
Exploring Hyperparameter Usage and Tuning
in Machine Learning Research

Sebastian Simon∗, Nikolay Kolyada†, Christopher Akiki‡, Martin Potthast‡, Benno Stein†, Norbert Siegmund‡
∗Leipzig University

†Bauhaus-University Weimar
‡Leipzig University, ScaDS.AI Dresden/Leipzig

Abstract—The success of machine learning (ML) models de-
pends on careful experimentation and optimization of their
hyperparameters. Tuning can affect the reliability and accuracy
of a trained model and is the subject of ongoing research.
However, little is known on whether and how hyperparameters
are used and optimized in research practice. This lack of
knowledge not only limits the adoption of best practices for tuning
in research, but also affects the reproducibility of published
results. Our research systematically analyzes the use and tuning
of hyperparameters in ML publications. For this, we analyze
2000 code repositories and their associated research papers
from Papers with Code. We compare the use and tuning of
hyperparameters of three widely used ML libraries: scikit-learn,
TensorFlow, and PyTorch. Our results show that the most of
the available hyperparameters remain untouched, and those that
have been changed use constant values. In particular, there is a
significant difference between tuning hyperparameters and the
reporting about it in the corresponding research papers. Our
results suggest that there is a need for improved research and
reporting practices when using ML methods to improve the
reproducibility of published results.

Index Terms—Hyperparameter, Hyperparameter Tuning, Con-
figuration Settings

I. INTRODUCTION

Machine learning (ML) is a success story in many fields,
such as healthcare, finance, and the automotive industry [1].
An important enabler for this success is the highly experiment-
driven development of ML models. Experiments evaluate crit-
ical design decisions, such as alternative modeling techniques,
different ML configurations, and even different data slices. The
goal of experimentation is to explore the search space of a
family of ML algorithms and their hyperparameters to obtain
an ML model that achieves the desired accuracy, reliability,
fairness, and robustness.

Experimental settings and hyperparameters play an impor-
tant role in finding the best possible ML model and learning
setup. While ML models can be highly sensitive to experimen-
tal settings, such as random seeds and train-test data slices,
optimizing their hyperparameters often affects the accuracy,
learning effort, and generalizability to the point where a model
with initially poor performance may turn out to be state of
the art (SOTA). To quantify the importance of hyperparameter

2015 2016 2017 2018 2019 2020 2021
Year

0

100

200

300

400

500

600

Pa
pe

rs
 a

na
ly

ze
d

Reporting Practices of Hyperparameters in Research Papers

0

25

50

75

100

125

150

Pa
pe

rs
 o

n
tu

ni
ng

Papers on tuning
Tuning reported
Tuning not reported
Hyperparameters reported
Hyperparameters not rerported

Papers analyzed:

Fig. 1. Number of papers indexed in the dblp computer science bibliogra-
phy between 2015 and 2021 containing the title keywords: hyperparameter
importance, hyperparameter tuning, and hyperparameter optimization, plotted
against reported hyperparameter (HP) tuning and stated hyperparameter values
in research papers.

tuning in ML, we counted relevant1 publications from DBLP
from 2015 to 2022 and plotted their growth per year in
Figure 1. We observe a significant increase in publications with
a seven-fold increase in the observation period. We interpret
this growth as a strong indicator of the practical importance
of this subject.

Surprisingly, despite this extensive research, little is known
on whether and how hyperparameters are actually used and
optimized in research practice, and what methods are used.
This is striking given the importance of tuning and what we
could learn by deriving best practices or analyzing divergent
community standards. This information alone would already
provide new and important insights into the ML community.
When combined with information from the publications them-
selves, even more insight into the behavior of the community
can be gained. With this work, we take the first step to
filling this gap by comparing whether hyperparameters are

1To identify relevant papers, we considered all titles with the keyword
“hyperparameters” combined with either “importance,” “tuning,” or “optimiza-
tion.” This was followed by a manual title check to exclude false positives.
Papers on hyperparameter tuning whose authors did not indicate this fact in
this way were disregarded.

changed in a paper’s associated code and what has been
reported about them. We further track reporting differences
among ML disciplines and raise awareness of this issue. This is
crucial for the reproducibility of ML approaches: not knowing
whether or which hyperparameters were optimized in which
way makes it difficult or impossible to reproduce a result [2],
[3].

We analyze the state of hyperparameter usage and tuning
in ML research in 2000 ML code repositories and associated
research papers from Papers with Code. For these reposito-
ries, we analyze the use of hyperparameters in the APIs of
three widely used ML libraries—scikit-learn, TensorFlow, and
PyTorch. Specifically, we use static code-analysis techniques,
such as control and data flow analysis, to determine which
ML methods2 are most commonly used and which of them
have custom hyperparameter settings. We supplement this
information with manually extracted information from a repos-
itory’s associated research paper. This allows us to identify
community practices and shed light on reporting standards for
tuning, which can be a future way for assessing the robustness
of an ML model and the reproducibility of the results obtained.
To guide the analysis of this data, we explore and answer the
following research questions:

• RQ1: Which, how, and to what extent are ML methods
configured with respect to their hyperparameter settings?

• RQ2: How are hyperparameter settings reported in the
accompanied papers?

We find that, on average, only a few hyperparameters are
set, while the majority of available ones remain untouched.
Therefore, most hyperparameters retain their default values
when an ML method is called. This can mean two things: First,
the default values are already carefully chosen or theoretically
derived and work in most use cases. Second, researchers do not
tune them, even though this could improve their results. The
former is likely not unanimously true for all methods, or else it
is surprising that research on hyperparameter tuning is growing
so rapidly (see Figure 1). However, Figure 1 also shows that
the majority of our analyzed papers do not report tuning (about
75 % across all years) and only half of the papers state the
used hyperparameters. In other words: Why produce so many
papers on the subject when the default values are already
sufficient? In the second case, the reasons for not tuning an
ML method need to be identified. Possible explanations may
include lack of an appropriate experimental setup, limited
knowledge of the effects of certain hyperparameters, time
pressure, or knowledge gaps. In summary, there is a striking
difference between research on and research with hyperpa-
rameter tuning in the ML community. Thus, our results are
an important contribution to the critical discussion of research
practices in this area.

In summary, we make the following contributions:

2For simplicity, we refer to the ML classes provided by the ML libraries
as “ML methods” in the following.

• An overview of the literature and a domain analysis in
terms of reporting practices on hyperparameter tuning
(Section II).

• A large dataset that includes 2000 papers and their
associated code from Papers with Code from various
ML disciplines, as well as methodology for the (manual)
labels indicative of tuning (Section III).

• A comprehensive analysis of the use of hyperparameters
in ML code repositories using static code-analysis tech-
niques (Section IV).

To ensure reproducibility, all data and code are published
alongside this paper.3

II. BACKGROUND AND STATE OF THE ART

In this section, we first describe the selection of ML libraries
and give an overview of typical parameters of ML algorithms.
We then briefly describe approaches for hyperparameter tuning
and finally present related work on the importance of hyper-
parameters.

A. ML Libraries

In this study, we target ML methods and their hyperpa-
rameter settings in the APIs of three major and widely used
ML libraries, namely scikit-learn, TensorFlow, and PyTorch.
We chose these ML libraries for two reasons: First, we opt
for open-source libraries, such that we can employ static code
analysis to identify hyperparameter usage patterns. Second,
we aim to select prominent and widely-used libraries to have
a substantial and externally valid data source available for an
analysis. According to Kaggle’s recent survey 4 on the state
of data science and machine learning reveals that scikit-learn,
TensorFlow, and PyTorch are among the most popular ML
libraries used by data scientists.

Scikit-learn is a high-level library and provides many off-
the-shelf and ready to use ML methods for supervised and un-
supervised problems, such as linear regression, random forests
(RF), and support vector machines (SVM) [4]. In addition to
classifier and regressor methods, scikit-learn also incorporates
many other algorithms that can be used, for example, for data
processing, feature extraction, and even hyperparameter tun-
ing. Scikit-learn has been developed since 2007 and is almost
exclusively written in Python [5]. By contrast, TensorFlow and
PyTorch are competitors in the field of deep learning (DL) and
neural networks. While TensorFlow was originally developed
by Google and became an open-source library in 2015 [5],
PyTorch was developed by Facebook and open-sourced on
GitHub in 2017 [6]. TensorFlow and PyTorch are low-level
libraries that allow for building ML models by using a sets of
building blocks. Both libraries, enable the implementation of
DL architectures and algorithms.

3Supplementary Website: https://zenodo.org/record/7745740
4https://www.kaggle.com/kaggle-survey-2022

https://zenodo.org/record/7745740
https://www.kaggle.com/kaggle-survey-2022

B. Types of Parameters

In the field of ML, different types of parameters are used.
Those can be divided into experimental settings, model pa-
rameters, and hyperparameters. Experimental settings, such as
seeds for random values or learning-validation split ratios of
the dataset, cover a wide range of parameters to steer the
execution of experiments and make them reproducible. Model
parameters and hyperparameters are configuration options of
an ML method (or algorithm) and the resulting ML model.
Specifically, a model parameter, such as the weight of neuron
connections in a neural network, is an internal value of the
ML model that is not set manually by an ML engineer,
but is learned or estimated from data during training [7]. A
hyperparameter, on the other hand, represents a configuration
option that can be manually specified by an ML engineer
to steer the learning process [8], thereby determining the
values of model parameters that a model learns during the
learning phase [9]. Typical hyperparameters are, for instance,
the regularization parameter C in SVM, the learning rate in
optimization algorithms, or the number of neurons and hidden
layers in neural networks.

C. Hyperparameter Tuning

Different ML methods have different kinds of hyperparam-
eters. The selection of these methods and their configuration
settings strongly depend on the modality, domain and avail-
able training data [10], [11]. When developing ML models,
ML engineers typically begin by selecting an ML algorithm
applicable for the problem and data at hand, and then man-
ually specify its hyperparameter values. The simplest way
to configure hyperparameters is to keep their default values,
which are usually provided by the ML library. However, ML
engineers often tune hyperparameters to find the best set of
hyperparameter values that result in an ML model with a
desired accuracy. To this end, ML engineers define a search
space (i.e., the set of hyperparameters and what value ranges
to consider) and select the search heuristic used to find the
best hyperparameter values in the search space [12].

Many approaches have been proposed to optimize hyper-
parameters, such as manual tuning [13], grid and random
search [14], Bayesian optimization [15], [16], [17], [18], meta-
learning [19], [20], [21], and bandit-based method [22]. When
applied properly, they often result in a significant performance
gain for the resulting ML model [23]. However, hyperparam-
eter tuning is generally a computationally expensive task [21],
which is why ML engineers may often keep default values or
only tune specific hyperparameters.

D. Hyperparameter Importance

The importance of hyperparameters and their tuning has
been addressed in several studies. For example, Mantovani
et al. [24] developed a meta learning-based recommendation
system to predict whether optimization techniques lead to a
performance gain of ML models compared to the performance
of ML models obtained when hyperparameters are left at
their default values. The authors compared the performance

of ML models induced by SVM on 143 datasets against the
default values provided by ML libraries, showing that they
can accurately predict when optimization techniques should
be used instead of default values. Lavesson and Davids-
son [25] systematically compared four ML methods to in-
vestigate algorithm configurations on classifier performance.
Interestingly, they found that it is more important to tune
the hyperparameters of an ML method than to choose a
specific ML method. Moreover, they support the assertion
that some ML methods are more robust than others regarding
their hyperparameter settings. Weerts et al. [12] propose a
methodology based on non-inferiority test and tuning risk to
determine which hyperparameters are important to tune. Since
their approach relies on the notion of default values, they also
define reasonable default values. They applied their approach
on 59 different datasets from OpenML, focusing on RF and
SVM. Interestingly, they found that leaving certain hyperpa-
rameters at their computed default values is non-inferior to
tuning them. Moreover, in some cases, the calculated default
values even outperformed the tuned hyperparameter values.
Probst et al. [26] studied the tunability of hyperparameters
represented by the performance gain obtained when tuning the
hyperparameters. To this end, they investigated six common
ML methods (i.e., elastic net, decision tree, k-nearest neigh-
bors, SVM, RF, gradient boosting) on 38 OpenML datasets
to assess the tunability of their hyperparameters. Their results
yield default values for hyperparameters and enable users to
determine the importance of tuning a hyperparameter.

By contrast to these studies, researchers have also addressed
the importance of hyperparameters. Specifically, they aimed
to identify hyperparameters that are important to optimize. To
this end, many techniques have been developed to assess the
importance of hyperparameter, such as forward selection [27],
ablation analysis [28], [29], and functional analysis of variance
(ANOVA) [30], [31], [32].

And yet, while all of the aforementioned studies contribute
valuable techniques to gain insights about the importance of
hyperparameters, we do not know how they are actually used
and tuned in ML research. For this reason, we complement
the above studies in the following aspects: first, we analyze
the usage of hyperparameters of three popular ML libraries
in 2000 code repositories to identify how hyperparameters are
actually used. Second, we analyze the research papers of the
code repositories with respect to tuning. Finally, we superim-
pose the information extracted from the code repositories and
their papers to shed light on experimentation and reporting
practices with respect to hyperparameter usage and tuning.

III. METHODOLOGY

To systematically answer our research questions (see Sec-
tion I), we empirically studied hyperparameter usage and tun-
ing in ML research. We collected a dataset of 2000 randomly
selected code repositories with their respective research papers
from Papers with Code. We analyzed the repositories using
static code-analysis to identify which ML methods are mostly
used and how their hyperparameters are set. We also analyzed

Code Repository Analysis

API Scraping

 of scikit learn,
Tensorflow and

Pytorch

2000 ML Code
Repositories

and Research Papers

Dataset

Extracting ML
Methods

using AST and API
data

API Data

Control- and
Data-Flow
Analysis

Research Paper Analysis

Project Selection

Selection

Criteria

Papers With Code

Statistics about

ML Methods,

Parameter Settings,

and HP Tuning

Results

Labeled

PapersCreating
Keywords

Deriving

ML Fields

Keyword
Search

Annotating
Papers

Measuring
Agreement

Fig. 2. Methodology of analyzing ML code repositories and associated research papers from the Papers with Code corpus.

the code repositories accompanied research papers to shed
light on hyperparameter tuning in ML research. Our empirical
study follows the methodology shown in Figure 2 as described
next.

A. Project Selection

For our code repository analysis, we needed suitable code
repositories that are accompanied with research papers and
incorporate the ML libraries of interest. To this end, we
targeted the Papers with Code corpus5, since it aims at creating
an open source resource for researchers and practitioners to
facilitate discovery and comparison in the field of ML. It is
one of the largest platforms that collects and provides ML
papers, code, and data. In addition to papers, the corpus also
provides a list of repositories that link to the paper, including
the official or third-party implementations of the publication,
all of which constitutes an ideal data source for our study.

a) Code Repository Selection: In October 2021, the
Papers with Code corpus indexed about 63,517 papers. For
these papers, we processed the list of repositories and down-
loaded about 86,053 HEAD revision of repositories hosted
on GitHub as well additional metadata on them. Due to
the enormous number of code repositories, we selected a
representative sample set of 2000 code repositories. Since we
aimed to systematically gather a dataset of code repositories,
we established criteria for the inclusion of code repositories
as follows. A code repository must: (1) be accessible on
GitHub; (2) incorporate at least one of the ML libraries of
interest; (3) be written syntactically correct in Python 3; (4) be
associated with a research paper.

The first criterion limits the scope of code repositories
to those accessible on GitHub. Since the Papers with Code
corpus contains papers and the corresponding code repositories
published between 2009 and 2021, it may happen that some
code repositories have been removed. The second criterion
ensures that the ML code repositories use at least one of
the target ML libraries. To identify code repositories that
incorporate at least one of the ML libraries, we checked the
import statements in each Python file to see if one of the

5https://paperswithcode.com/

ML libraries is imported. The third criterion had a technical
background. Since the Python AST 6 library (Version 3.10.4)
that we used in combination with a control- and data-flow
analysis to analyze the code repositories is not compatible with
Python 2.x, we limit our selection to code repositories that
are syntactically correct written in Python 3. Finally, a code
repository must be associated with a research paper, as we
aim to analyze the corresponding research paper to compare
the tuning activities with the actual code.

We randomly selected code repositories from the Papers
with Code corpus and checked them against our guide-
lines for inclusion. We stopped the selection after we found
2000 repositories—alongside their corresponding papers—that
met all of our criteria.

B. Code Repository Analysis

The analysis of code repositories consists of two steps:
scraping the APIs of scikit-learn, TensorFlow, and PyTorch
to extract the current state of API calls and their configuration
settings, and extracting ML methods and their hyperparameter
settings based on the scraped API data in combination with a
control- and data-flow analysis.

a) API Scraping: To reliably locate and extract ML
methods within the source code, we first needed a current
overview about all existing ML methods and their configura-
tion settings that are offered by the API of an ML library. To
this end, we scraped the API of each targeted library, thereby
extracting each possible call and its configuration settings,
including all its classes and methods. Thus, we obtained an
up-to-date overview of existing methods provided by scikit-
learn, TensorFlow, and PyTorch. In Table I, we show the
number of scraped API calls scikit-learn, TensorFlow, and
PyTorch. The scraped API data builds the basis for locating
and extracting ML methods and their hyperparameter settings
within the source code.

b) Locating and Extracting ML methods: To automati-
cally locate and extract ML methods and their configuration
settings within source-code files, we transferred the code to
the Python abstract syntax tree (AST) 7 and combined with

6https://docs.python.org/3/library/ast.html
7https://docs.python.org/3/library/ast.html

TABLE I
NUMBER OF SCRAPED API CALLS (I.E., ALL CLASSES) AND

CORRESPONDING PARAMETERS FOR SPECIFIC VERSIONS OF SCIKIT
LEARN, TENSORFLOW, AND PYTORCH.

ML library Version API Calls Params

Scikit Learn 1.1.1 262 1866
Tensorflow 2.9.1 2273 11657
Pytorch 1.12 384 1288

the the scraped API data. Specifically, we found ML methods
by checking the AST of the corresponding source-code file
against the scraped API data. Once we found an AST object
with the same name as a ML method in the API data, we
extracted the corresponding ML method with its configuration
settings from the documentation . Using the AST objects,
we extracted the configuration settings for each ML method
actually used in the source-code of each repository. Our AST
analysis relies on pattern matching that bears the risk of finding
other AST objects with the same name as an API call (e.g.,
call to user defined methods), but not representing an ML
method of one of our three ML libraries. For this reason, we
additionally checked all imports in the corresponding Python
file to ensure that the AST object actually references an ML
library of interest.

c) Control- and Data-Flow Analysis: When implement-
ing ML models, it is quite common to define variables that
store specific configuration values. Usually, those variables
are defined before the ML method is initialized and later
passed to the ML method when the method is being called. In
these cases, locating and extracting the concrete configuration
values is limited, since we do not know the actual value of
the variables that are passed to the ML method. To this end,
we additionally performed a control- and data-flow analysis in
order to identify all possible values of a variable that is passed
to a hyperparameter of an ML method.

The control- and data flow analysis relies on the third-
party library Scalpel [33]. Scalpel is an open source Python
library that provides essential program analysis functions, such
as control-flow graph construction, static single assignment
representation, constant propagation, and alias analysis 8.
Using Scalpel, we first created all possible control-flow graphs
for Python source code files and then applied static single
assignment and constant propagation to them to identify the
actual values of variables. Specifically, static single assignment
module created an intermediate representation of variables
by renaming variable assignments with different names. This
intermediate representation of variables was then used by the
constant propagation module to record all values from an
assignment for a single variable. This way, we could track
the flow of variables through the source code and were able
to determine all possible values for a variable.

8https://github.com/SMAT-Lab/Scalpel

C. Research Paper Analysis

To identify whether hyperparameters are tuned and how it
is reported in the research papers, we conducted a domain and
a systematic research paper analysis.

1) Domain Analysis: Technically, the domain analysis con-
sists of three steps. First, we derived a set of diverse fields from
the state of the art categories provided by Papers with Code 9

and the category taxonomy of arXiv 10. Second, we manually
assigned a field to each research paper. Finally, we measured
the inter-annotator agreement to assess the annotation process
and the resulting annotations.

a) Deriving ML Fields.: Almost each research paper in
the Papers with Code corpus contains metadata, such as code
statistics, GitHub metadata, and paper metadata. The paper
metadata includes ML tasks, which refer to the state of the
art categories of Papers with Code, and arXiv categories,
representing different ML fields. Since there is an overlap
between the ML fields from both sources, we first merged all
categories, then two authors discussed the resulting categories.
If two authors could not find an agreement for an ML field,
a third author was consulted to discuss the ML field. A final
agreement was reached when at least two authors agreed on
the ML field. Finally, we end up with 17 different ML field
that cover all arXiv and state of the art categories of Papers
with Code: Computer Vision, Natural Language Processing,
Audio, Robotic, Mathematics, Physics, Machine Learning,
Games, Physics, Information Retrieval, Software Engineering,
Finance, Biology, Security, Electrical Engineering, Social and
Information Networks, Databases, Miscellaneous. To have a
clear distinction between each ML field, we explain in detail
what areas an ML field covers at our supplementary website 11.

b) Annotating Paper.: The main author went through all
papers and manually assigned one ML field to each paper
based on ML tasks and arXiv categories that are assigned to
the papers. For papers that did not have ML tasks or arXiv
categories assigned, we read the title and abstract to assign an
ML field to a paper.

c) Inter-Annotator Agreement.: To check the annotation
process and the agreement among annotators, a second author
labeled a set of 100 randomly selected papers. For this dataset,
we calculated Cohen’s kappa coefficient [34], a statistic to
measure the agreement between a pair of annotators. Given
Landis and Kochs scale [35], Cohen’s kappa statistic was 0.67,
indicating moderate agreement.

2) Paper Analysis: The paper analysis consists of four
steps. First, we created a vocabulary of keywords related to
hyperparameter tuning. Second, we applied these keywords to
our research papers to identify sections that describe the usage
and tuning of hyperparameters. We then read each section
found with our keywords and annotated each paper to answer
RQ2. Finally, we measured the inter-annotator agreement to
assess the annotation process and the resulting annotations.

9https://paperswithcode.com/sota
10https://arxiv.org/category taxonomy
11Supplementary Website: https://zenodo.org/record/7745740

https://github.com/SMAT-Lab/Scalpel
https://paperswithcode.com/sota
https://arxiv.org/category_taxonomy
https://zenodo.org/record/7745740

a) Creating Keywords.: Due to the large number of
papers, we did not read the entire papers. Instead, we fo-
cused on a keyword search to identify sections describing
implementation and experimentation details, as these sections
typically reveal whether and how ML methods are tuned. To
find these sections, we applied a keyword search to all papers.
As the set of keywords is crucial to find relevant sections,
we first built our vocabulary by initially reading 50 papers
and extracting terms related to hyperparameter tuning. The
final keywords in our vocabulary are the following: parameter,
tune, fit, train, search, sweep, optimize, tuning, optimizing,
optimization, implementation, experiment.

b) Keyword Search.: We created a search query for each
keyword in our vocabulary and applied it to the papers,
including the papers used to create the vocabulary. This way,
we ensure that we apply the same search queries to each
paper. Applying the search queries to our papers resulted
into sections that possibly describe the usage and tuning of
hyperparameters.

c) Annotating Papers.: Next, we carefully read each
section found with our keywords and annotated each paper
guided by RQ2. To answer RQ2, we divided RQ2 into the
following sub-questions, which we answered for each paper
accordingly:

• Q1: Is hyperparameter tuning reported?
• Q2: Are the final hyperparameter values reported?
• Q3: Which technique is used to tune hyperparameters?
Due to the nature of Q1-2, we answered these questions

by annotating the papers with yes or no. Specifically, when
we found evidence that hyperparameter tuning was performed
(e.g., the tuning technique and the tuned hyperparameters
were clearly described in a paper), we answered Q1 with yes.
Conversely, if we did not find any reference of hyperparameter
tuning in a paper, we answered this question with no. Sim-
ilarly, we answered Q2 with yes when we found that final
hyperparameter values (i.e., the respective hyperparameters
and their final values) were reported, otherwise we annotated
this question with no. During our analysis, we also extracted
each hyperparameter tuning approach and framework that were
mentioned in these sections to answer Q3.

d) Inter-Annotator Agreement.: As two authors con-
ducted the analysis of research papers, we finally measured
the inter-annotator agreement (IAA) to assess the annotation
process and ensure the correctness of the resulting annotations.
To this end, each author randomly selected a sample set
of 100 paper annotated by the other author and annotated the
papers again. This helped us to cross-validate the annotations
and measure the annotator agreement. For this dataset, we
calculated Cohen’s kappa statistic [34] for Q1-2. Given Landis
and Kochs scale [35], Cohen’s kappa statistic was 0.60 for Q1,
indicating moderate agreement, and 0.70 for Q2, indicating a
substantial agreement.

IV. RESULTS

In this section, we present the results of analyzing the code
repositories along with their respective research papers. To

TABLE II
TOP 10 MOST USED METHODS IN THE ANALYZED CORPUS. UNDER

Parameter Settings, COLUMN Count INDICATES THE NUMBER OF
AVAILABLE OF PARAMETERS TO CONFIGURE THE METHOD, WHILE

COLUMN Avg. SHOWS THE AVERAGE NUMBER OF PARAMETERS USED TO
CONFIGURE THE METHODS.

ML Library Usage Parameter Settings

Method Count Category Count Avg. Avg. % Most adjusted

sc
ik

it-
le

ar
n

StandardScaler 192 preprocessing 3 0.12 (4.0) default
PCA 136 decomposition 9 1.23 (13.7) n components
KMeans 134 cluster 9 2.28 (25.3) n clusters
LogisticRegression 124 linear model 15 2.40 (16.0) C
TSNE 98 manifold 16 2.74 (16.9) n components
KFold 98 model selection 3 2.47 (91.3) n splits
LinearRegression 85 linear model 5 0.36 (7.2) default
LabelEncoder 71 preprocessing 0 0.00 - default
MinMaxScaler 67 preprocessing 3 0.42 (14.0) default
SVC 65 svm 15 1.48 (9.9) kernel

Te
ns

or
Fl

ow

Variable 2007 tensorflow 12 1.98 (16.5) initial value
Session 1572 compat 3 0.58 (19.3) default
Dense 1554 keras 11 2.72 (24.7) units
Saver 1002 compat 15 0.68 (4.5) default
AdamOptimizer 908 compat 6 1.41 (23.5) learning rate
DEFINE string 836 compat 6 3.00 (50.0) name, default, help
ConfigProto 763 compat 17 1.21 (7.1) allow soft placement
Dropout 693 keras 4 1.03 (25.8) rate
DEFINE integer 654 compat 8 3.00 (37.5) name, default, help
TensorShape 612 tensorflow 1 1.00 (100) dims

Py
To

rc
h

Conv2d 15072 neural networks 11 4.95 (45.0) in channels
Linear 14360 neural networks 5 2.16 (43.2) in features
Sequential 11247 neural networks 1 0.93 (93.0) *args
ReLU 9097 neural networks 1 0.61 (61.0) inplace
BatchNorm2d 6507 neural networks 7 1.34 (19.1) num features
Parameter 4812 neural networks 2 1.17 (58.5) data
DataLoader 4511 utils 15 4.09 (27.3) dataset
ModuleList 4169 neural networks 1 0.50 (50.0) default
Dropout 3694 neural networks 2 0.95 (47.5) p
Adam 2234 optim 7 1.57 (22.4) default

answer our research questions, we first analyzed the code
repositories to determine the use of hyperparameters using
static code analysis. We then systematically reviewed related
research papers and combined our findings with the data from
the code repositories to shed light on hyperparameter tuning
and reporting practices in ML research.

A. RQ1: Which, how, and to what extent are ML methods
configured with respect to their hyperparameter settings?

Finding 1: The most commonly used methods are neural-
network building blocks provided by PyTorch and Tensor-
Flow. By contrast, few methods from scikit-learn are used
that cover ML and experimental methods.

The number of the ML libraries per code repository varies.
We obtained 1258 code repositories that import only one ML
library, 653 that import two, and 89 that import all three
libraries. Among all code repositories, PyTorch is the most
frequently used ML library, being imported in 65 % of them.
Scikit-learn comes next, being imported in 43 % of the code
repositories, followed by TensorFlow, which is imported in
34 % of the code repositories. In Table II, we show the ten
most frequently used methods of each library in these code
repositories, how often each method has been used, and infor-

TABLE III
TOP 5 MOST COMMONLY USED ML METHODS OF THE ANALYZED

REPOSITORIES. Call Stats STATES THE TOTAL NUMBER OF CALLS AND THE
CALLS WITHOUT ANY GIVEN PARAMETER. SYMBOL ’-’ INDICATES THAT A

METHOD CANNOT BE CALLED WITHOUT A GIVEN PARAMETER. Param
Stats PROVIDES THE NUMBER OF AVAILABLE HYPERPARAMETERS AND
THE AVERAGE USAGE ACROSS ALL CALLS. COLUMN Avg.* SUBTRACTS

MANDATORY PARAMETERS.

ML Library Call Stats Param Stats

Method / Constructor Total Without Count Avg. Avg.*

sc
ik

it-
le

ar
n KMeans 134 - 9 2.28 1.28

LogisticRegression 124 30 15 2.40 2.40
LinearRegression 85 62 5 0.36 0.36
SVC 65 15 15 1.48 1.48
RandomForestClassifier 58 12 18 2.34 2.34

Te
ns

or
Fl

ow

AdamOptimizer 909 41 6 1.41 1.41
Adam 265 29 14 1.29 1.29
GradientDescentOptimizer136 - 3 1.01 1.01
MomentumOptimizer 83 - 5 2.28 0.28
RMSPropOptimizer 78 - 7 2.08 1.08

Py
To

rc
h

Adam 2234 - 7 1.57 0.57
SGD 1057 - 7 2.33 0.33
RMSprop 150 - 7 2.37 1.37
AdamW 62 - 7 1.74 0.74
Adagrad 55 - 6 1.29 0.29

mation about their configuration (i.e., the number of available
hyperparameters and how many have been set, and the most
frequently set parameter). The most commonly used methods
in our corpus belong to PyTorch, followed by TensorFlow.
These correspond to the building blocks used to construct
neural networks, such as type and number of layers and
activation functions. Also, these parameters may technically
not tune an ML model, but rather specify its architecture and
complexity. Hence, the large number is to be expected for these
frameworks. By contrast, we found few scikit-learn methods
in the code repositories, which include ML methods, such as
LogisticRegression, but a larger variety, such as experimental
methods for preprocessing (e.g., StandardScaler).

Although this first insight may not be surprising and not
relevant to the research question at first sight, it enables us
to distinguish parameter settings used for building an ML
model versus parameter settings used for tuning an ML model.
Since we are interested in tuning, we focus in the following
on ML methods from the optimization classes of TensorFlow
and PyTorch, as well as classifier, regressor, and clustering
methods from scikit-learn as these methods are also the
main target for auto tuning and hyperparameter optimization
frameworks.

Finding 2: Only a few hyperparameters of ML methods
are set, the majority remain untouched. Consequently, most
hyperparameters retain their default values.

Already Table II indicates in column Avg. % that only a
low percentage of available hyperparameters are actually used
for tuning. However, since the model-building methods may

distort the picture, we list the five most commonly used
ML methods with respect to tuning parameters in Table III.
The number of hyperparameters (column Count) ranges from 3
(GradientDescentOptimizer) to 18 (RandomForestClassifier).
Most of them have at least one mandatory parameter (e.g.,
number of clusters in KMeans) such that we must account for
this in our analysis. So, column Avg.* has an adjusted average
parameter usage where we removed the mandatory parameters.
We clearly see that for most methods, we have at most only
one additional parameter set.

Clearly, some parameters may be relevant only in special
cases; however, even the optimizer methods of TensorFlow and
PyTorch are barely used for tuning. Here, we have parameters,
such as decay and weight decay for regularization (e.g., for
Adagrad), which is important for regularization. These param-
eters are mostly untouched. Similar tuning options exist for the
other methods and are mostly not set. For TensorFlow, the first
parameter of the 5 most used methods is always the learning
rate. Although there exists a default value, the learning rate
gets nearly always set, but the remaining regularization param-
eters remain unchanged, similar to PyTorch. Using the default
values for most parameters is surprising, as they are generally
not ideal choices [36], [37], [7]. Naturally, there are some
cases where sticking to default values is reasonable, e.g., when
the computational effort required to train and tune and ML
model makes hyperparameter tuning infeasible, or when ML
libraries already provide sensible default parameter that might
be good enough in standard settings to achieve a sufficient
performance [38]. Nevertheless, these default values may not
provide the best possible results, which could be achieved with
hyperparameter tuning.

Finding 3: Hyperparameters are set by a large fraction
with a constant value, ranging from 42 % up to 69 %
depending on the framework. It is unclear how these
values have been obtained by the developer. In the newer
frameworks, more hyperparameter values originate from
a variable context (e.g., method calls or stored program
variables) that enable an active tuning of these parameters.

Hyperparameters can be passed in different forms to an ML
method. To derive a better picture how parameters are set, we
extracted the AST-type information from the parsed ML code.
This resulted in 8 type AST-type categories, covering classical
data types, such as string, numeric, and boolean values, but
also more complex types, such as function calls, operations,
and passed variables. In Table IV, we show the categories of
types that are assigned to the hyperparameters of the scikit-
learn, TensorFlow, and PyTorch ML methods.

We see a large variation of passing values to an ML method
and differences between scikit-learn and the two libraries
TensorFlow and PyTorch. In scikit-learn, 69 % parameters are
given as constant values whereas for TensorFlow and PyTorch,
the number drops to 58 % and 42 %. This is surprising as con-
stant values cannot be used by experimentation frameworks,
such as MLflow to automatically adapt and document these

TABLE IV
DISTRIBUTION OF PYTHON AST-TYPES PASSED AS HYPERPARAMETERS

TO ML METHODS. CONSTANT MEANS THAT A CONSTANT VALUE HAS
BEEN ASSIGNED TO A VARIABLE WHICH WAS THEN PASSED TO AN ML
METHOD. FOR UNKNOWN CASES, THE DATA-FLOW ANALYSIS DID NOT

TERMINATE OR PRODUCED AN ERROR.

Type scikit-learn TensorFlow PyTorch

C
on

st
an

t

Numeric 33.9 % 29.3 % 21.8 %
String 16.7 % 0.7 % 0.0 %
Boolean 6.8 % 1.7 % 3.3 %
None type 2.6 % 0.1 % 0.1 %
Mapping 1.7 % 0.0 % 0.0 %
Constant 7.3 % 26.3 % 16.8 %

Total: 69.0 % 58.1 % 42.0 %

V
ar

ia
bl

e Variable 23.1 % 36.8 % 40.6 %
Call 3.9 % 4.1 % 6.9 %
Operation 3.2 % 1.0 % 1.0 %

Total: 30.2 % 41.9 % 48.5 %

Unknown 0.8 % 0.0 % 9.5 %

values. Also, it means that they cannot be easily change via
configuration files. Furthermore, it remains unclear how these
values have been determined. For the remaining cases, we see
that method calls are only marginally used. This means that we
do not see parameter tuning frameworks or functions probing
for different distributions of values in our corpus. So, again,
this hints that parameter tuning is rarely used or only realized
via external settings of variables.

To underpin this observation, we depict in each cell of
the rightmost column of Table V a list of the most used
parameter types that corresponds to the list of parameter
names in column Top 3. These parameter names represent
the most changed parameters of the respective ML method.
Furthermore, column Count depicts how often a parameter has
been given a value. Columns Variable and Constant that their
relative percentage of parameter values passed as either a fixed
value or a changeable value that can be set within a (tuning)
function, operation, or external experimentation framework.
In total, 951 (35.5 %) of parameter values map to a constant
value whereas 1753 (65.5 %) can be variably set. This indicates
still a large fraction of a constant value, but shows that, in
contrast to all other methods, more parameters are set with
customization in mind for the most commonly used methods.

Finding 4: The most important hyperparameters stated by
related work have been most often used in our corpus.

Related work on hyperparameter importance and tun-
ing [39], [40], [12] report several hyperparameters that should
be adjusted. We found the same parameters in our corpus. For
instance, the learning rate to train neural networks [41] is the
most commonly set hyperparameter across all ML optimizer
methods of TensorFlow and PyTorch in our data. Similarly,
the most commonly set hyperparameter for scikit-learn meth-
ods are also considered important, such as n clusters for

KMeans [39], the learning rate of the GradientBoostingClas-
sifier [40], and the regularization strength C for LogisticRe-
gression, LinearSVC, or SVC [12], as shown in Table V.

Answer RQ1: ML methods provide many tuning param-
eters, but only a fraction is actually set. Consequently,
most hyperparameters commonly retain their default val-
ues when an ML method is being called. Moreover,
if hyperparameters are set, the majority of them are
constant values without the possibility for tracking and
automatically tuning them with external frameworks.

B. RQ2: How are hyperparameter settings reported in the
accompanied papers?

Finding 5: Despite the fact that hyperparameter tuning is
crucial for the resulting ML model, hyperparameter tuning
is explicitly reported only in a few research papers. In
about two thirds of our corpus, authors reported the final
hyperparameter values, indicating a good, but not perfect
state of reproducibility for the published papers.

Out of 2000 papers, we identified 514 (26 % of all papers),
in which hyperparameter tuning was explicitly reported. This
is a surprising finding, considering the importance of tuning
and the abilities to substantially outperform related, but un-
tuned models. We discuss the consequences of this result in
Section V.

Furthermore, values of hyperparameters have reported in
1281 papers (64 % of all papers). The immediate question is
how these values have been obtained. Do they originate from
expert knowledge, pre-studies, tuning activities, or just first
guesses? Unfortunately, this question cannot be answered, but
when comparing these numbers to parameter usages, espe-
cially whether variable settings have been used (cf. Table IV),
we see that most often only constant values are applied. Only
barely are tuning activities recognizable such that tuning must
either be done outside the provided repository or is absent.
So, although it is a good sign that values are reported at all, it
hinders the reproducibility of these results when it is unclear
how these parameters have been obtained as such a tuning my
be different for different data slices or contexts.

Finding 6: Regardless the ML field, most research pa-
pers do not explicitly report hyperparameter tuning, but
computer vision and software engineering seem to have
especially low hyperparameter-tuning practices.

To get a more objective picture about how and whether
different ML fields report hyperparameter tuning, we counted
the number of papers for each ML field that actually reported
hyperparameter tuning. We show our results in Table VI.

Our findings reveal that most of the papers in our corpus
belong to computer vision, natural language processing, and
machine learning, accounting for approximately 81 % of all
papers. We observe very similar reporting practices for all ML
fields. Higher and lower values for some fields may be an

TABLE V
THE FIVE MOST COMMONLY USED ML METHODS WITH THE TOP THREE MOST COMMONLY SET HYPERPARAMETER. COLUMN Most Used Type

REPRESENTS THE TYPES THAT ARE MOST FREQUENTLY ASSIGNED TO THE HYPERPARAMETERS, COLUMN Count DEPICTS HOW OFTEN THE
CORRESPONDING PARAMETER HAS BEEN SET, COLUMN Constant AND Variable REPRESENT THE PERCENTAGE OF CONSTANT OR CHANGEABLE

PARAMETER VALUES PASSED AS THE CORRESPONDING PARAMETER.

ML Library Usage Hyperparameter

Method Calls Top 3 Count Most Used Type Constant in % Variabel in %

sc
ik

it-
le

ar
n LogisticRegression 33 [C, solver, random state] [15, 13, 12] [Variable, String, Numeric] [20, 100, 67] [80, 0, 33]

SVC 28 [gamma, kernel, C] [9, 6, 4] [Numeric, String, Call] [67, 67, 25] [33, 33, 75]
KMeans 22 [n clusters, random state, init] [22, 13, 7] [Variable, Numeric, String] [23, 54, 71] [77, 46, 29]
GradientBoostingClassifier 20 [n estimators, learning rate, random state] [19, 17, 15] [Numeric, Numeric, Numeric] [74, 94, 71] [26, 6, 28]
LinearSVC 17 [C, dual, class weight] [12, 8, 7] [Variable, Boolean, Call] [25, 100, 86] [75, 0, 14]

Te
ns

or
flo

w AdamOptimizer 414 [learning rate, beta1, beta2] [405, 223, 19] [Variable, Numeric, Numeric] [5, 94, 42] [95, 6, 58]
Adam 91 [learning rate, epsilon, clipvalue] [81, 26, 22] [Numeric, Numeric, Numeric] [36, 65, 41] [64, 35, 59]
GradientDescentOptimizer 42 [learning rate, use locking] [42, 2] [Variable, Variable] [69, 50] [31, 50]
AdagradOptimizer 30 [learning rate, initial acc. val, use locking] [30, 7, 1] [Variable, Numeric, Variable] [3, 71, 0] [97, 29, 100]
MomentumOptimizer 29 [learning rate, momentum ,use nesterov] [29, 29, 12] [Variable, Numeric, Boolean] [14, 62, 83] [86, 38, 17]

Py
to

rc
h

Adam 646 [lr, betas, weight decay] [601, 188, 181] [Variable, Sequence, Variable] [22, 96, 23] [78, 4, 77]
SGD 233 [lr, momentum, weight decay] [219, 151, 101] [Variable, Variable, Variable] [14, 37, 20] [86, 63, 80]
RMSprop 47 [lr, momentum, alpha] [44, 25, 24] [Variable, Variable, Variable] [0, 16, 25] [100, 84, 75]
AdamW 18 [lr, weight decay, eps] [18, 13, 11] [Call, Numeric, Numeric] [6, 77, 73] [94, 23, 27]
Adagrad 13 [lr, weight decay, lr decay] [11, 7, 3] [Numeric, Numeric, Numeric] [9, 0, 33] [91, 100, 67]

TABLE VI
NUMBER OF RESEARCH PAPERS PER ML FIELD.

ML Field Count Hpyperparameter Tuning

Reported Not reported

Computer Vision 797 123 (15 %) 674 (85 %)
Machine Learning 479 187 (39 %) 292 (61 %)
Natural Language Processing 349 114 (33 %) 235 (67 %)
Physics 63 20 (32 %) 43 (68 %)
Audio 46 8 (17 %) 38 (83 %)
Robotic 40 5 (12 %) 35 (88 %)
Information Retrieval 38 18 (47 %) 20 (53 %)
Security 31 5 (16 %) 26 (84 %)
Math 29 2 (7 %) 27 (93 %)
Miscellaneous 25 5 (20 %) 20 (80 %)
Biology 24 9 (38 %) 15 (62 %)
Games 23 5 (22 %) 18 (78 %)
Electrical Engineering 21 5 (24 %) 16 (76 %)
Social and Information Networks 13 3 (23 %) 10 (77 %)
Software Engineering 12 2 (17 %) 10 (83 %)
Databases 6 3 (50 %) 3 (50 %)
Finance 4 1 (25 %) 3 (75 %)

artifact of a low sample in our corpus, such that we refrain
from a possible misleading interpretation. At most, we can
state that computer vision has a very low tuning activity
compared to all other fields, which indicates an interesting
result. Moreover, the 12 software-engineering papers in our
dataset have a very low fraction of reported tuning. This,
at least, indicates that our community should consider this
activity more seriously. Possible explanations for the low
tuning activities in the different fields may include the lack of
an appropriate experimental setup, limited knowledge of the
effects of certain hyperparameters, time pressure, or knowl-
edge gaps. Moreover, the computational effort, which is often
required to train and tune large ML models, may also be
a reason for low tuning activities, especially in the field of

natural language processing and computer vision.

Finding 7: Most papers do not state a concrete tuning
technique and the remaining papers use rather conser-
vative techniques for tuning, such as random probing,
grid search, and manual tuning, despite the variety of
techniques available for hyperparameter tuning.

By analyzing the papers that explicitly describe hyperpa-
rameter tuning, we found that 281 papers (ca. 55 %) did not
mention a concrete hyperparameter tuning technique. Among
the papers that mentioned specific tuning techniques, the most
popular techniques were grid search, manual tuning, random
search, and Bayesian optimization, which were mentioned in
133, 53, 20, and 20 papers, respectively. Since grid search,
manual tuning, and random search cannot be considered an
advanced or systematic approach, we are astonished by the low
state of practice, especially compared when seen a growing
number of papers focusing on tuning. Furthermore, we found
several highly specialized tuning methods, such as ant lion
optimization, Gaussian bandit optimization, or particle swarm
optimization which were only mentioned in a very few papers.
We also found a few highly specialized hyperparameter tuning
libraries, such as Optuna, Hyperopt, and GPyOpt, indicating
that a few papers employed different libraries for hyperparam-
eter tuning. We will provide a list of all tuning techniques and
frameworks found with their occurrences at our supplementary
website 12.

Answer RQ2: Despite the importance and impact of
hyperparameters on the resulting ML model, we found a
stark discrepancy between applying hyperparameter tun-

12Supplementary Website: https://zenodo.org/record/7745740

https://zenodo.org/record/7745740

ing and reporting it appropriately in the corresponding
research papers. Overall, tuning seems to be not a com-
mon practice and it often remains unclear how parameter
values have been obtained, hampering reproducibility of
results.

V. DISCUSSION

In this section, we discuss our findings on hyperparame-
ter usage and tuning, as well as reporting practices in ML
research.

Hyperparameter Usage of ML methods. Our results
indicate that the configuration settings of ML methods do
not receive the attention they actually need, since we found
that only a few of the available hyperparameters are set,
whereas the majority of the available hyperparameters remain
untouched. Table VII depicts this result in more detail.13

Columns Actually Set across all frameworks report only low
fractions of parameters with changed values. Interestingly,
even there, the default values are still used for some parame-
ters.

A similar phenomenon has been observed in the software
engineering field. Software systems often provide hundreds
of different configuration options to tailor the behavior of a
system to user requirements, such as performance, security,
and functionality [42]. However, Xu et al. [43] report in their
study that only a small percentage of configuration options
are set by users, while the majority of configuration options
are not touched at all. Their observation is in line with
what we have found for the actual parameters settings of
ML methods of different ML libraries. Similarly, we found
that most hyperparameters of ML methods are not used at
all. Those unused parameters enlarge the configuration space
of ML methods and neural networks, possibly unnecessarily
increasing the optimization space of parameters.

We see two reasons why most of the available hyperparam-
eters are unused. First, the default values might be already
well chosen. In light of this, researchers may believe that
some ML methods, such as linear and logistic regression,
have been extensively studied, such that their default values
should work in most cases. Hence, it seems that researchers
tend to trust default values for many hyperparameters without
questioning whether the default values are actually good.
However, previous work has already shown that default values
are generally not an ideal solution [36], [37], [7], as they, for
example, harm the reproducibility of ML projects and experi-
ments [44]. Second, researchers do not touch hyperparameters,
although their tuning could improve the results. In this case,
we need to find reasons why this is the case. Researchers may
not understand the importance of hyperparameters, require a
substantially larger setup and time for tuning, or just do not
know how to set them appropriately. Clarifying this question
can be an important future research activity in this field.

13Columns Und. represent the percentage of parameter values for which we
cannot definitively state whether a default or a custom value has been used
(e.g., because variable values are set outside the reachable data-flow analysis).

Rare Tuning Activities. Despite the importance of hy-
perparameter tuning on the resulting ML model, only 25 %
of our papers report tuning. This result can have profound
consequences for ML papers: We would expect that similar
papers can easily improve SOTA results just by tweaking
the parameters, but without substantial new insights. This
can increase the already huge number of ML papers (or a
reason thereof) without having an actual novel contribution.
Moreover, we have difficulties to assess the actual capabilities
of current methods. Does tuning further improve the results
or are we already at our maximum. Even worse, when we do
not know whether parameters have been tuned at all (as more
than half of our papers do not report these), we cannot be sure
whether reported improvements stem from tuning. However,
our code analysis hint more in the direction that parameters
are actually not tuned, leaving out considerable potential of
improvements via experimentation tracking frameworks.

Lack of Experimentation and Reporting Practices. A last
surprising result is the absence of experimentation practices
and frameworks. Recent years have seen the rise of many
successful experiment frameworks, such as Weights and Biases
and MLflow, but our data does not align with that. It indicates
the industrial practices are more advanced and rigorous com-
pared to scientific code and reporting practices. Here is where
we see an easy and impactful action: Using experimentation
frameworks can not only improve the results of the ML
methods, but also provide parameter tracking, logging, and
reproducibility capabilities that most of our papers clearly lack.

VI. THREATS TO VALIDITY

Internal Threats to Validity. Identifying sections in re-
search papers that describe hyperparameter usage and tuning
may impose a threat to internal validity. To mitigate this risk of
missing potentially relevant sections of a paper, we carefully
created a set of keywords related to hyperparameter tuning
by reading 50 research papers in our corpus and extracting
keywords that have been used to describe hyperparameter
tuning. Furthermore, since the metadata of some research
papers may be incomplete, we could neither rely on state of the
art categories of Papers with Code, nor on the arXiv categories
to classify the research papers into different ML fields. Hence,
we merged the categories of Papers with Code and arXiv
and iteratively refined and discussed each category. If two
authors could not agree, a third author was consulted until an
agreement was reached. The annotation process of research
papers may be subjective and could introduce researcher bias.
To mitigate this threat, two authors performed the domain
and paper analysis for which we measured the inter-annotator
agreement among the authors. We measured moderate and
substantial agreement for the domain and research paper
analysis.

Threats to External Validity. Our external threat arises
from the selection of code repositories and concerns the
ability to generalize our results. In our study, we targeted the
Papers with Code corpus, which contains research papers and
associated code repositories generated between 2009 and 2021

TABLE VII
STATISTICS ON HYPERPARAMETER USAGE IN CODE REPOSITORIES WHERE THE ASSOCIATED RESEARCH PAPER REPORTED HYPERPARAMETER TUNING
SORTED BY YEAR, INCLUDING THE AVAILABLE NUMBER OF HYPERPARAMETERS (TOTAL), THE NUMBER OF ACTUALLY SET HYPERPARAMETERS, AND

THE FRACTION BETWEEN DEFAULT, CUSTOMIZED, AND UNDECIDABLE (UND.) VALUES.

Paper Stats. scikit-learn TensorFlow PyTorch

Year Count Total Actually Set Default vs. Custom Und. Total Actually Set Default vs. Custom Und. Total Actually Set Default vs. Custom Und.

2011 1 90 6 (6.7 %) 0 % - - - - - - - -
2013 1 - - - - 14 1 (7.1 %) 0 % - - - -
2014 7 - - - - 91 21 (23.1 %) 0 % 84 24 (28.6 %) 42 %
2015 10 - - - - 6 1 (16.7 %) 0 % 90 25 (27.8 %) 8 %
2016 20 12 2 (16.7 %) 0 % 132 12 (9.1 %) 50 % 21 7 (33.3 %) 14 %
2017 27 25 14 (60.0 %) 43 % 252 45 (17.9 %) 54 % 250 56 (22.4 %) 41 %
2018 79 599 189 (31.6 %) 31 % 592 178 (30.1 %) 56 % 834 171 (20.5 %) 56 %
2019 103 566 72 (12.7 %) 12 % 1761 533 (30.3 %) 12 % 1179 288 (24.4 %) 54 %
2020 162 725 118 (16.3 %) 9 % 1355 212 (15.6 %) 42 % 2545 744 (29.2 %) 49 %
2021 104 1541 211 (13.7 %) 21 % 460 70 (12.7 %) 44 % 1798 438 (24.4 %) 49 %

of different domains. We randomly selected a large sample
of 2000 code repositories that met our criteria for inclusion.
Although we cannot claim that our results can generalize
to every code repository, the large corpus and clear results
indicate a clear trend of parameter usage.

VII. CONCLUSION

The success story of ML-enabled software systems is based
on a careful experimentation process, where data scientists
probe the search space of ML algorithms and their hyper-
parameters. Numerous papers emphasize the importance of
hyperparameter tuning on the accuracy and replicability of the
resulting ML model, and even more propose novel solutions to
this activity. Simultaneously, there is no systematic study that
analyzes whether and how parameters are tuned for research
papers. To this end, we analyze 2000 code repositories and
their associated research papers from the Papers with Code
corpus. We analyze whether and how hyperparameters are set
in three widely used ML libraries—scikit-learn, TensorFlow,
and PyTorch—and if they are appropriately reported in the
accompanied research papers. We found a considerable dis-
crepancy between the available and actually changed param-
eters for across ML methods and frameworks. We found that
most parameters are given a constant values, indicating the
absence of a tuning technique or experimentation framework.
Furthermore, we also found a stark contrast between stating
concrete hyperparameter values in a paper and reporting the
tuning activity leading to these values. There is a substantial
lack of reporting with below half the papers not mentioning
hyperparameters at all and only about a quarter stating tuning
activities. In conclusion, our results reveal a significant need
for a critical discussion on research and reporting practices in
ML research, advocating the use of industry-strength experi-
ment frameworks, such as MLflow and Wheights & Biases to
properly tune ML models and enable better reproducibility of
the results.

VIII. ACKNOWLEDGMENT

The work of the authors has been supported by the Federal
Ministry of Education and Research of Germany and by

the Sächsische Staatsministerium für Wissenschaft Kultur und
Tourismus in the program Center of Excellence for AI-research
”Center for Scalable Data Analytics and Artificial Intelligence
Dresden/Leipzig”, project identification number: ScaDS.AI,
and by the BMBF project Agile-AI. Siegmund’s work has been
funded by the German Research Foundation (SI 2171/2-2).

REFERENCES

[1] J. Chakraborty, S. Majumder, Z. Yu, and T. Menzies, “Fairway: a way to
build fair ml software,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020, pp. 654–665.

[2] M. Hutson, “Artificial intelligence faces reproducibility crisis,” 2018.
[3] S. Kapoor and A. Narayanan, “Leakage and the reproducibility crisis in

ml-based science,” arXiv preprint arXiv:2207.07048, 2022.
[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[5] M. N. Gevorkyan, A. V. Demidova, T. S. Demidova, and A. A.
Sobolev, “Review and comparative analysis of machine learning libraries
for machine learning,” Discrete and Continuous Models and Applied
Computational Science, vol. 27, no. 4, pp. 305–315, 2019.

[6] Meta, “Pytorch developer ecosystem expands, 1.0 stable release now
available,” https://engineering.fb.com/2018/12/07/ai-research/pytorch-
developer-ecosystem-expands-1-0-stable-release/, 2023, accessed:
2023-23-01.

[7] L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing, vol. 415,
pp. 295–316, 2020.

[8] G. Luo, “A review of automatic selection methods for machine learning
algorithms and hyper-parameter values,” Network Modeling Analysis in
Health Informatics and Bioinformatics, vol. 5, no. 1, pp. 1–16, 2016.

[9] S. Shekhar, A. Bansode, and A. Salim, “A comparative study of hyper-
parameter optimization tools,” in 2021 IEEE Asia-Pacific Conference
on Computer Science and Data Engineering (CSDE). IEEE, 2021, pp.
1–6.

[10] K. Das and R. N. Behera, “A survey on machine learning: concept,
algorithms and applications,” International Journal of Innovative Re-
search in Computer and Communication Engineering, vol. 5, no. 2, pp.
1301–1309, 2017.

[11] I. H. Sarker, “Machine learning: Algorithms, real-world applications and
research directions,” SN Computer Science, vol. 2, no. 3, pp. 1–21, 2021.

[12] H. J. Weerts, A. C. Mueller, and J. Vanschoren, “Importance of tun-
ing hyperparameters of machine learning algorithms,” arXiv preprint
arXiv:2007.07588, 2020.

[13] F. Hutter, J. Lücke, and L. Schmidt-Thieme, “Beyond manual tuning of
hyperparameters,” KI-Künstliche Intelligenz, vol. 29, no. 4, pp. 329–337,
2015.

https://engineering.fb.com/2018/12/07/ai-research/pytorch-developer-ecosystem-expands-1-0-stable-release/
https://engineering.fb.com/2018/12/07/ai-research/pytorch-developer-ecosystem-expands-1-0-stable-release/

[14] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization.” Journal of machine learning research, vol. 13, no. 2, 2012.

[15] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” Advances in neural information
processing systems, vol. 25, 2012.

[16] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in International
conference on learning and intelligent optimization. Springer, 2011,
pp. 507–523.

[17] I. Dewancker, M. McCourt, and S. Clark, “Bayesian optimiza-
tion for machine learning: A practical guidebook,” arXiv preprint
arXiv:1612.04858, 2016.

[18] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng,
“Hyperparameter optimization for machine learning models based on
bayesian optimization,” Journal of Electronic Science and Technology,
vol. 17, no. 1, pp. 26–40, 2019.

[19] P. Brazdil, C. G. Carrier, C. Soares, and R. Vilalta, Metalearning:
Applications to data mining. Springer Science & Business Media,
2008.

[20] S. Sanders and C. Giraud-Carrier, “Informing the use of hyperparameter
optimization through metalearning,” in 2017 IEEE International Con-
ference on Data Mining (ICDM). IEEE, 2017, pp. 1051–1056.

[21] J. N. van Rijn, F. Pfisterer, J. Thomas, A. Muller, B. Bischl, and
J. Vanschoren, “Meta learning for defaults: Symbolic defaults,” in Neural
Information Processing Workshop on Meta-Learning, 2018.

[22] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: Bandit-based configuration evaluation for hyperparameter
optimization,” in ICLR (Poster), 2017.

[23] F. Pfisterer, J. N. van Rijn, P. Probst, A. C. Müller, and B. Bischl, “Learn-
ing multiple defaults for machine learning algorithms,” in Proceedings
of the Genetic and Evolutionary Computation Conference Companion,
2021, pp. 241–242.

[24] R. G. Mantovani, A. L. Rossi, J. Vanschoren, B. Bischl, and A. C.
Carvalho, “To tune or not to tune: recommending when to adjust
svm hyper-parameters via meta-learning,” in 2015 International Joint
Conference on Neural Networks (IJCNN). Ieee, 2015, pp. 1–8.

[25] N. Lavesson and P. Davidsson, “Quantifying the impact of learning
algorithm parameter tuning,” in AAAI, vol. 6, 2006, pp. 395–400.

[26] P. Probst, A.-L. Boulesteix, and B. Bischl, “Tunability: importance
of hyperparameters of machine learning algorithms,” The Journal of
Machine Learning Research, vol. 20, no. 1, pp. 1934–1965, 2019.

[27] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Identifying key algorithm
parameters and instance features using forward selection,” in Interna-
tional Conference on Learning and Intelligent Optimization. Springer,
2013, pp. 364–381.

[28] A. Biedenkapp, M. Lindauer, K. Eggensperger, F. Hutter, C. Fawcett,
and H. Hoos, “Efficient parameter importance analysis via ablation
with surrogates,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 31, no. 1, 2017.

[29] C. Fawcett and H. H. Hoos, “Analysing differences between algorithm
configurations through ablation,” Journal of Heuristics, vol. 22, no. 4,
pp. 431–458, 2016.

[30] F. Hutter, H. Hoos, and K. Leyton-Brown, “An efficient approach for
assessing hyperparameter importance,” in International conference on
machine learning. PMLR, 2014, pp. 754–762.

[31] J. N. Van Rijn and F. Hutter, “An empirical study of hyperparameter
importance across datasets.” in AutoML@ PKDD/ECML, 2017, pp. 91–
98.

[32] ——, “Hyperparameter importance across datasets,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018, pp. 2367–2376.

[33] L. Li, J. Wang, and H. Quan, “Scalpel: The python static analysis
framework,” arXiv preprint arXiv:2202.11840, 2022.

[34] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[35] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977.

[36] W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is it
really necessary?” Information and Software Technology, vol. 76, pp.
135–146, 2016.

[37] A. Bagnall and G. C. Cawley, “On the use of default parameter settings
in the empirical evaluation of classification algorithms,” arXiv preprint
arXiv:1703.06777, 2017.

[38] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler et al., “Api design
for machine learning software: experiences from the scikit-learn project,”
arXiv preprint arXiv:1309.0238, 2013.

[39] G. Douzas, F. Bacao, and F. Last, “Improving imbalanced learning
through a heuristic oversampling method based on k-means and smote,”
Information Sciences, vol. 465, pp. 1–20, 2018.

[40] M. Bahmani, R. E. Shawi, N. Potikyan, and S. Sakr, “To tune or not to
tune? an approach for recommending important hyperparameters,” arXiv
preprint arXiv:2108.13066, 2021.

[41] D. Passos and P. Mishra, “A tutorial on automatic hyperparameter
tuning of deep spectral modelling for regression and classification tasks,”
Chemometrics and Intelligent Laboratory Systems, p. 104520, 2022.

[42] T. Xu and Y. Zhou, “Systems approaches to tackling configuration errors:
A survey,” ACM Computing Surveys (CSUR), vol. 47, no. 4, pp. 1–41,
2015.

[43] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey,
you have given me too many knobs!: Understanding and dealing with
over-designed configuration in system software,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, 2015,
pp. 307–319.

[44] H. Zhang, L. Cruz, and A. van Deursen, “Code smells for machine
learning applications,” arXiv preprint arXiv:2203.13746, 2022.

	Introduction
	Background and State of the Art
	ML Libraries
	Types of Parameters
	Hyperparameter Tuning
	Hyperparameter Importance

	Methodology
	Project Selection
	Code Repository Analysis
	Research Paper Analysis
	Domain Analysis
	Paper Analysis

	Results
	RQ1: Which, how, and to what extent are ML methods configured with respect to their hyperparameter settings?
	RQ2: How are hyperparameter settings reported in the accompanied papers?

	Discussion
	Threats to Validity
	Conclusion
	Acknowledgment
	References

