genetic materials in an animal cell?
Passages:

1. Cluster

• The nucleus is an organelle found in eukaryotic cells. Inside its fully enclosed nuclear membrane,
it contains the majority of the cell’s genetic material. This material is organized as DNA
molecules, along with a variety of proteins, to form chromosomes.

2. Cluster

• The cell nucleus contains the majority of the cell’s genetic material in the form of multiple
linear DNA molecules organized into structures called chromosomes. Each human cell contains
roughly two meters of DNA.

• The cell nucleus contains the majority of the cell’s genetic material in the form of multiple
linear DNA molecules organized into structures called chromosomes. Each human cell contains
roughly two meters of DNA. The cell nucleus contains the majority of the cell’s genetic material
in the form of multiple linear DNA molecules organized into structures called chromosomes.

3. Cluster

• The cell nucleus contains the majority of the cell’s genetic material in the form of multiple linear
DNA molecules organized into structures called chromosomes.Each human cell contains roughly
two meters of DNA.n cell biology, the nucleus (pl. nuclei; from Latin nucleus or nuculeus,
meaning kernel) is a membrane-enclosed organelle found in eukaryotic cells. Eukaryotes usually
have a single nucleus, but a few cell types have no nuclei, and a few others have many.

4. Cluster

• Nucleus. The nucleus is one of the most important organelles in a cell. It is often the largest
organelle in animal cells, but this is not always the case. Nuclei contain the genetic material
called DNA that is responsible for controlling and directing all cell activities. Note-although
this organelle is also found animal cells, the vacuoles from plant cells are drastically bigger and
play a much more important role in the processes of the cell.

• The nucleus is one of the most important organelles in a cell. It is often the largest organelle in
animal cells, but this is not always the case. Nuclei contain the genetic material called DNA
that is responsible for controlling and directing all cell activities.

• Nucleus. The nucleus is one of the most important organelles in a cell. It is often the largest
organelle in animal cells, but this is not always the case. Nuclei contain the genetic material
called DNA that is responsible for controlling and directing all cell activities.

• The nucleus is one of the most important organelles in a cell. It is often the largest organelle in
animal cells, but this is not always the case. Nuclei contain the genetic material called DNA that
is responsible for controlling and directing all cell activities. This is a very important organelle
given its vital function.

Figure 5: Example of duplicate passages in the MS MARCO dataset.
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