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Abstract

Cross-encoders distilled from large language
models (LLMs) are often more effective re-
rankers than cross-encoders fine-tuned on man-
ually labeled data. However, the distilled mod-
els usually do not reach their teacher LLM’s
effectiveness. To investigate whether best prac-
tices for fine-tuning cross-encoders on manu-
ally labeled data (e.g., hard-negative sampling,
deep sampling, and listwise loss functions) can
help to improve LLM ranker distillation, we
construct and release a new distillation dataset:
Rank-DistiLLM. In our experiments, cross-
encoders trained on Rank-DistiLLM reach
the effectiveness of LLMs while being or-
ders of magnitude more efficient. Our code
and data is available at https://github.com/
webis-de/msmarco-llm-distillation.

1 Introduction

Cross-encoders (Akkalyoncu Yilmaz et al., 2019;
Nogueira and Cho, 2020; Xiong et al., 2021) using
pre-trained transformer-based models are among
the most effective passage re-rankers (Hofstätter
et al., 2021; Rosa et al., 2022). However, they re-
quire large amounts of labeled data for fine-tuning.
In contrast, large language models (LLMs) require
no further fine-tuning to excel in re-ranking tasks
(Sun et al., 2023; Pradeep et al., 2023a,b) and are
often more effective than cross-encoders. The main
drawback of LLMs is their computational cost.
They are expensive to run and need several sec-
onds to re-rank 100 passages for a single query.
While this cost makes them impractical for produc-
tion search engines, LLMs can be used to create
training data for fine-tuning cross-encoders.

Initial work (Tamber et al., 2023; Baldelli et al.,
2024) showed that cross-encoders distilled from
LLMs are more effective re-rankers than cross-
encoders fine-tuned on manually labeled data.
However, the distilled cross-encoders did not reach
the effectiveness of the LLMs. One reason could

be that the distilled models were created without
considering the best practices for fine-tuning re-
rankers on manually labeled data. For example, no
“hard-negative” sampling was used, which requires
an effective first-stage retrieval model to sample
data (Gao et al., 2021; Pradeep et al., 2022), at
most 30 passages per query were provided, which
is not deep enough to achieve optimal effectiveness
(Zhuang et al., 2022), and no listwise losses were
used, which are usually more effective than pair-
and pointwise losses (Gao et al., 2021).

In this paper, we systematically investigate the
distillation of cross-encoders from LLMs. Using
our newly constructed Rank-DistiLLM dataset, we
analyze the effect of the first-stage retrieval model,
the ranking depth, and the amount of training data
on the distilled cross-encoder’s effectiveness. Addi-
tionally, we propose a novel listwise loss function
for distillation from ranking data.

In an evaluation on the TREC 2019 and 2020
Deep Learning tracks (Craswell et al., 2019, 2020)
and in the TIREx framework (Fröbe et al., 2023),
we find that our listwise loss function yields no ben-
efit over a pairwise loss function. However, distill-
ing cross-encoders using our new Rank-DistiLLM
dataset, which follows best practices like hard-
negative sampling and deeper rankings, helps to
close the effectiveness gap to LLMs: our dis-
tilled cross-encoders achieve similar effectiveness
as state-of-the-art ranking LLMs while being or-
ders of magnitude more efficient.

2 Related Work

MS MARCO Fine-Tuning MS MARCO is the
most commonly used dataset for fine-tuning cross-
encoders, as it contains over 500k query–passage
pairs (Nguyen et al., 2016). However, most queries
only have a single passage labeled as relevant. This
label sparsity has two implications: (1) the options
for suitable loss functions are limited and (2) “non-
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relevant” passages have to be sampled heuristically.
Regarding the first implication, listwise losses

produce the most effective models (Gao et al., 2021;
Pradeep et al., 2022; Zhuang et al., 2022). They use
a single relevant passage and a set of k heuristically-
sampled “non-relevant” passages to compute the
loss. Generally, a higher k produces more effective
models—with k = 36 being the highest reported
value (Zhuang et al., 2022). We rely on recent work
on memory-efficient fused-attention kernels (Dao
et al., 2022; Lefaudeux et al., 2022; Dao, 2023) to
circumvent the memory constraints of the Trans-
former’s self-attention mechanism and fine-tune
models on up to k = 100 passages.

Regarding the second implication, “hard nega-
tive” sampling, i.e., using an effective first-stage
retrieval model to sample “non-relevant” sam-
ples, has produced the most effective models (Gao
et al., 2021; Pradeep et al., 2022; Zhuang et al.,
2022). For instance, models fine-tuned on nega-
tives sampled from ColBERTv2 (Santhanam et al.,
2022) are more effective than those fine-tuned on
negatives sampled from BM25 (Robertson et al.,
1994). However, Arabzadeh et al. (2022) found
that MS MARCO contains passages that are more
relevant than the labeled passage for a substantial
number of queries, leading to noisy training data.

Distillation from LLMs To obtain less noisy
data, Sun et al. (2023) proposed fine-tuning a cross-
encoder on the rankings generated by an LLM ap-
plied in zero-shot manner. Models fine-tuned on
their released dataset are more effective in low-data
settings and out-of-domain re-ranking than those
fine-tuned on MS MARCO. More recently, Baldelli
et al. (2024) released a smaller dataset using a vari-
ety of first-stage retrieval models. Cross-encoders
are even more effective when fine-tuned on this
dataset, but an effectiveness gap between the cross-
encoder and the LLMs remains. We investigate if
this gap can be closed by applying the insights from
fine-tuning on MS MARCO to LLM distillation.

3 Cross-Encoders

A cross-encoder processes the query and passage
simultaneously using a pre-trained transformer-
based encoder model. Given sequences of query
tokens q and passage tokens p, the encoder’s in-
put sequence is [CLS] q [SEP] p [SEP], where
[CLS] and [SEP] are special classification and sep-
arator tokens. The model outputs contextualized
embedding vectors for every token. Using learn-

able weights W ∈ Rd×1 and biases b ∈ R1, it then
applies a linear layer to the [CLS] token’s contex-
tualized embedding e[CLS] ∈ Rd to compute the
relevance score sp = W · e[CLS] + b.

3.1 Fine-Tuning on MS MARCO
Loss When fine-tuning cross-encoders on data
sampled from MS MARCO, previous work obtains
the most effective models by using listwise soft-
max cross entropy (Bruch et al., 2019a; Zhuang
et al., 2022) or localized contrastive estimation
loss (LCE) (Gao et al., 2021; Pradeep et al., 2022).
Both are equivalent when only a single relevant
passage is available. Given a set of passages P of
which one is relevant p+ ∈ P , LCE is defined as:

LLCE = − log
exp(sp+)∑
p∈P exp(sp)

.

Data For highest effectiveness, P should be as
large as possible, and the best available first-stage
retrieval model should retrieve the other passages
P− = P \ {p+}. Following Pradeep et al. (2022),
we use ColBERTv2 (Santhanam et al., 2022) to
retrieve the top 200 passages for all MS MARCO
training queries. We then randomly sample up to
99 hard-negatives.

3.2 Fine-Tuning on LLM Distillation Data
Loss Instead of a set of passages P , LLM distil-
lation data consists of a ranked list of passages
R = [p1, p2, . . . , pn] for a query q. Previous
work (Sun et al., 2023; Baldelli et al., 2024) uses
RankNet (Burges et al., 2005), a pairwise loss func-
tion, for distillation fine-tuning:

LRankNet =
n∑

i=1

n∑
j=1

1i<j log(1 + exp(spi − spj )),

where 1 is the indicator function.
For fine-tuning on MS MARCO, listwise loss

functions are more effective than pairwise loss func-
tions (Pradeep et al., 2022; Zhuang et al., 2022).
To test if the same applies to LLM distillation, we
propose a new loss function based on the Approx
family of loss functions (Qin et al., 2010). Approx
loss functions compute a smooth approximation
of a passage’s rank π̂(p) based on all passages’
scores (see Appendix B for an in-depth descrip-
tion of π̂). Since LLM distillation data does not
contain explicit relevance judgments, we cannot
apply previous Approx listwise losses directly. Our
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new loss, Approx Discounted Rank MSE (ADR-
MSE), computes the mean squared error between a
passage’s actual and approximated rank. Inspired
by nDCG, we also apply a logarithmic discount to
give higher-ranked passages a higher weight. We
define our loss function as:

LADR-MSE =

n∑
i=1

1

log2(i+ 1)
(i− π̂(pi))

2.

Data To our knowledge, only two datasets for
distilling cross-encoders from LLMs have been
released. Sun et al. (2023) released the first
dataset (RankGPT) consisting of the top 20 pas-
sages retrieved by BM25 (Robertson et al., 1994)
and re-ranked by RankGPT-3.5 for 100k queries
from MS MARCO. Baldelli et al. (2024) released
another dataset (TWOLAR) of the top 30 pas-
sages retrieved by three different retrieval mod-
els (BM25, DRAGON (Lin et al., 2023), and
SPLADE (Formal et al., 2021)) and re-ranked
by RankGPT-3.5 for a total of 20k-queries from
MS MARCO. Cross-encoders fine-tuned on the
TWOLAR dataset are more effective than when
fine-tuned on the RankGPT dataset. Still, whether
the improved first-stage retrieval models, deeper
rankings, or both in combination lead to better ef-
fectiveness remains unclear.

We create Rank-DistiLLM to systematically in-
vestigate the effect of the first-stage retrieval model
and the rank depth on a cross-encoder’s down-
stream effectiveness. We retrieve the top 100 pas-
sages using BM25 and ColBERTv2 for 10k ran-
domly sampled queries from the MS MARCO train-
ing set. We then use RankZephyr (Pradeep et al.,
2023b), an open-source alternative to RankGPT,
to re-rank them. To evaluate the effect of ranking
depth, we subsample additional datasets by remov-
ing all passages that were not within the top 10,
25, and 50 passages of the first-stage retrieval. We
release Rank-DistiLLM to the community to facili-
tate further research.

4 Evaluation

Labeled Data vs LLM Distillation Table 1 lists
nDCG@10 of monoELECTRA (a cross-encoder
using ELECTRA (Clark et al., 2020) as the back-
bone encoder) fine-tuned using the data described
in Section 3.2 on the TREC DL 2019 and 2020
tasks when re-ranking the top 100 passages re-
trieved by BM25 and ColBERTv2. We refer to
Appendix C for details on fine-tuning settings. The

Table 1: Comparison of nDCG@10 on TREC DL 2019
and 2020 of monoELECTRA fine-tuned on various
LLM distillation datasets (Single-Stage) or further fine-
tuned from an already fine-tuned model (Two-Stage).
The highest and second-highest scores per task are bold
and underlined, respectively.

BM25 ColBERTv2

Model DL 19 DL 20 DL 19 DL 20

First Stage 0.480 0.494 0.732 0.724
RankGPT-4 0.713 0.713 0.766 0.793
RankZephyr 0.719 0.720 0.749 0.798
monoELECTRA 0.687 0.698 0.739 0.760

Data monoELECTRA – Single-Stage Fine-Tuning

RankGPT 0.696 0.666 0.690 0.662
TWOLAR 0.693 0.669 0.754 0.730
RankZephyr BM25 0.644 0.622 0.674 0.654
RankZephyr CBv2 0.709 0.704 0.774 0.754

Data monoELECTRA – Two-Stage Fine-Tuning

RankGPT 0.664 0.634 0.477 0.472
TWOLAR 0.715 0.706 0.763 0.760
RankZephyr BM25 0.672 0.638 0.714 0.683
RankZephyr CBv2 0.720 0.711 0.768 0.770

effectiveness of RankGPT-4, RankZephyr, and mo-
noELECTRA fine-tuned using MS MARCO labels
are provided for comparison.

Of all monoELECTRA cross-encoders, only the
one fine-tuned using our new ColBERTv2-then-
RankZephyr data is more effective than mono-
ELECTRA fine-tuned using MS MARCO labels.
The first-stage retrieval model substantially impacts
the distilled cross-encoder’s effectiveness, shown
by the poor effectiveness of the model fine-tuned
on BM25-then-RankZephyr data. In conclusion,
sampling hard rankings is essential for effectively
distilling cross-encoders from LLM rankings.

To further increase effectiveness, (Baldelli et al.,
2024) suggest a two-stage approach by first fine-
tuning on noisy data and continuing to fine-tune
on LLM distillation data. In our experiments,
two-stage fine-tuning also boosts the effective-
ness of models fine-tuned on our newly pro-
posed dataset. Fine-tuning on MS MARCO labels
and then fine-tuning using our ColBERTv2-then-
RankZephyr rankings produces the most effective
model. It achieves slightly higher effectiveness
than RankGPT-4 and RankZephyr on TREC DL
2019 and slightly lower effectiveness on TREC
DL 2020. None of the differences are statistically
significant (t-test, p < 0.05, Bonferroni corrected).

Listwise Fine-Tuning Using ADR-MSE as the
loss function produces a 0.002 (single-stage) and
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Table 2: Effectiveness in nDCG@10 of various re-ranking models micro-averaged across all queries from a
collection from the TIREx framework (Fröbe et al., 2023). See Appendix D for details on the per-corpus tasks.
Macro-averaged arithmetic and geometric means are computed across all corpora. Model sizes are given in the
number of parameters. Both monoELECTRA models are fine-tuned on our new ColBERTv2-then-RankZephyr
distillation data. All monoT5 models are taken from the TIREx experiments and were fine-tuned on MS MARCO
labels. The highest and second-highest scores per corpus are bold and underlined, respectively.

Model Parameters
Antique

Args.me

ClueWeb09

ClueWeb12

CORD-19

Cranfield

Disks4+5
GOV

GOV2

MEDLINE

MS MARCO

NFCorpus

Vaswani
WaPo

A. Mean
G. Mean

First Stage – 0.516 0.404 0.177 0.364 0.586 0.012 0.436 0.235 0.466 0.358 0.487 0.281 0.447 0.364 0.367 0.394

RankZephyr 7B 0.534 0.363 0.213 0.303 0.767 0.009 0.556 0.294 0.560 0.457 0.720 0.314 0.512 0.508 0.437 0.478

Fine-tuned on MS MARCO relevance labels

monoT5BASE 220M 0.510 0.304 0.185 0.260 0.688 0.009 0.535 0.264 0.486 0.253 0.705 0.310 0.306 0.451 0.376 0.420
monoT5LARGE 770M 0.532 0.337 0.181 0.266 0.636 0.010 0.566 0.265 0.512 0.313 0.717 0.311 0.414 0.492 0.397 0.438
monoT53B 3B 0.543 0.391 0.199 0.279 0.603 0.011 0.569 0.289 0.513 0.348 0.736 0.324 0.458 0.476 0.410 0.448

Distilled from ColBERTv2-then-RankZephyr data

monoELECTRABASE 110M 0.593 0.375 0.209 0.295 0.692 0.010 0.521 0.264 0.541 0.326 0.715 0.306 0.522 0.458 0.416 0.457
monoELECTRALARGE 330M 0.575 0.368 0.221 0.313 0.716 0.008 0.559 0.288 0.572 0.376 0.730 0.316 0.526 0.504 0.434 0.475

25 50 75 100
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Figure 1: Effectiveness averaged across TREC Deep
Learning 2019 and 2020 of monoELECTRA mod-
els fine-tuned on subsamples of the ColBERTv2-then-
RankZephyr distillation dataset using different ranking
depths and numbers of samples.

0.001 (two-stage) nDCG@10 less effective model
compared to using RankNet averaged across TREC
DL 2019 / 2020 and BM25 / ColBERTv2 for ini-
tial retrieval. Since the difference in effectiveness
is marginal and monoELECTRA fine-tuned us-
ing RankNet already reaches the effectiveness of
RankZephyr, we conclude that listwise loss func-
tions are unnecessary for distillation from LLMs.

Data Ablation Since LLMs are costly, we in-
vestigate how much data is necessary to achieve
the highest possible effectiveness. Figure 1 shows
that effectiveness peaks at 50 samples per query
and slightly decreases at 100 samples per query.
When downsampling the number of training sam-
ples, we achieve the highest effectiveness using all
10k queries. Since we can reach the effectiveness
of RankZephyr in two-stage fine-tuning, we assume
10k queries are sufficient. However, more data may
improve effectiveness in single-stage fine-tuning.

Out-of-Domain Effectiveness Table 2 shows
that monoELECTRABASE is more effective than
all previous cross-encoders in TIREx, improving
over monoT53B (Nogueira et al., 2020), the pre-
viously best cross-encoder, on average. Using a
larger model further improves effectiveness. We
match the current state-of-the-art RankZephyr’s
effectiveness using monoELECTRALARGE.

Efficiency Our monoELECTRALARGE model
uses approximately 89% and 95% fewer param-
eters compared to monoT53B and RankZephyr, re-
spectively. This reduces memory consumption
and latency. Our model requires approximately
300 milliseconds to re-rank 100 passages for a sin-
gle query. In contrast, monoT53B requires approx-
imately 3 seconds and RankZephyr about 25 sec-
onds per query.

5 Conclusion

Using our new Rank-DistiLLM datset, we have sys-
tematically investigated several aspects of distilling
cross-encoders from LLM rankings. Our findings
indicate that rankings of the top-50 passages for
10,000 queries suffice to achieve competitive effec-
tiveness compared to LLMs, but the passages need
to be sampled using a very effective first-stage re-
trieval model. By first fine-tuning on MS MARCO
labels and then further on Rank-DistiLLM, our
best model is more effective than previous cross-
encoders and matches the effectiveness of LLMs
for in- and out-of-domain re-ranking while being
orders of magnitude more efficient.
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6 Limitations

In this short paper, we could only test a limited
range of distillation settings. For instance, analyz-
ing ranking depth or number of queries at finer gran-
ularity could provide further insights. Additionally,
as we have only tested a single cross-encoder archi-
tecture and a single LLM, further experiments are
needed to analyze whether and how our findings
generalize to other architectures and LLMs.

7 Ethical Considerations

We are aware that fine-tuning and running large
transformer-based language models requires con-
siderable amounts of energy and may contribute to
climate change. Especially creating our new Rank-
DistiLLM dataset required substantial computa-
tional resources and energy. We have tried to mini-
mize the environmental impact by fine-tuning mod-
els with (comparatively) few parameters. Nonethe-
less, we acknowledge that our research has an envi-
ronmental impact.

Additionally, while our work derives from pub-
licly available and widely used datasets and models,
we are aware that these may contain biases. We
release our data, code, and models to the public but
caution that they may contain biases that could be
harmful if used in production systems.
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der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian
Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Rı́o, Mark
Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. 2020. Array Programming with NumPy.
Nature, 585(7825):357–362.

Helia Hashemi, Mohammad Aliannejadi, Hamed Za-
mani, and W. Bruce Croft. 2020. ANTIQUE: A
Non-factoid Question Answering Benchmark. In
Proceedings of ECIR 2020, pages 166–173.

William R. Hersh, Ravi Teja Bhupatiraju, L. Ross,
Aaron M. Cohen, Dale Kraemer, and Phoebe John-
son. 2004. TREC 2004 Genomics Track Overview.
In Proceedings of TREC 2004.

William R. Hersh, Aaron M. Cohen, Jianji Yang,
Ravi Teja Bhupatiraju, Phoebe M. Roberts, and
Marti A. Hearst. 2005. TREC 2005 Genomics Track
Overview. In Proceedings of TREC 2005.

Sebastian Hofstätter, Sophia Althammer, Michael
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B Approximate Ranking Function

Given a set of scores sp for passages p ∈ P , we can
compute a smooth approximation of a passage’s
rank π̂(p) by (Qin et al., 2010):

π̂(p) = 1 +
∑

pj∈R\p

exp(−α · sp)
1 + exp(−α · spj )

.

The parameter α controls the smoothness of the
approximation. As α becomes greater, the approxi-
mation more closely resembles the actual rank. See
Bruch et al. (2019b) for an in-depth analysis of the
effect of alpha on Approx loss functions.

C Fine-Tuning Settings

We mostly follow Pradeep et al. (2022) for fine-
tuning cross-encoders. We use HuggingFace (Wolf
et al., 2020) ELECTRABASE or ELECTRALARGE
(Clark et al., 2020) checkpoints as starting points.12

For fine-tuning using MS MARCO (Nguyen et al.,
2016) labels, we randomly sample 7 hard-negatives
from the top 200 passages retrieved by ColBERTv2
(Santhanam et al., 2022) for every training query
and fine-tune for 20k steps using LCE loss (Gao
et al., 2021). For fine-tuning on LLM distillation
data, we use the TREC Deep Learning 2021 and
2022 tracks (Craswell et al., 2021, 2022) as vali-
dation sets and train until nDCG@10 does not im-
prove for 100 steps using either RankNet (Burges
et al., 2005) or our novel ADR-MSE loss (using
α = 1). All models are fine-tuned using a batch
size of 32 and the AdamW (Loshchilov and Hut-
ter, 2019) optimizer with a 10−5 learning rate. We
truncate queries longer than 32 tokens and passages
longer than 256 tokens. All models are trained on a
single NVIDIA A100 40GB GPU and implemented
using PyTorch (Paszke et al., 2019) and Lightning
(Falcon and The PyTorch Lightning team, 2023).

D TIREx Dataset

Table 3 provides an overview of the 31 retrieval
tasks over 14 corpora contained in TIREx (Fröbe
et al., 2023) used for evaluation. Citations for each
corpus (except for Vaswani and WaPo, which do
not have specific references) are provided below:

• Antique — QA Benchmark (Hashemi et al., 2020)

• Args.me — Touché (Bondarenko et al., 2021, 2022)

• ClueWeb09 — TREC Web Tracks (Clarke et al., 2009,
2010, 2011, 2012)

1google/electra-base-discriminator
2google/electra-large-discriminator

8

https://doi.org/10.48550/arXiv.2005.04474
https://doi.org/10.48550/arXiv.2005.04474
http://trec.nist.gov/pubs/trec13/papers/ROBUST.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec13/papers/ROBUST.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec8/papers/overview_8.ps
http://trec.nist.gov/pubs/trec8/papers/overview_8.ps
http://trec.nist.gov/pubs/trec8/papers/overview_8.ps
http://trec.nist.gov/pubs/trec8/papers/overview_8.ps
https://doi.org/10.48550/arXiv.2004.10706
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.1910.03771
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.48550/arXiv.2210.10634
https://doi.org/10.48550/arXiv.2210.10634


Table 3: Overview of the retrieval tasks in TIREx (Fröbe
et al., 2023) used for evaluation. The number of tasks
per corpus, number of queries, average judgments per
query, and average document length are provided.

Corpus Tasks Queries Docs.

Details # Judg. # Length

Antique QA Benchmark 1 32.9 200 49.9
Args.me Touché 2020–2021 2 60.7 99 435.5
ClueWeb09 Web Tracks 2009–2012 4 421.8 200 1132.6
ClueWeb12 Web Tracks, Touché 4 163.8 200 5641.7
CORD-19 TREC-COVID 1 1386.4 50 3647.7
Cranfield Fully Judged Corpus 1 8.2 225 234.8
Disks4+5 TREC-7/8, Robust04 3 1367.4 350 749.3
GOV Web tracks 2002–2004 3 603.9 325 2700.5
GOV2 TREC TB 2004–2006 3 902.3 150 2410.3
MEDLINE Genomics, PM 4 518.3 180 309.1
MS MARCO DL 2019–2020 2 212.8 97 77.1
NFCorpus Medical LTR Benchmark 1 48.7 325 364.6
Vaswani Scientific Abstracts 1 22.4 93 51.3
WaPo Core 2018 1 524.7 50 713.0

• ClueWeb12 — TREC Web Tracks, Touché (Collins-
Thompson et al., 2013, 2014; Bondarenko et al., 2021,
2022)

• CORD-19 — TREC-COVID (Voorhees et al., 2020;
Wang et al., 2020)

• Cranfield — Fully Judged Corpus (Cleverdon, 1991)

• Disks4+5 — TREC-7/8, Robust04 (Voorhees and Har-
man, 1998, 1999; Voorhees, 2004)

• GOV — TREC Web Tracks (Craswell and Hawking,
2002; Craswell et al., 2003; Craswell and Hawking,
2004)

• GOV2 — TREC TB (Clarke et al., 2004, 2005; Büttcher
et al., 2006)

• MEDLINE — TERC Genomics, TREC Precision
Medicine (Hersh et al., 2004, 2005; Roberts et al., 2017,
2018)

• MS MARCO — TREC Deep Learning (Craswell et al.,
2019, 2020)

• NFCorpus — Medical LTR Benchmark (Boteva et al.,
2016)

• Vaswani — Scientific Abstracts

• WaPo — Core ’18
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