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ABSTRACT: Research on modeling and design of tech-
nical systems aims at a comprehensive system specification
from different viewpoints and at different levels of granu-
larity. Modern CASE tools (based on UML, SDL, MSC)
provide support for the modeling process, which relates to
model transformation, coupling of tools, code generation,
etc. However, the starting point is a clear understanding of
the structure and behavior of the system.

The contribution of this paper focuses on a step before:
the generation of structure models from a functional de-
scription. Technically speaking, we define the space of
possible structure models amongst which a solution is to
be searched. Starting with an incomplete structure spec-
ification, graph grammars are used for the formulation of
domain-specific modifications rules as well as for the oper-
ationalization of the search.

The paper introduces the functional abstraction paradigm
as a starting point for the use of graph grammars in design,
and an application where structure model generation and
behavior model simulation have been coupled to solve syn-
thesis problems in chemical engineering.

I. INTRODUCTION

Modeling and design of technical systems can be re-
garded under two substantially different assumptions:

(1) The system is specified explicitly, i. e., there is a clear
understanding of the structure and behavior of the desired
system. (2) The system is specified implicitly, e. g. in the
form of the desired demands or function. In the former case
we have a modeling problem. In the latter case we have a
configuration or design problem that is characterized by a
search space wherein an optimum solution is to be found.
The contributions of this paper relate to the latter case: the
use of graph grammars to describe and to explore a space
of models within the functional abstraction paradigm.

A model designates some purposeful abstraction of the
system of interest. All models we are dealing with here can
be specified in the form of a graph. The graph may repre-
sent an UML model, a petri net, a topological description,
an algebraic equation system, etc. Generally speaking, we
consider a model to be some kind of labeled graph.

∗Supported by DFG grants PA 276/23-1 and KL 529/10-1.

Note that grammar-based approaches to modeling and
design must not be seen as another formalism amongst the
existing paradigms such as signal flow diagrams, UML, or
SDL. Instead, grammars provide a means to handle several
models at the same time, to describe model variants, and to
modify or to evolve models. Figure 1 illustrates this view. It
shows the problem of configuration and design as search in
a model space atop the technical and software-based model-
ing paradigms; the lower part of the figure is based on [12].

Our research is in the tradition of existing approaches in
the field of grammatical and geometric representation for
engineering design, such as [31, 22, 23, 1]. Much of this
research has focus on the representation of shape and the
application of rules. However, the application presented
in this paper is tied-up with the role of structure models
in engineering design; this abstraction level has also been
chosen by Schmidt et al. who developed a grammar-based
approach to the structure synthesis of mechanisms [23].

II. DESIGN TASKS AND GRAPH GRAMMARS

The design of a system encompasses a variety of different
aspects or tasks, each of which may require operations of
varying complexity such as

• the insertion and deletion of single items,

• the change of specific items and connection types, or

• the manipulation of sets of items, e. g. for repair or op-
timization purposes.

The operations delineated above can be viewed as trans-
formations on labeled graphs; they are of the form target→
replacement. A precise specification of such graph transfor-
mation rules can be given with graph grammars. A central
concept in this connection is bound up with the notions of
matching and context, which, in turn, ground on the con-
cept of isomorphism [10].

Existing graph grammar approaches are powerful, but
lack within two respects. Firstly, the notion of context is
not used in a clear and consistent manner, which is also
observed in Drewes et al. [6, Page 97]. Secondly, graph
grammars are seldom applied to solve synthesis and anal-
ysis problems in technical domains. Actually, graph gram-
mar solutions focus on software engineering problems for
the most part [7, 8, 16, 18, 26].
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Fig. 1. Solving a design problem means to find a model in the space of possible models (upper part); grammars are a means to operationalize the search. The
lower part of the figure shows the traditional modeling process including model coupling [12].

The systematics of design graph grammars introduced in
[24] addresses some shortcomings. An important issue was
to simplify and to enhance the use of grammars as a tool
to define design knowledge in technical domains. Design
graph grammars are closely related to node replacement
graph grammars; among others, they allow for a straight-
forward specification of contexts, which is indispensable to
describe the various kinds of manipulations at technical sys-
tems.

Figure 2 relates classical graph grammar terminology to
typical design tasks. An analysis of the relationship be-
tween classical graph grammar families and design graph
grammars is given in Section II-B.

A. Design Graph Grammars

A graph grammar is a collection of graph transformation
rules each of which is equipped with a set of embedding
instructions. What happens during a graph transformation
is that a node t or a subgraph T in the original graph G,
called the host graph, is replaced by a graph R. Say, R is
embedded into G. The subsequent definition stems from
[30].

Definition (Design Graph Grammar). A context-sensi-
tive design graph grammar is a tuple G = 〈Σ, P, s〉 where

• Σ is the label alphabet used for nodes and edges,

• P is the finite set of graph transformation rules and

• s is the initial symbol.

The graph transformation rules in P have the form
〈T, C〉 → 〈R, I〉 where

• T = 〈VT , ET , σT 〉 is the target graph to be replaced,

• C is a supergraph of T , called the context,

• R = 〈VR, ER, σR〉 is the possibly empty replacement
graph, and

• I is a set of embedding instructions that prescribe how
R is connected to G.

Semantics of the embedding process: Firstly, a matching
of the context C is searched within the host graph G. Sec-
ondly, an occurrence of T within the matching of C along
with all incident edges is deleted. Thirdly, an isomorphic
copy of R is connected to the host graph according to the
embedding instructions ((h, t, e), (h, r, f)) ∈ I where

• h ∈ Σ is a label of a node v in G \ T ,

• t ∈ Σ is a label of a node w in T ,

• e ∈ Σ is the edge label of {v, w},

• f ∈ Σ is another edge label not necessarily different
from e, and

• r ∈ VR is a node in R.

If there is an edge labeled e connecting a node labeled h in
G\T with a node labeled t in T , then a new edge with label
f is created, connecting the node labeled h with the node r.

Remarks. (1) Labels in Σ can be used to specify node
types, edge types, and variables. (2) Each graph is de-
fined as a triple consisting of a node set, V , an edge set, E,
and a labeling function σ that maps from Σ onto V ∪ E.
(3) The syntax of the rules in P and the instructions in
I facilitate a uniform specification of different grammars
types, such as node-based, graph-based, context-free, or
context-dependent. E. g., a context-free rule is written as
T → 〈R, I〉; the graph T may consist of single node t; em-
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Fig. 2. A graph grammar hierarchy for various design tasks. The abbreviations NLC and NCE denote the classical graph grammar families “node label
controlled” and “neighborhood controlled embedding”.

bedding instruction without edge labels may be abbreviated
as ((h, t), (h, r)).

The following example defines a graph transformation
rule that operationalizes repair knowledge in fluidic engi-
neering: The insertion of a by-pass throttle, tv, to improve
an insufficient damping (see Figure 3). The formal specifi-
cation of the rule 〈T, C〉 → 〈R, I〉 is as follows.

T = 〈VT , ET , σT 〉 = 〈{1, 2}, {{}}, {(1, p), (2, p)}〉
C = 〈VC , EC , σC〉 = 〈{3, 4, 5, 6}, {{3, 4}, {3, 5}, {4, 6}, {5, 6}},

{(3, w), (4, p), (5, p), (6, cv)}〉
R = 〈VR, ER, σR〉 = 〈{7, 8, 9, 10, 11, 12, 13}, {{7, 9}, {8, 11},

{9, 10}, {10, 11}, {9, 12}, {11, 13}}
{(7, pw), (8, pw), (9, tri), (10, tv),

(11, tri), (12, p), (13, p)}〉
I = {((w, p), (w, pw)), ((cv, p), (cv, p))}
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Fig. 3. Application of the graph grammar definition at a fluidic circuit
where a by-pass throttle is inserted (top). At the bottom of the figure
the related graph transformation rule is illustrated.

B. Relation to Classical Graph Grammars

The world of graph grammars is divided into two inher-
ently different approaches: The connecting approach and
the gluing approach [see 21, pp. 3-4]. The connecting ap-
proach is a node-centered concept that has given rise to nu-
merous graph grammars usually called node replacement
graph grammars. The gluing approach, on the other hand,
is a hyperedge-centered approach on which various hyper-
graph grammars are based.

The most prominent representative of the connecting ap-
proach is the neighborhood controlled embedding (NCE)
graph grammar family1 [9]. NCE graph grammars perform
graph transformations on labeled graphs. A graph transfor-
mation step is based on node and edge labels, which are
used both to increase the discerning power and as some sort
of simple context. Each graph transformation rule also has
a set of instructions that dictate the embedding of the trans-
formation.

Hyperedge replacement (HR) grammars represent the
most popular grammar family following the gluing ap-
proach. HR grammars replace hyperedges, which are iden-
tified through labels, by hypergraphs. Embedding is real-
ized by identifying so-called attachment nodes of hyper-
edges with external nodes of a host hypergraph.

Apart from the above described grammars there also ex-
ist hybrid approaches that try to combine the features of
the connecting and the gluing approach. A widely known
approach is the handle hypergraph (HH) grammar [ 5, 21],
which rewrites handles, e. g., hyperedges together with their
attachment nodes. The embedding is performed according
to the connecting approach. Other hybrid approaches work
similarly [cf. 13, 14].

Figure 4 gives an overview of the different graph gram-
mar families and their concepts. Design graph grammars
are direction preserving grammars. Obviously, they are
closely related to NCE grammars of the connecting ap-
proach and possess similar theoretical properties [cf. 24].

1In the literature it is often distinguished between NCE, eNCE, dNCE,
and edNCE graph grammars. For the sake of simplicity, we refrain from
doing so here.
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C. Relation to Programmed Graph Replacement Systems

When comparing design graph grammars to programmed
graph replacement systems (PGRS) one should keep in
mind that the former is located at the conceptual level while
the latter emphasizes the tool character. PGRS are cen-
tered around a complex language allowing for different
programming approaches. PROGRES, for instance, offers
declarative and procedural elements for data flow oriented,
object oriented, rule based and imperative programming
styles [27, 25, 28]. A direct comparison between PRO-
GRES and the concept of design graph grammars is of re-
stricted use only and must stay at the level of abstract graph
transformation mechanisms.

However, it is useful to relate the concepts of design
graph grammars to PGRS under the viewpoint of opera-
tionalization. PGRS are a means to realize a design graph
grammar by reproducing its concepts.

III. GRAMMAR-BASED DESIGN IN CHEMICAL

ENGINEERING

“Grammar-based design systems have the potential to both
automate the design process and allow greater exploration
of design alternatives.”

Scott C. Chase [4]

This section outlines a grammar-based approach to con-
ceptual design in chemical engineering, which developed
from a cooperative project with the Chemical Engineering
Group at Paderborn University. The approach may be ap-
plied to various kinds of chemical design problems, but by
now we focus on a particular type of chemical processes
only, the design of plants for the food processing indus-
try [17].

A chemical plant can be viewed as a graph where the
nodes represent the devices, or unit-operations, while the
edges correspond to the pipes responsible for the material
flow. Typical unit-operations are mixing (homogenization,
emulsification, suspension, aeration etc.), heat transfer, and

flow transport. The task of designing a chemical plant is
defined by the given demands D, in the form of properties
of various input substances, along with the desired output
substance. The goal is to mix or to transform the input sub-
stances in such a way that the resulting output substance
meets the imposed requirements.

The design happens by passing through (and possibly re-
peating) the following five steps: Preliminary examination
of the demands, choice of unit-operations, structure defini-
tion, component configuration, and optimization. An au-
tomation of the steps at a behavioral level would be very
expensive—if possible at all. Present systems limit design
support to isolated subjobs; they relieve the human designer
from special simulation or configuration tasks, and the ef-
fort involved there is high enough [3, 15].

A. Underlying Paradigm

Our primary concern was the investigation of possibili-
ties to support the design process as a whole, with the long-
term objective to operationalize step-spanning optimization
knowledge. The result of our research can be comprised as
a four step approach to design (cf. Figure 5): (1) The prop-
erties of the input and output substances, D, are abstracted
towards linguistic variables, D̂. (2) At this functional level
a structure model S is synthesized that fulfills D̂ and that
is used as a solution candidate for D. (3) S is completed
towards a tentative behavior model B, (4) which is then re-
paired, adapted, and optimized.

S
im

pl
ifi

ca
tio

n

Behavior
Level

Level of
function

Demands
D

Abstracted
demands D

Structure
Model S

Behavior
Model B Solution

^

1

2

3

4

Fig. 5. The paradigm of functional abstraction in design problem solv-
ing [29].

The procedure in Figure 5 resembles the paradigm of
functional abstraction [29]. The key idea of this paradigm
is a systematic construction of candidate solutions within a
very simplified design space, which typically is some struc-
ture model space. Design by functional abstraction makes
heuristic simplifications at least at two places: The original
demand specification is simplified (Step 1), and, the struc-
ture model is transformed locally into a behavior model
(Step 3). Note that this paradigm enables us to automate
the entire design procedure. Clearly, the mentioned steps
will not be performed at the highest level of behavioral and
structural details:

(1) Manual abstraction of the demands.

(2) Structure model synthesis by design graph grammars.

(3) Enhancement of the structure model into a behavior
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model.

(4) Behavior model optimization based on the evaluation
of simulation results.

Figure 6 reflects the described steps with respect to
the design of food processing plants. The next subsec-
tion, III-B, deepens the grammar-based operationalization
of Step 2.

The concept of separating the structure model from the
behavior model for synthesis purposes is not new. The
VEDA/MODKIT system, for instance, follows the same
philosophy and treats chemical plants as systems consisting
of basic building blocks and connections [19]. However, in
VEDA/MODKIT the synthesis of a plant flow chart is per-
formed manually by a human designer.

B. Structure Model Synthesis

The synthesis of a structure model (cf. Step 2 in Figures 5
and 6 respectively) is a creative job which is efficiently
solved by human experts, who devise solutions based on
their extensive knowledge and experience. However, they
are not capable of generating and checking all possible so-
lutions to a given task systematically—the probability of
missing the optimum solution is considerable. This gap can
be closed by automated design with, for instance, graph
grammars. Graph grammars allow for knowledge model-
ing, manipulation, and systematic search of the solution
space, which are essential requirements for a successful
synthesis of structure models [22].
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Fig. 7. Synthesis rules: splitting of mixing jobs (top), insertion of a heat-
ing chain to improve dissolution (bottom).

Graph grammars generate graphs by applying transfor-
mation rules on, initially, some start symbol or graph. Here,
the start graph consists of a “?”-node representing the un-
known chemical plant where the abstracted demands in the
form of input and output substance properties are connected
to. The successive application of transformation rules cor-
responds to the application of domain knowledge with the
goal of refining the “?”-node into a concrete design fulfill-
ing all demands. Note that domain knowledge also applies
to other tasks, such as analysis or optimization.

The Figures 7, 8, and 9 illustrate the use of graph gram-
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Fig. 8. Refinement rules: Refinement of a generic mixer into a propeller
mixer (top), refinement of a generic mixer into a propeller mixer with
trailing heating chain (bottom).

mars in design. The figures show graphical representations
of graph transformation rules 〈T, C〉 → 〈R, I〉 from our
chemical engineering knowledge base. The rules, which
have been developed in a close cooperation with domain
experts, are used for synthesis, refinement, and optimiza-
tion purposes when designing plants for food processing.

Fig. 9. Cost reduction rules: Substitution of a heating chain with a mixer
with built-in heat transfer (top), combination of two identical partial
chains by relocation (bottom).

Graph grammars can be seen as a collection of rules that
define some search space. Note, however, that they can-
not provide a fitting search mechanism to navigatewithin
this search space; each domain requires a dedicated search
method exploiting domain knowledge. Thus, the synthe-
sis algorithm integrating domain-specific search (function
SELECT-RULE) can be written as follows.

SYNTHESIS-STEP

Input: A design graph grammar G and an initial graph G.
Output: A graph consisting of terminal nodes or fail.

(1) SYNTHESIS-STEP(DGG G, GRAPH G) {
(2) if TERMINAL-P(G) then res := G;
(3) else {
(4) res := fail;
(5) rules := CHECK-MATCHINGS(G, G);
(6) while (rules �= {} and res = fail) {
(7) rule := SELECT-RULE(rules, G);
(8) rules := rules \ {rule};
(9) res := SYNTHESIS-STEP(G, APPLY-RULE(rule, G));

(10) }
(11) }
(12) return res;
(13) }
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repaired or adapted (Step 4).

As observed by Chase [4], “a well-defined grammar will
generate a set of designs which adhere to a specific set of
user defined constraints”.

Put in other words, the quality of a generated solution
is strongly dependent of the granularity and quality of the
knowledge applied, which is reflected by the search space
spanned by the graph grammar as shown in Figure 10. Fur-
thermore, the imposed simplifications also influence the at-
tainable solution quality, and, solutions found by the search
process will often be suboptimum.
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Fig. 10. Heuristic search space navigation using domain knowledge.

For synthesis tasks in chemical engineering the concepts
described above were and are being implemented within
a prototypical tool, called DIMOD (domain-independent
modeler). Figure 11 shows a screen snapshot. The core
of the system consists of a generic graph grammar engine,
used for modeling and application of knowledge, and a
domain-specific module used to guide the search process.

Within DIMOD the simulation is realized as follows. A
generated structure model is completed towards a tentative
behavior model by attaching behavior model descriptions
to the components of the structure model (cf. Step 3 in Fig-
ure 6). The behavior model is then validated by simulation.
For this purpose, the ASCEND IV simulator is used [20];

the attached model descriptions stem from the ASCEND IV
model library or from custom models.

Fig. 11. The DIMOD system. Upper left window represents the abstracted
demands, the windows to the right and center show two generated
structure models.

IV. GRAMMAR-BASED ANALYSIS

The use of graph grammars is not restricted to synthesis
tasks: Analysis tasks, such as structural feasibility tests, or
model transformation tasks, such as the conversion of mod-
els, are also conceivable.

Structural feasibility means that a structure model is con-
sistent with the design knowledge encoded within a given
design graph grammar. This is equivalent to saying—in
terms of formal languages—that a structure model is a valid
“word” of a design graph grammar language. The following
algorithm yields a statement concerning the membership of
a structure model to a given design graph grammar.
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ANALYSIS-STEP

Input: An inverted design graph grammar G and a graph G.
Output: true, if the initial symbol could be derived, other-
wise the resulting graph is returned.

(1) ANALYSIS-STEP(DGG G, GRAPH G) {
(2) if INITIAL-SYMBOL-P(G) then res := true;
(3) else {
(4) res := false;
(5) rules := CHECK-MATCHINGS(G, G);
(6) while (rules �= {} and res = false) {
(7) rule := SELECT-RULE(rules, G);
(8) rules := rules \ {rule};
(9) res := ANALYSIS-STEP(G, APPLY-RULE(rule, G));

(10) }
(11) }
(12) return res;
(13) }

Remarks. Context-free graph grammars containing rules
with empty right-hand sides cannot be used for structural
feasibility tests, since the rules of the graph grammar have
to be inverted. However, this drawback can be avoided by
adding a context to the rules with empty right-hand sides.

Note that a graph-based analysis means to solve the
membership problem for a given graph G and a graph gram-
mar G. This job requires to find a derivation of G from
the start symbol s; a derivation in turn is based on the ap-
plication of graph transformation rules defined in G; and,
to fire a rule it is necessary that a matching of the left-
hand side be found within the host graph. In the general
case, the membership problem is PSPACE-complete [2].
However, special properties or concepts such as confluence,
boundary, leftmost, precedence graph, and flowgraph may
decisively reduce the complexity of the graph membership
problem [21, 11, 18].

V. CONCLUSION

Grammars provide a means to handle several models at
the same time, to modify models, or to evolve models—
say, they can be used to define a model space as well as to
operationalize the search within this space. Design graph
grammars, as proposed in this paper, can help to encode
design knowledge in complex engineering tasks: They have
been created as an instrument to formulate very different
kinds of structure knowledge while still providing a well-
defined semantics.

In our working group there is a long tradition in solving
design and configuration tasks in engineering domains. The
design graph grammar approach introduced here is a result
of the analysis of several projects involving structure model
manipulations. The paper in hand delineated a project from
the chemical engineering domain. Note that our primary
concern is to get a grip on search spaces: Current research
concentrates on the automatic derivation of heuristics that
guide the search in sophisticated design situations. Other

design graph grammar applications, theoretical results, as
well as an in-depth comparison respecting classical graph
grammars can be found in [24, 29].
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