
On Automated Design in Chemical Engineering∗

André Schulz Benno Stein† Annett Kurzok‡

Abstract

Design support in chemical engineering is typically
connected with the configuration of the technical de-
vices that realize a chemical process. In fact, the con-
figuration step is a rather finishing job within the en-
tire design process, and several hurdles have been
taken by the designer before.

This paper outlines both an idea and a methodol-
ogy to realize a design support right from the start
of the design process. Central element of the method-
ology is the abstraction of a chemical process as a
graph along with the use of graph grammars, which
encode an engineer’s design knowledge. By apply-
ing graph transformation rules, an incompletely and
coarsely defined design can be completed and refined
towards a desired solution.

1 Introduction

In order to facilitate the work in the field of chemi-
cal engineering, computers have been repeatedly suc-
cessfully deployed. The computer support encloses
not only the configuration of particular devices such
as mixers [2, 5] by means of expert systems, but also
the use of substance databases, simulation tools, or
tailored CAD programs [11, 6, 12, 9, 8].

In contrast to these approaches, the paper in hand
aims at a holistic support of the design procedure
at the level of parameterized unit-operations. Typical
unit-operations are mixing (homogenization, emulsi-
fication, suspension etc.), heat transfer and flow trans-
port (pumps). Given a description of the substance
inputs and the substance outputs, both the selection
and the arrangement of the necessary unit-operations
shall be derived.

A support at this level is interesting within the fol-
lowing respects:

1. Structure and type of unit-operations depend on
each other. A holistic view provides means to
detect and to process interdependencies between
parts of a chemical process.

∗Supported by DFG grant PA 276/23-1
†Department of Computer Science, University of Paderborn,

33095 Paderborn, Germany, email: {aschulz,stein}@upb.de
‡Department of Engineering, University of Paderborn, 33095

Paderborn, Germany, email: annett.kurzok@vt.upb.de

2. Having no structure predefined, a chemical pro-
cess can be synthesized from scratch. And, at the
abstraction level of unit operations, such a syn-
thesis becomes tractable.

3. Our approach can provide insights and method-
ologies necessary for an entire automation of
the chemical design process, which may become
subject to future research.

4. Existing approaches to design support concen-
trate on isolated design aspects only.

Key concepts of our approach are: A chemical pro-
cess is viewed as a graph. The nodes of the graph de-
scribe unit-operations, the edges of the graph specify
both the flow and the properties of the processed sub-
stance. Modifications of a chemical process can then
be defined as node-insertion and node-deletion oper-
ations on the “chemical graph”. Since we are working
on a graph, graph grammars provide a proper means
to precisely specify such modifications, say, to en-
code an engineer’s design knowledge.

The paper is organized as follows. Section 2 gives
a description of the chemical design task both from
a theoretical side and exemplified at a realistic ex-
ample. Section 3 then introduces the concepts of a
graph and a graph grammar tailored to our design
problem. Section 4 picks up the introductory exam-
ple and shows how it is solved by our graph grammar
approach. The last section, 5, elaborates on some the-
oretical aspects of our approach.

The presented approach may be suited to tackle
various kinds of chemical design problems. However,
within our project as well as our research we have re-
stricted ourselves to a particular part of chemical pro-
cesses: The design of plants for food processing.

2 The Design Task

The task of designing a chemical plant is defined by
the given input and the desired output. The goal is
to mix or transform various input substances in such
a way that the resulting product meets the imposed
requirements. In general, this process may also yield
some by-products, but this will be neglected in this
paper—we will restrict ourselves to then : 1 case.
Figure 1 illustrates the solution process followed in
general practice.

1



Solution

Preliminary examination

Choice of unit-operations

Structure definition

Configuration of components

Optimization

Task

Figure 1:Steps in the design process.

The steps depicted on figure 1 can be described in
more detail as follows:

1. Preliminary examination. The task specification,
i. e., the input substances, the desired output and
any additional requirements, is analyzed.

2. Choice of unit-operations. Having examined
the substances involved in the process, abstract
building blocks, so-called unit-operations (or
unit-ops), are chosen in compliance with certain
rules.

In practice, engineers choose concrete devices at
this stage—the use of abstract building blocks is
done implicitly.

3. Structure definition. The previous step yields a
set of unit-ops devoid of any structure. In or-
der to find an apt topology, different circuits are
tried until one that meets the requirements is
found. This well-knownpropose-and-revisebe-
havior has been also applied by [2].

4. Configuration of devices. The chosen devices,
still represented by unit-ops, are instantiated.
Beginning with the first unit-op in the process,
concrete devices are chosen from a database.
Since different devices of the same class often
produce outputs with deviating properties, these
changes must be propagated, thus influencing
the choice of later devices.

5. Optimization. The plant’s functionality is tested
whether it meets the requirements. If the design
fails to fulfill any of these conditions, changes
have to be applied either to the structure or to
the set of chosen devices.

Even if the plant represents a solution, the engi-
neer still refines it to reduce energy consumption
or to decrease mixing time. After a modification
a jump back to a previous step may become nec-
essary.

2.1 Example

The following task specification excerpt shall illus-
trate the usual design procedure.

Name Mass Temp. Viscosity

sugar 47.62% 20 C –
water 15.75% 20 C 0.0010012 Pas
starch syrup 36.63% 20 C 0.2-1.6 Pas
caramel syrup 100.00% 110 C ?

The goal is to produce caramel syrup, which is nec-
essary for the production of caramel bonbons, using
water, starch syrup, and sugar.

The following table of viscosity values of sugar so-
lution, an intermediate product, is also given:

Temperature Viscosity (71% solution)

20 C 500 Pas
30 C 250 Pas
40 C 130 Pas
50 C 80 Pas
60 C 50 Pas
70 C 30 Pas
80 C 20 Pas

Based on this specification, the following is done
in compliance with the steps depicted above:

1. Preliminary examination. Sugar is a solid and
must be dissolved within a liquid. Water has a
lower viscosity than starch syrup, so it is bet-
ter to mix sugar and water first and then add the
starch syrup. Depending on the mass ratios the
water may have to be heated up to increase sol-
ubility.

2. Choice of unit-operations. Comparing the mass
ratios of sugar and water leads to the conclusion
that heating is needed; therefore, a heat trans-
fer unit-op is added. To mix the heated water
and sugar, a mixing unit-op for lower viscose
substances is fitting. To avoid recrystallization,
the starch syrup should also be heated, making
a further heat transfer unit-op necessary. Lastly,
the sugar solution and the heated starch syrup
are mixed. In order to reach 110 C, another heat
transfer unit-op is needed. Besides, pump unit-
ops are required to transport the substances be-
tween devices.

3. Structure definition. The choice of unit-ops al-
lows for conclusions pertaining to the arrange-
ment of the unit-ops. In our example the arrange-
ment is relatively evident; figure 2 shows the
chosen topology.

4. Configuration of devices. Based on the mass, the
volume, and the other properties of the involved
substances, matching devices are chosen from
databases.

2



5. Optimization. The computed parameters of the
design are usually feasible values, but improve-
ment can still be achieved. With this goal in
mind, the parameterization step is repeated and
parameters are adjusted. By limiting the last
mixing unit-op to devices with a built-in heat
transfer unit, the last heat transfer unit-op be-
comes superfluous. This change shortens the
process chain (see figure 3).

Starch
syrup

Water

Sugar

Caramel
syrup

Figure 2:The first design of the example process.

Starch
syrup

Water

Sugar

Caramel
syrup

Figure 3:The final design of the example process.

Alternatively, a design with fewer devices is pos-
sible: Water and starch syrup could be mixed first,
and the resulting solution used to dissolve sugar. This
structure choice requires one heat transfer unit-op
less than the proposed design because both water and
the starch syrup can be heated together. However, this
alternative would cause a longer mixing time, since
the sugar must be dissolved in a more viscose solu-
tion.

3 Design with Graph Grammars

The steps listed in section 2 can be automated in an
isolated fashion. However, a separate processing may
lead to loss of information, since the choice of a unit-
op often affects the structure and vice versa. For ex-
ample, the choice of a certain mixer might influence
the decision whether a heat transfer device is needed,
possibly changing the topology. Likewise, a certain
order of devices can make one of them superfluous.

Since these steps are intertwined, it is desirable to
combine the choice of unit-ops and the structure def-
inition to make use of all information available. One
way of tackling both tasks simultaneously is to use
a graph grammar to generate feasible designs, which
are generated in a controlled manner. The following
subsections introduce the approach.

3.1 Graph Transformation

Figures 4 and 5 show two examples of rules that
may be used to transform an abstract design (left-
hand side) towards a refined design (right-hand side).

?

Tlow Thigh Tlow Thigh

Figure 4:Replacement of an unknown unit by inserting heat
transfer and pump units to fulfill the temperature constraints.

?

Tlow Thigh Thigh

Thigh
Thigh

Tlow

Figure 5:Replacement of an unknown unit by inserting a heat
transfer unit, a pump unit and a mixing unit. Note that the label,
number and directions of edges is obeyed..

What happens, from a graph-theoretical point of
view, is that a nodet in the original graphG is re-
placed by a graphR. Put another way,R is embedded
into G. Figure 6 depicts two samples for two different
graphsR.

R

r

r

R

Figure 6:Replacement of nodet by a new graphR..

In the following we will shortly outline a formal
basis for the illustrated graph transformation.

Definition 1 A labeled graph is a tupleG = 〈VG,

EG, σG, γG〉 where

• VG is the set of nodes,

• EG ⊆ VG × VG is the set of directed edges,

• σG is the node label function,σG : VG → Λ,
whereΛ is a set of symbols, called the label al-
phabet,

• andγG is the edge label function,γG : EG →
Λ.

Notation:(v1, v2) represents a directed edge with tail
v1 and headv2.

3



Informally, a graph grammar is a system that, ap-
plied to a graphG, yields a new graphG′. The fol-
lowing definition reflects the essence of this concept.
Refer to [10] for further details.

Definition 2 A graph grammar is a tupleG = 〈Σ,

∆, Γ, Ω, P, s〉 with

• Σ is the alphabet of node labels,∆ ⊂ Σ is the
set of terminal node labels,Σ \ ∆ is the set of
non-terminal node labels,

• Γ is the alphabet of edge labels,Ω ⊂ Γ is the
set of terminal edge labels,Γ \ Ω is the set of
non-terminal edge labels,

• P is the finite set of productions,

• ands is the initial symbol.

The productions of the setP are tuples of the form
t → 〈R, I〉 with

• t ∈ Σ is a label belonging to a nodev ∈ VG,

• R = 〈VR, ER, σR, γR〉 is the non-empty re-
placement graph. The nodes ofR that are to be
connected to the host graph are called cut nodes.
To each cut node belongs at least one embedding
specificationi ∈ I.

• I is the embedding specification that consists of
tuples(l, s), where

– l ∈ Γ is an edge label,

– s ∈ Σ is the label of a cut node in the re-
placement graphR.

An embedding rule is interpreted as follows:
Each edge labeledl connecting a nodev ∈ VG

with the node labeledt is substituted by an edge
labeledl connectingv to a cut node ofR labeled
with s.

Example.In the following, we give a complete graph
grammar. Among others, this graph grammar can be
used to perform the design refinements shown in fig-
ures 4 and 5 respectively.

• Σ \ ∆ = {?},

• ∆ = { mixer, pump, heat-transfer},
Ω = {Tlow, Thigh, Visclow, Vischigh,

Densitylow, Densityhigh}

• P = {heater-rule, mixer-rule}, with

heater-rule:= (?, , {(Tlow, mixer),
(Thigh, heat-transfer)}),

mixer-rule:= (?, , {(Tlow, heat-
transfer), (Thigh, mixer)})

4 Example

In section 2 we described the design procedure for
a caramel syrup process and presented a solution to
this problem. Now, we will use a graph grammar to
attain the same goal. For this purpose, the graph rules
depicted by figures 7 – 12 are given. Finally, figure 13
shows a derivation that produces a feasible design.

ppp
?

Figure 7:(R1) Deletion of non-terminal node.

s1 s1

sn sn

...
...

p p
??

Figure 8:(R2) Insertion of a mixing unit-op.

s1 s1

sn sn

...
...

p p
??

Figure 9: (R3) Insertion of mixing unit-op with built-in heat
transfer unit.

Sliquid

solidS

Sliquid

Sliquid

Sliquid
Sliquid

solidS

...
... pp

?

?

?

Figure 10:(R4) Improvement of mixing properties by handling
solid inputs separately.

Tlow

Thigh

Thigh

Thigh

Thigh
Tlow

? ?

Figure 11:(R5) Improvement of dissolving properties by heat-
ing an input.

ptptpt pp
??

Figure 12:(R6) Insertion of a pump unit-op.

In general there will be a series of rules that apply
for a given situation, leading to different solutions of
varying quality and cost. Thus, the generation pro-
cess can be viewed as a tree containing derivations
for all possible alternatives, as shown in figure 14.
Note that the graph grammar derivation of figure 13
corresponds to one branch of this tree.

4



Starch
syrup

Water

Sugar

Caramel
syrup

Starch
syrup

Water

Sugar

Caramel
syrup

Starch
syrup

Water

Sugar

Caramel
syrup

Starch
syrup

Water

Sugar

Caramel
syrup

Starch
syrup

Water

Sugar

Caramel
syrup

Starch
syrup

Water

Sugar

Caramel
syrup

Starch
syrup

Water

Sugar

Caramel
syrup?

?

?

?

?

? ?
?

R4

R5

R2, R1

R6

R5

R3, R1

Figure 13:Derivation of the caramel plant design.

...

...
...

...
...

... · · ·

?

? ?

Cost: 100 Cost: 120

Cost: 85

Figure 14:Search tree for the optimization of the design gener-
ation process.

5 Discussion

In this section, some issues that have direct conse-
quences for the usability of the proposed approach
described in section 4 are analyzed in detail.

5.1 Graph Topology

In practice, plants often combine various chemical
processes within one single “chain” producing one
main product and a series of by-products. This means
that the topology represents at least a directed acyclic
graph, which can only be generated by a context-de-
pendent graph grammar1. However, such grammars
imply exponential time complexity, as rules may have

1In the field of formal languages, this is known ascontext-
sensitivity[4]

more than one non-terminal on the left-hand side
(graph matching problem, see [7]).

In order to avoid this drawback, we restrict—as
far as possible—the set of graph production rules to
context-free rules, which generate a graph in polyno-
mial time [1].

5.2 Computational Complexity

The efficiency of the presented approach in terms
of O-notation [3], decides on its aptitude for practi-
cal use. In our case we are interested in the compu-
tational complexity in terms of the generated graph
size, which is strongly related to the types of rules
allowed.

• Rule applicability. The graph grammar concept,
as presented in section 3, does not impose any
restriction upon the rules as far as firing is con-
cerned. In fact, the example of section 4 contains
three different types of rules: rules that fire only
once, e. g.R1, rules that fire linearly in the num-
ber of inputs, e. g.R4, and rules that can fire ar-
bitrarily often, e. g.R6. The existence of the last
rule type implies that the graph rule system may
not terminate.

However, the above drawback can be avoided
by forbidding the repeated use of the same rule
within the same context—in fact, graph gram-
mar implementations do include facilities to
specify forbidden and allowed rules (seepro-
grammed graph replacement systemsin [10]).

• Simple rules.Only rules with bounded number
of inputs and outputs are allowed; to be more
precise, rules may only produce a single output,
and rules may not use multiple inputs to produce
further non-terminal nodes, such as in ruleR4.
Furthermore, we forbid cycles within the gen-
erated design, thus avoiding the repeated execu-
tion of rule sequences.

Due to these restrictions, the size of designs gen-
erated by these rules are linearly related to the
number of inputs available. Therefore, the com-
putational effort to produce a feasible design is
of the orderO(n).

• Rules acting on multiple inputs.Now we drop
the restriction on rules to handle multiple inputs,
i. e., rules such asR4are allowed. Depending on
the number of inputs, further non-terminal nodes
may be produced. This results inO(n2) compu-
tational effort.

• Unrestricted rules.Lastly, rules that multiply
the number of outputs are also allowed. Since
with these rules arbitrarily many new “inputs”

5



can be generated, the computational effort is un-
bounded.

• Configuration search strategy. The generation of
optimal designs requires an appropriate search
strategy. Due to the nature of graph rule deriva-
tion, DFS (or BFS) with backtracking seem fit-
ting strategies. To ensure better performance,
further concepts such asbackjumping, branch-
and-boundand iterative deepeningcould be
considered.

6 Summary

The paper introduced a new method to automate the
design process of industrial food processing plants. In
contrast to existing approaches, our method aims at a
holistic support of the design procedure, at the level
of parameterized unit-operations.

A chemical process is modeled as a graph whose
nodes describe the unit-operations and whose edges
specify the properties of the processed substance.
Modifications of a chemical process are defined as
node-insertion and node-deletion operations, which
in turn are formalized by means of graph grammars.

In this way, design solutions for a chemical pro-
cessing problem can be produced automatically by
applying graph production rules that encode an en-
gineer’s design knowledge. This approach has a the-
oretically unbounded runtime behavior, but, if rules
are formulated in compliance with the domain knowl-
edge available, can be very efficient.

Anyway, our approach shall provide insights and
evaluate methodologies necessary for an entire au-
tomation of the chemical design process, which may
become subject to future research.

References

[1] F. J. Brandenburg. Designing graph drawings
by layout graph grammars. In R. Tamassia and
I. G. Tollis, editors,Proc. DIMACS Int. Work.
Graph Drawing, GD, number 894 in Lecture
Notes in Computer Science, LNCS, pages
416–427, Berlin, Germany, 1994.
Springer-Verlag.

[2] A. Brinkop and N. Laudwein. Konfigurieren
von industriellen rührwerken.KI, 2:54–59,
1993.

[3] R. L. Graham, D. E. Knuth, and O. Patashnik.
Concrete Mathematics. Addison-Wesley, 2nd.
edition, 1994.

[4] J. E. Hopcroft.Introduction to Automata
Theory, Languages and Computation.
Addison-Wesley, 1979.

[5] A. Knoch and M. Bottlinger. Expertensysteme
in der verfahrenstechnik – konfiguration von
rührapparaten.Chem.-Ing.-Tech.,
65(7):802–809, 1993.

[6] W. Marquardt. Rechnergestützte erstellung
verfahrenstechnischer prozeßmodelle.
Chem.-Ing.-Tech., 64(1):25–40, 1992.

[7] K. Mehlhorn. Data Structures and Algorithms,
volume 2 Graph Algorithms and
NP-Completeness. Springer, Berlin, 1984.

[8] C. C. Pantelides. Speedup – recent advances in
process simulation.Comput. chem. Engng.,
12(7):745–755, 1988.

[9] P. C. Piela, T. G. Epperly, K. M. Westerberg,
and A. W. Westerberg. Ascend: An
object-oriented computer environment for
modeling and analysis: The modeling
language.Computers chem. Engng.,
15(1):53–72, 1991.

[10] G. Rozenberg, editor.Handbook of Graph
Grammars and Computing by Graph
Transformation, volume 1 Foundations. World
Scientific, 1997.

[11] S. Räumschüssel, A. Gerstlauer, E. D. Gilles,
B. Raichle, M. Zeitz, and W. Marquardt. An
architecture of a knowledge-based process
modeling and simulation tool. InProceedings
IMACS/IFAC Second International Symposium
on Mathematical and Intelligent Models in
System Simulation, volume 2, pages 242–247,
1993.

[12] G. Stephanopoulos, G. Henning, and H. Leone.
Model.la. a modeling language for process
engineering - i. the formal framework.
Computers chem. Engng., 14(1):813–846,
1990.

6


