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Preface

In the past much effort has been spent to solve a variety of configuration
problems through the use of computers. Why did configuration problems
become so interesting?

One major reason is that the diversity of the customers’ demands force
manufacturers to tailor their products to these demands. Consequently,
manufacturers are faced with large sets of variants and complex technical
dependencies. These dependencies must be considered when composing
the products. In this situation configuration systems are intended to master
the process of composition.

Furthermore, configuration systems play a central role in the processing
of orders: The design of complex technical systems can be simplified. At
the customer’s site, the sales personnel can utilize configuration systems
to concentrate on sales consultation. Also, when given a definite order,
configuration systems can provide information as input for planning and
scheduling, production, stock keeping, and logistics.

There is no disagreement around the key role that configuration systems
play in bridging the gap between the technical clarification of orders and a
highly automated production run.

Objective of Research

In many configuration systems a taxonomical and a compositional hierar-
chy, i.e. a structural model of the domain, forms the basis for the config-
uration process. Such a modeling approach is no longer adequate when
functional connections make up a major part of the domain knowledge.

vii



viii PREFACE

Given this situation, a new factor in supporting a configuration task can
be achieved when deeper knowledge is employed through the use of func-
tional models. This thesis examines the role of functional models in the
field of configuration and contributes to this area in the following respects:

• Framework of Configuration. We investigate the question of what kind
of models are used in configuration systems and secondly, we develop
a classification scheme that covers a wide range of configuration prob-
lems. This classification scheme moves the type of description for the
configuration objects into the center; it then provides for a more real-
istic view of the configuration problem’s complexity.

Grounded in this understanding of configuration, we develop a for-
mal framework. This framework gives a precise methodology for
studying the phenomenon of configuration from a viewpoint that is
independent of any knowledge representation. Based on the models
here, we can show that structure-based modeling and resource-based
modeling are in some sense equivalent.

• Configuration Based on Behavior. Simplifying matters, configuration
technology has been applied successfully to problems that can be
characterized as follows. Either the components to be composed
are described by relatively simple properties, or the structure of the
system being configured is known in principle. However, at the
present time, the configuration of a system that is not of a predefined
structure and that relies on complex behavioral dependencies cannot
be automated.—Nevertheless, we will go in this direction.

We introduce the configuration of hydraulic systems as a problem that
is founded on deep physical connections. The solution of hydraulic
design problems requires experience in hydraulic model formulation
as well as simulation know-how and, up until now, can be mastered
by domain experts only.

This work analyzes the hydraulic design procedure and shows how
it can be supported. We develop efficient modeling and inference
concepts to process hydraulic engineering expertise. Our modeling
approach encloses a tailored behavior description language and al-
lows an object-oriented definition of hydraulic components; the infer-
ence approach combines knowledge-based techniques with domain
concepts and is able to cope with the problems of model selection,
model synthesis, and behavior simulation.
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• Configuration Systems. Aside from theoretical concepts we present
working systems. This thesis introduces the configuration systems
MOKON and artdeco that we have developed to master real-world con-
figuration tasks and that operationalize large parts of our concepts.

Both configuration systems exploit the functional meaning of the
components involved in the configuration task. MOKON solves con-
figuration problems that rely on property-based component descrip-
tions. artdeco realizes, tailored to the hydraulic domain, the description
and the processing of behavior and supports the configuration of
hydraulic systems in a new quality.

The development of theartdeco system shows that the existing configura-
tion technology can be employed in such a way that even design problems
can be supported adequately.

Thesis Overview

The thesis is organized into two parts. Part one presents general and theo-
retical aspects of configuration; part two is comprised of the chapters that
are concerned with the operationalization of functional models in configu-
ration systems.

Part I Classification and Formal Framework

Chapter 1 briefly discusses the notions of configuration and configuration
systems; it gives an introduction to knowledge-based systems and their
development, as well as relating configuration to other knowledge-based
problem classes.

Chapter 2 investigates criteria to evaluate configuration problems and
systems. It illustrates different configuration scenarios and discusses typi-
cal characteristics of configuration and design problems. This chapter also
introduces different configuration models and a classification scheme in
these two dimensions: description type and problem type.

Depending on a problem’s description type, basic configuration mech-
anisms exist; some concepts are outlined in the latter part of this chapter.

Chapter 3 introduces a formal framework for configuration. In particu-
lar, it formalizes relevant configuration models and presents an equivalence
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result concerning two of these models. Also, a number of typical configu-
ration problems is formulated.

Part II Operationalizing Configuration Tasks

Chapter 4 focuses on a particular function-based component model: the
property-based component model. The chapter discusses the philosophy
and general characteristics of property-based configuration, it presents a
basic configuration algorithm and illustrates the role of metaknowledge.
The last section gives a short description of MOKON, a configuration system
that realizes the outlined concepts.

Chapter 5 focuses on a particular task, the configuration of hydraulic
systems, and shows how such a demanding configuration problem is sup-
ported. It presents a generic component model that allows the formulation
of hydraulic checking and parameterization problems and addresses the
processing of this model.

Chapter 6 introduces the philosophy and the inference concepts ofartdeco,
a system that has been developed to support configuration in hydraulics.
artdecooperationalizes the behavior-based component model and a large part
of the concepts presented in the former chapter. Realizing a graphic prob-
lem specification and utilizing knowledge-based techniques for hydraulic
systems analysis,artdeco simplifies the entire hydraulic design procedure.



Part I
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Chapter 1

An Introduction to
Configuration and Knowledge-based Systems

This thesis deals with the configuration of technical systems. In order
to become familiar with related terms and concepts, the purpose of this
chapter is threefold:

1. The first section reviews the notions of configuration and configura-
tion systems.

2. In section 1.2 we give an introduction to knowledge-based systems
and discuss some aspects of their development: Configuration tasks
are usually problems knowledge-based systems deal with.

3. The last section relates configuration to other knowledge-based prob-
lem classes. We then discuss if the development of knowledge-based
systems can be supported by generic “problem solving methods”.

1.1 A First Glance

Common definitions for configuration describe it as the process of compos-
ing a technical system from a predefined set of objects. The result of such
a process is called configuration too and has to fulfill a set of constraints
given. Aside from technical restrictions, a customer’s demands constitute
a large part of these constraints [61], [81].

1



2 CHAPTER 1. INTRODUCTION

This informal definition gives a declarative description of the job a
configuration system does; it motivates the configuration process from its
result. Figure 1.1 depicts this view: Q0, . . . , Qe denote different states of
a system being configured, where Q0, the starting point, is the empty set,
while Qi comprises the qualities of the system after configuration step i. Qe

denotes the qualities of the readily configured system. The transformation
steps tj stand for the operations performed by the configuration system
within step j.

...Q
0

Q
1

Q
2

Q
e

t1 t2

Figure 1.1: Configuration as a sequence of states and transitions

A configuration system can be seen as a program that takes a set of
demands D ⊆ Qe as input and computes all information to describe ex-
tensionally the configured system. I.e., it generates information about the
required objects, their type, number, topology etc. such that the emerging
configuration fulfills all constraints (cf. figure 1.2).

Component A  21
Component B    4

Structure
connect A with F
preferences

Configuration
system

D Component F    1
Component I     2

Structure
connect
preferences

Component N   7
Component P    2

Structure
connect A with B
preferences

Figure 1.2: The job a configuration system performs

The definition above does not imply information about the complexity
of configuration problems or how to get the hang of them. This should
not be surprising, the development of a configuration system requires the
analysis of the domain and the processing of related problems, more or
less. As a consequence, we cannot provide a set of “general purpose
configuration algorithms” nor build a generic configuration platform.

Nevertheless, in the past a large number of universal configuration ap-
proaches have been developed. This fact seems to contradict the preced-
ing paragraph, but under the following interpretation it does not: Most
of these approaches represent abstract concepts where domain knowledge
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and domain-specific solutions have to be integrated. Examples are Chan-
drasekaran’s GENERIC TASK approach [8], the high-level configuration lan-
guage DSPL developed by Brown and Chandrasekaran [6], or the tool box
with configuration modules described by Syska [72]. Also, the different at-
tempts to operationalize the conceptual models of KADS point at the same
direction [46], [33].

These approaches have the following in common: They model those
parts of a configuration process that are more or less independent of a
particular problem. Stated another way, it is intended to obtain generic
problem solving steps in order to simulate an expert’s way of handling de-
sign problems. As a result, these approaches provide modules that realize
the resolution of contradictions, the test of constraints, or the selection of
design operators and plans.

Especially for a complex design problem1 is such an analysis necessary
in order to get a grip on the problem at all. However, the following two
points should be considered: (i) The power of a configuration system often
comes up with the employment of domain knowledge, and (ii) a lot of
“typical” configuration problems are not so demanding from a technical
standpoint. Instead, the problems are of an organizational type and relate
to the following questions [49], [81]:

• How can configuration knowledge be maintained?

• To what extent can configuration decisions be explained?

• Which mechanisms are appropriate to specify configuration prob-
lems?

• How can domain knowledge be described in a clear—so to speak,
domain-specific way?

It should be investigated how configuration systems can be developed
to provide support for these problems. There exist approaches aiming at
this objective, e.g. the following:

Hein and Tank developed the configuration language AMOR, which
shall bridge the knowledge engineering gap2 [74]. However, it was not
intended to restrict AMOR to a single domain and a small class of configu-
ration problems.

1We will present a detailed classification of design problems in chapter 2.
2Roughly speaking, this term designates the distance between a conceptual configuration

problem and a system tackling it. We will take up this term in section 1.2.
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McDermott coined the notion of “role-limiting-methods” [55]. His con-
figuration approaches distinguish explicitly between different roles (de-
sign) knowledge can play, dependent on its context of use. His team
developed among others the system VT which realizes the configuration of
elevators [51].

Discussion

Research in the field of configuration can be divided in the following
manner: approaches that focus on an abstract process of configuration
and approaches that aim at adequate mechanisms to specify configuration
knowledge. Clearly, when tackling a real-world problem, none of these
approaches could do a complete job. In the former the knowledge has to
be integrated—just as with the latter it has to be processed. Employing
domain knowledge within a configuration system can affect both fields of
research. In this connection the utilization of functional models is one facet
of how domain knowledge comes to effect.

The development of a configuration language that is both adequate in
its knowledge representation mechanisms and independent of a domain or
configuration task is nearly impossible. The objective of adequacy is useful
only in connection with a particular problem, and therefore, it is more or
less opposed to the objective of independence, which is often claimed too.

1.2 Knowledge-based Systems

In order to tackle a configuration problem, expertise needs to be oper-
ationalized. Thus, most of the configuration systems developed in the
past were called knowledge-based configuration systems or expert systems of
configuration. This subsection contains a brief introduction to knowledge-
based systems and discusses their development. This information may
be useful to clear up the scepticism that sometimes is associated with
knowledge-based systems or related terms.

Highly sophisticated and complex computational methods can be found
especially in engineering domains. However, a set of differential equations
describing a physical system along with the numerical methods solving
them should not be called a “knowledge-based system” or “expert sys-
tem”. Also the programming techniques that were used to realize a system,
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e.g. rule-based or frame-based techniques, are not a useful criterion as to
whether a program is an expert system.

Brown and Chandrasekaran define expert systems as programs where
we can find some kind of computations that underly intelligent behavior
and which therefore are discrete, symbolic, and qualitative [6]. They call
this kind of computation problem space exploratory techniques and character-
ize them to be “intelligent” in the following sense:

“They explore a problem space, implicitly defined by a problem rep-
resentation, using general search strategies which exploit typically
qualitative heuristic knowledge about the problem domain.”

Brown & Chandrasekaran, [6], p.4

In fact such computational methods make up an important part of ex-
pertise. In a nutshell, we will refer to a program as a knowledge-based
system if it operationalizes the knowledge, the experiences, or the proce-
dures of an expert in whole or in part.

Architecture of Knowledge-based Systems

The classical view on knowledge-based systems is the following:

knowledge-based system = domain-independent inference engine
+ domain-specific knowledge base
+ problem-specific database

I.e., an important idea of knowledge-based systems is the distinction
between domain knowledge on the one hand and the methods that process
this knowledge on the other: Inference mechanisms are applied to the
knowledge in the knowledge base and are intended to produce a solution
of the actual problem. Knowledge base and inference component may be
completed by modules that guide the user, generate explanations, or realize
the specification of new knowledge.

A point of criticism related to this view is the explicit separation of
knowledge base and inference mechanisms. In fact, a large part of an
expert’s knowledge needs tailored algorithms determining how the knowl-
edge is to be processed. Bylander and Chandrasekaran coined the term
interaction hypothesis in this context [7].
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Thus, a knowledge base will not contain merely facts and rules but
also algorithms that realize both the processing and the specification of
expertise. This understanding leads to a view of knowledge-based systems
as shown in figure 1.3.

User

Rule
processing

Constraint
mechanisms

Propositional
logic

Problem
dependent
knowledge

...

Programming language(s)

Fuzzy
logic

Dialog and explanation module

Acquisition
module

Problem−
independent
knowledge

Object−
oriented data
structures

Figure 1.3: Alternative view of a knowledge-based system

Note that the knowledge base is divided into a problem-independent
and a problem-dependent part. The former part models the never changing
concepts and theories of a domain—example: the descriptions and the
algorithms that operationalize Kirchhoff’s or Ohm’s law. The other part
can be filled with knowledge less fundamental for the domain and the
problem respectively, i.e., it stores definite situations or new dependencies.
The boxes below the knowledge base designate some exemplary techniques
that can be used to operationalize knowledge. In particular, there is no
explicit inference module apart from the knowledge base.

In order to develop such a system, the mechanisms for knowledge
specification and knowledge processing have to be oriented by the actual
problem. Thus, from today’s point of view, it is hardly possible nor very
useful to develop universal, that is, domain-independent problem solving
systems.
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Development of Knowledge-based Systems

The literature on this subject provides many methodologies intended to
guide the development of knowledge-based systems. Actually, the prob-
lems to be addressed with knowledge-based technology are not of a generic
nature. Rather, their solution requires a deep understanding of the related
domain as well as the development of new concepts and algorithms, which
can never be part of a development methodology. Even so, we can roughly
sketch out some ideas of the classical development approaches to dis-
close the complexity and the weak spots of the development process and
knowledge-based systems.

Knowledge-based systems operationalize the knowledge and the ex-
periences of one expert or a group of experts. In this connection chunks
of knowledge have to be recorded, better: elicited, then structured, inter-
preted, and implemented. This is a demanding job that the knowledge
engineer is supposed to do; he has to become an expert in the domain of
interest.3

Figure 1.4 depicts the development process of knowledge-based sys-
tems as a sequence of three major stages.

Knowledge recording

Interpretation

(a) (b)
Modeling

Operationalization

Output:

Recordings

Mental conceptual model

Explicit model

Knowledge base

Figure 1.4: Stages in the development process of knowledge-based systems

The first stage of the development process, the knowledge recording
stage, can partially be automated. There is a whole string of concepts,
theories, and tools aiding the recording and structuring of expertise. These
approaches can be divided into two classes: (i) approaches that merely sup-
port the process of knowledge recording, such as unstructured interviews

3Sometimes it goes the other way round: A domain expert becomes an expert system
specialist.
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and repertory grid techniques, and (ii) approaches that support parts of the
interpretation process in so far as they use, build, or refine a conceptual
model of the domain. For approaches of either class there exist tools as
well as manual techniques. Examples for tools are CLASSIKA [21], MOLEKA
[19], or SALT [50].4

The stage of interpretation is the most important and difficult one. As
depicted in figure 1.4, two philosophies can be distinguished: the rapid-
prototyping approach (a) and the model-based approach (b). Both ap-
proaches have in common the fact that the knowledge engineer develops
“his” mental conceptual model5 of the domain and the problem. The
model-based procedure differs from the rapid-prototyping concept in that
it tries to reveal the conceptual model.

The main advantages of a model-based procedure are as follows: (i) the
conceptual model is closer to the expert’s terminology, (ii) the conceptual
model discloses the structure of the actual working model, and (iii) wrong
interpretations of data or an incorrect conceptual model will not lead to a
waste of implementational work. On the other hand, these models are not
operational and cannot be verified in their dynamical behavior. I.e., there
is no guarantee that they really work.

A well-known representative of the model-based approach is the KADS
methodology6 [82], [31]. KADS provides generic constructs that aid a knowl-
edge engineer in modeling a problem’s inference structure: the so-called
metaclasses, knowledge sources, and models of interpretation.

Operationalizing a knowledge base via rapid-prototyping means to quickly
obtain a running system that is based on some exemplary cases. This pro-
totype is extended or rebuilt at a later stage in the development process.
The advantages of this approach are the immediate verification of a sys-
tem’s functioning, and the direct flow back of first experiences. Its main
disadvantages are thus: The representation of expertise is oriented by im-
plementational terms and restrictions—not by the domain, and no explicit
model of the inference process and of the types of knowledge is constructed.

Figure 1.5 relates the two philosophies to their level of abstraction. The
distance between the knowledge analysis task on the left-hand side and the

4Karbach and Linster give an excellent survey of this field [31].
5Norman firstly introduced the term as a designation for the mental model of expertise

[58].
6KADS stands for “Knowledge Acquisition and Documentation Structuring”.
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Expert and
domain knowledge

Knowledge engineering gap

Level of
abstraction

Degree of
operationalization

Explicit
conceptual model

model−based
approach (b)

rapid−prototyping (a) Realization
techniques

Figure 1.5: Comparing the two approaches’ level of abstraction

shells, mechanisms, or knowledge bases on the right is sometimes called
the knowledge engineering gap.

Clearly, model-based approaches like KADS clarify the inference pro-
cess itself, but they provide only little aid in bridging the gap between
knowledge analysis and implementation. The reason for this is that such
“modeling-of-expertise”-approaches are placed on the knowledge acquisi-
tion side. In other words, they do not lead to a working system.

Because the developers of KADS and other groups of researchers knew
about this lack, they began to develop operational equivalents to their
theoretical concepts. Examples are ZDEST-2 [33], MODEL-K [80], OMOS
[45], or Chandrasekaran’s GENERIC TASKS [8]. These approaches should
cut down the knowledge engineering gap from the other side—say, from
the operational standpoint. Exactly this point is the key idea presented in
the next section; the design process of knowledge-based systems would
be reduced to a “simple” selection procedure, if we identified universal
tasks—the so-called problem classes—for which appropriate algorithms
have already been developed.
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1.3 A Short Discussion of Problem Classes

Problem classes provide a scheme for classifying the problems of knowl-
edge-based systems. The idea of distinguishing between different problem
classes implies the following wishful thinking: When given a particu-
lar problem Π, based on a “problem-class-look-up-table” that associates
problems with methods solving them, a solution for Π should be easily
constructed. We want to state at least some proposition regarding Π’s
complexity.

A classification of problems might support developers in tasks such as
method selection, tool selection, knowledge acquisition, and knowledge
implementation. Steels claims as a long-term objective:

“At some point, we should end up with a knowledge engineering
handbook, similar to handbooks for other engineering fields that relates
task features with expert system solutions.”

Steels, [66], p.48

Regardless of whether Steels’s idea can be realized completely, it is
useful having a look at problem classification schemes for knowledge-
based systems. Possible criteria for a classification are (i) the type of a
problem, i.e., certain characteristics specifying the task to be performed,
(ii) the methods employed to solve a problem—the so-called problem solving
methods, or (iii) the type of the model realized within a system.

Classifying Problems by their Type

A classification of problems that is based on the problem’s type was first
introduced by Hayes-Roth et al. [26]. In particular, they found the following
classes: interpretation, design, plan, monitor, debug, repair, tutor, and
control. Clancey took these classes and developed the hierarchy as depicted
in figure 1.6 according to the following idea:

“We group operations in terms of those that construct a system and
those that interpret a system, corresponding to what is generally called
synthesis and analysis.”

Clancey, [11], p.315

By synthesizing a system we mean its composition, or at least, its mod-
ification. Therefore, all types of configuration problems are basically of
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Synthesis Analysis

Specify Design Assemble

Configure Plan Modify

Identify Predict Control

Monitor Diagnose

Figure 1.6: Hierarchy of problem classes according to Clancey

synthetical nature. Configuration tasks and planning tasks are the most
important representatives within the class of synthetical problems. There
is still the discussion whether configuration problems can be subsumed
under planning problems or vice versa. Simplifying matters, planning is to
be considered as the composition of atomic actions, whereas a configuration
process deals with physical objects.

In contrast to the above, an analytical task requires the presence of a
system [62]. This system is to be classified and investigated respectively but
never modified in the course of an analytical process. The most important
representative within the class of analytical problems is diagnosis.

Classifying Problems by Problem Solving Methods

We use the term problem solving method for a procedure, a concept, or an
algorithm that is employed in knowledge-based systems in order to tackle a
clearly defined problem. Such methods can form a lattice of problem classes
where the rationale is as follows. All problems subsumed under the same
class can be solved by the same method. Well-known examples for prob-
lem solving methods are GENERATE-AND-TEST, COVER-AND-DIFFERENTIATE,
HEURISTIC-CLASSIFICATION, ESTABLISH-AND-REFINE, or SKELETAL-PLANNING
[19].

Bauer et al. distinguish between three types of problem solving methods
[2]: (i) methods that specify a conceptual procedure for knowledge pro-
cessing like HEURISTIC-CLASSIFICATION or HYPOTHESIZE-AND-TEST, (ii) role-
limiting-methods that just need to be “filled” with domain knowledge like
COVER-AND-DIFFERENTIATE, and (iii) methods that realize basic knowledge
processing techniques like Fuzzy inference.

Additionally, a distinction between “strong” and “weak” can be made.
These terms were firstly introduced by McDermott [55] and can be found
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in Puppe too [61]. The attributes “strong” or “weak” do not characterize
a method’s efficiency; rather, they indicate its range of application. A
weak problem solving method is less specialized and so, it can be used
for a wide range of knowledge representation and knowledge processing
tasks. As a consequence it scarcely provides support for problem-dependent
knowledge acquisition and knowledge processing. Examples for weak
problem solving methods are the generic search strategies BREADTH-FIRST-
SEARCH and BEST-FIRST-SEARCH.

Strong problem solving methods provide tailored concepts for problem-
dependent tasks. Due to their specialization, their range of application is
rather narrow. On the other hand, they are able to support the knowl-
edge acquisition process to a large extent. COVER-AND-DIFFERENTIATE and
PROPOSE-AND-REVISE are examples for strong problem solving methods
since they prescribe the structure of the required knowledge.

Until now a generally accepted lattice of problem classes that is oriented
with problem solving methods does not exist. Approaches pointing in
this direction are the KADS models of interpretation, the mapping model
as proposed from Bauer et al., Puppe’s identification of problem solving
types, or Karbach et al.’s descriptions of problem solving methods, which
are placed at an abstract level [32].

Classifying Problems by the Model Employed

Within the classification approaches above problem classes are identified
by applicational aspects. This would be useful, if we could expect problems
of similar complexity and of similar structure under the same label as e.g.
“configuration” . But, there is no compelling evidence why a diagnosis
problem ΠD1 should be more similar to a diagnosis problem ΠD2 instead
of to a configuration problem ΠC . Note that similarities can also be found
with regard to the type of model operationalized in a knowledge-based
system.

Depending on the knowledge that is used in a model, different process-
ing mechanisms have to be employed. So it is likely to comprise problems
with respect to the required inference mechanism: problems that can be
tackled by a qualitative approach, problems that need some kind of Fuzzy
inference, problems that rely on precise mathematical models, or problems
that need to be processed at a subsymbolic level.

These classes are oriented by the realization of a model. In contrast
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to the formerly introduced classification approaches, which represent the
user’s point of view, the approach proposed here is intended to support
the developers of knowledge-based systems.

Discussion

Developing a classification scheme of problems means both the identifica-
tion of classes that comprise problems of a certain type and the association
of these classes with problem solving methods. The development of such
a classification scheme is useful for the following reasons:

1. Communication. Sharing a similar terminology will integrate users
into the development process and help in avoiding misunderstand-
ings.

2. Simplification of the Design Process. The development of knowledge-
based systems should not have to start from scratch every time.
Here, a classification scheme could support the selection, adapta-
tion, and combination of problem solving methods in order to build
knowledge-based systems tailored to a new task.

The realization of this second aspect will be difficult, if we develop a
problem classification scheme from an applicational standpoint, as pro-
posed by Clancey or by Hayes-Roth. We should instead follow the ideas
outlined in the latter two subsections, which rely on an algorithmic point
of view.

To this day predefined toolboxes and problem solving methods have not
led to a significant simplification of the design process. However, this point
may be a consequence related to the complexity of the tasks of knowledge-
based systems—not of the “underdeveloped” expert system technology.
I.e., there is only little hope that the knowledge engineering gap is closed
by someone else other than the knowledge engineer himself, or, in Twine’s
words:

“Knowledge engineering, as reflected by current practice within the
expert system community, is more an artistic discipline than an engi-
neering one.”

Twine, [78]
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Chapter 2

Classifying Configuration Problems

What type of criteria is useful in evaluating configuration problems and
systems?

This chapter contributes some ideas and an informal classification
scheme to this question. It is organized as follows.

Section 2.1 illustrates different configuration scenarios. It is intended
to give an idea of the type, complexity, and related problems of important
configuration problems. Section 2.2 elaborates on configuration and design
problems and shows how they are related to each other. Section 2.3 devel-
ops our view of models for configuration. Further on, a lattice of different
configuration problems is given in respect to two dimensions: description
type and problem type. Depending on the description type of a problem,
basic configuration mechanisms exist; some mechanisms are introduced in
section 2.4.

2.1 Configuration Scenarios

Three different configuration scenarios are outlined. Particular solutions
are not presented but an idea of the complexity of typical configuration
jobs and of related problems is conveyed. Thus, this section provides an
applicational background for the theoretical considerations of later sections
and chapters.

15
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Configuration jobs play different roles at different stages within the
operational procedure of a company. These stages can be characterized
by their temporal position and by the departments concerned. Figure 2.1
depicts the typical steps of the operational procedure in a manufacturing
company.

Manufacturing

Installation

Projecting 

Demands, technical specifications

Sales consultation

Provisional configuration

Provisional offer

Complete configuration

Cost accounting

Setting into operation

External area

Internal area

(in the case of an order)

(in the case of complex systems)

(if at all possible)

(in the case of complex systems)

Figure 2.1: Operational procedure in a manufacturing company

Within this procedure two major areas where configuration tasks come
up are distinguished: (i) The internal area, where typical inside jobs are
placed, and (ii) the sales-oriented external area at the customers’ site. Stages
below the internal area are not comprised of typical configuration tasks,
but configuration results gathered at earlier stages can play an important
role here also.

The three examples presented now are arranged with respect to their
operational field. Example 1 describes a scenario that is placed at some
early stage of the operational procedure, while example 2 and, especially,
example 3 affect stages of the internal area.
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Example 1

Configuration of Telecommunication Systems. This scenario occurred at a
known manufacturer of telecommunication systems [81].

The configuration of telecommunication systems is grounded on techni-
cal know-how since the right boxes, plug-in cards, cable adapters, etc. have
to be selected and put together according to spatial and other constraints.
Typically, there exists a lot of alternative systems that fulfill a customer’s
demands from which—with respect to some objective—the optimum has to
be selected. Moreover, since the sales personnel should be able to provide a
provisional offer, knowledge about both technical dependencies and actual
prices must be available at the customer’s site. Given an order, a whole string
of working documents for the subsequent “pass through” has to be gen-
erated such as information for logistic and business purposes, or plans for
scheduling, manufacturing, and assembly. Since technical progress goes
on, new components will be developed that must be considered within the
future process of configuration.

From a configurational point of view, the components of a telecommu-
nication system can be divided into three major classes. One class contains
the mandatory technical components for the switchboards: boxes, racks,
base circuit boards, electric fans, power supplies, and main distributors.
The second class consists of a wide range of plug-in cards and related cable
adapters whose selection depends on the actual demands of a customer.
The third class comprises components that embody services and extensions
that a customer can choose: telephone connections of analog or digital type,
fax machines, serial and parallel computer interfaces, dialing features, etc.
Figure 2.2 illustrates the dependencies.

Telecommunication
system

Mandatory components

Demand−dependent components

    − Extension TK93
    − Extension TK92
    − V24 Interface

    − Direct Dialing
    − Emergency PSU
    − ...

Services:

Figure 2.2: Technical dependencies of telecommunication systems
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Related Problems. Aside from the solution of the technical configuration
problem, the following demands are related to a configuration system:
(i) An optimum configuration must be computed in acceptable time at the
customer’s site, (ii) the configuration system should not be too demanding
with respect to hardware resources, and (iii) the settling-in period for both
the sales personnel and the personnel maintaining the system should be at
a minimum.

Example 2

Configuration of Mixing Machines. The design of mixing machines is a com-
plex configuration problem for which different configuration systems have
been developed in the past. In this subsection a design problem of a man-
ufacturer described by Brinkop and Laudwein is sketched out [4].

The configuration process depends on a customer’s mixing task, i.e.
the basic mixing operation, the viscosities and the specific gravities of
the products involved, and the dimensions of the tank where the mixing
process will take place. The basic structure of a mixing machine is depicted
in figure 2.3.

Lantern

Shaft

Tank

Products (to be mixed)

Impeller

Drive unit

Figure 2.3: Basic structure of a mixing machine

There are only a few conceptual elements that make up a mixing ma-
chine, but the number of possible variants is extremely high. This results
from the large selection in which each basic building block occurs. E.g.,
there are about 15 different types of impellers, which vary from 15mm to
1500mm in their diameter. The length of the shaft is variable from 1m to
15mwhile its possible diameters vary from 25mm up to 125mm. The drive
of a mixing machine is selected from a set of several thousand motors and
gear units, and, depending on the mixing task, additional components like
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bearings or sealings can be employed. During the configuration process, a
lot of physical dependencies have to be processed, and, in addition, indus-
trial norms and quality standards need to be met. Beyond such a technical
specification, the output of the configuration process should comprise a
reliable offer and a drawing true to scale.

Related Problems. Aside from the solution of the technical configuration
problem, the following demands on a configuration system were stated
from the manufacturer’s site: (i) The configuration process should become
simpler, (ii) design knowledge for acquisition and maintenance purposes
should be represented explicitly, and (iii) the settling-in period for the sales
personnel should be at a minimum.

Example 3

Designing Hydraulic Systems. A hydraulic system consists of mechanical,
hydraulic, and increasingly more electronic components. Configuring a
hydraulic system is a complex process that starts with design concepts and
ends with setting the installed system into operation.

The starting point for this configuration process is a task that a customer
wants to be performed by hydraulics. It can be a lifting problem, the
actuation of a press, or some complex manipulation job. Usually, the
resulting demands on a hydraulic system are specified and illustrated by
means of different diagrams. These diagrams indicate the course of forces
at the cylinders, the switching positions at the valves, etc. Given this
information an engineer defines a circuit’s topology, selects components
like pumps, valves, pipes, computes their parameters, and checks, among
other things, the stationary and dynamic behavior of the system. Figure
2.4 shows switching diagrams and a hydraulic circuit.

During the different checking stages one has to investigate if all geo-
metrical connections fit, if the switching logic realizes the desired behavior,
which maximum pressure values occur, etc.

Configuring hydraulic systems is not a typical configuration problem
commonly described in the literature on this subject. Although we deal
with a finite set of objects to be selected, there are two aspects where this
problem differs from the “representative configuration problem”: (i) The
structure of a hydraulic circuit is not of a fixed type. Thus, the search space
of possible solutions is of higher order as compared to the two examples
presented before. Also, the identification of possible solutions requires
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Cylinder 1

Cylinder 2

Valve 2

Valve 1
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Figure 2.4: Switching diagrams and a plan of a hydraulic circuit

complex and difficult computations. (ii) Checking the function of a hy-
draulic system means to check its behavior, i.e., some kind of simulation has
to be performed1.

Remarks. Chapter 5 elaborates on the configuration of hydraulic systems.
There we discuss to which extent this task can be processed automatically
and in which way an engineer can be supported appropriately.

Discussion

The examples above introduced typical problems one is faced with when
configuring or, as the case may be, projecting technical systems. The job
the sales personnel and the project engineers do can be seen as an informal
definition of the term “configuration”. A particular configuration task and,
as a consequence, a configuration system for its support depend on the
domain, organizational aspects, the level of automation the configuration
system is intended to provide, and the qualification of the users. From a
technical point of view, a configuration system should give answers to the
following questions:

• Does a configuration exist that fulfills the customer’s demands?

• Does a system, configured manually, work correctly?
1In the previous example, during the configuration process of mixing machines, a certain

kind of simulation has to be performed, too.
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• Of which components is the configuration composed?

• How much does a configured system cost?

In addition, concepts for maintenance and acquisition of new configura-
tion knowledge make up an important part within a configuration scenario.
A user should be able to specify (product) knowledge in an adequate way,
that is to say domain- and problem-oriented, but not at the programming
language level. Clearly, this kind of problem cannot be solved indepen-
dently of an actual context as well.

The task of designing hydraulic systems shows that a sharp line cannot
be drawn between configuration problems on the one hand and design
problems on the other. Configuration is generally viewed as a process of
selecting and connecting objects while paying attention to some constraints.
Especially in the last example, this process turns out to be a sophisticated
layout problem that needs an engineer’s creativity.

2.2 Relating Configuration to Design

The previous section showed a wide range of configuration and design
problems but gave no answers as to how such problems are linked:

• Where does configuration end and design begin?

• How can configuration problems be characterized?

In this section we discuss existing views and present new aspects to
answer these questions.

On Design

What is design? We will not investigate this question from its philosophic
or sociologic roots here. Rather, we focus on the teleological aspect of de-
sign: the creation of new artifacts. And, with the question as to how new
artifacts are created, one raises the next questions, that is, if and how this
creation process can be supported.

A lot of researchers work in the field of knowledge-based design
support—e.g. Chandrasekaran and Gero. They define design as follows.
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“A design problem is specified by (i) a set of functions to be delivered by
an artifact and a set of constraints to be satisfied and (ii) a technology,
that is, a repertoire of components assumed to be available and a
vocabulary of relations between the components.”

Chandrasekaran, [9], p.60

“The metagoal of design is to transform requirements, generally
termed function, which embody the expectations of the purpose of
the resulting artifact, into design descriptions.”

Gero, [22], p.28

The result of a design process is a definition of the artifact searched
for, which can be transposed easily—better: definitely—into a real sys-
tem. Such a definition might be a graphic or a textual representation of
the artifact’s exteriors, an algorithmic specification, differential and alge-
braic equations, topological information, or relationships between building
blocks.2 Subsequently, we outline an abstract model of the design process
that leans on Gero’s ideas [22].

The purpose of a design process is the transformation of a complex set of
functionalitiesD (= demands) into a design description C (= configuration,
composition):

D −→ C

“−→” stands for some transformation, C is considered the artifact’s entire
set of components and their relations. The transformation must guaran-
tee that the artifact being described is capable of generating the set D of
demands. Sometimes it is convenient to regard D as the union set of De

and Di, with De denoting a set of all explicitly desired demands, and Di

comprising the constraints implicitly established by the domain. Due to
the complexity and the diversity of a design process, no universal theory of
design can be stated, i.e., in the very most cases no direct mapping is given
between the elements d ∈ D and the objects o ∈ C.3

Working on a design problem can be compared to a process of balancing
two sets of behavior: the set of intended or expected behavior Be, and the

2We go a step further than Gero here: Gero distinguishes between a design description Γ,
which stands for some kind of informal drawing, and a configuration C, which represents the
artifact’s elements with their relationships. Since the transformation C −→ Γ is canonical we
take C and Γ to be equal and shall refer to C only.

3A special case of a direct mapping between d ∈ D and o ∈ C is the so-called “catalog
look up”.
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set of observed behavior BC . Be can directly be derived from a designer’s
understanding forD, whereasBC is the result of an analytical investigation
of C that may enclose complex model formulation and simulation tasks:

D −→ Be , C −→ BC

What happens during the balance process? The expected behavior Be

controls a synthesis step, that is, the definition of the configuration C,
which in turn causes the behavior BC . Within the next step, the so-called
evaluation phase of the design process, the two behavior sets are compared
to each other. This comparison produces new information that serves as
input for a new synthesis step. Figure 2.5 illustrates the dependencies.

Be Evaluation

AnalysisSynthesisCanonical
interpretation

D C

BC

Figure 2.5: An abstract model of design

Configuration is Abstracted Design

The model presented in the former subsection is of a universal type, and
therefore, it cannot be used to support a design process in operational
terms. Consequently, this description of design should be constrained in
some way. Before we describe different classes of design, we will illustrate
some ideas of how configuration problems and design problems are linked
to each other. Summarizing this subsection, we understand configuration
as an abstracted design process.

The undoubtly most creative design job is the invention of an artifact that
utilizes a physical law of nature in an unprecedented way. The invention of
the electrical transistor or of the capacitor are well known examples of such
achievements. To stay within the electronic domain, let us consider in a
further course that an electronic system or device is to be designed where,
among others, transistors and capacitors are to be used. This electronic
device may be a component of a computer, for example a particular plug-in
card or a power supply unit. Such a design job is very difficult and needs
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an engineer’s creativity, experience, and skill. Now, within a third step, we
assume that a computer is to be designed (or configured respectively) using
components like the above: a main board, plug-in cards, a power supply
unit, etc. Obviously, this is the least demanding step within the entire
procedure—“only” selection, positioning, and perhaps, parameterization
tasks have to be performed.

Let us take a closer look at the steps 2 and 3. Step one does not play an
important role here since there seems to be no chance of automating such a
creative process in the foreseeable future. Within the design job of step 2, a
particular kind of building block is given where items have to be selected,
parameterized, and connected (cf. figure 2.6). The goal is to realize a new
complex system of the desired functionality.

......

Figure 2.6: Step 2 in the “design hierarchy”

Step 2 can be characterized as follows:

• Low-level Interfaces. Basic technical components are used to realize a
new system. The interfaces where these components can be connected
provide only “low-level services”. I.e., on this level one argues about
voltages, voltage drops, oscillating frequencies, etc.

• Processing Behavior. In order to identify or to predict the behavior of
such a system, the components’ physical behavior has to be processed.
In practice this job turns out to be sophisticated since the necessary
model formulation and model simulation processes are of complex
nature.

• Weak Problem Specification. The specification of the design problem
refers to an object—in our case: the circuit—which does not exist
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at the beginning of the design process. Merely the intention of the
functions to be produced by the designed system is given.

• Weak Theory of Design. For large parts of the design problem there
exists no or, as the case may be, only weak theory of design. There is
a lack of procedural knowledge that describes how problem specifi-
cations can be mapped onto design decisions. This is a consequence
of the design process’s complexity.

• No Structural Information. There is no generic structure information
of the system that could guide the design process. Moreover, since
certain functions emerge automatically with the structure, as well as
certain structures result from particular functions, a designer has to
take care of structure and function simultaneously.

• Designers are Experts. The design process described here is carried out
by experts. This has to be considered by a knowledge-based system
that shall support this process.

When working on a design problem within the third step, we deal with
complex building blocks for which the design process is already completed
(cf. figure 2.7). The goal here is to configure a system that fulfills the
particular demands of a customer.

......

Figure 2.7: Step 3 in the “design hierarchy”

Step 3 can be characterized as follows:

• High-level Interfaces. The components involved are complex technical
systems themselves and provide “high-level functionalities” where
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they interface. We could designate them as components where the
design knowledge is compiled in. In our example they may provide
a graphics adapter, a memory extension, etc. The components’ in-
terfaces in turn are of such a high-level type as well. Thus, the
components can be connected easily since they make the complex
underlying physical connections transparent.

• Processing Functionalities. In contrast to step 2, it is not necessary to
simulate a composed system in order to predict its behavior. Rather,
there is a checking and synthesizing process on the level of abstract
functionalities. Nevertheless, checking and synthesizing a set of func-
tions in order to meet a set of demands can turn out to be a sophisti-
cated constraint satisfaction problem [6].

• Weak Problem Specification. A customer’s demands refer to a system
that doesn’t exist yet. Thus, we have an implicit problem specifica-
tion, just like within the former design step.

• Weak Theory of Configuration. There is no generic theory at hand that
associates a problem specification with configuration decisions. This
is not a consequence of the configuration’s process complexity but
rather of its strong domain dependence. Note that only very few
configuration problems can be tackled via catalog look up.

• Structural Information. A lot of systems to be configured are structured
in some way: The complete system is composed out of subsystems
always in a similar manner [4], [24]. This information about the
system’s structure can be used to guide the configuration process.

• Configuration Sequence. During the configuration process of a complex
system, it might be that a particular assembling sequence has to be
obeyed. In such a case a designer is not only interested in the readily
configured system, but also in a plan that determines a sequence of
assembly steps for the components involved.

• Configuration Personnel. Although a lot of configuration jobs are of
rather complex nature, they should be carried out by persons who
are not technical experts in the domain: Many configuration jobs are
sales jobs. This perspective gives rise to additional requirements that
have to be considered when developing a configuration system.

A design problem within step 3 is much less complex than a design
problem within step 2 because of the substantial reduction of possible
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decisions in the designer’s scope. This results in an enormous cut down of
the potential search space.

The following points play a central role with regard to the design prob-
lem’s search space or complexity:

1. All possible variants of the artifact being designed are anticipated in
some way.

2. All possible variants of the artifact share the same structure.

3. The components used within the design process are of extremely
specialized nature. Stated another way, components may only be
combined in a very restricted way.

4. The artifact’s maximum number of components is bound by a small
number.

In the computer configuration example, all of the four points apply—
but this need not be the case for any “step-3-design problem”. It seems to be
obvious that we get a qualitative reduction of a design process’s complexity,
if only one of the four conditions is fulfilled. This leads to the question,
which complexity classes of design should be distinguished at all. The next
subsection discusses a broadly accepted view.

State Spaces of Design

According to Brown, Chandrasekaran, Gero, and Tong it is useful to dis-
tinguish three classes of design [5], [6], [22], [76]. This classification, at
first mentioned by Brown [5], suggests that a design process is for the most
part a decomposition problem or a plan synthesis problem. I.e., his clas-
sification scheme is largely based on the difficulty of subtasks related to
decomposition and plan synthesis. Class 1 encloses creative tasks, while
class 2, as well as class 3, constitutes a well-defined state space of problems
[22].

Subsequently, a short characterization of the classes depicted in figure
2.8 is given.

Class One � Creative Design. This class can be viewed as open-ended.
Design problems of this type are outside the state space of innovate design.
When solving such a problem, a completely new artifact is created. All
kinds of inventions belong to this class. Even if the goals to be achieved
are well-defined, there is no, or only a rough idea of how these goals can be
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State space of routine designs

State space of innovative designs

Creative design

Figure 2.8: State spaces of design by analogy with Gero

achieved. I.e., there is no storehouse of solutions from similar problems,
and, there is no knowledge of how a problem might be decomposed into
less complex ones.

What makes a creative design problem impossible to be supported with
knowledge-based systems is the fact that some or even all parameters
forming the state space are unknown. The design process is influenced by
the designer’s perception, experience, and intuitivity.

Class Two � Innovative Design. This class is intended to comprise problems
for which powerful decomposition knowledge exists, but design plans for
some of the component problems may need a substantial modification [6].
I.e., an artifact’s structure is known for the most part. The complexity of
such a design problem results from some unknown ranges of values for
parameters. Gero argues in this context that both additional adaptation
processes and the use of dependency knowledge are required to assist this
job.

In [6], the design of a new automobile is given as an example for a
typical class-2-design task. It is reasoned that this design problem does
not involve new discoveries about decomposition, but on the other hand,
“routine design methods” are unable to handle the major technological
changes some components undergo.

Class Three � Routine Design. This class is comprised of design problems
for which the knowledge about decomposition and synthesis is completely
known. The state space of all possible solutions is much smaller as com-
pared to the state space of innovative design. What makes problems of this
class tractable is that the structure of the system being designed as well as
all parameters’ ranges of values are known. Furthermore, there is sufficient
knowledge of how values for parameters can be determined, knowledge
about constraints that cuts down the search space, and, “repair knowledge”
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to deal with incorrectly designed systems—

“In spite of all this simplicity, the design task itself is not trivial, as
plan selection is necessary and complex backtracking can still take
place. The design task is still too complex for simple algorithmic
solutions or table look up.”

Brown & Chandrasekaran, [6], p.34

Discussion

A general shortcoming of such classification schemes is the neglect of or-
ganizational aspects of design problems like knowledge acquisition, user
interaction, or maintenance of design knowledge. Note that these points
may constitute a larger part of the entire design problem as the actual “tech-
nical” problem does.

Weak spots of this classification from a technical point of view are as fol-
lows. The distinction between class-2-design and class-3-design shows no
qualitative difference, and Gero or Brown and Chandrasekaran characterize
the associated classes only vaguely.

Of course, the classification of Brown and Chandrasekaran is not meant
to be formal or rigorous. It will probably never be possible to develop
a precise classification scheme for design problems. Consider the design
of a new electronic circuit: Knowledge about structure may be poor (�
class 1), a lot of parameters are unknown (� class 1), but, as the case may
be, powerful decomposition knowledge exists (� class 2), or, there is yet
sufficient knowledge of how values for parameters can be determined (�
class 3). As an aside, the design of a new automobile comprises a lot of
highly sophisticated and creative subtasks like car-body styling, utilization
of new materials, or electronic motor management and should be instead
associated with class 1.

Such design problems could be classified more precisely, if the lattice of
problems is further refined and/or oriented by additional domain charac-
teristics.

From our point of view, it is useful and sufficient to differentiate between
synthesis problems as follows: (i) design-problems that contain creative
parts and (ii) configuration-problems that fulfill at least one of the four
conditions pointed out on page 27:

1. all variants are anticipated
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2. all variants share the same structure

3. components to be configured are specialized

4. components to be configured are of a small number

This specification describes problems similar to those in Brown’s design
class 3, but it is more concrete. Additionally, the conditions enumerated
here define a qualitative difference between class-2-problems and class-3-
problems.

2.3 A Classification Scheme

This section states a generic classification scheme for configuration and
design problems. The scheme has a description type dimension and a prob-
lem type dimension. The former dimension designates particular domain
models, which are also called component models here. The latter one dis-
tinguishes between different configuration tasks. Since organizational re-
strictions cannot be evaluated independently from a particular task, this
classification scheme is intended to focus mainly on the technical part of a
configuration problem.

Models in Configuration

A model is an intentional abstraction of a reality that focuses on definite
aspects and consequently, reduces the reality’s complexity. A configuration
model is an abstraction of a configuration problem and must actually be
employed to tackle the task. In order to evaluate a configuration problem’s
complexity it is necessary to investigate this model. Conversely, the real-
ized configuration model represents a proper measure of a configuration
system’s power.

When describing models for configuration or design, there is the tra-
dition to focus on procedural aspects. Examples for such a view are Chan-
drasekaran’s “propose-critique-modify” methods [9], [6], or Puppe’s prob-
lem solving methods of construction4 [61], depicted in figure 2.9.

This process-oriented view is useful to describe how a configuration
strategy is realized, how particular configuration steps are generated, or if

4The term “construction” can be seen as a synonym for the term “configuration”.
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Figure 2.9: Problem solving methods for construction according to Puppe

sequential aspects of a configuration—better: planning problem—are the
matter of subject. But, this view can be misleading since it neglects the
concepts and the constraints of the domain or the task. Therefore, we will
introduce the view of component models in configuration. This approach
moves the description of configuration objects into the center but not the
procedural strategies of the configuration method.

Remarks. The component model view of configuration assumes that there
are still manifestable objects to be selected, composed, or parameterized.
Henceforth, we exclude all those problems where no set of objects is given
such as the invention of new artifacts or scheduling problems.5

Dimension 1: Component Models

Loosely speaking, the term “component model” designates the knowledge
that is used to describe a system’s building blocks. This knowledge should
depend solely on the configuration problem, i.e., it ought to be both nec-
essary and sufficient to carry out the configuration process. E.g., when
configuring a telecommunication system as described in section 2.1, the
component model should not contain knowledge about fundamental elec-
tronic dependencies.

For the following reasons we will use component models to describe
configuration problems:

1. The complexity, that is, the degree of precision of the components’
description determines decisively the complexity of the configuration
process.

5Sometimes, scheduling problems are count as configuration problems.
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2. Configuration problems are to a large part domain-dependent. This
domain dependence is reflected rather by the type of the component
model than by the configuration method.

Thus, a classification of configuration problems that is oriented by com-
ponent models will not only be closer to the particularities of a domain but
also provide a more realistic view of a configuration problem’s complexity.

Component models can be classified by the type of description upon
which they are based. We distinguish between two major types here:
structure-based and function-based descriptions (dependent on the type of
a description, a component model will also be called structure-based and
function-based respectively). Note that a component model must not be of
a pure type but can rely on a combination of both structural and functional
connections.

Structure-based descriptions define relations on particular subsets of the
entire object set. A single configuration object is considered to be an abstract
atomic entity of boolean domain, which has either the status “selected” or
“not-selected”. Function-based descriptions model the properties or the
behavior of a single component.

There is a wide difference between these description types:

From the standpoint of knowledge representation, structure-based de-
scriptions define a global view on the system to be configured whereas
function-based descriptions rely upon local connections only. From the
standpoint of knowledge processing, structure-based descriptions form
an explicit definition of the configuration process whereas function-based
descriptions constrain implicitly the configuration process. Section 4.1 dis-
cusses the differences in connection with procedural aspects of configura-
tion.

We identified different component models, from the structure-based as
well as from the function-based type, that play a role within configuration
and design problems. The interesting models, comprised in figure 2.10, are
briefly characterized now.

Descriptions of structure-based component models:

• Associative Description. Associative descriptions define the system
to be configured by relations that contain no explicit compositional
information and no causal dependencies. When given a set of objects
o1, . . . , on, the relations between these objects can be expressed by
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Figure 2.10: Component models in configuration

rules in a propositional form6. The objects oi denote the set of boolean
variables where "∧", "∨", "¬", "→" are the propositional connectives
allowed.

Example: oi ∧ oj → ok ∨ ¬ol

The semantics of this rule is as follows. If the configuration contains
object oi and object oj , then the configuration must also contain either
object ok or not object ol. In practice, a boolean variable is not re-
stricted to denote exactly one object but can stand for a set of objects
as well. Associative descriptions have compositional and functional
information compiled in. They can be viewed as a very compact form
of heuristic configuration knowledge identified by human experts deal-
ing with the configuration problem over a long period.

• Compositional Description. Descriptions of this type specify a compo-
sitional view of the system to be configured. Sometimes, this view
is called decompositional hierarchy or Gozintho graph. When given
a set of objects o1, . . . , on, the decompositional relations can be ex-
pressed by rules of the following form:

〈rule〉 −→ 〈object〉 → 〈object〉 | 〈objects〉
〈objects〉 −→ 〈object〉 ∧ 〈object〉 | 〈object〉 ∧ 〈objects〉
〈object〉 −→ o1 | . . . | on

Example: oi → oj ∧ ok ∧ ol

The semantics of this rule is as follows. Object oi is composed of three
objects, namely oj , ok, and ol. These objects in turn may be described

6The rule formalism chosen here and in the following descriptions is only one possibility
to define structural dependencies. It has nothing to do with the representation of structural
knowledge in a concrete system.
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by other rules. Objects that can be decomposed are called assemblies;
those objects which cannot, at the bottom of the hierarchy, are called
components.
One could argue that these dependencies could be defined by an
associative description as well. This is correct from a syntactical
point of view. What makes compositional knowledge so powerful
are operational aspects. A configuration algorithm will rely on the
decompositional semantics of the rules that define a system’s struc-
ture here.

Compositional descriptions are typical for a lot of configuration prob-
lems. Although only few problems can be tackled exclusively by this
kind of knowledge, it should be employed whenever possible; com-
positional relationships decisively cut down the search space since
they guide the process of configuration (cf. section 2.4).

• Taxonomic Description. Taxonomic descriptions establish a rule to clas-
sify configuration objects by their type. For an object o a taxonomic
refinement would be a set of objects that are of the same generic
type but more specialized in some way. When given a set of objects
o1, . . . , on, the taxonomic relations can be expressed by rules of the
following form:

〈rule〉 −→ 〈object〉 → 〈object〉 | 〈objects〉
〈objects〉 −→ 〈object〉 ∨ 〈object〉 | 〈object〉 ∨ 〈objects〉
〈object〉 −→ o1 | . . . | on

Example: oi → oj ∨ ok ∨ ol

The semantics of this rule is as follows. Object oi can be realized using
object oj , object ok, or object ol. An example for a taxonomic hierarchy
is the classification of those computer’s plug-in-cards that realize a
graphics adapter.

Descriptions of function-based component models:

• Property-based Description. A property-based description reduces an
object’s behavior to a finite set of property-value-pairs. The properties
may be of symbolic or of numerical type, i.e., the associated domain
can be a number field or a simple list containing symbols. Normally,
an object’s property description is not very detailed from the technical
standpoint. E.g., it is unusual to model some kind of gates that define
in which way objects can be connected and where information about
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properties can be passed. Rather, all properties of the objects involved
in a configuration process are collected and processed globally.

A particular instance of property-based descriptions is given with
resource-based descriptions. A resource-based description of an object
o distinguishes between two kinds of properties: those that are sup-
plied and those that are demanded by o. If o is part of the system
to be configured, then, dependent on the type, its properties can be
consumed or must be provided by other objects.

• Behavior-based Description. Similar to the property-based descrip-
tions, the behavior-based modeling approach also specifies a finite
set of properties for each object. Additionally, the following object-
dependent concepts are realized:

1. Gates. Gates define interfaces where other objects can be con-
nected in order to pass information.

2. Constraints. Here, it is sufficient to regard constraints as a set
of relations. These relations are defined on different subsets of
F , where F is the union set of an object’s private properties and
gates.

A further distinction between stationary and dynamic behavior de-
scriptions might result from the complexity of the constraints that
specify the objects’ behavior or from particular user demands: Do
differential connections have to be considered when connecting ob-
jects? Will the system being configured carry out a time-dependent
process?

Dimension 2: Configuration Tasks

Configuration tasks are orthogonal to the component models of the pre-
ceding subsection. In order to describe these tasks, we define the following
different sets according to Stein and Weiner [81]:

• Space of Compositions, Mcomp. Based on a finite set O of objects, the
space of compositions comprises the combinations of all subsets of O
and their structural permutations: Mcomp = {(X,Y ) |X ∈ P(O), Y ∈
T (X)}; P(O) denotes the power set of O, T (X) denotes the set of all
structural arrangements (topologies) of an object subset X .
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• Space of Configurations, Mconf . This set is defined as the subset of
Mcomp that comprises all configurations which can be realized con-
cerning constructional or manufacturing constraints.

• Space of Variants, Mvar. This set is defined in connection with a set D
of demands. All configurations in Mconf that fulfill these demands
form the space of variants Mvar. I.e., for each set of demands there
exists a particular set Mvar(D) ⊆ Mconf . Note that Mvar(D) can be
the empty set.

Space of configurations

Space of compositions

Space of variants

Figure 2.11: Solution spaces of a configuration problem

The most important configuration tasks are characterized briefly now.
Starting point for each task is the set D of demands.

• Creating a New Configuration. Let O be the set of all objects and D
the set of desired demands. Creating a configuration C(D) means to
select those objects fromO that are necessary to realizeC with respect
to D. Especially for function-based models, the selection process
is bound up with the process of finding a configuration’s structure.
Determining an appropriate structure is the most demanding part of a
configuration process. If, after the processes of selection and structure
definition, some technical properties of C still remain unknown, a
parameterizing step must be performed.

Often one is interested in an optimum configuration regarding a cer-
tain objective. Creating a configuration does not only mean deter-
mining some element of Mvar or other, but finding the best. I.e., a
configuration system must be able to investigate the total setMvar in
an acceptable time.

• Parameterizing a Configuration. Let C be a configuration and D the set
of desired demands. Parameterizing a configuration means to com-
plete the functional information of C with respect to D. Depending
on both the actual problem andD, a parameterization can be done by
simple computations for the undetermined properties of C or also by
a complex simulation of the entire functional model.
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• Checking a Configuration. Let C be a configuration and D the set of
desired demands. Checking a configuration means to investigate
whether C fulfills all elements in D. Investigating if a configuration
C is actually an element in Mvar is much easier than creating a new
configuration. Even so, such a task can be demanding when complex
technical connections have to be simulated.

• Adapting a Configuration. Let C be a configuration and D′ the set of
desired demands. Adapting a configuration means to transform C
into a configuration C′ such that D′ is fulfilled by C′. Usually, the
adaptation of a configuration is more demanding than the creation of
a new one. Adaptation encloses the following steps:

1. Determining the demands D that are fulfilled by C.
2. Creating a configuration C′ that fulfills D′.
3. Searching a (minimum cost) transformation from C to C′.

Thus, at least all problems and restrictions of a creation process apply
to the adaptation process as well.

• Evaluating a Configuration. LetC be a configuration and c(C,D) a cost
function. Evaluating a configuration means to compute the configu-
ration’s suitability with regard to c. This process must be performed
when creating a new configuration in order to find the optimum one.
Evaluating a configuration encloses the following steps:

1. Determining the demands D that are fulfilled by C.
2. Computing the function c(C,D).

Table 2.1 presents the configuration tasks related to different component
models and gives a rough evaluation of the problems’ complexity.

Remarks. The evaluations indicate to what extent the configuration tasks
can be supported and automated respectively and have to be interpreted
as follows: “+” means that the task can be supported widely, so to speak,
automated completely for the associated component model, “◦” stands for
partly, and “-” for no support. The parameterizing column does not make
sense for structural component models.

Classification of the Scenarios

Based on the different component models and the configuration tasks, we
are able now to classify the configuration scenarios of section 2.1 with
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Configuration task

Component model creating parameter. checking adapting

associative + ⊥ + +

compositional + ⊥ + +

property-based ◦/+ + + ◦/+

behavior-based -/◦ ◦/+ ◦/+ -

Table 2.1: Matrix of important configuration problems

respect to their technical complexity.

Configuration of Telecommunication Systems. The configuration of telecom-
munication systems is based to a large part on simple dependencies of the
domain. There is no deep understanding of physical connections needed
in order to configure a system. On the other hand, a system’s structure
depends on the actual demands of a customer. As a consequence, compo-
sitional knowledge can hardly be specified.

Classification: Above all, the component model comprises property-
based descriptions. Additionally, particular domain heuristics must be
employed that control the search. The main configuration task is the cre-
ation of new configurations.

Configuration of Mixing Machines. The configuration knowledge comprises
deep functional connections on the one hand as well as compositional and
taxonomic dependencies on the other. Since both types of knowledge can
be processed independently from each other here, the configuration process
does not contain creative parts. A lot of computations and recalculations
need to be performed in the course of the configuration process, but a
mixing machine’s basic structure is predefined and will never change.

Classification: The component model consists of hard-wired behavioral
connections and, for a smaller part, of structural knowledge. The main
configuration task is parameterization.

Designing Hydraulic Circuits. In contrast to the former examples, this config-
uration or design job contains creative parts. The structure of a hydraulic
system is not predefined and has to be created. Secondly, demanding
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model formulation and simulation must be performed in order to compute
unknown parameters as well as to check the system with regard to the
desired demands.

Classification: An essential part of the component model are behavior-
based descriptions. Configuration tasks are the creation of new configura-
tions and parameterization.

Table 2.2 comprises these evaluations.

Task
Component model creating parameter.
structural b
property-based a
behavior-based c b, c

a = Telecommunication
b = Mixing
c = Hydraulics

Table 2.2: Classification of the configuration scenarios

Consequences

What does the component model view mean in connection with the devel-
opment of configuration systems?

First, a distinction between model-based and heuristic configuration
approaches is not very useful—a lot of approaches can be called model-
based. This shall not exclude the fact that domain heuristics are necessary
to process these models efficiently. Second, configuration systems should
be seen as programs that operationalize a description level and a processing
level in their knowledge base. The former defines an adequate component
model of the domain while the latter realizes model-dependent compu-
tation methods, generic search strategies, and heuristic knowledge that
controls the configuration process.

Apart from organizational aspects and knowledge acquisition prob-
lems, the following points are typical for configuration problems and de-
manding with regard to the development of configuration systems (cf. also
Günter [24]):

• Large Solution Space. The number of constructions that could be com-
posed is very large.



40 CHAPTER 2. CLASSIFYING CONFIGURATION PROBLEMS

• Rejection of Decisions. Because of the large solution space, design de-
cisions that are based on heuristics have to be met. As a consequence,
decisions might be rejected in the course of the design process and
need to be retracted with all their consequences.

• Identification of Solutions. The identification of a solution of a design
problem or of a single design decision can be very difficult. Often,
some kind of complex simulation is required. This situation will
become more critical, if we are interested in an optimum solution
with respect to a given objective.

In our view, it is useful to distinguish solely between the following two
key objectives when developing configuration systems: (i) the support of
human designers who work on creative tasks, and (ii) the nearly complete
automation of “low-level” tasks. In fact, this distinction is the operational
consequence of the discussion in section 2.2, page 29, where configuration
problems were related to design problems.

Usually, problems of type (ii) are rather sales-oriented and placed at the
customer’s site, while the more creative tasks come up in the projecting
and constructing divisions of a company. Consequently, depending on the
main objective, there are different problems that can be addressed by a
knowledge-based configuration system:

Problems of type (i) —what can be done by a configuration system:

• supporting auxiliary tasks like the process of drawing and layouting

• automating different parts in the process of model formulation

• computing mathematical models

• generating and simulating test assemblies

• checking organizational restrictions, such as legal conditions

Problems of type (ii) —what can be done by a configuration system:

• all items mentioned under (i)

• solving the technical problem both completely and automatically

• supporting users without or with less technical background

• calculating solutions that are optimum under given restrictions
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• realizing concepts that simplify the knowledge acquisition process

What cannot be done by a configuration system in the foreseeable future:

• carrying out the sales consultation

• automating creative tasks like the design of a new system’s structure

2.4 Configuration Methods

The classification scheme of the preceding section introduced different con-
cepts to specify configuration knowledge: the structure-based and the func-
tion-based component models. For some of these component models, there
exist suitable processing mechanisms. We outline these “configuration
methods” here since they give a general understanding of how configura-
tion works. Also, several concepts discussed in subsequent sections of our
thesis rely upon the procedural view of particular component models.

General Considerations

In accordance with Maher, we see that a configuration process can be
grounded on three main principles [48]:

• Decomposition. The decomposition principle states that a design prob-
lem can be decomposed into subproblems, which are of either of the
following types: (i) object—the cognitive model of the configura-
tion process is oriented by the physical components of a system.
(ii) function—the cognitive model of the configuration process is ori-
ented by the functions a system provides.

• Cases. Case-based configuration is grounded on solutions of previ-
ously solved problems. To solve a new problem, a similar case has
to be identified and eventually modified. Thus, the configuration
process employs “generalization knowledge” of the domain only to
a small part.

• Transformation. Configuration by transformation means to transform
an initial set of requirements into a solution. The configuration knowl-
edge can be imagined as a set of transformation rules.
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These process principles are not dependent on the component models—
i.e.: In order to solve a configuration problem, any principle can be em-
ployed. Moreover, Maher claims that there is no connection between these
principles and a particular domain or task:

“ The distinction among the (process) models lies in the representation
of design knowledge rather than in their appropriateness for a specific
design domain or phase of design.”

Maher, [48], p.52

Here, we shall not further investigate configuration processes due to
the case-based or the transformation philosophy. The methods outlined
subsequently are based on the decomposition principle: balance process-
ing, skeletal configuration, and associative configuration. Beyond these
methods, the relevant literature mentions also heuristic configuration ap-
proaches working e.g. to the propose-and-revise strategy or to the propose-
and-exchange strategy. We do not count these approaches as configuration
methods since they do not rely on a component model or on certain config-
uration knowledge. Rather, they describe universal concepts of how search
problems (hence configuration problems too) can be handled.

Configuration by decomposition operationalizes the following intuitive
principle: A complex system can be composed (= configured, synthesized)
in the same way it can be decomposed (= analyzed). It is obvious that no
new dependencies can be deduced by such an approach.

Balance Processing

Balance processing is a basic configuration method to process resource-
based component descriptions. It has been operationalized within the
configuration systems COSMOS [27], CCSC [41], AKON [37], and MOKON [68].
Note that resource-based descriptions are a particular instance of property-
based descriptions. They will be suitable for a configuration problem, if
the following conditions are fulfilled:

1. Structural information plays a minor role.

2. The components can be characterized by simple properties, which are
supplied or demanded.

3. The components’ properties have to be combined in order to provide
the system’s entire function.
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In principle, balance processing operationalizes a generate-and-test strat-
egy. The generate part, controlled by propose-and-revise heuristics, is
responsible for selecting a set of objects. The test part simulates some kind
of balance. In the first step the initial customer’s demands are put on the
demand side of the balance. Then, an object set is generated and the sup-
plies and demands of these objects are also written on the corresponding
sides of the balance. While doing so, identical properties are accumulated
due to some rule, e.g. the algebraic “+”-operation. Within the next step,
each property on the balance is checked whether the demanded value can
be satisfied by the supplied one or not. In most cases, this check is done
via a “≤”-comparison. Figure 2.12 depicts the generate and the test phase
of this configuration method.
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Property−a  1
Property−b  2

Property−c  2

Generate phase

Object x

Demands

Supplies

Property−a  1
Property−b  2
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Supplies Demands Balance

+ 10
−   5
...
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...
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...
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Figure 2.12: The main phases of balance processing

If all demands of the balance are fulfilled, the associated object set will
represent a solution of the configuration problem. If not, the unsatisfied
demands will form the input for the next step. The generate-and-test cycle
is repeated until either a solution is found or no further object set can be
generated. In chapter 4 we introduce the system MOKON that operational-
izes this configuration method. Moreover, we show how the basic balance
algorithm can be improved with regard to performance and knowledge
acquisition.

Skeletal Configuration

Skeletal configuration is a basic method to process structure-based compo-
nent descriptions. Among others, it has been operationalized within the
configuration systems WIST [38] and PLAKON [13], [73]. The term “skeletal”
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shall express that there is a (hierarchical) structure within the configura-
tion problem that never changes for all the problems’ instances. Skeletal
configuration tackles configuration problems where a generic structure al-
ready exists or can be developed. An important representative of such
configuration problems is the parts-list-processing of complex systems.

It is convenient to represent the skeletal structure by means of an and-
or-graph [61]. As pointed out in section 2.3, page 33, the and-nodes real-
ize compositional descriptions while the or-nodes are suitable to specify
taxonomic dependencies. Such a combined taxonomic/compositional hi-
erarchy represents explicitly parts of the configuration problem’s search
space. Figure 2.13 shows a system that on the first layer is composed of
the objects o1 . . . o3, where in turn o1 and o3 can be realized by alternative
subcomponents.

System

o1 o2 o3

o4 o5 o6

o7 o8

o4 o5

o o

o
o o

o
And node

Or node

Figure 2.13: A system’s and-or-graph defines the possible configurations

There are two processing strategies for taxonomic/compositional hier-
archies:

1. Top-Down. Starting with the root node, each node v is processed as
follows. If v represents an and-node, all subnodes of vwill be selected.
If v represents an or-node, exactly one of its subnodes will be selected
according to some rule. Each subnode that is a leaf becomes part
of the configured system; inner nodes are processed in a recursive
manner. The configuration process will be completed if all selected
nodes are either of leaf-node-type or expanded.

2. Bottom-Up. If there is information about particular components that
shall become part of a configuration, the corresponding nodes will
be instantiated. Then, by means of a bottom-up procedure, all those
components sharing an and-relation with the instantiated ones are
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also selected. If no further inference can be drawn, a top down
refinement according to strategy 1 will be invoked, which considers
all components previously selected.

In the course of both configuration strategies, a lot of backtracking
can take place; the possible choice points are the or-nodes in the hierar-
chy. Backtracking can be reduced decisively if, aside from compositional
and taxonomic descriptions, additional domain heuristics are employed.
These heuristics may establish restriction rules between particular compo-
nents, knowledge that controls the decision process at the choice points, or
knowledge that realizes a dependency-directed backtracking. PLAKON, for
example, provides powerful truth maintenance and constraint processing
mechanisms to support such concepts.

Associative Configuration7

As a difference to the resource-based and the structure-based descriptions,
associative knowledge provides no explicit domain model that a configu-
ration process can rely upon. Thus, there exists no particular method to
process associative configuration descriptions.

But, it is in the nature of configuration that only within simple configu-
ration problems associative descriptions form the main part of the knowl-
edge. Experience has shown that simple knowledge processing techniques
such as decision tables and decision trees can be employed successfully
here; they are both easy to realize and efficient for less complex decision
problems.8

Loosely speaking, a decision table can be considered as an inflexible
concept to represent and process rules: Each column defines a single rule
where the first m rows specify the conditions to be matched while the last
n rows specify the associated actions (cf. figure 2.14). Evaluating a decision
table means to match from left to right each rule’s conditions against the
facts given until a fitting left-hand side is found.

A decision tree differs from a decision table in so far that it defines a
sequence of how the knowledge is to be processed.

7The term “associative configuration” here has nothing to do with the associative config-
uration method presented by Tank in his dissertation [74].

8Puppe calls problems that can be solved by these techniques definite classification problems
[61].
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Figure 2.14: Basic structure of decision tables



Chapter 3

A Formal Framework of Configuration

Research in the field of configuration covers applicational and non-appli-
cational work:

1. Development of Configuration Systems. This kind of research is con-
cerned with the technical aspects of configuration problems and
should answer the following question: How can a particular con-
figuration problem be solved?
In this connection it is pointed out how a particular domain can be
modeled adequately, how dependencies between configuration ob-
jects can be handled, how hierarchies are processed, and how heuris-
tics are employed, etc. This pragmatical point of view is justified
because of the complexity of the “universal” configuration problem
and makes up an important part of our work as well.

2. Theory of Configuration Problems. This kind of research is concerned
with the nature and the complexity of configuration problems. The
chapter in hand contributes to this research. It presents a precise spec-
ification of important configuration problems. Such a specification
is useful in comparing given configuration problems with respect to
their complexity and in revealing similarities or differences between
the associated configuration methods. Besides this fact, a formaliza-
tion can help in finding approaches that tackle a particular problem
since it refrains from domain-specific descriptions and notions.

The formal framework presented originates from a paper by Najmann
and Stein [56]. It is oriented by our classification scheme of the former

47
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chapter and introduces three major classes of configuration problems: Sec-
tion 3.1 defines property-based configuration problems. Section 3.2 defines
configuration problems that additionally exploit structural information.
Section 3.3 defines configuration problems that are based upon behavior.

By each of these configuration problems, a component model is defined
precisely. They are called M1 (property-based), M2 (property-based and
structure-based), and M3 (behavior-based).

The remainder of this chapter is organized as follows. In section 3.4
we show that model M1 and model M2 are equivalent—more exactly: the
(global) structure information in model M2 can be expressed in terms of
(local) property descriptions in model M1. The associated transformation
can be done in polynomial time. The last section presents a complexity
result concerning a relevant class of configuration problems.

3.1 Property-based Configuration Problems

In order to specify a configuration problem precisely, different sets and
operators need to be defined: An object set that comprises the configura-
tion objects given, a functionality set whose elements define all necessary
features of the configuration objects, property sets that establish the actual
functionality-value pairs of the configuration objects, operators that define
computation rules and test predicates for the functionalities.

E.g., if we configured a computer, typical configuration objects would
be the different harddisks, CPUs, power supply units, etc. The function-
ality set would contain elements such as harddisk capacity and graph-

ics resolution. Furthermore, a harddisk could be described by the follow-
ing property set: {(adapter type, SCSI), (access time, 7), (harddisk ca-

pacity, 120)}. The computation rule of the functionality harddisk capacity

should be “+”; a useful test predicate that compares supplies and demands
on harddisk capacity would be “≤”.

Model M1, now introduced, is suitable to model property-based con-
figuration problems. Most of this model is operationalized within the
configuration system MOKON, which is described in section 4.4.

Definition 3.1 (Configuration Problem ΠM1). A configuration problem
under model M1 (ΠM1) is a tuple 〈O, F, V, P, A, T,D〉 whose elements are
defined as follows.
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• O is an arbitrary, finite set. It is called the object set of ΠM1.

• F is an arbitrary, finite set. It is called the functionality set of ΠM1.

• For each functionality f ∈ F there is an arbitrary, finite set vf , called
the value set of f . V = {vf | f ∈ F} is comprised of these value sets.

• For each object o there is a property set, po, which contains pairs (f, x),
where (i) f ∈ F and x ∈ vf , and (ii) each functionality f ∈ F occurs
at most once in po. A property set specifies the values of certain
functionalities of a given object. P = {po | o ∈ O} is comprised of
these property sets.

• For each functionality f there is an addition operator, af , which is a
partial function af : vf × vf → vf . An addition operator specifies
how two values of a functionality will be composed to a new value, if
a new object is added to a given collection of objects, which themselves
describe a part of the system to be configured. A = {af | f ∈ F} is
comprised of all addition operators.

• For each functionality f there is a test, tf , which is a partial function
tf : vf ×vf → {True, False}. A test tf specifies under what condition
a demand (see below) is fulfilled. T = {tf | f ∈ F} is comprised of
all tests.

• D is an arbitrary, finite set of demands. Each demand d is a pair (f, x),
where f ∈ F and x ∈ vf . Additionally, the demand set must have the
property that no functionality occurs more than once inD. A demand
set D describes the desired properties of the system to be configured.

Remarks. An addition operator does not necessarily specify an addition
between two numbers, rather any kind of operation is possible.

Typically, a demand set consists of internal and external demands. The
external demands specify requirements that are supplied, for example, by
a customer of the system to be configured. The internal demands are envi-
ronmental or other requirements normally not specified by the customer.

So far, we have just defined the notion of a “configuration problem”.
We must, however, define what the solution of such a problem is. A
configuration contains both objects and functionalities. Before we give an
inductive definition of a configuration, we must define how properties can
be composed.
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Definition 3.2 (Composition). Let (f, x) and (g, y) be two properties and
let af (x, y) be defined. Then,

ϕ ((f, x), (g, y)) =
{ {(f, af (x, y))}, if f = g;

{(f, x), (g, y)}, otherwise.

is called the composition of the properties (f, x) and (g, y).

Remarks. The composition of two properties is a set. This set contains
either a single property if the functionalities are equal, or it contains these
two properties if they are not equal. The rationale of this composition is
as follows. If two objects, which have some properties in common, are
included in a set containing the configuration objects, then it is necessary to
“compute” the values of these properties in some way. This computation
is done by the addition operator. If the addition operator is not defined
for the given value constellation, then these two objects cannot occur at the
same time in the set of configuration objects.

Based on the above definition of composition, we are now ready to
formally introduce the notion configuration. A configuration must specify
(i) the objects, which are parts of the system to be configured, and (ii) the
entire functionality of the system.

Definition 3.3 (Configuration). Let ΠM1= 〈O,F, V, P,A, T,D〉 be a config-
uration problem. A configuration is a pair C = 〈I,Q〉 where I is a set of
items of the form (k, o) and Q is a set of qualities of the form (f, x). An item
(k, o) means that object o ∈ O is used k times in the configured system. A
quality (f, x) means that the configured system has the functionality f with
value x. A configuration C is inductively defined as follows.

1. C = 〈∅, ∅〉 is a configuration.

2. If C = 〈I,Q〉 is a configuration and o is an object of O, then C′ =
〈I ′, Q′〉 will be a configuration, if the following conditions hold:

(i) For every (f, x) ∈ po and for every (g, y) ∈ Q, the composition
ϕ ((f, x), (g, y)) is defined or Q = ∅.

(ii)

I ′ =
{
I \ {(k, o)} ∪ {(k + 1, o)}, ∃(k, o) ∈ I;
I ∪ {(1, o)}, otherwise.
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(iii)

Q′ =
{ ⋃{ϕ ((f, x), (g, y)) | (f, x) ∈ po, (g, y) ∈ Q}, Q �= ∅;
po, Q = ∅.

3. Nothing else is a configuration.

Remarks. Condition (i) guarantees that only those objects o ∈ O will be
added to a given configuration C, if all object’s properties po can be com-
bined with all qualities ofC. Condition (ii) specifies how one new object can
be added to a given set of items I . Condition (iii) specifies how a new set of
qualities will be constructed, if a new object is added to the configuration.

Although qualities and properties are syntactically equal, we distin-
guish between them since a property is the feature of an object, while a
quality (f, x) is the result of the composition of several objects having the
functionality f in their property sets.

Next we give a precise definition of the notion solution of a configuration
problem.

Definition 3.4 (Solution of ΠM1). A configuration C = 〈I,Q〉 is a solution
of a configuration problem ΠM1= 〈O,F, V, P,A, T,D〉 if and only if for each
demand d = (f, x) ∈ D there exists a quality q = (g, y) ∈ Q, such that f = g
and tf (x, y) = True. The set S(ΠM1) = {C |C is a solution of ΠM1} is called
the solution space of ΠM1.

Remarks. The above condition guarantees that all demands are fulfilled.
Generally, there exists more than one solution of a configuration problem
ΠM1. Sometimes S(ΠM1) is called the “space of variants” (cf. section 2.3,
page 36).

General Configuration Problems

Based on the above definitions, the following problems can be stated:

Problem CONF
Given: A configuration problem ΠM1.
Question: Does there exist a solution of ΠM1?

Problem FINDCONF
Given: A configuration problem ΠM1.
Task: Find a solution of ΠM1, if one exists.
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Problem COSTCONF
Given: A configuration problem ΠM1, a cost function c : O → Q+, and
maximum cost c∗ ∈ Q+.
Question: Does there exist a solution C = 〈I,Q〉 of ΠM1 such that

∑
(k,o)∈I

k c(o) ≤ c∗ ?

Problem FINDCOSTCONF
Given: A configuration problem ΠM1, a cost function c : O → Q+, and
maximum cost c∗ ∈ Q+.
Task: Find a solution C = 〈I,Q〉 of ΠM1 with total cost at most c∗, if one
exists.

Problem FINDOPTCONF
Given: A configuration problem ΠM1 and a cost function c : O → Q+.
Task: Find a cost-minimum solution C = 〈I,Q〉 of ΠM1, if one exists.

Remarks. Each of the problems above is essentially a combinatorial problem.
In section 3.5 we prove that problem CONF is NP-complete. Note that the
other problems are at least as hard as problem CONF.

Example

To illustrate the above configuration model we give a simple example for
the problem FINDOPTCONF.

The goal is to build a tower of a given height at a minimum cost. Figure
3.1 illustrates the problem.
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Figure 3.1: A simple configuration problem

As a special restriction we claim that the building blocks A and D
may not occur both in a configuration. We will subsequently show that
this restriction can be formulated with the aid of a particular functionality
“restrict” and a corresponding operator arestrict. The requirement is that
the height of the tower must be at least 5.
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By trivial enumeration of all solutions one can see that two cost optimum
solutions exist. One is {(2, B), (1, A)} and the other one is {(1, D), (1, B)}.
In both cases the costs are 8. We now give the formal specifications of ΠM1

related to this problem:

1. O = {A, B, C, D}
2. F = {height, restrict}
3. vheight = {1, 2, ..., 10}, vrestrict = {a, d}, V = {vheight, vrestrict}
4. pA = {(height, 1), (restrict, a)}, pB = {(height, 2)},
pC = {(height, 3)}, pD = {(height, 3), (restrict, d)}
P = {pA, pB, pC, pD}

5. aheight(x, y) =
{
x+ y, if x+ y ≤ 10;
⊥, otherwise.

arestrict(x, y) =




a, if x = y = a;
d, if x = y = d;
⊥, otherwise.

A = {aheight, arestrict}. This definition is a formalization of the restric-
tion rule.

6. theight(x, y) =
{

True, if x ≤ y;
False, otherwise.

trestrict(x, y) ≡ True

T = {theight, trestrict}
7. D = {(height, 5)}

A formal solution of ΠM1 is given by C = 〈I,Q〉 with I = {(2, B),
(1, A)} and Q = {(height, 5), (restrict, a)}. One can check easily that all
demands are fulfilled for the given quality set Q.

3.2 Structure-based Configuration Problems

Model M2, which will be introduced now, is suitable to model structure-
based configuration problems. Among others, the configuration systems
PLAKON [13], [73] and WIST [38] realize such a model.
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Model M2 is similar to model M1 but extended by rules. These rules
may be interpreted as assembling restrictions. For example, one would like
to formulate the rule “If harddisk A is used, then either controller B or controller
C must be used.” By such restriction rules the skeleton of a technical system
can be realized.

Definition 3.5 (Configuration Problem ΠM2). A configuration problem
under model M2 (ΠM2) is a tuple 〈O, F, V, P, A, T,D, N,R〉 whose elements
are defined as follows.

• Let O,F, V, P,A, T,D be defined as in model M1:

1. O is set a of objects.
2. F is a set of functionalities.
3. V comprises all functionalities’ value sets.
4. P contains each object’s property description.
5. A is the set of all functionalities’ addition operators.
6. T contains a test predicate for each functionality.
7. D comprises all desired properties of the system to be config-

ured.

• With N = {1, . . . , n} let Γ(N,O) = {[k, o] | k ∈ N, o ∈ O} denote the
set of Boolean variables over N and O.

• A configuration restriction rule r is an implication [k, o] → ψ where
[k, o] ∈ Γ(N,O) and ψ is a logical formula over Γ(N,O) using paren-
theses, ‘¬’, ‘∧’, and ‘∨’ in the standard way. A rule set R is a finite set
of configuration restriction rules over Γ(N,O).

Let C = 〈I,Q〉 be a configuration as defined in model M1 where I ⊆
N ×O. Furthermore, we agree on the following notions:

Definition 3.6 (Configuration Assignment). A configuration assignment
αI is a function αI : Γ(N,O) → {True, False} such that for every [k, o] ∈
Γ(N,O):

αI([k, o]) =
{

True, if (k, o) ∈ I;
False, otherwise.

Definition 3.7 (Satisfying Configuration). A configuration C = 〈I,Q〉 is
called satisfying for a rule setR if and only if every rule r ∈ R is true under
the assignment αI using the known semantics of propositional logic.
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Remarks. The semantics of a restriction rule is illustrated by the following
example: Let r = [1, A] → ([2, B] ∧ ¬[1, C])∨ [3, D]. The meaning of r is: “If
a configuration contains exactly one object A, then the configuration must contain
either two B’s and not one C or three D’s.”

With the above definitions we are now able to specify a solution for an
extended configuration problem ΠM2 including restriction rules.

Definition 3.8 (Solution of ΠM2). A configuration C = 〈I,Q〉 is a solution
of a configuration problem ΠM2= 〈O,F, V, P,A, T,D,N,R〉 if and only if
for each demand d = (f, x) ∈ D there exists a quality q = (g, y) ∈ Q such
that f = g and tf (x, y) = True and C is satisfying for the rule set R.

The problems CONF, FINDCONF, etc. stated in subsection 3.1 exist in a
similar way for model M2.

The solution space of structure-based configuration problems can be
described by a hierarchical graph with two kinds of nodes: and-nodes
and or-nodes. An and-node indicates that each direct successor of this
node must be selected during the configuration process—more general:
to solve the whole problem each subproblem has to be solved. An or-
node describes mutually exclusive alternatives. In typical applications
such a configuration problem is solved by skeletal configuration in a top-
down strategy. Skeletal configuration will be appropriate, if we want to
configure a system that always has the same basic structure (cf. section 2.4,
page 43).

If ΠM2 is a problem under model M2, then the skeleton of the configured
system can be derived from the rules specified in ΠM2. The skeleton is the
digraph G = (V,E) with V = O and (oi, oj) ∈ E, if there is a rule that
contains oi in its left-hand side and oj in its right-hand side.

Example

In the following example a tower has to be configured that consists of three
planes: An A-plane, a B-plane and a C-plane. For each plane there is a
particular kind of building block (A-block, B-block and C-block respec-
tively). The goal is to build a tower of a given height at a minimum cost (=
FINDOPTCONF). Figure 3.2 describes the task.

In this example, we claim that the height of the tower must be at least 8.
Additionally, the building blocks of the tower have to fulfill the following
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Figure 3.2: Tower with the planes A, B, and C

restrictions: For both plane A and plane B exactly one block of the appro-
priate kind should be selected. Plane C has to be constructed with one or
two C-blocks where C3 cannot be combined with any of the other C-blocks.
If block C2 is used once, block B1 will not be allowed to occur only once in
a configuration.

By completely enumerating one can check easily that the following
two cost optimum solutions exist: {(1, A1), (1, B2), (2, C2)} and {(1, A1),
(1, B2), (1, C3)}. The cost is 13 in either case.

To describe this problem as a hierarchical configuration problem we
introduce particular “dummy blocks” S, A, B, C, which have no proper-
ties. With the new building blocks we are now able to give the formal
specifications of ΠM2 regarding our example:

1. O = {S, A, B, C, D, A1, A2, B1, B2, C1, C2, C3}
2. F = {height}
3. vheight = {1, 2, ..., 10}, V = {vheight}
4. pS = pA = pB = pC = pD = {},
pA1 = {(height, 1)}, pA2 = {(height, 2)},
pB1 = {(height, 1)}, pB2 = {(height, 3)},
pC1 = {(height, 1)}, pC2 = {(height, 2)}, pC3 = {(height, 4)}
P = {pS, pA, pB, pC, pD, pA1, pA2, pB1, pB2, pC1, pC2, pC3}

5. aheight(x, y) =
{
x+ y, if x+ y ≤ 10;
⊥, otherwise.

A = {aheight}

6. theight(x, y) =
{

True, if x ≤ y;
False, otherwise.
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T = {theight}
7. D = {(height, 8)}
8. N = {1, 2}
9. R = { [1,S] → [1,A] ∧ [1,B] ∧ [1,C],

[1,A] → [1,A1] ∨ [1,A2],
[1,B] → [1,B1] ∨ [1,B2],
[1,C] → [1,D] ∨ [1,C3],
[1,D] → [1,C1] ∨ [2,C1] ∨ [1,C2] ∨ [2,C2] ∨ [1,C1] ∧ [1,C2],
[1,C2] →¬ [1,B1] }

Figure 3.3 shows the and-or-graph related to this problem. Note that
the graph does not represent explicitly the exception defined by the last
rule.

S

BA C

A1 C3B1A2 B2 D

C1 C2C1 C2

(1..2) (1..2)

o o

o
o o

o
And node

Or node

Figure 3.3: Hierarchical and-or-graph

A formal solution of ΠM2 is given by C = 〈I,Q〉 with I = {(1, A1),
(1, B2), (2, C2)}, and Q = {(height, 8)}.

3.3 Behavior-based Configuration Problems

Within the former sections we developed the component models M1 and
M2. The related configuration problems are largely based on the notion
of functionality and represent a kind of selection problem: Given is a set of
objects where the task is to select objects such that the required demands
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are fulfilled. However, property-based and structure-based component
descriptions are not sufficient for every kind of configuration problem—
remember the behavior-based configuration problem presented within sec-
tion 2.1, page 19. Therefore, we will modify model M1 by substituting
behavior descriptions for a component’s properties. Additionally, we give a
formal definition of such behavior-based configuration problems.

Selecting and putting together objects from a set of objects so that the
resulting system provides a desired behavior requires (i) the processing of
behavior descriptions that are based on physical connections and (ii) the
use of experience and creativity to control the process of selecting and
connecting.

Within engineering domains the process described under (ii) is called
model formulation. According to section 2.2, page 29, we will call a configu-
ration problem of this quality a design problem.

Presently, there exists no general theory of how the creativity that guides
a process of configuration or design can be automated. Thus, later within
this section, we will define the less complex checking problem.

Definition 3.9 (Configuration Problem ΠM3). A configuration problem
under model M3 (ΠM3) is a tuple 〈O, F, V, B, T, D〉 whose elements are
defined as follows.

• O is an arbitrary, finite set of objects.

• F is an arbitrary, finite set of functionalities. Each element in F
denotes a possibly constant function in the parameter “time”. For the
sake of simplification, we will normally refer to f(t) ∈ F as f . Note
that a function invariant in time is equivalent to a functionality under
model M1 or M2.

• For each functionality f ∈ F there is an arbitrary, possibly infinite set
vf , called the value set of f . The elements of vf are partial functions
in the parameter time; i.e., they are defined on a subset of R+. V =
{vf | f ∈ F} comprises these value sets. Note that a set vf of functions
invariant in time is equivalent to a value set vf under model M1 or
M2.

• For each object o ∈ O there is an arbitrary finite setBo, called the set of
behavior constraints. Each behavior constraint b ∈ Bo defines a relation
on vfb1

×vfb2
×. . .×vfbk

where fbi ∈ F , {b1, b2, . . . , bk} ⊆ {1, 2, . . . , n},
and n = |F | . Such a relation may be specified by a function or by a
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possibly infinite set of tuples. B = {Bo | o ∈ O} is comprised of the
sets of behavior constraints.

Based on the definition of behavior constraints, we agree on the fol-
lowing notions:

(i) Fb = (fb1 , fb2 , . . . , fbk
) is the tuple of the functionalities associ-

ated to the value sets vfbi
upon which b is defined.

(ii) A tuple of functions X = (x1, x2, . . . , xk), xi ∈ vfbi
, fbi ∈ Fb

matches (fulfills) the behavior constraint b, if X stands in the
relation defined by b.

• For each functionality f there is a test tf , which is a partial function
tf : vf×vf → {True, False}. A test tf specifies under what conditions
a demand (see below) is fulfilled. T = {tf | f ∈ F} is comprised of
all tests.

• D is an arbitrary, finite set of demands. Each demand d ∈ D is a pair
(f, x) where f ∈ F and x ∈ vf . If x is an invariant function of time,
the demand will be called “stationary”; otherwise, the demand will
be called “dynamic”. Note that a stationary demand is equivalent to
a demand d ∈ D under model M1 or M2.

Remarks. Within the configuration problems ΠM2 and ΠM1 the configuration
objects o are characterized by a set of properties po. In this place we
introduced for each object o a set of behavior constraints Bo where each
behavior constraint b ∈ Bo defines a relation on a set of functionalities
Fb ⊆ F .

For example, if we wanted to design an electrical circuit, typical objects
in O would be resistors, capacitors, etc. The functionalities in F would
specify the typical characteristics of the objects such as electrical resistances
or capacities. Behavior constraints in this example would be Ohm’s law
and other electrotechnical regularities defined upon the functionalities in
F .

Definition 3.10 (Configuration). Let ΠM3 = 〈O, F, V, B, T, D〉 be a
configuration problem. A configuration is a triple C = 〈E,Q, S〉 where
E ⊆ O is a set of objects, Q is a quality set with tuples (f, x) where f ∈ F
and x ∈ vf , and S is a set of tuples (f, g) with f, g ∈ F . E specifies those
elements with which the configured system is to be realized. A quality
(f, x) ∈ Q assigns the possibly constant function x to the functionality f . S
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defines the structure of C by means of the functionality-pairs to be unified.
Additionally, we claim the following conditions to hold:

(i) Let FE = {f | f ∈ Fb, b ∈ Bo, o ∈ E} comprise all functionalities of
C. Then, Q must be both definite and complete with respect to FE , i.e.:
For each functionality f ∈ FE , there exists exactly one functionality-
value-pair (f, x) ∈ Q.

(ii) If (f, x), (g, y) ∈ Q and (f, g) ∈ S then x = y.

(iii) Let BE = {b | b ∈ Bo, o ∈ E} comprise all behavior constraints of C.
Then, Q must be correct with respect to BE , i.e., to each b ∈ BE must
apply:
The tuple of functions X = (x1, x2, . . . , xk), induced by the function-
ality-value-pairs (fbi , xi) ∈ Q, fbi ∈ Fb, matches (fulfills) the behavior
constraint b. I.e., X stands in the relation defined by b.

Remarks. When selecting objects in order to form a configuration under
model ΠM1 or ΠM2, the functionalities of the objects are computed using
the associated addition operator. I.e., “only” a selection problem has to
be solved. When solving a configuration problem ΠM3, aside from such a
selection problem the following have to be solved: a structure definition
problem, a model formulation problem, and a model processing problem.
It must be determined which functionalities of the selected components
have to be unified in order to achieve a behavior that fulfills all demands.
Such a unification is equivalent to a connection of the objects in a physical
sense. It is specified by S where each element (f, g) ∈ S indicates that the
functionality f is to be unified with the functionality g, i.e., f ≡ g.

The conditions (i) – (iii) guarantee the technical correctness of a con-
figuration C, that is to say, if C can be realized from its topology and its
behavior: Condition (i) establishes that there is a definite specification for
all functionalities of C. Condition (ii) claims each two functionalities will
be equal if they are unified. Condition (iii) guarantees that all behavior
constraints of C can be fulfilled by the functionality-value-pairs in Q.

Note that functional dependencies within the configuration problems
ΠM1 and ΠM2 are modeled globally, with the aid of the functions’ addition
operators. In contrast to that, the functional dependencies within ΠM3 are
represented by local constraints and a list of functionalities to be unified.
These constraints and the information about unification form the input for
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a model synthesis process1 that in turn yields a mathematical description
of the system. In order to compute Q, which describes the system’s global
behavior, this mathematical description has to be processed by direct or by
iteration methods.

Definition 3.11 (Solution of ΠM3). A configuration C = 〈E,Q, S〉 is a
solution of a configuration problem ΠM3 = 〈O, F, V, B, T, D〉 if and only if
the following conditions hold:

(i) C is a configuration according to Definition 3.10, i.e., C is technically
correct.

(ii) For each demand d = (f, x) ∈ D there exists a quality q = (g, y) ∈ Q
such that f = g and tf (x, y) = True.

Remarks. A solution of a configuration problem ΠM3 specifies which objects
have to be selected, how they are parameterized, and how they are con-
nected. Condition (i) claims a configuration’s correctness while condition
(ii) guarantees all demands being fulfilled according to the associated test
predicate in T . There usually exists more than one solution of a configura-
tion problem ΠM3.

The problems CONF, FINDCONF, etc. stated within section 3.1, page 51,
can be formulated in a similar way for model M3.

Example

The following example establishes an instance of the behavior-based con-
figuration problem ΠM3. Let us consider that we had to design a simple
electrical circuit. Given are resistors, capacitors, and inductive coils. The
goal is to select, connect, and parameterize the components in such a way that
we obtain a damped oscillating circuit with a frequency of about 10kHz and
a time constant of 0.2s. Figure 3.4 illustrates the task.

In order to keep this example clear, we refrain from the specification of
wires. Even such a simple problem, from the electrotechnical standpoint,
needs more than a complete enumeration of possible subsets of the compo-
nents. The design process is guided by the experience and the knowledge
about physical connections. A formal specification of ΠM3 related to our
example is the following:

1We will elaborate on this term in chapter 5.
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i(t)

t

?

Figure 3.4: Designing a simple circuit

1. O = {R (= resistor), C (= capacitor), L (= coil)}
2. F = { resistance, U1R, U2R, i1R, i2R, capacity, U1C, U2C, i1C,

i2C, QC, inductivity, U1L, U2L, i1L, i2L}
Each element f ∈ F is a real function; f : R+ → R.

3. vf = C(R), the set of continuous functions on R, f ∈ F ,
V = {vf | f ∈ F}

4. BR = {R-voltage, R-current}
:= {U1R − U2R = resistance· i1R, i1R = i2R}

BC = {C-voltage, C-current, C-charge}
:= {U1C − U2C = capacity· QC, i1C = i2C,

d QC
dt = i1C}

BL = {L-voltage, L-current}
:= {U1L − U2L = inductivity· d i1L

dt , i1L = i2L}
B = {BR, BC, BL}

5. tf (χ, γ) : ‖χ− γ‖ ≤ 0.1, with f ∈ F, and χ, γ ∈ vf ,

T = {tf | f ∈ F}
6. D = {(i1R, e

−5t · sin(2π · 104 · t))}. This definition determines the
circuit’s oscillating frequency and its time constant.

A possible solution of the configuration problem is given in figure 3.5.
It determines a function for each parameter and fulfills both all constraints
and all demands.
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L = 1 mH C = 25 uF

R = 30 Ohm  

Figure 3.5: A solution of the example

Remarks. The solution of such a problem can hardly be found by a generate-
and-test procedure but instead needs knowledge about model formulation
in electrical engineering. To solve the above problem, a human expert
would perform the following steps:

1. Identification of the circuit’s topology.

2. Development of a global behavior model from the local behavior
constraints. The subsequent differential equation represents a correct
model regarding our example: L· ï +R· i̇ + i

C = 0

3. Solution of the differential equation and evaluation of the resulting
terms for the frequency and the time constant.

Checking a Configuration’s Behavior

As mentioned above, the creative design process can only be automated to
a small part. However, the complexity of a behavior-based configuration
problem will definitely be reduced, if we restrict ourselves to the checking
of a given configuration. Often, even such a checking problem turns out
to be very sophisticated since we have to automate a model formulation
process that is founded on physical relations and to process the resulting
model. Chapter 5 introduces such a behavior-based checking problem and
describes how it can be solved. In the following paragraphs, we define the
checking problem precisely.

Definition 3.12 (Checking Problem Πc
M3). A checking problem under

model M3 (Πc
M3) is a tuple 〈O, F, V, B, T, D, S〉 whose elements are defined

as in Definition 3.9 and in Definition 3.11 respectively.

Remarks. A checking problem Πc
M3 defines a set of objects, their local

behavior concepts, and how the objects are connected. I.e., a specification
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of a technical system and a set of demands are given where the goal is to
check whether the system fulfills these demands or not.

Definition 3.13 (Solution of Πc
M3). A solution of a checking problem Πc

M3

= 〈O, F, V, B, T, D, S〉 is a set Q containing tuples (f, x) where f ∈ F and
x ∈ vf . Q is called a solution of Πc

M3 if and only if the following conditions
hold:

(i) C = 〈O,Q, S〉 is a configuration according to Definition 3.10, i.e., C is
technically correct.

(ii) For each demand d = (f, x) ∈ D there exists a quality q = (g, y) ∈ Q
such that f = g and tf (x, y) = True.

Remarks. This definition is similar to Definition 3.11. As a difference to the
above, all objects of O are used to compose the system to be checked. Πc

M3

can be viewed as some kind of constraint satisfaction problem: The sets O
and S establish a network of nodes where each node is characterized by a
functionality f ∈ F . B and D define the constraints of this network and
may be of both numerical or symbolic type.

Each set Q that is a solution of Πc
M3 defines a function γ : F → ⋃

v, v ∈ V :

Q = {(f1, γ(f1)), (f2, γ(f2)), . . . , (fn, γ(fn))}

In other words, solving this constraint satisfaction problem means to
determine γ. If no such function exists, the checking problem Πc

M3 will be
contradictory, i.e., the specified system does not fulfill the desired demands.
A checking problem will be underspecified if more than one function γ
exists.

3.4 Structural versus Functional Descriptions

Model M1 is suitable to model property-based configuration problems while
model M2 is suitable to model structure-based configuration problems.
Within the configuration problem ΠM2 under model M2, the skeleton of
the configured system is derived from the rules of ΠM2. In many appli-
cations the skeleton is a tree, and a configuration problem is processed
by skeleton-configuration in a top-down strategy. In contrast, a property-
based configuration problem is processed by means of balance processing
(cf. section 2.4, page 43 and page 42).
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The model M2, which additionally contains a mechanism to express
structural knowledge, seems to be more powerful than the pure property-
based model. However, as the following results shows, this outcome is not
the case. This fact is quite surprising since one expects that the rule language
enables us to formulate more sophisticated configuration problems.

A central theorem of this chapter is the following:

Theorem 3.14 (Equivalence of Model M1 and Model M2). 1. Let ΠM1

be any instance of problem CONF under model M1. Then, there exists an
equivalent instance ΠM2 of problem CONF under model M2, which can be
obtained in polynomial time in the size of ΠM1.

2. Let ΠM2 be any instance of problem CONF under model M2. Then,
there exists an equivalent instance ΠM1 of problem CONF under model M1,
which can be obtained in polynomial time in the size of ΠM2.

Corollary 3.15 (Equivalence of Model M1 and Model M2). Theorem 3.14
is also valid for the problems FINDCONF, COSTCONF, FINDCOSTCONF, and
FINDOPTCONF under model M1 and model M2.

By proving the theorem, the corollary follows immediately from the
proof.

Proof. Part one: Let ΠM1 = 〈O,F, V, P,A, T,D〉 be an instance of problem
CONF under model M1. Trivially, let R := ∅, N := {1} and let ΠM2 :=
〈O,F, V, P,A, T,D,N,R〉.

Part two: Let ΠM2 = 〈O,F, V, P,A, T,D,N,R〉 with N = {1, . . . , k} be an
instance of problem CONF under model M2. We have to show that there
exists an instance ΠM1 of problem CONF under model M1 such that ΠM2

has a solution if and only if ΠM1 has a solution.

We construct ΠM1 as follows. The basic idea of the proof is that the
rules are replaced by new functionalities and new tests whose behavior is
equivalent to these rules.

R is transformed into a logically equivalent set R̃, which contains only
3CNF formulas (i.e., propositional formulas in a conjunctive normal form
where each clause has at most 3 literals).

This transformation is performed in two steps. First, a transformation
technique due to Tseitin is used to transform each rule into a logically
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equivalent propositional formula in a conjunctive normal form [77]. This
step requires the introduction of new variables Γ̄ = {[1, ō1], . . . , [1, ōT ]}.
Secondly, every formula obtained from step one is transformed into an
equivalent 3CNF formula by introducing the new variables Γ̂ = { [1, ô1],
. . . , [1, ôS ]}. Note that both transformations can be made in quadratic time
and linear space. Let Γ̃ = Γ(N,O) ∪ Γ̄ ∪ Γ̂.

Thus, every rule r ∈ R is transformed into a set 3CNF(r) = {r1, . . . , rS}
such that r is satisfiable if and only if every formula ri ∈ 3CNF(r) is
satisfiable. Let R̃ =

⋃
r∈R 3CNF(r).

The introduction of the new variables implies that the new object setOM1

is defined asOM1 := O∪Ō∪Ôwith Ō = {ō1, . . . , ōT } and Ô = {ô1, . . . , ôS}.

The subsequently described steps define how ΠM1 is constructed from
the new rule set R̃ and the new object set OM1.

1. For every r ∈ R̃ we construct a new functionality gr. The value sets
of these functionalities in turn contain sets and are defined in step
3. For each o ∈ OM1 that occurs in a rule r ∈ R̃ we will extend the
property set of o by the element (gr, {(1, o)}).

2. To construct the value sets of the new functionalities we need the
following “union” of an item set I and a singleton {(1, o)}, o ∈ OM1:

I � {(1, o)} =




I \ {(k, o)} ∪ {(k + 1, o)}, if o ∈ O, (k, o) ∈ I,
and k ≤ n, n = |N |;

I ∪ {(1, o)}, if o ∈ Ō ∪ Ô,
and(1, o) �∈ I;

I, otherwise.

3. A value set vgr is inductively defined as follows. Note that Λ is a help
variable.

(i) {{(1, o)} | o occurs in r} ⊆ Λ.
(ii) If x ∈ Λ and o occurs in r, then x � {(1, o)} ∈ Λ.

(iii) Nothing else is in Λ.
(iv) vgr := Λ ∪ {r}.

Note that vgr contains both sets of number-object pairs and the rule
r itself. Also note that the computation of vgr can be done in a finite
number of steps since n+ 1 bounds the number k that can occur in a
pair (k, o), which itself occurs in a set x ∈ vgr .
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4. As a demand dr for r we define dr := (gr, r).

5. The test tgr (x, y) of gr is defined only for x = r and y ∈ vgr \ {r}:

tgr (r, y) =
{

True, if r is true under αy;
False, otherwise,

where αy is restricted to the variable set Γr = {[k, o] | k ≤ n +
1, o occurs in r}. Note that other variables than those in Γr cannot
occur since n+ 1 bounds the number k.

6. The addition operator agr (x, y) of gr is defined only for x ∈ vgr \ {r}
and y ∈ {{(1, o)} | o occurs in r}:

agr (x, y) := x � y

7. Henceforth, let ρ(o) = {(gr, {(1, o)}) | r ∈ R̃o}, where R̃o := {r ∈
R̃ | o occurs in r}.

8. The elements of ΠM1 := 〈OM1, FM1, VM1, PM1, AM1, TM1, DM1〉 are
now defined as follows:

OM1 := O ∪ Ō ∪ Ô,
FM1 := F ∪ FR where FR := {gr | r ∈ R̃},
VM1 := V ∪ VR where VR := {vgr | r ∈ R̃},
PM1 := {po ∪ ρ(o) | o ∈ O} ∪ {ρ(o) | o ∈ Ō ∪ Ô}
AM1 := A ∪AR where AR := {agr | r ∈ R̃},
TM1 := T ∪ TR where TR := {tgr | r ∈ R̃},
DM1 := D ∪DR where DR := {(gr, r) | r ∈ R̃}.

Case A. We have to show: If C = 〈I,Q〉 is a solution of ΠM2, then there
exists a solution CM1 = 〈IM1, QM1〉 of ΠM1. We show that there exist an
item set �I and a quality set �Q such that IM1 = I ∪�I, QM1 = Q∪�Q,
and CM1 = 〈I ∪�I,Q∪�Q〉 is a solution of ΠM1. Due to this construction
of IM1 and since DM1 = D ∪DR, we need only to consider the “difference”
demands DR (the original demands D are satisfied by I).

We have to construct a �I in such a way that IM1 induces a quality set
�Qwith the following characteristic: For each d = (gr, r) ∈ DR there exists
a property (gr, y) ∈ �Q with tgr (r, y) = True.
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Let d = (gr, r) be any demand of DR where r ∈ R̃ is a 3CNF rule of
the form r = l1 ∨ l2 ∨ l3 with li ∈ {[k, o] | [k, o] ∈ Γ̃} ∪ {¬[k, o] | [k, o] ∈ Γ̃}.
Note that r is satisfied if some li is satisfied. Since C is a solution of ΠM2,
it follows that all rules r ∈ R are satisfied. Hence, all 3CNF rules in R̃
are satisfiable by some truth assignment αIM1 . Note that αI ⊆ αIM1 ; this
guarantees that an object o ∈ O occurs with frequency k in I if and only if
object o occurs with frequency k in IM1. Without loss of generality, we can
assume that l1 (= [k1, o1]) is satisfied under αIM1 .

Case A1. Let o1 ∈ O. If l1 = [k1, o1] then αIM1([k1, o1]) = True, hence
(k1, o1) must occur in I . The definition of agr (cf. the “�-operator”) guaran-
tees that a y ∈ vgr with (k1, o1) ∈ y is inevitably constructed as the quality
value of gr. If l1 = ¬[k1, o1] then αIM1([k1, o1]) = False (hence (k1, o1) �∈ I).
Now, either (k2, o1) ∈ I with k2 < k1 or k2 > k1, then (k2, o1) ∈ y, or o1
does not occur in I at all and (k2, o1) �∈ y. As before, an appropriate y ∈ vgr

is constructed as the quality value of gr.

Case A2. Let o1 ∈ Ō ∪ Ô. If l1 = [k1, o1] then αIM1 ([1, o1]) = True
and we put (1, o1) in �I . The quality value y of gr will contain (1, o1).
If l1 = ¬[1, o1] then αIM1([1, o1]) = False and o1 is not allowed to be in
�I . Hence, the quality value y of gr cannot contain (1, o1). So, �I is
defined as the collection of all tuples (1, o1) found in case A2. Furthermore,
let the gr (with r ∈ R̃) and their corresponding y form the set �Q. As
seen above, with these definitions of �Q and �I it is guaranteed that
for each d = (gr, r) ∈ DR there exists the quality (dr , y) ∈ �Q such that
tgr (r, y) = True.

Case B. We have to show: If CM1 = 〈IM1, QM1〉 is a solution of ΠM1,
then there exists a solution C = 〈I,Q〉 of ΠM2. Since CM1 = 〈IM1, QM1〉
is a solution of ΠM1 all demands in DM1 = D ∪ DR are satisfied. Let
I = {[k, o] | o occurs in O} and let ∆Q = {(f, x) ∈ Q | f ∈ po, o ∈ Ō ∪ Ô}.

(i) Clearly, C = 〈I,QM1 \ ∆Q〉 satisfies all demands d ∈ D since objects
that occur in IM1 \ I have no properties for which a demand d ∈ D
exists.

(ii) To see that C = 〈I,QM1 \ ∆Q〉 satisfies all rules r ∈ R, one need only
to consider the transformation above, which guarantees that αI is a
satisfying truth assignment since αI ⊆ αIM1 and R ⇐⇒ R̃. �
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Example

With the specification of the transformation of model M2 into model M1,
we are now able to reformulate the configuration problem of section 3.2
as a problem that is solely based on functionalities and their computation.
Figure 3.6 describes the configuration problem as an and-or-graph.

S

BA C

A1 C3B1A2 B2 D

C1 C2C1 C2

(1..2) (1..2)

o o

o
o o

o
And node

Or node

Figure 3.6: The configuration problem of section 3.2

Here, we will not perform this transformation explicitly; the necessary
transformation steps were specified above. Note that in the reformulated
problem the structural dependencies between the objects must be derived
from their properties.

Figure 3.7 shows the reformulation of the configuration problem and
illustrates in which way the transformation of M1 into M2 comes into ef-
fect. The transformation of the above rules yields eight new functionalities
g1, . . . , g8. In the figure, both functionalities and configuration objects are
vertices; an edge (oi, gj) indicates that the object oi has the functionality gj

in its property set.

3.5 A Complexity Consideration

Although we did not specify an algorithm for any of the above problems
CONF, FINDCONF, etc., we present in this section a result regarding the
computational complexity of CONF under model M1 and M2 respectively.
Note that (i) all other problems under one of the above models are at least
as hard as CONF, and (ii) all problems under model M3 are at least as hard
as their equivalents under model M1 and M2 respectively.
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Figure 3.7: The new dependency graph

Theorem 3.16 (NP-Completeness of CONF). Problem CONF under model
M1 or M2 is NP-complete.

Lemma 3.17 (NP-Completeness of CONFR). Problem CONF with restriction
rules (CONFR) under model M1 or M2 is NP-complete.

We first prove the lemma, then the theorem.

Proof of Lemma. Let ΠM2 be any instance of CONFR. Clearly, CONFR ∈
NP since a nondeterministic algorithm need only to guess a configuration
C = 〈I,Q〉 and check in polynomial time whether this configuration is a
solution of ΠM2.

We transform 3SAT (which is NP-complete, Cook, [12]) to CONFR. Let
X = {x1, . . . , xn} and Z = {c1, . . . , cm} be any instance of 3SAT where
X is the set of variables and Z is the set of clauses. We must construct a
configuration problem ΠM2 = 〈O, F, V, P, A, T, D, N, R〉 such that ΠM2

has a solution C = 〈I,Q〉 if and only if Z is satisfiable.

The key idea is to transform every clause into a logically equivalent
restriction rule. This is established as follows.

1. With every variable xi we associate an object of the same name and a
functionality fi, i.e., O = {x1, . . . , xn}, and F = {f1, . . . , fn}.
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2. The value set of a functionality fi is the set vfi = {1, 2}, for each
1 ≤ i ≤ n. Let V = {vfi | 1 ≤ i ≤ n}.

3. The property set of an object oi is the set poi = {(fi, 1)}. Let P =
{poi | 1 ≤ i ≤ n}.

4. For every fi ∈ F the addition operator afi is defined as afi(x, y) = 2,
if x = y = 1; in all other cases afi is undefined.

5. With each functionality fi we associate a test tfi(x, y) ≡ x ≤ y for all
x, y ∈ vfi . Let T = {tfi | 1 ≤ i ≤ n}.

6. The demand set is defined as D = {(f1, 1), . . . , (fn, 1)}.

Note that if C = 〈I,Q〉 is a solution of ΠM2, then the definition of A, D,
and T imply that every object xi must occur either once or twice in I .

The set of restriction rules is constructed as follows. Let ci = li1 ∨ li2 ∨ li3
be a clause of Z where lij is a literal over X , for 1 ≤ j ≤ 3 and 1 ≤ i ≤ m.
Define

τ(lij ) =
{

[1, xij ], if lij is a positive literal;
[2, xij ], if lij is a negative literal.

Note that ci is logically equivalent to ¬li1 → li2 ∨ li3 . Therefore we associate
with ci the rule ri = τ(¬li1 ) → τ(li2 )∨τ(li3 ). For example, if ci = x2∨¬x4∨
x5, then ri = [2, x2] → [2, x4] ∨ [1, x5]. It is obvious that this transformation
can be made in polynomial time.

First, suppose that α : X → {True, False} is a satisfying truth assign-
ment for Z . It is easy to see that the following configuration C = 〈I,Q〉
fulfills all demands and satisfies all “restriction rules”:

I = {b(xi) | 1 ≤ i ≤ n}
with

b(xi) =
{

(1, xi), if α(xi) = True;
(2, xi), if α(xi) = False.

and
Q = {(f, c(xi))} | 1 ≤ i ≤ n},

with

c(xi) =
{

1, if α(xi) = True;
2, if α(xi) = False.

Since every ci is logically equivalent to its transformed rule ri it is
obvious that ci is satisfiable if and only if ri is satisfiable. Therefore, all
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rules r ∈ R are satisfied, which can be seen from the definition of b(xi). To
see that the demands are also fulfilled, one should note that every object
xi occurs in I with either property (fi, 1) or (fi, 2) and that, therefore, the
demand di = (fi, 1) is fulfilled.

Conversely, suppose that C = 〈I,Q〉 is a configuration which fulfills
all demands and which is satisfying for the rule set R. Since it fulfills all
demands, it follows that each object xi occurs exactly once or twice in I .
Therefore, every rule r ∈ R can be applied in some manner. Since every
rule ri is satisfied by the assignment αI it follows that its corresponding
clause ci must also be satisfied. �

Proof of Theorem. Let ΠM1 be any instance of CONF. Clearly, CONF ∈ NP
since a nondeterministic algorithm need only to guess a configuration C =
〈I,Q〉 and check in polynomial time whether C is a solution of ΠM1.

We transform CONFR to CONF. Here we make use of Theorem 3.14, which
states that every ΠM2 ∈ CONFR is equivalent to a ΠM1 ∈ CONF. The only
point that remains to be shown is that the transformation used in the proof
of Theorem 3.14 can be made in polynomial time.

Here we can restrict ourselves to 3CONFR whose instances contain only
rules of the form r = [k1, oi1 ] → [k2, oi2 ] ∨ [k3, oi3 ]. Clearly, 3CONFR is
NP-complete since every instance of 3SAT is transformed to an instance of
3CONFR (with ki ∈ {1, 2}, 1 ≤ i ≤ 3) in the previous proof.

LetR be a rule set with 3-element rules. It is obvious that CNF(r) = {r}
for every rule r ∈ R. That means, no rule transformation must be made.
One can also easily check that all other transformations from 3CONFR to
CONF can be made in polynomial time. �
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Chapter 4

On Property-based Configuration

The main theme of this chapter can be summarized with the following
quotation:

“Models of design processes provide guidance in the development of
knowledge-based systems for design. The basis for such models comes
from research in design theory and methodology as well as problem
solving in AI.”

Maher, [48], p.49

—chapter 2 and 3 presented a classification and a formalization of different
component models. Now we shall concentrate on a particular function-
based component model: the property-based component model. We will
show how this component model can be used to develop efficient configu-
ration systems.

The chapter is organized as follows.

Section 4.1 discusses the philosophy and general characteristics of the
property-based configuration approach. Section 4.2 presents a basic algo-
rithm that realizes different configuration tasks. Section 4.3 shows how the
basic configuration algorithm can be improved by the use of metaknowl-
edge. The last section gives a short description of MOKON, a configuration
system that realizes the concepts and algorithms outlined.
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4.1 The Rationale of Property-based
Configuration

The computational complexity of a configuration approach depends on the
type of the underlying component model. Property-based configuration
makes use of functional connections of a domain. I.e., the component model
being established and processed is grounded on functional properties of
the components being configured.

Aside from the computational complexity, so to speak, the knowledge
processing costs, there exists another central characteristic of component
models: the “knowledge acquisition costs”. With this term we designate
the effort necessary for maintenance, modification, and acquisition of con-
figuration knowledge.

In order to understand the advantages of functional component de-
scriptions, the next two subsections illustrate some relationships between
different component models and knowledge processing as well as knowl-
edge acquisition costs. The last subsection elaborates on the link between
property-based and resource-based descriptions.

No Function in Structure

Knowledge processing costs and knowledge acquisition costs are a direct
consequence of the no-function-in-structure-principle, which in turn is related
to the “locality” of a component’s description.—What does the no-function-
in-structure-principle (= NFIS-principle) mean?

Loosely speaking, a component will fulfill the NFIS-principle, if its de-
scription does not depend on its context of use [10], [16], [40].

To understand the rationale of this principle, let us consider that we
had a toolbox of components with each component representing some
kind of physical device. The components possess gates where they can be
connected to other components, and to each gate a particular parameter p
is associated. E.g., p could designate a physical quantity such as electric
current, voltage, or temperature, but also other kinds of information are
eligible. Also, each component may establish a relation on its gates, say,
parameters. Examples for such relations are p1 + p2 = p3 (adder) or Ohm’s
law.
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The information about the gates and the relation form a component’s
description. Note that the description of a component that fulfills the NFIS-
principle must remain valid under all circumstances, regardless of how it
is connected. The following example will illustrate this characteristic.

To model an electric circuit, we are given wires, switches, etc. For the
sake of clarity, we focus on the behavior description of a switch. A switch
has two gates, and the relation that specifies its behavior is as follows. “If
the switch is open, there is no flow of current at its gates. If the switch is closed,
there is a flow of current at its gates.”

Figure 4.1 depicts two circuits where switches of this type are used.
For circuit A our description of the switch is sufficient. However, since
this description is not context-free, it fails to be a valid description for the
switches of circuit B: Although one switch of this circuit is closed, there
cannot be a current at its gates.

A B

Figure 4.1: Two simple circuits

Note that the switch’s description seems to be local, since it refers to its
own gates only. By contrast, the following description refers not only to its
own but also to external (environmental) gates: “The light bulb will shine, if
the switch is closed.”

Nevertheless, both descriptions should be called global since they make
assumptions about their context of use.

To investigate the behavior of a system that is composed by locally
described components, some kind of model formulation is necessary. The
first step is that all local and all environmental behavior descriptions must
be determined. Secondly, these local descriptions must be composed and
transformed into a global description such that the behavior of the entire
system is modeled correctly. Such a global description might be an equation
system of differential and non-differential connections. If so, the solution
of the equation system should also be counted along with the model for-
mulation process. Conversely, a global description establishes a system
whose process of model formulation is essentially completed.
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Obviously, the following rule applies: (i) A component will obey the
NFIS-principle only, if its descriptions are local, and (ii) processing local
component descriptions is usually much more demanding than processing
global descriptions.

Component Models and Locality

Different component models have different portions of configuration or
design knowledge compiled in. This quality determines the role compo-
nent models play with respect to knowledge processing and knowledge
acquisition costs. Moreover, this role can be explained in terms of the NFIS-
principle or the “locality” of a component description and is now discussed
for the component models of section 2.3.

• Associative Component Model. Models of this type are global with re-
spect to the readily configured system. In more detail: Associative
knowledge consists of rules that describe explicitly component rela-
tions and configuration actions. This knowledge is derived—and
thus, justified—with the global system in mind. Clearly, descriptions
of this type violate the NFIS-principle. They make assumptions about
the components in hand, the system’s structure, the environment, etc.
The advantage of such a description is that it can be processed both
efficiently and easily. No other constraints need to be checked beside
those that are specified in the condition part of the rules. Often, large
parts of an expert’s knowledge consist of such rules.

Two main disadvantages of associative configuration descriptions are
the following:

1. The explicit formulation of all configuration dependencies can
lead to redundant descriptions. Moreover, the configuration
knowledge cannot be structured, and consequently, it is difficult
to maintain and to check existent connections or to specify new
ones.

2. Associative descriptions establish no causal dependencies. I.e.,
the configuration knowledge cannot be used to generate expla-
nations of configuration steps other than the associative rules
themselves.

• Compositional Component Model. Models of this type are global, too.
Therefore, the statements given above concerning the NFIS-principle
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apply here as well. Processing compositional knowledge is efficient
because of the semantics of compositional relationships. (Remember
the top-down and the bottom-up strategy described in section 2.4,
page 43.)

Compositional knowledge can be represented with little redundancy,
and the skeleton model of the configuration description is often used
to structure the knowledge. Nevertheless, knowledge acquisition is
not easy, since the modification, exchange, or addition of a component
affects its entire subskeleton. The drawback of weak explanation
mechanisms applies to this type of knowledge as well.

• Taxonomic Component Model. Taxonomic knowledge organized in an
or-hierarchy is global. I.e., it is efficient since components of the same
type can be found in constant time. But, taxonomic knowledge can
also be local—namely, if the components’ characteristics, which form
the base for a classification, are made explicit. In this case some kind of
classification algorithm like in KL-ONE needs to be employed [3]. Note
that such a description might come pretty close to a property-based
description. In any case, since taxonomic connections are usually
employed to describe and to organize compositional knowledge, this
evaluation should not be overrated.

• Property-Based Component Model. Models of this type are local. The
configuration knowledge is not specified by explicit relations between
the components but rather by the components’ local properties. These
properties are used to derive necessary compositional and taxonomic
dependencies.

Example: If we wanted to configure a computer’s power supply, an
associative description would explicitly define the crucial relations
between different power supply units and other components. When
realizing a property-based modeling, all components have the prop-
erty (current value, X). During a configuration process all compo-
nents’ current values are computed in order to select a suitable power
supply. Compared to the associative case, this configuration process
exploits deeper dependencies of the domain.

Components that are described by their local properties fulfill the
NFIS-principle, of course. This results in an important advantage of
property-based models: Configuration knowledge can be acquired
and maintained easily. Modification, exchange, and addition of com-
ponents will never affect other parts (components) of the configura-
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tion knowledge. Also expressive explanations of configuration deci-
sions can be generated since the configuration process’s underlying
model is functional, that is to say, causal.

These advantages are bought with a considerable increase in knowl-
edge processing costs. Compared to the structural component mod-
els, a larger search space has to be processed. The reason for this is
that no explicit configuration decisions, which would guide the con-
figuration process, are predefined. Rather, the configuration process
is constrained implicitly by the local component descriptions that
must form a correctly working global model when put together.

• Behavior-Based Component Model. In principle, all characteristics of
property-based component models apply to behavior-based models
as well. We say “in principle” here since the processing of behavior
descriptions is usually so difficult that a configuration process that
is solely based on such deep connections cannot be operationalized
completely.

Remarks. Component models that fulfill the NFIS-principle can be main-
tained much easier than those models which do not. This difference results
from the fact that no global dependencies are specified within the descrip-
tions of such models.

There is a tradeoff between knowledge processing cost on the one hand
and knowledge acquisition cost on the other. Especially when realizing
a property-based component model instead of a structure-based one, the
benefit of efficient knowledge processing is given up for the—often more
desirable—benefit of user-friendly knowledge acquisition. Figure 4.2 illus-
trates this tradeoff qualitatively.

Knowledge
acquisition cost

Knowledge
processing cost

global local

Computational
cost

‘‘Locality’’ of a
component’s description

Figure 4.2: The tradeoff between knowledge processing and acquisition cost
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The Supply-and-Demand Semantics

Back to property-based component models. How can property-based com-
ponent models be realized? Experience has shown that it is often useful
to consider the properties of a property-based component model as some
kind of resource [27]. I.e., a component characterized by a resource f either
supplies or demands a certain amount of f . In figure 4.3 resource-based
component descriptions are depicted graphically.
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fo

"o" supplies "f"

"o" demands "f"

f6
f1

f3

f2

f5

f4

o2

o1

o3

o4

Figure 4.3: Resource-based component descriptions

Note that this dependency network represents a simplified functional
model of the domain. Configuration that is founded on such connections
means instantiation and simulation of this functional model. The represen-
tation also shows the power of property/resource-based descriptions with
respect to knowledge acquisition and maintenance. All relationships are of
the canonical form

component ↔ resource ↔ component

As a consequence, components can be added or removed easily by the
creation or the removal of resource links. The role of each component
in the configuration problem becomes clear, and basic plausibility checks
become possible. Example: Each resource must be supplied by at least one
component.

4.2 A Basic Algorithm

This section presents a basic configuration algorithm to process resource-
based component descriptions. Most of the resource-based configura-
tion problem is equivalent to the property-based configuration problem
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ΠM1= 〈O, F, V, P, A, T,D〉 under model M1, defined in section 3.1, page
48:

• O is set a of objects.

• F is a set of functionalities.

• V is comprised of all functionalities’ value sets.

• P contains each object’s property description.

• A is the set of all functionalities’ addition operators.

• T contains a test predicate for each functionality.

• D is comprised of all desired properties of the system to be configured.

The task is to find a solution (i.e. a configuration)C = 〈I,Q〉 of ΠM1 such
that for each demand d = (f, x) ∈ D there exists a quality q = (g, y) ∈ Q
with f = g and tf (x, y) = True.1

Remarks. Resource-based modeling distinguishes between supply and de-
mand properties of the components. This supply-and-demand semantics
is not reflected explicitly by the objects’ property sets po in the definition
of ΠM1. Of course, this fact is not a restriction of model M1 since supplies
and demands can be defined implicitly by the addition operators: Without
loss of generality we may claim that g = (vf , af ), vf ∈ V , af ∈ A, f ∈ F ,
represents a group in the algebraic sense. Then, if (f, x) is a supply of f to
the amount of x, (f, y) will be a demand of f to the same amount, if af (x, y)
produces the neutral element of g. Henceforth, we will use pS

o (or pD
o ) to

refer to an object’s supplied (or demanded) properties.

If there exists a configuration C that solves the resource-based configu-
ration problem,C can be determined with the algorithm SATBALANCE. This
algorithm operationalizes a generate-and-test strategy. In the generate part
a set of objects is selected while in the test part the objects’ functionalities
are balanced. Usually, the selection process is controlled by the set of the ac-
tually unsatisfied demands and by domain-dependent propose-and-revise
heuristics. During the balance process all supplies and demands of a func-
tionality are accumulated and checked as to whether the demanded value
can be satisfied by the supplied one or not. The algorithm will terminate if
all demands are satisfied or no further object set can be generated.

1This task corresponds to the problem FINDCONF under model M1.
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A non-deterministic version of the basic balance algorithm is given
now. It is non-deterministic since it employs the functions select demand,
create alternatives, and select alternative, which heuristically control the
search. We elaborate on these functions in the next section. Additionally,
we need the help function test balance that takes a demand set D and an
item set I as input and returns the set of actually unsatisfied demands.

SATBALANCE

: Demand set
: Item set (initially empty)

D
I

yes no

I’ := I

M I’ ==/WHILE 0/ 0/

D = 0/

I’ J)SATBALANCE(D’,I:=

J := select_alternative(M)

M := M \ J

D’ J):= test_balance(D,I 

:= create_alternatives(f,x)M

0/:=I’

(f,x) := select_demand(D)

D,I

I’Return

Input

Figure 4.4: The basic balance algorithm

Remarks. SATBALANCE can be modified easily to solve the configuration
task “adapting”. Thus, all configuration tasks defined in section 2.3 are
solved by the algorithm above.

In order to solve a realistic configuration problem, SATBALANCE must
be extended. E.g., it should be possible to process minimum and maximum
restrictions, to define mandatory functionalities, or to define an optimum
criterion.

4.3 Improving Performance with Metaknowledge

The efficiency of the algorithm SATBALANCE depends on the domain heuris-
tics operationalized in the functions create alternatives, select alternative,
and select demand [36]. Such heuristics are called metaknowledge. Meta-
knowledge is knowledge about knowledge and defines how (configura-
tion) knowledge is used and which role (configuration) knowledge plays.
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In the functions mentioned metaknowledge plays a key role since it controls
the configuration process:

• create alternatives, select alternative. Creating alternatives means
to form sets of components that satisfy a particular demand; selecting
an alternative means to define an order based upon these sets. Meta-
knowledge related to both jobs is stated in the form of preferences:
Should the alternatives be formed and selected with respect to the
component costs, or some kind of indirect cost—caused by the new
demands of an alternative, or with respect to an alternative’s number
of components? Answers to these questions are founded on experi-
ence, on domain-dependent constraints, or on connections found out
empirically.

• select demand. Metaknowledge related to this function should an-
swer the question, which unsatisfied demand is to be processed next.
There exist domain independent relationships that can be exploited
to answer this question. The next subsection shows how information
about the demand processing order is deduced from the component
descriptions.

The Planner’s View

Property-based configuration problems can be described in terms of plan-
ning. The following are given:

1. an initial state, characterized by ΠM1,

2. a goal state C (configuration) that is only described intensionally by
the fact that C fulfills all demands related to ΠM1.

What we are looking for is a plan that describes how to get from the
initial state to the goal state. Usually, such a plan is a concatenation of a
finite number of so-called operators. When dealing with property-based
configuration, a plan has to determine which of the unsatisfied demands
should be processed next and how the selected demand could be satisfied.
Processing such a plan would result in the readily configured system.

Especially the selection of unsatisfied demands plays a crucial role when
processing a property-based configuration problem. If the dependencies
between the functionalities are considered, a lot of backtracking can be
avoided. Hence, we are interested in a plan that defines a sequence by
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which unsatisfied demands can be processed so that backtracking is min-
imized. Before we describe how such a plan is found we introduce the
following definitions.

Definition 4.1 (Serializable). Let ΠM1 be a configuration problem under
model M1. ΠM1 is called serializable, if a permutation s = (fs1 , fs1 , . . . , fsn),
f ∈ F , n = |F |, can be determined such that the following holds true: For
each demand d = (fsi , x) ∈ D that can be satisfied at all, there exists an
item set J whose objects exclusively demand functionalities fsj with j > i.
The permutation s shall be called the linear configuration plan of ΠM1.

Definition 4.2 (Strongly Serializable). Let ΠM1 be a configuration problem
under model M1 and s a linear configuration plan of ΠM1. ΠM1 is called
strongly serializable if the demands are processed in order of s and no back-
tracking is necessary, regardless of the alternatives chosen to satisfy the
demands.

Remarks. In other words, a configuration problem ΠM1 is serializable if
there exists a total order s of F (and hence of D) such that the satisfac-
tion of a demand (fsi , x) will never lead to an additional demand (fsk

, y),
si, sk ∈ s with k < i. Note that despite the existence of a linear config-
uration plan, backtracking might occur during the configuration process
due to the following reason: When processing a demand d, usually a lot
of alternative component sets are locally suited to satisfy d. Selecting a
“wrong” alternative will cause the configuration process to reach a dead
end within subsequent configuration steps.

The latter definition describes configuration problems that will be
solved by means of a greedy algorithm (if the linear configuration plan
guides the configuration process). Typically, very few property-based con-
figuration problems are of this type.2

Note that a linear configuration plan can only exist if no circular depen-
dencies occur between the functionalities in F .

Theorem 4.3 (Linear Configuration Plan). Let ΠM1 be a configuration
problem under model M1 and n the number of all components’ supplied
and demanded properties, n :=

∑
o∈O |pS

o |+
∑

o∈O |pD
o |. Then, a linear

2The configuration system R1/XCON [54], [64] deals with strongly serializable problems
only. R1/XCON was developed by the Carnegie-Mellon University and DEC from 1978–1980
to perform the configuration of VAX computers. It is still maintained and improved today.
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configuration plan can be computed within a time complexity of O(n), if
one exists.

Before we prove the theorem we motivate its idea with respect to the
component-property graph of figure 4.5.
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Figure 4.5: A sample component-property graph

A demand d ∈ D should only be processed, if all components of the
system that also need this functionality are already determined. E.g., since
component o3 supplies nothing, it should be selected first, and while o1
demands nothing, it should be selected last. Obviously, a component’s
number can be determined if its outdegree in the component-property
graph is zero (on condition that the components selected and the function-
alities processed are deleted in the graph). Note that the sequence of nodes
we get by this procedure corresponds to a reversed topological sorting of
the graph. The order by which functionalities occur in this sorting defines
the optimum configuration plan.

Proof. We need to prove that for an arbitrary component-property graph
g(V,E) a topological sorting can be computed in O(n), n :=

∑
o∈O |pS

o |+∑
o∈O |pD

o |. By the construction of g(V,E) we can see that |V | = |O| and
|E| =

∑
o∈O |pS

o |+
∑

o∈O |pD
o |. Moreover, all edges of g are directed since

no functionality is both supplied and demanded by the same component.
Because g(V,E) might contain cycles, all strongly connected components
of g have to be computed first. According to Aho et al. this computation
can be done in O(|E|) for a connected directed graph [1].

When exploiting the information about the strongly connected compo-
nents, we are able to construct the condensed graph where each strongly
connected component is represented by one node. The condensed graph
is computed as follows. All nodes of a strongly connected component are
associated with the same number. Then, for each strongly connected com-
ponent S a new adjacent list is computed by merging the adjacent lists of
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the nodes in S. During this merger O(|E|) comparisons are performed.
Now the resulting (connected) graph can be topologically sorted with a
complexity of O(|E|). �

Remarks. The proof outlines the steps that are necessary to compute a linear
configuration plan. If a strongly connected component contains more than
one node, no linear plan will exist since the functionalities involved in
a cycle have to be considered simultaneously. In such a case, the order
between the strongly connected components that is computed in the second
step is not total with respect to F . Note that there might exist more than
one linear configuration plan since the topological sorting of a graph is not
necessarily definite.

4.4 The Configuration System MOKON

The configuration system MOKON operationalizes property-based config-
uration. It automates the configuration process for all tasks described in
section 2.3 (creating, adapting, and checking a configuration) [69]. Aside
from the concepts presented in the previous sections, MOKON also realizes
graphical support for knowledge base maintenance.

Component Model Representation. The property-based component model in
MOKON provides a scheme for defining both objects and properties. Table
4.1 depicts some exemplary object and property definitions.

Identifier Conf Object
Supply Property A 400

Property B Yes
Demand Property C Red

Property D 17
Min 0
Max 2
Cost 220
Stock 130

Identifier Property A Property F
Type Numerical Date
Operator + Date Minimum
Comparison ≥ Date≤
Constraint Realizable Unrealizable
Priority 5 1
Interface Internal Ask User
Range [80, 2000] Today - 31.12.94
Default - Today

Table 4.1: Component and property definitions in MOKON

For maintenance reasons, all configuration objects are organized in a
taxonomic hierarchy.
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Some of the attribute fields in the property definition scheme need to
be explained:

• Operator. Declares the computation method for the functionality. The
values of this attribute field correspond to the addition operators af

of ΠM1.

• Comparison. Declares the test predicate tf for a functionality f . The
test predicate defines whether a supply fulfills a given demand.

• Constraint. Defines if a demand at this functionality can be fulfilled at
all. This information is used within the function create alternatives.

• Interface. Defines if alternatives are to be selected by MOKON or by
the user.

Configuration Method. The main configuration method in MOKON is balance
processing. The basic algorithm is extended by associative knowledge
such as minimum/maximum restrictions and by default mechanisms, and,
moreover, it provides a priority control. The priority control detects cyclic
dependencies and computes a linear configuration plan, but also allows a
user to define his individual preferences.

For a given demand set D the space of variants Mvar(D) can be
computed. The search process realizes a global optimization with re-
spect to the total costs of a configuration and has two search strate-
gies built in: (i) “select-component-minimum-alternative” and (ii) “select-
cost-minimum-alternative”. Additionally, MOKON allows dependency-
controlled and interactive backtracking as described by Marcus et al. [51].

Knowledge Base Inspecting. The component-property graph that is defined
implicitly by object descriptions can be visualized in MOKON. The drawing
of a component-property graph is heuristically controlled and considers
the semantics of the configuration knowledge. Arbitrary objects and func-
tionalities of the graph can be selected and investigated with respect to the
cause-effect relations upon which they are based. Thus, the component-
property graph browser provides both explanation facilities and acquisition
support.



Chapter 5

Behavior-based Configuration in Hydraulics

As stated in the heading, here we focus on a configuration problem where
a behavior-based component model must be employed: The configuration of
hydraulic systems.

The configuration of hydraulic systems is founded on deep physical
connections. It needs creativity and, at the present time, cannot be auto-
mated.

Nevertheless, powerful design support in hydraulics is still possible.
This chapter presents a new view to the configuration of hydraulic sys-
tems and shows how to tackle sophisticated parts of the hydraulic design
procedure.

Section 5.1 introduces the configuration of hydraulic systems and dis-
cusses the consequences for a configuration support. It becomes clear that
an automated analysis of hydraulic systems will be the major engine of con-
figuration support. Thus, we investigate in section 5.2 the analysis step in
greater detail. Section 5.3 presents a generic component model that allows
the formulation of hydraulic checking and parameterization problems, and
section 5.4 addresses the processing of this component model. Here we
show how the analysis step and, as a consequence, the checking and pa-
rameterization problem in hydraulics can be automated. In addition to the
inference concepts in section 5.4, we develop in section 5.5 a preprocessing
approach for a particular class of hydraulic behavior constraints.

89
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5.1 Configuration of Hydraulic Systems

The starting point for a configuration process is a task that shall be per-
formed by hydraulics. This task might be a lifting problem, the actuation
of a press, or the realization of a robot’s kinematics. The result of the con-
figuration process is a system consisting of hydraulic and, eventually, some
mechanical and electronic components.

Hydraulic Components

Hydraulic components are the building blocks in our configuration process.
It is useful to introduce some of their underlying physical principles in
order to convey an idea of the configuration process’s complexity. Note
that hydraulic engineering is a domain which cannot be treated in detail
here.

Hydraulic components can be divided into three classes: (i) working
components like cylinders, (ii) control components like valves, and (iii) ser-
vice components such as pumps, tanks, and pipes. All components are
described by their stationary and dynamic behavior.

Cylinders are the actuators of a hydraulic system; they transform hy-
draulic energy into mechanical energy. Valves in the form of relief valves,
throttle valves, proportional valves, or directional valves control flow and
pressure of the hydraulic medium. Pumps provide the hydraulic energy,
i.e., the necessary pressure p and flow Q. Figure 5.1 and 5.2 show the basic
structure of a differential cylinder and a proportional valve respectively.
Below these figures a small extract of the related behavior description is
given.

p

Q

=  Pressure

=  Flow

x =  Elongation

v =  Velocity

V0 =  Cylinder volumeE’

F =  Force

Oil

m =  Mass

AK AR,

dz

=  Oil elasticity

=  Piston areas

=  Piston friction

Qp ,B B,QpA A

AK AR

V0

0 x

F,v,m

Figure 5.1: Basic structure of a differential cylinder
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F = pA ·AK − pB · AR − dz · v (stationary force balance)

QA = AK · v (continuity condition)

F (t) = pA(t) · Ak − pB(t) · AR −m · v̇(t) − dz · v(t) (force balance)

ṗA(t) = E′
Oil

V0+AK ·x(t) ·
(
QA(t) −AK · v(t)) (pressure rise)

p

Q

=  Pressure

=  Flow

i =  Current

x =  Elongation

=  Pressure gainKp

iA

x 0

Qp ,A A Qp ,B B

Qp ,P P Qp ,T T

iB

Figure 5.2: Basic structure of a proportional valve

x = Kp · (iA − iB) (position of valve piston)
Rh(x) = Rhmin · xmax

x (valve resistance)
position = crossed, if iA < iB (valve position)

If crossed
{
QP = −QB (continuity condition)
pP = pB + sign(QP ) ·Rh ·Q2

P (valve pressure drop)

Note that hydraulic components may have states that determine which
part of their behavior description is actually valid.

Configuration Procedure

The demands on a hydraulic system result from the task to be performed
and are specified by different diagrams. These diagrams indicate the course
of the forces and velocities of the cylinders, the switching positions of the
valves, and other dependencies. Based on such diagrams, an engineer has
to design the system’s topology, to select the necessary components, and to
check among others the stationary and the dynamic behavior of the system
[42].

The most creative part in the configuration process is the design of a
system’s topology. The selection and parameterization of the components
are also demanding and need a lot of experience as well as technical and
mathematical know-how. Due to the complexity of the configuration pro-
cess, we cannot get from the demand setD to the readily configured system
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C in one single step. Rather, there is a cycle of synthesis, parameterization,
analysis, evaluation, and modification of different configurations C. In ac-
cordance with Gero, Figure 5.3 illustrates this cycle. Here, Be denotes the
expected behavior that can be derived canonically from D, SC denotes the
hydraulic system’s structure, andBC denotes the behavior that is produced
by the configured system C.

Be

Analysis
Evaluation

CD ~−

BC

CSSynthesis Parameterization

Modification

Figure 5.3: An abstract view of hydraulic system design

Let us take a closer look at the configuration procedure.

Synthesis. Within the synthesis step the topology of a hydraulic system is
designed. I.e., the basic interplay of the components is defined such that
the emergent system might fulfill the demands qualitatively. At the end of
this step exists a plan of a circuit (= SC) that defines the connections of all
cylinders, the important control valves, and the pumps and tanks.

Parameterization. Within the parameterization step the components of the
planned circuit are dimensioned. Typical parameters to be determined are
the geometries of the cylinders, the resistances of the valves, the power of
the pumps, and different pressure thresholds.

Analysis. Main job of the analysis step is the simulation of the hydraulic
system C. In this connection, the engineer decides to which level of detail
the components’ behavior must be modeled in order to obtain useful sim-
ulation results. While the stationary behavior is always investigated, the
dynamic behavior is simulated for sensitive parts of the system only. Note
that both cases are difficult from the mathematical standpoint since equa-
tion systems with non-linear and differential relations must be processed.
Moreover, several assumptions about the components’ states have to be
met in order to set up a global behavior description. If a state’s assumption
is wrong, the whole computation will fail and a new global description
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must be set up. Proposing useful assumptions needs both experience and
a thorough investigation of the system’s topology.

Evaluation. Within the evaluation step the analysis results are balanced
with the demands D. Among others, the following questions must be
answered: Does the switching logic realize the desired behavior? Will the
piston velocities and forces be as prescribed? Are the maximum pressure
values permissible?

Modification. Input for the modification step is the interpretation of the
deviations found during the evaluation stage. E.g., if a hydraulic system
has logical faults, the topology must be adapted or redesigned. Correcting
dimensional faults means to select components of the same type but with
a different characteristic: valves, for instance, are exchanged with respect
to their hydraulic resistance, cylinders with respect to their cross-section.
After such a modification all computations have to be performed again.

Consequences for a Configuration Support

Let us again consider the design procedure in figure 5.3. Efficient config-
uration support seems to be hardly possible because of the creativity that
is needed within the synthesis step Be −→ SC . On second thought, how-
ever, the situation is not hopeless: Neither the creative synthesis step nor
the experienced-based modification steps are time-consuming for a human
expert. Put another way, a reduction of just the analysis step’s complexity
would lead to a noticeable simplification of the entire design procedure.

This observation will guide our philosophy of a configuration support—
rather than automating the entire configuration process we will concentrate
on those tasks that ground on the analysis of hydraulic systems. In this
connection the checking tasks play a key role: Checking a hydraulic system
comprises complex analysis and evaluation jobs and is essential to detect
both technical faults and violations of user demands.

Note that automating the time-consuming checking tasks will allow
human experts more room for creative jobs.1 Moreover, efficient check-
ing concepts form the base for other tasks such as parameterization and
optimization:

• Parameterization. Unknown parameters must be determined and
checked, if they fulfill all restrictions.

1We discussed the two levels of support in section 2.3, page 39.
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• Optimization. A parameterization problem usually has several solu-
tions. The optimum can only be found by skillfully investigating all
consistent alternatives.

5.2 Analyzing the Analysis of Hydraulic Systems

As argued in the previous section, an automated analysis of hydraulic
systems is the key for a configuration support in hydraulics. This section
investigates the analysis step in more detail.

From Local Behavior to Global Behavior

Loosely speaking, hydraulic systems analysis takes a circuit diagram as
input and produces a behavior description of the entire circuit. For this job,
aside from the simulation problem, some kind of model synthesis problem
has to be tackled also.

By model synthesis we comprise all steps that are necessary to set up a
model which is both correct in a physical sense and locally unique.

Note that even though a circuit diagram may establish a correct physical
model, it is not locally unique as a rule: Each component of the circuit is de-
fined by a set of behavior constraints from which the actually relevant ones
must be selected. Verifying the correctness of a local behavior description
needs an expensive simulation of the entire system in most cases.

The indeterminacy of local behavior descriptions originates from the
following reasons:

1. Level of Description. Each hydraulic component can be described at
various levels. To avoid superfluous computational effort, an ade-
quate level of detail, respecting both the rest of the circuit and the
simulation intention, has to be determined for each component. On
the other hand, we have to ensure that all components’ descriptions
fit together.

2. Dynamical Simulation. It must be analyzed which part(s) of the circuit
require a dynamical investigation. For the possible components a
stationary and a dynamic behavior model must be determined.

3. Component States. Most components have different physical states,
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each coupled with a particular behavior description. The actual va-
lidity of a state depends on the entire system and the actual input
parameters. Example: A pressure relief valve may be opened or
closed.

4. Topology. A hydraulic system’s topology can change with a compo-
nent’s state. Example: Dependent on its switching position a propor-
tional valve connects different parts of a hydraulic network.

5. Physical Thresholds. Even for a fixed state the direction or the absolute
value of a physical quantity, which is a-priori unknown, may cause
different behaviors of a component. Example: A turbulent flow is
described by another pressure drop law than a laminar flow.

Tackling points 1 and 2 requires an engineer’s experience and heuristical
knowledge. The points 3, 4, and 5 reveal that the analysis step C →
BC also contains a selection step C → MC , where MC denotes a set of
behavior descriptions that are valid in the actual situation of the hydraulic
system. Often, an additional cycle of model selection and model simulation
is necessary in order to solve this selection problem. Figure 5.4 illustrates
the situation.

CM

BC

m1 m2 mk,...,,{ }
Model modification

Physica
l ev

aluation

C

Model
selection

Model
simulation

BHyd

Determination of
description level

Figure 5.4: What happens during the hydraulic analysis step

Remarks. Let {m1, . . . ,mk} comprise the behavior descriptions, say, models
of all components at the adequate level according to point 1 and 2. From this
set a subset is selected (= MC), simulated (⇒ BC ), and compared to BHyd,
which stands for the universal behavior laws of hydraulics. In the case that
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the simulated behavior BC is physically contradictory or undetermined,
MC must be modified.

This cycle of selection, simulation, evaluation, and modification consti-
tutes an inherently combinatorial problem; it is solved when the physically
correct behavior descriptions according to the points 3, 4, 5 and BHyd are
determined.

Note that this model synthesis problem is not treated explicitly in lit-
erature on the subject. Existing simulation tools leave the problem to the
user who has to set up the correct equations and conditions respectively.
The next subsection exemplarily illustrates this statement.

Existing Tools

We found special-purpose and standard tools that support the design of
hydraulic systems, e.g. MOSIHS [60], OHCS [57], MOBILE [34], or SIMULINK
[53]. The majority of these tools has been developed to envision the dynam-
ical behavior of (hydraulic) systems. Typically configurational aspects like
different checking or optimization tasks are addressed only to a small part.
Another characteristic of such simulation tools is that they hardly support
model synthesis. Subsequently, the efficiency that comes up with an au-
tomated model synthesis is pointed out at the commonly used simulation
tool SIMULINK.

Modeling a system with SIMULINK requires the specification of a di-
rected behavior graph whose nodes are mathematical functions; in fact, the
complex transformation of a hydraulic circuit diagram into a mathematical
description is left to the user. Figure 5.5 shows a simple circuit consisting
of a cylinder and two hydraulic resistances. Its SIMULINK-counterpart is
depicted in figure 5.6.

F,v

p ,A QA

Qp ,B B

Figure 5.5: Hydraulic specification of a simple circuit

Remarks. Note that only simple stationary dependencies are modeled in
figure 5.6. Also note that if a user wanted to investigate the same circuit at
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Figure 5.6: Specification of the example in SIMULINK

some deeper level, he would have to start from scratch with the analysis
process.

While the circuit diagram can be understood and created by every en-
gineer, a description level similar to that in figure 5.6 requires a hydraulic
specialist. Certainly, the building blocks of SIMULINK are flexible, but they
are too simple to noticeably reduce the analysis step’s complexity.

Discussion

An automated analysis step is a necessary condition for all kinds of configu-
ration support such as automated checking, parameterization, or optimiza-
tion of hydraulic systems. The difficulty of the analysis step’s automation
comes up in the following points:

1. Arbitrary Structures. Hydraulic circuit analysis needs the processing
of arbitrary structures and thus, some kind of model synthesis: de-
termination of the components’ description level, selection of local
behavior descriptions, and composition of the local descriptions to
a global behavior model. By contrast, if all structures of hydraulic
systems were already known, the corresponding global models could
be precalculated.

2. Definable Component Behavior. The behavior of all existing and future
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components developed cannot be anticipated. Also, there is disagree-
ment of how hydraulic components behave with respect to particular
physical details. Thus, not only a hydraulic system’s structure but
also the components’ descriptions must be user-definable to a point.

3. Heterogeneous Constraints. Behavior descriptions, user demands, nec-
essary physical knowledge, heuristic design knowledge, etc. form a
set of heterogeneous constraints that is comprised of several types of
numerical and symbolic relations. These constraints, enclosing the
dependencies between different types of constraints of course, must
be both exactly formulated and processed.

5.3 Modeling Hydraulic Systems

In order to automate parts of the formerly described configuration pro-
cedure, we need a modeling concept for hydraulic systems. This section
presents a domain-oriented component model for hydraulic systems that,
in particular, addresses the previously discussed aspects: modeling of ar-
bitrary hydraulic structures, definable behavior at the component level, and
coupling of heterogeneous constraints. Using this model, we are able to
precisely define the hydraulic checking and parameterization problem.

A Component Model for Hydraulic Configuration

The “classical” approaches to the description of technical systems are dis-
cussed by deKleer and Brown [16], Kippe [35], Kuipers [40], Struß [70], or
Voss [79]. Struß’s approach is similar to that of Kippe’s COMMODEL sys-
tem. Both approaches are derivatives of deKleers’s and Brown’s modeling
ideas that are largely founded on the locality-principle and the no-function-
structure-principle2 [16].

The approaches mentioned have the following concepts in common:
(i) They distinguish between components that realize the actual behav-
ior and, for connection purposes, linking-components without behavior.
(ii) The properties of the medium transported (e.g. electric current or oil
viscosity) are modeled as an integral part of the components. Bound up
with these concepts are some disadvantages concerning the structure and

2The no-function-structure-principle is introduced in section 4.1, page 76.
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behavior definition of technical systems [28]. The approach now introduced
is more flexible.

The modeling idea is grounded on the distinction of objects, gates,
unifiers, and the types of information transported. The unifiers serve as
sources or sinks of the information types in a technical system; the objects
are characterized by their behavior constraints and their gates. Each gate
is connected to exactly one unifier. Note that objects will have access to
the information of those unifiers connected to their gates. Also note that
objects which share the same unifiers share the unifiers’ information too.

Objects, gates, and unifiers define a system’s topology and its possible
flows of information. Figure 5.7 illustrates these dependencies, Defini-
tion 5.1 formalizes them.

Object

Unifier

Gate

2o

1o

4o

5o1u

2u 3u

4u

5u

3o

u6

Figure 5.7: Building block abstraction of a technical system

Definition 5.1 (Building Block Model). A building block model is a tuple
〈O, M, U, γ, δ〉 whose elements are defined as follows.

• O is an arbitrary finite set. It is called the object set.

• M is an arbitrary finite set. It is called the set of information types.

• U is a finite multiset of unifiers. Each u ∈ U denotes an arbitrary
subset of M , i.e., u ⊆M , u ∈ U .

• γ : O → N is a function and specifies for each object o ∈ O the total
number of gates.

• δ : O × N → U is a partially defined function. δ(o, n), o ∈ O, n ∈ N
specifies the unifier of object o at gate n and is defined for n ≤ γ(o)
only.

Using these concepts, a hydraulic system is modeled as follows.
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1. Each component of the system (valve, cylinder, pipe, etc.) is associ-
ated one-to-one with an element in O. γ(o) defines a component’s
number of gates; e.g., if o is associated with a pipe then γ(o) = 2.

2. All physical quantities that have no manifestation within a compo-
nent (pressure, flow, force, velocity, etc.) form the set M of informa-
tion types.

3. δ is defined implicitly by the system’s topology: For each link between
two components in the hydraulic system a unifier with an appropriate
subset of M is introduced. Example: If in the real system a certain
pipe is connected with a particular valve fitting, within the building
block modeling both the pipe’s and the valve’s fitting will share the
same unifier u; u should then provide the information types “flow”
and “pressure”.

4. Each object is described by a set of behavior constraints that models
the behavior of its associated component. An object’s behavior con-
straints can refer only to those information types (e.g. a pressure or
a flow) the object has access to via its gates. Note that same infor-
mation types in different unifiers will establish different constraint
parameters.

Figure 5.8 shows an example.
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pressure[1] = pressure[2]
flow[1] = flow[2]
... 
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.AK =flow[1]
...

velocity[2]

Figure 5.8: Modeling a hydraulic circuit with the building block concept

Until now we left open how behavior constraints for the objects inO can
be formulated. We now outline the key concepts of a language for behavior
constraints that is tailored to the recently defined building block model.
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• Relations, defined over numerical and symbolic parameters, are the
basic elements of our constraint language. A relation may be defined
as follows. (i) explicitly, in the form of a finite set of tuples; (ii) im-
plicitly, in the form of a boolean statement or an equation, which is
composed of numerical or symbolic expressions.

Whereas boolean statements are treated as tests, the semantics of
equations is also handled in a deductional manner. If an unknown
parameter constitutes one side of an equation while the other side can
be evaluated, the “=”-sign will produce a parameter assignment. If
both sides of an equation can be evaluated, the “=”-sign will produce
a boolean test. In all other cases an equation may be transformed
according to algebraic or some other rules.

• A behavior constraint is usually associated with a particular object
o. The parameters with which the constraint is defined refer to the
information types at the gates of o and to the internal properties of
o. The exact assignment of a parameter is indicated by its tag, which
is either a gate specifier or the key word “self”. E.g., the following
algebraic constraint defines the pressure drop of a valve between gate
1 and gate 2 due to Bernoulli:

pressure[1] − pressure[2] = RH [SELF] · flow[1]2

• To each parameter a domain is defined. This domain is either an
interval v ⊆ R or a finite set itemizing each single value allowed.
Examples:

vvalve resistance = [0.01, 0.2],
vvalve position = {crossed, blocked, parallel}

The semantics of the latter is that, aside from Unknown, exactly
one element of the specified set is admissible for the parameter
valve position.

• Parts of an object’s behavior description need to be activated or
deactivated—e.g. to imitate the different states of a hydraulic compo-
nent. A universal concept to represent such model selection constraints
is given with rules. Thus, we allow behavior constraints to be embed-
ded within rules. The condition part of a rule is a boolean statement
composed of numerical and symbolic expressions; it specifies the con-
ditions under which a behavior alternative is valid. The conclusion
part defines the behavior constraints of the alternative and possibly
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additional rules. The following example shows a simplified pressure
relief valve where the state “activated” is associated with a specific
behavior:

IF state[SELF] = activated
THEN Q[1] = −Q[2] AND p[1] − p[2] = RH [SELF] · √|Q[1]|
ELSE Q[1] = 0 AND Q[2] = 0

The constraints in the conclusion part will be considered during be-
havior processing only if the condition part is evaluated as True.

• Behavior constraints can be supplied with metaknowledge that speci-
fies hints to be exploited during the behavior processing. This knowl-
edge may indicate a constraint’s description level, whether a con-
straint contains stationary or dynamic dependencies, or some other
processing directive. Table 5.1 gives some examples.

Constraint Metaknowledge

p[1] − p[2] = RH [SELF] ·Q[1]2 level-0 description,
stationary behavior

Q[1] +Q[2] +Q[3] = 0 level-independent description,
process locally

Table 5.1: Metaknowledge specifications for behavior constraints

Remarks. The building block model of Definition 5.1 along with the outlined
behavior language make up our component model for the configuration of
hydraulic systems.

Instances of Πc
M3 in Hydraulics

Remember the behavior-based configuration problems under model M3,
defined in section 3.3. Obviously, the component model above is a device-
oriented interpretation of model M3. It represents the engineer’s view of
configuration in the sense that it introduces domain concepts, defines a
semantics, and is oriented by knowledge acquisition purposes.

Hence, hydraulic analyzing, checking, and parameterization problems
are particular instances of the generic behavior-based checking problem
Πc

M3, defined on page 63.

More precisely—a checking problem under model M3 (Πc
M3) is defined

by the tuple 〈O, F, V, B, T, D, S〉. These elements are related to our
component model as follows.
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• O is equivalent to the objects of the building block model and denotes
the hydraulic components.

• All parameters in the objects’ behavior constraints form the set F of
functionalities. Each element f ∈ F denotes a (possibly constant)
function in the parameter “time”.

• V is comprised of all functionalities’ value sets.

• The set B of behavior constraints is comprised of the behavior de-
scriptions of the hydraulic components at some definite level.

• T is comprised of all functionalities’ tests.

• D is the set of demands on the hydraulic system, stated by a customer.

• The pairs in S correspond to the elements in the unifiers u, u ∈ U and
define the structure of a hydraulic system.

Remarks. The checking problem Πc
M3 in hydraulics defines a hydraulic sys-

tem and a set of demands. Checking this system means both determining a
set Q of tuples (f, x), f ∈ F , x ∈ vf , which are consistent with all behavior
constraints, and verifying if none of the demands is violated.3 These jobs
are done during the hydraulic analysis and evaluation step respectively.

Tackling a parameterization problem means to solve the checking prob-
lem Πc

M3 for a hydraulic system that is underspecified within one constraint
or another.

5.4 Solving Πc
M3 in Hydraulics

This section introduces the necessary concepts to solve instances of Πc
M3 in

hydraulics. Figure 5.9 shows the steps that are performed when analyzing,
checking, or parameterizing a hydraulic system.

Remarks. Given is a hydraulic system C for which, in the first step, an
adequate description level has to be determined. Based on this modeling
ofC and the setD of demands, an instance of Πc

M3 can be stated. Within the
subsequent synthesis and simulation steps the set Q of functionality-value
pairs, which explicitly envisions the behavior ofC, is inferred. Q constitutes
a solution of Πc

M3 if both all behavior constraints and all demands can be
fulfilled.

3A precise definition is given in section 3.3, page 63.
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Figure 5.9: Solving Πc
M3 in hydraulics

Determination of the Description Level

The components of a hydraulic system can be described at different levels of
detail. To avoid superfluous computational effort a component’s behavior
description should be as simple as possible—but still sufficiently detailed
to model all necessary relations.

To get a grip on this model formulation problem we developed, along
with Lemmen [42] and Suermann [71], the concept of variable hydraulic
modeling levels. In particular, Lemmen defined a model formulation
scheme that, dependent on a component class, distinguishes up to five
predefined description levels. Given a hydraulic system C, the ade-
quate description level can be inferred for each component by means of a
knowledge-based decision procedure that is based on the natural frequen-
cies and gain factors of the components in C, a user’s simulation intention,
and the topology of C. A detailed description of the model formulation
scheme and the decision procedure can be found in [71] and [43].

Since the determination of the adequate description level is a high de-
gree hydraulic engineering problem, it shall not be extended here. Hence-
forth, we assume all components of a hydraulic system described at some
definite level; analyzing, checking, or parameterizing such a system is an
instance of Πc

M3.
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Synthesis and Simulation of Behavior Models

Given is an instance of Πc
M3 in hydraulics. Πc

M3 defines a constraint satis-
faction problem consisting of numerical and symbolic relations. Actually,
Πc

M3 cannot be solved by a universal “constraint satisfaction algorithm” but
needs the interplay of several computation methods along with a global
control mechanism that separates and triggers subjobs, maintains alterna-
tives, and controls model synthesis.

As argued before model synthesis is not a deterministic procedure here.
There exist choice points where the valid component model must be se-
lected, depending on the actual input values, parameter alternatives, or
physical regularities. For each component o ∈ O, O defined by Πc

M3, let
Mo = {mo1,mo2 , . . . ,mok

} be comprised of the k behavior alternatives of
o. If a component o has a locally unique model, say, a pipe for instance,
|Mo| = 1. Let MC be the Cartesian product of the Mo, o ∈ O. Obvi-
ously, MC comprises the possible global models of the hydraulic system C
defined by Πc

M3, and thus, MC defines the total synthesis search space.

Before all physical parameters of a hydraulic systemC can be computed,
a physically consistent modelMC ∈ MC has to be determined. Conversely,
whether a behavior model MC is physically consistent can solely be veri-
fied via simulation. To illustrate the search for a consistent behavior model
in MC , it is useful to think of the components’ behavior constraints being
divided into model selection constraints (cf. page 101) and behavior con-
straints. The search procedure can be outlined as a cycle containing the
following inference steps:

1. Component Selection. Select a component with undetermined behav-
ior.

2. Model Selection. Select a behavior alternative for this component.

3. Synthesis. Identify and evaluate active model selection constraints,
and synthesize the emergent behavior model.

4. Simulation. Simulate the synthesized behavior model by evaluating
the behavior constraints.

5. Modification. In the case of physical inconsistencies or unfulfilled
demands, formulate synthesis restrictions and trace back to a choice
point.

Figure 5.10 illustrates the search process graphically.
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Figure 5.10: Exploring the synthesis search space MC

The search comes to an end if either a global, consistent behavior model
is found that fulfills all demands or no further choice point exists.

Remarks. Different components constrain the model synthesis step in a dif-
ferent manner. Hence, the order by which undetermined components are
processed may play a crucial role.

The evaluation of behavior constraints, mentioned in the simulation
step of the above search procedure, is a demanding problem. The com-
ponents’ functional constraints must be parsed, symbolic relations must
be separated from numerical relations, equations have to be transformed,
equation systems have to be formulated in some normal form, rules have
to be processed, etc. Moreover, through the variety of constraint types and
constraint dependencies, the backtracking mentioned in the model mod-
ification step will become a sophisticated job, too. In this text we do not
go into constraint processing details but merely give an overview of the
inference methods necessary to solve Πc

M3.
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Necessary Inference Methods

The following numerical subjobs must be performed when processing Πc
M3

in hydraulics:

• Solving Linear Equation Systems. Input is a linear equation system in
the matrix formA · x+ b = 0 where A is regular. Output is the vector
x that solves the equation system.

• Solving Non-Linear Equation Systems. Input is a continuous, non-linear
function f : Rn → Rn and a possibly empty set of restrictions con-
straining the value ranges of the solution in m ≤ n dimensions.
Output is a vector x that fulfills both the equation f(x) = 0 and all
restrictions.

• Solving Initial Value Problems. Input is a system of ordinary differential
equations y′ = f(x, y) where f : G → Rn is a continuous function
defined on G = [a, b] × Rn, and an initial condition α ∈ Rn. Output
is a function y = u(x) that solves the differential equation system and
fulfills the initial condition u(a) = α.

Algorithms that process the itemized problems are given in [63]. Aside
from methods dealing with numerical problems, we need the following
methods for symbolic value processing:

• Local Value Propagation. Sources for input are the sets F (functional-
ities), V (value domains), B (behavior constraints) as described on
page 102, and an initial value assignment X . Each behavior con-
straint b ∈ Bo defines a relation on vfb1

× vfb2
× . . . × vfbk

where
fbi ∈ F , {b1, b2, . . . , bk} ⊆ {1, 2, . . . , n} and n = |F | . X defines a
tuple (x1, x2, . . . , xn), xi ∈ vi ∪ {unknown}, vi ∈ V where some or all
elements may be unknown.

With local value propagation we designate a deduction mechanism
that exploits only one constraint definition in B at the same time
computing values for the unknowns in X . An example for such a
mechanism is the following:

1. Select a behavior constraint b ∈ B where all parameters except
one are known. If no such constraint exists, local propagation
comes to an end. Otherwise, without loss of generality, we
assume xj to be the unknown parameter.

2. Determine a value for xj ∈ vj such that the relation defined by
b is fulfilled and all behavior constraints also defined on vj stay
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consistent. If no such xj can be determined but earlier choice
points exist, invoke backtracking. Otherwise, local propagation
terminates and 〈B,X〉 is called inconsistent.

3. Continue with 1.

Remarks. The algorithm computes a globally consistent solution if one
exists. Nevertheless, dependent on the constraints and the domains
they are defined upon, several approaches for local propagation and
consistency definitions exist, which will not be elaborated on here.
Constraints may be defined extensionally, by a complete enumeration
of the relations’ tuples, or implicitly by a set of functions. In the latter
case the power and flexibility of local propagation depends on the
algorithms that realize the evaluation of the functions. Note that the
principle of local constraint evaluation can be applied to any type of
relation.

• Rule Inference. Rule inference in the form of forward chaining is
required to evaluate selection constraints, functional constraints, and
demand constraints. Note that not only plain symbolic relations but
also dependencies between different sets of behavior constraints must
be handled.

• Algebraic Transformation. Algebraic transformation capabilities are
necessary to process the implicitly defined constraints and to generate
the input forms for the numerical computation methods.

5.5 Preprocessing of Stationary Behavior

Processing stationary behavior constraints requires methods capable of
coping with equation systems, local propagation, and algebraic transfor-
mation. The approach presented now substitutes the computation of local
connections with that of global connections. The key idea is to prepro-
cess the topology of a hydraulic system; global structure information is
“compiled” into local behavior constraints, which are added to the orig-
inal constraints. The resulting component descriptions can be processed
by local propagation, which is more efficient than the solution of equation
systems necessary for the original descriptions.
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Motivation

A large part of a hydraulic system can be considered as a network con-
sisting of resistances, sources, and sinks. Pipes and valves establish the
hydraulic resistances (R), while pumps, tanks, and—of course—cylinders
act as sources (s) and sinks (t) respectively. Figure 5.11 depicts an example.

Cylinder Valve
Pump

Tank

S S

t t

Figure 5.11: An abstract view on a simple circuit

A central task of the hydraulic checking problem Πc
M3 is the computation

of a total flow distribution and of all pressure drops for such a network. As
a difference to electrical resistors, hydraulic resistances define non-linear
connections—more exactly: in most cases the potential difference p1 − p2

at a hydraulic resistance is proportional to the quadratic flow:

p1 − p2 = Rh · sign(Q) ·Q2

The previous section introduced local propagation as a method that
evaluates single behavior constraints of components in order to compute
unknown functionalities. This method is very efficient since no global
relations are exploited but will terminate if no constraint can be found where
all parameters except one are known. E.g., if two hydraulic resistances are
connected in parallel, the computation of the flow distribution and the
pressure drops often requires the solution of a non-linear equation system.
Figure 5.12 gives examples of structures that may be part of a hydraulic
resistance network.

The edges denote hydraulic resistances while the points stand for com-
ponents where all incident resistances are connected (unified). Such com-
ponents might be T-connections or other connections that establish an area
of equal potential. Within a context-free modeling the only behavior con-
straint of a connection is the continuity condition:

Q1 +Q2 + . . .+Qn = 0
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Figure 5.12: Possible substructures in a resistance network

Preprocessing means the introduction of additional constraints, called pro-
portion constraints here. Proportion constraints are computed from the re-
sistances between a source and a sink. They are installed in the connections
and provide information about how the flow Q is distributed. Example:

Q1 = c1 ·Qe ∧ Q2 = c2 ·Qe ∧ Q1 +Q2 = Qe, c1, c2 ∈ R+

Qe is introduced as a new variable and denotes the entire flow at a connec-
tion; c1 and c2 determine how this flow is distributed; Qe is substituted for
Q1+Q2 in the original continuity condition. Obviously, with the aid of pro-
portion constraints, local value propagation will be sufficient to distribute
the flow at the connections and to compute all related pressure drops, if at
a network source (e.g. at a pump) a flow is given. Of course, proportion
constraints violate the no-function-in-structure-principle since they are not
context-free. They exploit global information about resistances and the
network’s structure.

The following subsections show how those structures of a network that
cannot be tackled by local propagation are found and how the related
proportion constraints are computed.

Finding All Relevant Substructures

In principle, proportion constraints could be computed for a network’s
global structure in a single computation step. However, for flexibility rea-
sons it is much more appropriate to cut a network into subnetworks and to
compute proportion constraints locally for each substructure. The smaller
a separated subnetwork is the more flexible the computed proportion con-
straints can be used.

Proportion constraints can be computed only for subnetworks of a par-
ticular structure. We now define these structures and present methods to
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identify them as parts of a global network. We use the following definitions
of graph theory in the standard way:

1. A multigraph G is a triple 〈V,E, g〉 where V,E �= ∅ are finite sets4,
V ∩E = ∅, and g : E → 2V is a mapping with 2V = {U |U ⊆ V, |U | =
2}. V is called the set of points, E is called the set of edges, and g is
called the incidence map.

2. A graph H = 〈VH , EH , gH〉 will be called subgraph of G = 〈V,E, g〉, if
VH ⊆ V , EH ⊆ E, and gH is the restriction of g to EH . A subgraph
will be called an induced subgraph on VH , if EH ⊆ E contains exactly
those edges incident to the points in VH . For T ⊂ V , G \ T denotes
the subgraph induced on V \ T .

3. A tuple (e1, . . . , en) will be called a walk from v0 to vn, if g(ei) =
{vi−1, vi}, vi ∈ V , i = 1, . . . , n. G will be called connected, if for each
two points vi, vj ∈ V there is a walk from vi to vj . If G is connected
and G \ v is not connected, v establishes an articulation point.

4. κ(G) is called the connectivity of G and is defined as follows: κ(G) =
min{|T | : T ⊂ V and G\T is not connected}. G is called k-connected,
if κ(G) ≥ k.

Figure 5.13 illustrates the definitions.

A  2−connected (= biconnected) graph :

G with articulation point 2 :A multigraph

G \ {3} :The induced multigraph

1 2 3

1 2

Figure 5.13: Sample graphs

The edges of a multigraph stand for the hydraulic resistances such
as pipes and valves; the points connect the resistors and represent areas
of equal potential. We need multigraphs instead of graphs here since
components of a hydraulic system may be connected in parallel. Moreover,

4We restrict ourselves to finite graphs here.
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we will restrict ourselves to particular multigraphs, the so-called resistance
networks.

Definition 5.2 (Resistance Network). A resistance network N is a tuple
〈G, ρ, s, t〉 where G = 〈V,E, g〉 is a connected multigraph, ρ : E → R+ is a
mapping, and s, t ∈ V are two points. ρ(e), e ∈ E is called the resistance of
e; s, t are called the source and the sink respectively.

Remarks. In contrast to “flow networks” or “capacitated networks” that
define capacity values for the edges of a graph, ρ defines resistance values
in the physical sense of hydraulics. Resistance networks and capacitated
networks are used in connection with flows. We refrain from a precise
definition of flows but shall point out three important characteristics:

1. A flow defines both a flow value and a flow direction on the edges of
a resistance network.

2. To each point v ∈ V \{s, t} applies the continuity condition: The total
of all input flows equals the total of all output flows.

3. All incident edges of s (of t) establish output (input) flows only. The
total of s’s output flows equals the total of t’s input flows. The latter
is a direct consequence of 2.

Note that a flow distribution in a physical sense has nothing to do with a
flow mapping under a maximum-capacity interpretation of ρ. In the former
case, a flow distribution depends on the resistance ratios of all edges. In the
latter case, all edges’ capacity values must be considered as well, but the
capacities are independent of their actual context in the graph: Every edge
can be checked locally, whether its related flow violates the edge’s capacity.

We are interested in those parts of a network5 whose flow distribution
can be computed independently of the rest. For obvious, physical rea-
sons each subnetwork whose resistance behavior can be reproduced by a
substitute resistance—i.e., by a single edge—constitutes such a part. The
following definitions will be useful.

Definition 5.3 (Independent Subnetwork). Let beN = 〈G, ρ, s, t〉 a network,
H a subgraph ofG induced on VH ⊂ V with |VH | > 2, and ρH the restriction
of ρ to EH . Then, a network NH = 〈H, ρH , sH , tH〉 will be called an
independent subnetwork of N , if the following conditions hold:

5Henceforth, we shall refer to a “resistance network” simply as “network”.
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(i) Every walk from s (from t) to a point in H contains either sH or tH .

(ii) Every walk from a point in G \ VH to a point in H contains either sH

or tH .
An independent subnetwork NH1 = 〈H1, ρH1 , sH1 , tH1〉 will be called mini-
mum independent subnetwork ofN , if there exists no independent subnetwork
NH2 = 〈H2, ρH2 , sH2 , tH2〉 where H2 is induced on a proper subset of VH1 .

Remarks. Since any two adjacent points establish a source and a sink re-
spectively, we claim H to be defined on more than two points. Condition
(i) guarantees some kind of “dipole character” of H . Condition (ii) ensures
that there are exactly two connections for a substitute resistance. Note that
this is not implied by (i) . Also note that proportion constraints computed
for minimum independent subnetworks provide the maximum flexibility
in the course of local propagation.

Before we turn our attention to the question as to how minimum inde-
pendent subnetworks are detected, we need a further definition:

Definition 5.4 (Triconnected Component, Biconnecting Points). Let G =
〈V,E, g〉 be a multigraph, |V | > 2, κ(G) = 2, and {vi, vj} ∈ V two points
such that H = G \ {vi, vj} is not connected. Moreover, let beH1 a resulting
connected component of H and VH1 ⊂ V the set of points inducing H1.

If no two points {wi, wj} ∈ V can be found such that a resulting con-
nected component of G \ {wi, wj} is induced on a proper subset of VH1 ,
then the graph H2 induced on VH1 ∪ {vi, vj} shall be called a triconnected
component of G. The points vi, vj shall be called the biconnecting points of
H2 related to G.

Figure 5.14 gives an example.

G
GTriconnected components of

Biconnecting points

Figure 5.14: Examples for triconnected components and biconnecting points
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Lemma 5.5 (Independent Subnetwork). Let be N = 〈G, ρ, s, t〉 a network
and |V | > 2.

1. If κ(G) = 1, let G1, . . . , Gn denote the biconnected components of
G. Then, if |Vi| > 2, there exist two points si, ti ∈ Vi such that
N = 〈Gi, ρi, si, ti〉 is an independent subnetwork ofN , i ∈ {1, . . . , n}.

2. If κ(G) = 2, let G1, . . . , Gn denote the triconnected components of G,
and let si, ti denote the biconnecting points of Gi related to G. Then,
Ni = 〈Gi, ρi, si, ti〉 will be a minimum independent subnetwork of
N , if Vi \ {si, ti} ∩ {s, t} = ∅, i ∈ {1, . . . , n}.

3. If κ(G) > 2, N will not contain an independent subnetwork.

Proof. (1) Let Gi be a biconnected component. We have to investigate two
cases: Either Vi contains one or two articulation points of G. Case A. v is
the only articulation point in Vi. Then, either s or t must be in Vi. If s ∈ Vi,
set si = s and ti = v; if t ∈ Vi, set si = v and ti = t. Case B. Let vi, vj be
the articulation points in Vi. Then, si = vi and ti = vj . We can check easily
that 〈Gi, ρi, si, ti〉 fulfills the definition of an independent subnetwork.

(2) Let Gi be a triconnected component. Part one (independent sub-
network). According to the definition of triconnected components, a walk
from any point in G\Gi to a point inGi contains either si or ti (this fact is a
consequence of the biconnectivity ofG). Thus, condition (ii) of the indepen-
dent subnetwork definition is fulfilled. Also, condition (ii) together with
the restriction that Vi \ {si, ti}∩{s, t} = ∅ fulfills part (i) of the independent
subnetwork definition. Part two (minimality). We assumeNi not to be min-
imum. Then, there exists an independent subnetwork H = 〈H, ρH , sH , tH〉
withH = Gi \T, T ⊂ Vi. I.e.,Gi cannot be a triconnected component. This
contradicts the condition.

(3) This assertion is obvious since κ(G) ≤ 2 is a direct consequence of
the independent subnetwork definition. �
Remarks. The independent subnetworks found for κ(G) = 1 are not neces-
sarily minimum. They might be processed further until the connectivity of
their related graph is > 1. The complexity for the computation of all mini-
mum independent subnetworks of a networkN with a graphG = 〈V,E, g〉
can be estimated with O(|V | · |E|). We outline only the proof idea. All
triconnected components of a graph G with κ(G) > 1 can be found as
follows. A point v ∈ V is selected and the graph H , induced on V \ {v},
is investigated with regard to its biconnected components. Obviously, the
biconnected components of H are triconnected components of G, if they
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cannot be extended by v, the point initially removed. For an articulation
point w, found during the biconnected component search, the graph in-
duced on V \ {w} does not need to be investigated. In the worst case
κ(G) > 2 and for each v ∈ V , the induced graph is investigated with
regard to biconnected components. According to Tarjan, the biconnected
components of a graph G can be computed in O(|E|) [75].

In practice the identification of independent subnetworks will be less
complex. Often there exist particular structures, which can be detected
easily: the so-called series-parallel networks. Also, for physical reasons the
computation of substitute resistances for series-parallel networks is much
easier than for networks relying on close-connected graphs. Hoffmann
provides a more detailed discussion of this topic [28].

Installing Proportion Constraints

Subsequently, we describe the general installation procedure of proportion
constraints in a network N = 〈G, ρ, s, t〉. Initially, N2 = 〈G2, ρ2, s2, t2〉 is a
copy of N .

1. Identify an independent subnetwork NH = 〈H, ρH , sH , tH〉 of N2 .

2. Compute the flow distribution of NH .

3. Install the proportion constraints in the original graph G.

4. Condensate G2, i.e., replace H by the new edge eH and redefine ρ2.

5. Continue with 1 until s2 and t2 are the only points of G2.

Remarks. Before close connected subgraphs are treated, all series-parallel
structures should be searched and replaced. Note that due to the condensa-
tion of G2, new series-parallel and close connected structures may emerge.
Figure 5.15 illustrates the process.

2s

2t

2s

2t

2s

2t

2s

2t

2s

2t

Figure 5.15: Condensation of G2 during constraint computation
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The computation of substitute resistances and flow distributions forNH

with graph H = 〈VH , EH , gH〉 is based on the continuity conditions in VH

and the pressure drop equations instantiated for each e ∈ EH :

• H is Series Connected. N2 with graph G2 = 〈V2, E2, g2〉 is modified as
follows. V2 := V2 \ VH ∪ {sH , tH}, E2 := E2 \EH ∪ {eH}, g2 and ρ2

are restricted to E2 where ρ2(eH) :=
∑
ρH(ei), ei ∈ EH .

• H is Parallel Connected. N2 with graph G2 = 〈V2, E2, g2〉 is modified
as follows. V2 := V2\VH ∪{sH , tH}, E2 := E2 \EH ∪{eH}, g2 and ρ2

is restricted to E2 where ρ2(eH) can be computed from the following
equation:

2

√
1

ρ2(eH ) =
∑

2

√
1

ρH (ei)
, ei ∈ EH

In sH and tH , the following proportion constraints are installed:

Qi := ci ·QH , ci := 2

√
ρ2(eH)
ρH (ei)

, ei ∈ EH , and QH =
∑
Qi

• H is Close Connected. N2 with graph G2 = 〈V2, E2, g2〉 is modified as
follows. V2 := V2 \ VH ∪ {sH , tH}, E2 := E2 \EH ∪ {eH}, g2 and ρ2

is restricted to E2 where ρ2(eH) can be computed from the following
connection: The continuity conditions of all points ∈ VH \ {sH , tH}
along with the pressure drop equations for each e ∈ EH and the
equation ps − pt = x, x ∈ R+ form a non-linear equation system.
Under the restriction that all pressure drops are positive, it can be
shown that this equation system has a definite solution in the flows
Qi, i = 1, . . . , |EH |. Then, QH :=

∑
Qi, ei is incident to sH (tH ),

establishes the total flow through H . As a result, ρ2(eH) := x · Q−2
H .

Now, a proportion constraint can be formulated for each flow variable
Qi = ci ·QH , ei ∈ EH , where the ci are computed from the solutions
of the equation system ci := Qi · Q−1

H . These proportion constraints
and the equationQH :=

∑
Qi, ei is incident to sH (to tH ) are installed

in sH (in tH ).

Discussion

The above preprocessing approach focuses on optimization tasks where
the structure of a complex hydraulic system is still defined but several
alternative situations need to be investigated and evaluated. It will not
be useful in the investigation of small hydraulic systems or for a single
simulation.



Chapter 6

Theartdeco System1

artdeco is a system that supports the configuration of hydraulic systems; it op-
erationalizes a large part of the concepts presented in the former chapter.
artdeco solves several instances of Πc

M3, that is, the analysis and the check-
ing of hydraulic systems, and the parameterization of single component
parameters [39], [44], [67].

However, solving instances of Πc
M3 is not enough to support a user

in configuring hydraulic systems. When supporting configuration in hy-
draulics, aside from a knowledge processing task, there is also a problem
specification and a knowledge acquisition task to be tackled.

By the term “problem specification” we denote the procedure of for-
mulating an instance of Πc

M3 in hydraulics, or: How can a user specify
his problem in an acceptable time?—Knowledge acquisition is of equal
importance; configuration support in hydraulics will be useless if a user
cannot integrate his individual knowledge, his experience in component
modeling, or specifications of new components. Both aspects were taken
into account when developing artdeco. Besides efficient inference concepts,
artdeco realizes graphic problem specification and provides a language to model
component behavior.

1The system itself, its philosophy, and its realization originated from the DFG research
project No. Kl 529/3-1, where the institute MSRT, University of Duisburg, (Prof. Dr. H.
Schwarz), and the institute Knowledge-based Systems, University of Paderborn, (Prof. Dr.
H. Kleine Büning), were involved. Theartdeco system in its actual form has been developed by
D. Curatolo, M. Hoffmann, and B. Stein. As an expert in hydraulic engineering R. Lemmen
contributed to the development in an advisory capacity.
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This chapter introduces the philosophy and some concepts of artdeco but
does not engage in the details of realizational aspects.

6.1 Graphic Problem Specification

A configuration process that is grounded on behavior descriptions is usu-
ally so complex that its complete automation is not possible. In this case,
the job of a configuration system is not to solve but rather to support the
creative design process (cf. section 2.3, page 39, and section 5.1, page 93).
When given such a behavior-based configuration problem, technical de-
pendencies might be so complicated that problem specification, knowledge
acquisition, and maintenance can solely be understood on a very abstract
level, e.g., on the level of a technical drawing.

This is the situation when designing hydraulic systems, where the phi-
losophy ofartdeco comes into play:

The working document of the design process is the circuit diagram.
Consequently, it would be fair to specify hydraulic checking problems at
the same level of abstraction. Graphic symbols should be selected and
connected to a circuit, but in contrast to a CAD system, aside from the
drawing, a functional model of the hydraulic system should be generated as
well.

artdeco realizes such graphic problem specification. While the circuit di-
agram of a system is drawn, a knowledge base containing all necessary
physical connections is created. In a second step arbitrary sections of the
hydraulic system can be checked concerning individual demands. I.e., the
model composition/formulation process as well as complex physical de-
pendencies are made transparent: Nearly all information obligatory for the
checking and simulation process is derived from the technical drawing.
Brought down to a simple formula,artdeco = CAD + behavioral semantics.

Specifying Hydraulic Problems withartdeco

There is always a gap between the semantics of a configuration problem on
the one hand and the syntax for its specification on the other. artdeco addresses
this situation by bridging the gap between the process of drawing and the
process of investigating/simulating a technical system; it can be considered
as a visual language to specify a particular class of technical problems.
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Being in artdeco’s application mode, a user selects hydraulic components
from a component catalog and arranges them on the working area (cf. figure
6.1).             

Figure 6.1: artdeco’s application mode

While drawing a line between two components’ gates, the appropriate
pipes are selected and instantiated. Among other things, it is checked
whether the incident gates are of the same type. The necessary information
concerning the topology is generated as well. Within the circuit diagram,
all parameters of the hydraulic system can be predefined, changed, or
supplied with alternative values.

After the inference process is invoked, artdeco’s inference engine searches
for a consistent parameter assignment. Figure 6.2 shows a circuit where
such an assignment has been found.

The use ofartdeco as a prototype has shown that its philosophy of graphic
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Figure 6.2: artdeco’s application mode

problem specification leads to a decisive reduction of the specification com-
plexity. Perhaps, graphic problem specification as realized here is the only
chance to efficiently support complex configuration tasks in hydraulics.

6.2 Inference

artdeco takes the graphical description of a hydraulic circuit and investigates
the system with respect to the following faults:

1. syntactical faults like open pipes

2. geometrical faults like wrong connections

3. logical faults like piston movements contradicting to valve positions
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4. dimensional faults like pumps whose power range is exceeded

If none of these faults is found, all components’ states are determined,
and, along with any unknown velocities, forces, and component parame-
ters, an entire distribution of the flow and the pressure is computed.

The subsequent paragraphs outline the underlying inference process.

Constraint Processing at First Glance

From the standpoint of problem specification and knowledge processing,
we distinguish between the following constraint classes inartdeco:

• Connection Constraints. Connection constraints establish if and how
two components may be connected. Processing these constraints
means checking all connections’ types and port sizes, the mechanical
couplings, and for open pipes. Since this checking step is both the
least demanding one and separable from other constraint processing
jobs, it is always performed first.

• Topological Constraints. Topological constraints are given by the circuit
diagram and define the physical structure of the hydraulic system. A
correct realization of this structure is achieved as follows: All local
component parameters are replaced by global variables,which in turn
are unified according to the connection information. This unification
step takes place before the functional constraints are processed.

• Behavior Constraints. Behavior constraints define the local behavior
of components and are user-definable. They consist of relations de-
fined over numerical and symbolic parameters. Parameters can be
constrained through a domain; the constraints themselves can be
supplied with metaknowledge.

• Model Selection Constraints. Model selection constraints are used to
define different component states; they associate a state description
with a particular behavior alternative. A behavior alternative com-
prises a set of behavior constraints.

• Demand Constraints. Demand constraints comprise internal and exter-
nal restrictions. Internal demand constraints check for violations of
universal behavior laws of hydraulics; external demand constraints
model a user’s demands and are specified in the form of rules and
simple relations. In contrast to behavior constraints, the demand
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constraints are propagated destructively. I.e., they are not exploited to
derive new dependencies but rather to check them. To perform early
pruning in the course of constraint processing, demand constraints
are checked after each inference step.

While a user is drawing a circuit diagram, a building block model of the
hydraulic system is constructed (cf. page 99). When the inference process
is started, artdeco processes the connection constraints and the topological
constraints as defined by the building block model and formulates an in-
stance of Πc

M3. This instance of Πc
M3 in turn is processed in a cycle of model

synthesis and model simulation (cf. figure 6.3 and figure 5.9 on page 104
respectively).

IIM3
c : Hydraulic checking problem 

Q : Quality set with tuples (f, x)

If contradictory physics

Synthesis of
behavior model

Simulation of
behavior model

Formulation
of synthesis
restrictions

Modification
of component
parameters

Q
If unfulfilled demands

IIM3
c

Figure 6.3: Solving Πc
M3 in hydraulics

Efficient Model Synthesis

Section 5.4 introduced the idea of a synthesis search spaceMC, which forms
the set of possible global behavior models for a given system C. Actually,
section 5.4 left open how a consistent behavior model can be searched
efficiently, i.e., a behavior model that fulfills all behavior constraints and
all demands.

Note that even for a rather simple circuit, MC might contain several
thousand elements. And, checking the consistency of an element MC ∈
MC usually requires the simulation ofMC . Thus, an intelligent exploration
of the synthesis search space MC is the key factor which decides whether
a solution of Πc

M3 can be found at all in an acceptable time.



6.2. INFERENCE 123

To get a grip on this model synthesis problem we developed domain-
independent and domain-dependent concepts to control the exploration of
MC . The essentials of our concepts are outlined below.

• Incremental Constraint Update. Each time a new value is inferred, its
side effects on the model selection constraints are computed immedi-
ately.

• Dependency Recording. Within each inference step the inferred val-
ues are labeled with the responsible assumptions. The dependency
recording inartdecoestablishes cause-effect links between single param-
eters as well as between different sets of constraints, regardless of
their type.

• Topological Analysis. The topology of a hydraulic circuit is investigated
in order to determine global dependencies that have an effect on the
constraint selection (e.g. flow direction analysis).

• Domain Heuristics. Heuristics that define preferences on behavior
alternatives are evaluated during the inference process.

These concepts are tied together to a model synthesis control, which
makes up a large part of artdeco’s inference engine. Figure 6.4 and 6.5 show
artdeco’s entire inference procedure at an abstract level.

MC

C
D

IIM3
c

Q : Quality set with tuples
: Global behavior model of
: Hydraulic checking problem
: User demands
: Hydraulic system

C
(f, x)

IIM3
cFormulate

Construct an initial

Check connection constraints

Apply local inference methods

Apply global inference methods

Terminate without solution Q

C, DInput

MC consistent

Return

no yes

MC

WHILE  inferences made

WHILE  inferences made

Invoke model synthesis control

Figure 6.4: Main inference loop

Remarks. Within the main inference loop we distinguish local and global
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inference methods. The former class comprises the methods for local value
propagation, rule inference, and algebraic transformation; the methods of
the latter class handle different types of equation systems. Section 5.4 gave
an overview of these methods. Since local inference is causal and often
more efficient as compared to global inference, it is applied before any
global inference method is tried.

To ensure early pruning while exploring MC , the model synthesis con-
trol is invoked after each inference step.

MC : Global behavior model
inc(       )MC MC

: Synthesis search space
: Assumptions responsible for inconsistency in

CM

Retract                 and dependent inferencesinc(       )MC

Knowledge−based remedy proposals

Select
dependency−directed
alternative

Select
proposed
alternative

Topological synthesis hints
no

Modify alternative

Synthesize new MC

Identify inc(       )MC

no

yes

yes

no yes

yesno

consistentMC

0/=CM
}|\ { CMx inc(       )MCCM := CM x is subsumed by

Figure 6.5: Model synthesis control

Remarks. The set {x ∈ MC |x is subsumed by inc(MC)} in figure 6.5 is com-
prised of those global behavior models of C whose assumptions contain
the set inc(MC).

Note that the alternative selection and modification controls model syn-
thesis by means of dependency-directed backtracking, knowledge-based
backtracking, and the evaluation of topology constraints.

The identification of the assumptions inc(MC), which are responsible
for an inconsistency in MC , as well as the retraction of all consequences
involved, requires a fairly sophisticated dependency recording.
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Dependency Recording

The constraint network established by Πc
M3 consists of two kinds of nodes:

nodes referring to functionalities (parameters) and nodes referring to be-
havior constraints. A constraint node b and a functionality node f will be
linked by an edge, if f stands in the relation defined by b. Initially, each
functionality is labeled either with f ’s alternative states or with Unknown
(cf. figure 6.6).

Constraint

Functionality

b 1

b 2

b 3

b 4f1

f2

f3

b 5 f5

f6

f5

{s  , s  }43

{s  , s  }1 2

Unknown

UnknownUnknown

Figure 6.6: The constraint network defined by the checking problem

The value sets of those nodes f labeled Unknown are considered to be
restricted by vf . During the constraint satisfaction process, constraints are
evaluated step by step and value sets are cut down to those values that
match (fulfill) all actually triggered constraints. If a non-empty value set
is assigned to each functionality, and each tuple (x1, x2, . . . , xn), induced
by these value sets, fulfills all constraints b ∈ B, the constraint satisfaction
problem will be solved.

If a contradiction occurs in the course of constraint processing, the
responsible nodes must be determined. These nodes, including all their
consequences, must be retracted. Then, an alternative value assignment
for the nodes that caused the contradiction can be selected, and inference
can be continued.

The dependency recording concept is tailored to both the inference
mechanisms and the constraints. In artdeco we distinguish between three
types of dependency links:

• Constraint Dependency. Constraints can depend directly on other con-
straints: the so-called model selection constraints. If such a constraint
is fulfilled, the dependent constraints are “active”; otherwise, they
are “inactive”. Throughout constraint processing new links are in-
troduced in the constraint network that indicate both the inference (=
supports) and the retraction (= depends) direction (cf. figure 6.7).
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"supports"

"depends on"

Constraint

Functionality

New edges:

Figure 6.7: Dependency recording between constraints

• Local Value Dependency. The constraints processed during local prop-
agation define a cause-effect chain between the nodes of the network.
These relationships are recorded by the introduction of support links
and by node labeling. Therefore, the root nodes of an inconsistency
can be determined immediately, and their consequences can be traced
for disbelief propagation purposes [52] (cf. figure 6.8).

"supports"

Constraint

Functionality

New edges:

Root nodes

f1

f2

[f  , f  ]1 2

1[f  ]

[f  , f  ]1 2

Figure 6.8: Dependency recording during local propagation

• Global Value Dependency. Constraints that cannot be treated by local
propagation are called global. Global constraints establish cyclic de-
pendencies between functionalities and constraints. Retracting one
node of such a strong connected component results in the retraction of
all nodes involved. In order to avoid labeling effort in O(n ·m), with
n,m specifying the number of functionalities and constraints respec-
tively, not all dependency links are installed in the graph: only those
that are necessary to instantiate a strongly connected component.

This dependency recording concept is an integrated part of each infer-
ence method in artdeco. It forms the base for a dependency-directed [65] and a
knowledge-based backtracking. In either strategy the setting back to arbitrary
points of the inference process is necessary. The former sets back to the root
nodes of a contradiction where a new value assignment (= new alternative)
is chosen chronologically. The latter provides deeper information about
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which of the alternatives of the root nodes should be modified. In both
cases all inferences that are no longer supported must be retracted, i.e., the
constraint network has to be re-labeled.

Discussion

There is a lot of research related to “constraint satisfaction problems” [14],
[17], [20], [23], [25], but only a small part of this research actually is con-
tributed to hydraulic configuration. The term “constraint satisfaction prob-
lem” is somewhat misleading here since it is a label used for very different
problem classes: One part of these problems is tackled by some kind of
constraint propagation, while another part needs some kind of inherently
global inference. E.g. Davis mentions six different categories of constraint
propagation that are distinguished by the type of information which is
updated [14].

An important category of constraint satisfaction problems are the so-
called label inference problems. These problems deal with a network of
nodes, each labeled with a set of possible values, and constraints that are
used to restrict the value sets. Related to such problems, and certainly
useful, are the terms “node consistency”, “arc consistency”, and “path
consistency”, which define different levels of local consistency [20], [47].

Note that in our constraint satisfaction problem, local consistency is
not crucial. Most of the constraints define underdetermined relations on
infinite sets. I.e., filtering value sets in its classical sense is hardly possible—
but, filtering in the form of value range propagation is useful and partly
necessary: value range information is exploited during the numerical sub-
jobs and the constraint selection process.

Rather than “label inference” the following types of inference are em-
ployed to tackle the hydraulic checking problem:

• Constraint Inference. Constraint inference denotes a process where
new constraints are inferred and added to the network.

• Value Inference. In the course of value inference, initially labeled nodes
(the assumptions) along with the constraints are used to infer values
of unlabeled nodes.

To make things more difficult, our constraint satisfaction problem Πc
M3

is inhomogeneous, i.e., very different types of constraints are employed.
Thus, it cannot be tackled by a single method but needs a global con-
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trol mechanism that both combines all required computation methods and
maintains dependencies.

The dependency management inartdecoadopts concepts from Doyle’s jus-
tification-based truth maintenance system (JTMS) [18] and from deKleer’s
assumption-based truth maintenance system (ATMS) [15]. Employing the
classical ATMS-based dependency management would not be useful for
performance reasons here: (i) Label-inferencing and updating all combi-
nations of assumptions is not necessary, and (ii) maintaining ATMS-data
structures constitutes an overhead as compared to recording the cause-
effect dependencies during local propagation.

6.3 Knowledge Acquisition

artdeco operationalizes the component model of section 5.3. This component
model defines all artdeco object classes, the structure of these classes, the
building block model, and the syntax of the behavior descriptions. These
concepts are an integral part of artdeco’s philosophy. They are intended to
simplify the creation and the processing of new components and cannot be
modified.

Most of these concepts are kept transparent. From the users’ point
of view, artdeco objects represent a data structure that defines physical and
graphic information (cf. figure 6.9).

artdeco−object

Graphic
representation

Graphic
properties
and methods

Physical
properties

Physical
behavior
constraints

Figure 6.9: The user’s view ofartdeco objects

Physical and graphic information needs to be “synchronized”. More
precisely: If a connection line between two objects is drawn, it has to
be ensured that there is also a physical correspondence between these
objects. This correspondence is established by the gate concept; gates are
designated areas of an objects graphic representation. They define how
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external physical parameters can be referred and where components can
be connected graphically.

The following EBNF-notation describes those parts of anartdeco-object that
are user-definable:

〈component〉 −→ 〈name〉〈physical-representation〉〈graphic-representation〉
〈physical-representation〉 −→

{GATE.〈number〉}∗1 {〈functionality〉}∗0 {〈behavior-constraint〉}∗0
〈functionality〉 −→ 〈name〉〈value〉〈default〉〈alternatives〉
〈name〉 −→ 〈symbol〉
〈default〉 −→ 〈value〉
〈alternatives〉 −→ ({〈value〉}∗0)
〈value〉 −→ 〈symbol〉 | 〈number〉

Remarks. The term 〈behavior-constraint〉 denotes an expression in art
deco ’s

behavior description language; 〈graphic-representation〉 denotes a collection
of graphic primitives with different mouse-sensitive regions.

If a user wants to create a new component, he has to provide a set of
behavior constraints as well as a graphic description with designated gates.
artdeco takes this information, instantiates the necessary objects, updates the
component model, and converts the behavior description into an internal
form.

Strategy Language
artdeco’s global inference strategy can be redefined. More exactly: artdeco pro-
vides a set of atomic inference techniques coping with different types of
constraints like symbolic relations, equation systems, etc. Using some kind
of BNF-syntax, these deduction techniques can be composed easily to a
new, individual inference strategy. This is useful for adapting the inference
process to the type of constraints given or to particularities of the domain.

The EBNF-notation below defines all productions that form a valid strat-
egy for artdeco ’s inference process. The semantics of the ⊕-symbol is as
follows. The preceding deduction technique will be repeated until no fur-
ther inference can be drawn. Note that this situation is always reached
after a finite number of steps, since the number of constraints, variables,
and alternatives is finite, and cyclic dependencies are detected.
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〈control-strategy〉 −→ {〈control-strategy〉}∗0 | (〈control-strategy〉)⊕ |
〈local-inference〉 | 〈global-inference〉

〈local-inference〉 −→ LOCAL-NUMERIC-PROPAGATION |
LOCAL-SYMBOLIC-PROPAGATION |
CONDITIONAL-CONSTRAINT-PROPAGATION |
DEMAND-TEST

〈global-inference〉 −→ SOLVE-LINEAR-EQUATION-SYSTEM |
SOLVE-NON-LINEAR-EQUATION-SYSTEM |
SOLVE-DIFFERENTIAL-EQUATION-SYSTEM

Behavior Description Language

The behavior description language establishes the interface to component
behavior. Via this language interface one is able to modify and to main-
tain behavior descriptions of existing artdeco objects as well as to define the
behavior of new ones.

artdeco’s behavior description language is an implementation of the con-
straint language presented in section 5.3. Since the typical hydraulic engi-
neer has no programming skill, it is kept as simple as possible and free of
programming language details. Some of its characteristics are as follows:

• The language allows the formulation of (mixed) numerical and sym-
bolic relations.

• The language is tailored to the connection philosophy of the building
block model, which is defined on page 99. I.e., using the keywords
[SELF] and [GATE], components may refer to their own functionalities
as well as to information types at their gates.

• Parameters (variables) need not to be typed.

Usually, behavior constraints are specified in an external form, which
in turn is converted into an internal representation that can be processed
more efficiently. A detailed description of the constraint language and the
converter can be found in [29].

6.4 Realization

Figure 6.10 gives a structural overview ofartdeco. The important modules are
briefly described below.
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Figure 6.10: Modules ofartdeco

User Interface. The user interface consists of three main parts: (i) The front
end realizing the circuit drawing area where a user manipulates graphic
symbols and dialog boxes, (ii) an action interpreter taking a user’s actions
(mouse drag, double-click, keyboard input, etc.) and, dependent on the
context, decides whether an action is valid or not, and (iii) a module pro-
viding graphic routines for a CAD-like handling of circuit diagrams.

Knowledge Bases. artdeco provides a graphic and a technical knowledge base
containing classes from which all user-visible objects are instantiated. The
graphic classes predefine the eligible manipulation methods; the technical
knowledge base defines the basic structure of important hydraulic compo-
nent classes. The component catalog is built on top of these knowledge
bases and can be extended with the aid of the acquisition module.

Knowledge Acquisition Module. The knowledge acquisition module provides
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the language for behavior descriptions and an interface for the import of
new graphic descriptions. The module checks new descriptions with re-
spect to different syntactical and semantic aspects, instantiates the nec-
essary objects in the knowledge bases, and makes the new components
available in the component catalog.

Inference Engine. The inference engine provides several local and global
inference techniques that are invoked by a global inference control. The
inference control can be imagined as an interpreter that takes a hydraulic
circuit along with the technical knowledge base (= Πc

M3) as input and eval-
uates the global control strategy in order to find a solution of Πc

M3.

Developmental Issues

There are two extreme positions of how a system may be developed that
solves hydraulic instances of Πc

M3:

1. Tool-based. By this approach we designate the strategy of selecting
and combining tools where each solves a particular job of the entire
problem. MAPLE or MATHEMATICA, for instance, are employed to do
the algebraic manipulation and numerical computation jobs. Flexible
object-oriented representation of data, rule processing, local propa-
gation algorithms, and truth maintenance mechanisms are realized
with aid of a powerful knowledge engineering tool. A CAD system
establishes the front end. All tools are controlled by a command lan-
guage, e.g. by TCL/TK [59]. Additionally, we need algorithms that
filter the graphic descriptions and formulate instances of Πc

M3 which
can be processed by the other tools.

2. Language-based. We will designate an approach language-based, if
all concepts and algorithms are developed from scratch using one or
more programming languages.

At first glance, the favorable developing approach seems to be closer to
(1) than to (2). Rather for the following reasons the opposite is true:

• A circuit diagram given in a CAD system needs to be translated into
single object representations that are both related one-to-one to hy-
draulic components and supplied with technical parameters and be-
havior descriptions.

• The integration of domain knowledge into a CAD system is difficult.
But such an integration is exactly that what we need here. User
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decisions that are not permitted should be detected as early as possible
in order to avoid superfluous simulation effort.

• Since none of the tools could perform the entire constraint processing,
a common constraint representation needs to be developed. This
representation must be supplied with a truth maintenance mechanism
and a global inference control that triggers the computation jobs.

• Generic numerical routines do not exploit physical restrictions of the
domain. As a consequence, they may be less efficient than specially
adapted algorithms. Also note that a numerically correct solution
does not need to be physically correct.

• Rule processing and constraint inference have to be developed and in-
tegrated within the common constraint representation. Since knowl-
edge acquisition is a heterogeneous task here, its operationalization
would benefit from the language-based approach too.

Tackling all these problems is a demanding job that cannot be done
in a single step since new concepts need to be developed and evaluated.
Moreover, users should participate in the development process as early as
possible.

We addressed this situation by dividing the development process of artdeco
into two stages:

1. Prototype Stage. In the first place, we had to get a clear idea of how
configuration in hydraulics could be supported. Research related to
graphic problem formulation went hand in hand with research related
to the necessary inference types, the expressiveness of a component
language, adequate data structures, and the interplay of different
inference mechanisms.

2. Reimplementation Stage. The reimplementation stage was not a dupli-
cation of the prototype stage. Rather, research has been concentrating
on the design of efficient concepts and algorithms: From a user’s point
of view, a configuration problem cannot be “solved in principle” but
needs to be solved in an acceptable time.

Throughout the prototype stage we used the knowledge engineering
environment KEE to realize our ideas [30]. At the end of this stage, artdeco’s
philosophy, its architecture, and a large part of the necessary methods had
been developed or evaluated. The algorithms (local deduction techniques,
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algebraic routines, graphic routines, the acquisition module) were written
in COMMON LISP, the knowledge bases were built on top of the KEE object
system, and the user interface was based on the KEE picture system. Aside
from improving and developing our concepts, the KEE/LISP version ofartdeco
served as a realistic communication base between users and developers.

When we started reimplementing artdeco, we refrained from the employ-
ment of particular shells or knowledge engineering tools. Tools often re-
strict the portability and usually lead to a loss of performance.

artdeco’s philosophy requires a tight combination of the inference process
on the one hand and the user interaction on the other. Thus, we developed
a small graphics kernel that can be ported easily to other platforms. On
top of this graphics kernel, we built a “semantic” graphics layer that pro-
vides powerful graphic commands related to the application. This semantic
graphics layer interprets user actions and manipulates the technical and
the graphic knowledge base. For efficiency and maintenance reasons a
specialized object system for the representation of knowledge bases was
also developed.

If an inference process is invoked, artdeco constructs a constraint satisfac-
tion problem using the actual instantiations of the technical and the graphic
knowledge base. This job is then passed to the inference control that em-
ploys local and global inference techniques, truth maintenance, and an al-
ternatives management to solve the problem. Since these techniques need a
coordinated interplay, both a generic constraint representation, wherein all
constraints can be formulated, and tailored constraint processing methods
have been developed.

The actual version of artdeco is realized in COMMON LISP and C/C++.
The object system, the graphic interface, and the numerical routines are
written in C/C++; the other modules of the inference engine are written in
COMMON LISP. Parts of the knowledge acquisition module were developed
with the UNIX tools LEX and YACC.



Summary & Conclusion

The contributions of this thesis to the area of configuration were as follows.

1. Models of Configuration. In relevant literature on the subject, configu-
ration problems are often classified vaguely or by procedural aspects
of particular configuration methods. Such a classification can be mis-
leading, since it neglects that only a small part of a configuration
problem can be solved domain-independently, i.e., by a generic ap-
proach. However, solving a configuration problem usually requires
a thorough investigation of the real task and the related domain.
The thesis in hand presented the component model view of configu-
ration problems and systems. This approach moves the description
of configuration objects into the center and hence, it is both closer
to domain-dependent problems and provides a realistic view on a
problem’s complexity.
Two main classes of component models were distinguished within
the presented classification scheme: the structure-based models and
the function-based models. The former class comprises associative,
compositional, and taxonomic models; the latter comprises property-
based and behavior-based models. For three models, relevant from
the configurational standpoint, a clear and precise formalization was
developed. Based on this formal framework, it could be shown that
the purely property-based component model M1 and the model M2,
which additionally allows the formulation of structural knowledge,
are equivalent.

Structural component models establish a global view on the system to
be configured while functional component models rely upon local connec-
tions only. This conceptual difference lets functional component models be
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superior to structural models regarding knowledge acquisition, flexibility,
and extendibility. Functional component models played a special role in
the second part of this thesis:

2. Property-based Configuration. The advantages and drawbacks of prop-
erty-based configuration were discussed. For a particular property-
based description, the resource-based description, the configuration
system MOKON was presented. It was shown in which way resource-
based descriptions can be exploited to improve the performance of
the configuration process and to support knowledge acquisition.

3. Behavior-based Configuration. The configuration of hydraulic systems
was introduced as a sophisticated configuration/design task that re-
quires a deep functional understanding of the domain. It was demon-
strated how a behavior-based checking of such complex systems can
be automated—more precisely:

• We developed a component model and a processing approach
for arbitrarily structured hydraulic systems. The component
model enables a modular composition of technical systems and
the formulation of numerical as well as symbolic relations; the
processing approach combines model synthesis, different in-
ference methods, knowledge-based and dependency-directed
backtracking, and efficient truth maintenance concepts.

• Apart from knowledge processing, user interaction and knowl-
edge acquisition were also identified as demanding problems
of the configuration/design process in hydraulics. To address
these problems concepts of an almost entirely graphic prob-
lem specification and a behavior language tailored to hydraulics
were developed.

• New concepts that improve the processing of behavior descrip-
tions in hydraulics were developed.

• Most of the above concepts have been operationalized. We pre-
sented the system artdeco that, based on a circuit diagram, auto-
mates model selection and model synthesis in order to perform
the checking of the related hydraulic system. The problem speci-
fication philosophy along with the integrated inference concepts
as realized byartdeco shows a new quality in supporting hydraulic
circuit design.
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Conclusion

Can configuration technology be scaled up to manage complex design
tasks? Yes, it can. But not due to the existence of a generic design algorithm.

In the course of our work we made the following observations:

1. Support for complex design tasks needs a profound analysis of the
domain in order to strictly differentiate between an expert’s strong
and weak points respectively. Put another way, the efficiency of a
design support depends on “what is left” to the user in the end.

E.g., remember the design of hydraulic circuits. Even if we had a
configuration system that could do the creative synthesis step but left
the analysis step to the human expert, it would not be of much help.

2. The base of each configuration system for design support is the do-
main theory associated with the problem to be solved. I.e., there is
no hope of finding a short cut to a solution e.g. by employing “intel-
ligent” or knowledge-based techniques.

3. If there is intelligence behind a knowledge-based system for design
support, it is the way the (design) problem space is explored. An
intelligent problem space exploration is, for the most part, the result
of an adequate selection, combination, and customization of existing
algorithms and technologies. Exactly this is the challenge.
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