AN APPROACH TO FORMULATE AND TO PROCESS
DESIGN KNOWLEDGE IN FLUIDICcS T

Benno SteinE] Elmar Vier@

* Department of Mathematics and Computer Science (Prof. Dr. H. Kleine Biining),
Knowledge-based Systems, University of Paderborn, D-83095 Paderborn, Germany
email: stein@uni-paderborn.de

** Department of Measurement and Control (Prof. Dr.-Ing. H. Schwarz), Faculty of
Mechanical Engineering, University of Duisburg, D—47048 Duisburg, Germany
email: vier@uni-duisburg.de

Abstract: At present, the design of complex fluidic systems cannot be automated.
This results from the creativity that is needed when synthesizing a new circuit to
meet the desired demands, but also from complex technical dependences that have
to be processed. Thus we start with the following working hypothesis here: There
still exists a preliminary design of a circuit which can be “repaired” respecting the
demands by a sequence of suited modifications.

This paper contributes to the above idea within the following respects: It identifies
different types of hydraulic design knowledge and presents an approach to formalize
and to process this knowledge.

Keywords: Computer Aided Design, Expert Systems, Control Systems, Hydraulics.

1. INTRODUCTION

The metagoal of design is to transform require-
ments, generally termed function, which embody
the expectations of the purpose of the resulting

artifact, into design descriptions.
(Gero, 1990), p.28

Formally stated, the purpose of a design process is the
transformation of a complex set of functionalities D
(= demands) into a design description C (= configu-
ration):
D—C

“—” stands for some transformation, C' is considered
the artifact’s entire set of components and their rela-
tions. The transformation must guarantee that the ar-
tifact being described is capable of generating the set
D of demands. Due to the complexity and the diver-
sity of a design process, no universal theory of design
can be stated, i.e., in the very most cases no direct

I The authors acknowledge support of the “Deutsche For-
schungsgemeinschaft (DFG)”, Germany.

mapping is given between the elements d € D and the
objects o € c

Applied to fluidics, D may define courses of forces,
damping rates, or maximum pressure values, while C
stands for a circuit’s diagram.

Working on a design problem means to balance two
behavior sets: the set of desired or expected behav-
ior, B, and the set of observed behavior, Bc. B
can directly be derived from a designer’s understand-
ing for D, whereas B¢ is the result of an analyti-
cal investigation of C that, in the fluid domain, of-
ten encloses complex model formulation and simula-
tion tasks (Nakashima and Baba, 1989; Piechnick and
Feuser, 1994; Stein, 1995).

This balance process forms a design cycle in which the
expected behavior B, (the desired properties of a cir-
cuit) controls the modification of the circuit C. Within
an evaluation phase, the analyzed behavior Bo and
the expected behavior B, are compared to each other
providing input for a next modification step. Figure [l
illustrates the dependences.

2 A special case of a direct mapping between d € D and o € C
is the so-called “catalog look up”.

Canonical

interpretation Analysis

B~ Evaluation > B

Figure 1. A model of design according to Gero.

The paper in hand concentrates on the modification
step depicted in Figure [} it discusses the role of
modification knowledge in hydraulics (Section BI) and
presents an approach to formulate and to process this
knowledge (Section Bl and Bl resp.). This approach has
prototypically been realized.

2. IMPROVING HYDRAULIC SYSTEMS

It is an inherent property of our approach not to start
hydraulic circuit design from scratch. Hydraulic ma-
nipulation jobs vary from simple lifting problems up
to the realization of complex robot kinematics, and,
given a demand description D for such a manipula-
tion job, the design of an appropriate drive is a truly
creative job.

Our working hypothesis is that we still have a prelim-
inary design C’ of a circuit which, roughly speaking,
incorporates the potential to fulfill D. Put another
way, there exists a sequence of modifications my ... my
of C’ that transforms C’ towards the desired circuit

C.

The question whether or not this is a useful work-
ing hypothesis shall not be discussed in detail here.
However, the following aspects are worth to be noted:

e For a restricted field of application, circuit design
may be automated completely. Note that knowl-
edge for the modification or the repair of a circuit
can formulated rather application-independently.

e To automate circuit design completely, the de-
mand specification problem must be tackled at
first—even for narrow application fields.

e Engineers tend to fall back on a previously solved
design problem whose solution is modified re-
specting the new demands. Thus it is conceivable
that a case base with well selected cases could
serve as a “design entry point”

Back to our modification thread. Hydraulic systems
are defined by a set of components along with a topol-
ogy specifying relations between these components.
Components in turn are described by both invariable
characteristics and variable characteristics, so-called

3 We are maintaining a case library with hydraulic circuits; at
present this library contains about 150 selected circuits.

parameters. As a consequence, qualitatively differ-
ent types of modifications stand to reason (Vier and
Stein, 1998):

(1) Parameter Modification. Parameters can be al-
tered easily within their given ranges. Examples:
the threshold pressure of a relief valve, the gain
of a controller.

(2) Characteristics Modification. Changing a com-
ponent’s characteristics means to replace the
component—a modification that causes some ex-
tra effort.

(3) Topology Modification. Modifications of this
type change the arrangement of components and
their connections as well as the structure of the
control system. Topology modifications provide
the most profound and far-reaching effects.

Given a preliminary design C’, unfulfilled demands
must be detected, and a suited modification measure
must be selected and applied. This is not a trivial job.
For instance, it can hardly be foreseen whether a par-
ticular measure is always a remedy for a malfunction;
usually several measures have to be tested before an
improvement is achieved (Krafthofer, 1997; Uecker,
1997). Modifying C’ towards C is a complex search
process that must be controlled by smart propose-
and-revise heuristics.

3. FORMULATING DESIGN KNOWLEDGE IN
FLUIDICS

As justly mentioned, the identification, validation,
and classification of modification knowledge for hy-
draulic systems is a non-trivial engineering problem.
However, getting this knowledge operationalized on a
computer is even more complex. Some reasons for this
are the following:

Expressiveness. Design knowledge typically is very
compact; an example:

“An insufficient damping can be improved by in-
stalling a by-pass throttle.”

This measure encodes a lot of implicit engineering
know-how, among others the following;:

(1) a by-pass throttle is connected in parallel

(2) the component to which it is connected is a cylin-
der

(3) if there are several cylinders in the system, an
engineer knows the best-suited one

(4) a by-pass throttle is a valve

Flexibility. Engineers use design knowledge in a flex-
ible way; i.e., a particular piece of knowledge can be
applied to different contexts in a variety of hydraulic
circuits.

Flexibility is a major reason which makes it difficult to
encode the expressiveness of the above example on a
computer. Consider we were confronted only with hy-
draulic systems of the same topological set-up, then
measures like the above (“Install a by-pass throttle.”)
could simply be hard-wired within a (“design”) algo-
rithm.

Specifying implicit knowledge explicitly is one possi-
bility getting the knack of the outlined problems. For
these purposes we have been developing a description
language tailored to hydraulic circuit design, which is
presented in the following.

3.1 Basic Concepts

Basically the three modification types (concerning pa-
rameters, characteristics, and topology) can be ad-
dressed with the action types depicted in Figure

Get

_ Parameter< St
Act|0n< Select
Component < Insert
Delete

Figure 2. Different types of actions.

However, a difficulty regarding the formulation of de-
sign knowledge results from the location where in a cir-
cuit an action should take place—less from the mod-
ification type. I.e., a piece of knowledge describing a
modification at a circuit always consists of two parts:

modification = action specifier| +
location specifier

Exactly defining the place where an action shall take
place is the larger part of the modification problem.
In particular it must be possible to insert or delete
components relative to other components. Figure
sketches out the basic construction scheme for loca-
tion specifiers. Qualifiers work as a filter for a set of
components by checking the components’ parameters
against provided values.

The following figures illustrate the usage of lo-
cation specifiers. Note that the right-hand-side of
the examples could also form the starting point of
a modification, if insert component is replaced by
delete_ component.

insert component

insert component
(in_series 4 3, (5))

(in_series 1 3, (4))

Location Specifier:

tl n_Perallel componentl component2 , {
In_Series componentl component2 ,

}After component,{

Before component ,
Quadlifiers:
.(parameter op value).

Figure 3. The structure of location specifiers.

O
insert component
(in_series 1 4, after insert _component
2, (5)) (in_parallel 2 3, after 5, (6 7))

1. insert component (in_series 1 3, (TRI1))
2. insert_component (in_series 1 2, (TRI2))
3. insert _component (in_series TRI1 TRI2, (4 5))

3.2 Modification Schemes

Our design language provides only a small set of core
functions. These functions realize the primitive, that
is to say, atomic actions presented in the previous sub-
section:

get parameter, set parameter, select component,
insert component, delete component.

To gain flexibility and to enable the realization of
user-defined abstraction hierarchies, core functions
can be composed to more complex macros. Within
this macro language are also different types of loops
and branching concepts realized; (Schlotmann, 1998)
contains a precise specification.

E.g., the following code defines a macro that deter-
mines a circuit’s maximum operating pressure:

macro max_op_pressure () {
p_aux := 0,
foreach e in select component((type=pump)) {
p := get parameter(e, P_LIM);
ifp>p auxthen { p aux:=p;}
}

return(p_aux);

}

Reconsider the design cycle in Figure [} A modifica-
tion is the result of a comparison and evaluation of the
expected behavior B, with the analyzed behavior B¢.
Differences between B, and B¢ are called symptoms;
symptoms are observed at components, and to repair
a symptom, a modification of the circuit is necessary.

Modification schemes provide a concept to integrate
the three aspects “component”, (related) “symptoms”,
and (possible) “modifications”. They are built on top
of the macro layer (see Figure H).

Modification
Schemes

Macros

Core Functions: Interface to simulator

Figure 4. The different levels of abstraction.

The syntax for a modification scheme is as follows:

class name {
gates { gatey; ...gaten; }
parameters { var; typer; ...varm, typem; }
repair_rule (priority) {
symptoms { symptomi; ...symptomy; }
modification { ...} ... modification { ...}

repair_rule (priority;) {
symptoms { symptomi; ...symptom;,; }
modification { ...} ... modification { ...}

}

Remarks. ‘name” designates the name of a compo-
nent class to which a modification scheme belongs.
The keywords gates and parameters introduce local
variables for a component’s connections and parame-
ters respectively. Each repair rule defines both a list
of symptoms that quantify a misbehavior and a list
of modifications to repair the misbehavior.

Note that within a modification scheme two types of
choice points exist: At first, amongst the repair rules
the most important rule (so to speak, the most cru-
cial symptom) must be selected; at second, within a
repair rule the most adequate modification has to be
chosen.

The example below is a part of a cylinder modification
scheme. The scheme shows how the problem of a non-
extending cylinder piston can be addressed.

class cylinder {
gates { A; B; }
parameters {
A R characteristic; // ring area
v parameter; } // velocity

repair _rule (strict) {
symptoms { v =0; }
modification {
// Decrease resistances of involved components.

foreach e in get resistors(this) {
increase resistance(e, this, 0.1); } }

modification {
// Lower tank pressure.
foreach e in get tank suppliers(this) {
if get(e, p) > 0 then {
Set(es b, add(get(ea p)! '2))5 } }

3.3 Meta Knowledge

Usually a set of modifications stands to reason to re-
pair a malfunction. Note that an evaluation that ex-
hibits to which level a modification measure was suc-
cessful requires an expensive simulation. It is quite
obvious that heuristics are required which access a
measure’s global consequences. Currently, the follow-
ing criteria have been investigated for evaluation and
ranking (Vier and Stein, 1998):

e A modification’s effectiveness is most important.

e The repercussion on the design of the hydraulic
system describes undesired side effects, which
must be expected when carrying out the mod-
ification.

e Another important criterion is the effort required
to realize a modification. It is directly related
to the modification types parameter, character-
istics, and topology.

To each modification alternative three assessment val-
UeS Vef, Ure, and vet are assigned, either qualitatively
or by means of a quantitative analysis. The v; are in
[0;1]; ver = 1 stands for high effectiveness, v,e = 0
stands for small repercussion, and vy = 0 stands for
low effort. To obtain the absolute confidence /C, these
values are weighted by the positive confidence factors
Kef, Kre, and ke, where

Kef + Kre + Ket = 1
If, for example, the damping factor of a cylinder is

judged to be too low, the modifications listed in the
first column of Table [l could be a possible remedy.

| Modification Measure | Vef | Ure | Vet | K |
throttle in mainstream | 0.1 | 0.4 | 0.8 | 0.390
throttle in side stream | 0.4 | 0.4 | 0.5 | 0.435
throttle in by-pass 0.80.4]|0.5(0.635
damping network 0.9 0.8|0.1]0.605

Table [l Modifications that increase the damping.

Note that the modifications can be applied solitary or
in combination; however, each of them modifies the
structure the hydraulic circuit. Here the confidence
factors are ket = 0.5, Kre = 0.15, and key = 0.35.

Installing a throttle in a by-pass to the cylinder (see
Figure B)) is ranked first option. The resulting drain

piston piston rod

throttle

‘ s valve
>

directional
_valve

Figure 5. Set-up before and after modification.

cylinder

flow through the by-pass throttle moves the eigenval-
ues of the related transfer function to a higher damp-

ing.

4. PROCESSING DESIGN KNOWLEDGE
4.1 Search in the Design Space

Starting point of the regarded design problem is a pre-
liminary design in form of a circuit C’ with unfulfilled
demands. The design search space is comprised of all
circuits that can be derived from C’ by applying a
given set of modification schemes. Cycling through the
process depicted of Figure [l means walking through
the design space. A path from the root C’ downto a
solution defines a sequence of modifications that “re-
pairs” all unfulfilled demands in C’ (cf. Figure).

)/C)\\)/Q\\
AT A
1
o O O
[] Solution
O Nomodification possible

QO Incomplete design
—» Modification step

Figure 6. Exploring the design space.

Each modification step in Figure[Blis comprised of the
following five jobs:

(1) Simulation of the circuit over the intended driv-
ing process

(2) Evaluation of the circuit behavior with respect
to the demands. The result is a set of symptoms.

(3) Interpretation of all modification schemes with
respect to their repair rules. The result is a set
of applicable modifications.

(4) Scheduling of all applicable modifications.

4 In this connection the simulation engine of ¥eco is exploited.
It should be noted that “deco’s capability to generate a simu-
lation model from a drawing is a prerequisite to automatically
perform and evaluate circuit modifications at all (Stein, 1995).

(5) Realization of the best-rated modification.

At present, stepHl, scheduling, has been realized rather
rudimentary. Applicable modifications are sorted ac-
cording to the following strategy:

(A) Modifications relating sources and sinks of power
(pumps, cylinders).

(B) Modifications relating conducting elements (ho-
ses, pipes).

(C) Modifications relating power control (valves).

Within each such group, the absolute confidence value
K of a modification is used to define an order (see
subsection B3).

If no applicable modification can be found within step
Bl backtracking is invoked. If no symptoms can be de-
tected within step Bl the circuit establishes a solution.

For complex circuits or if several involved malfunc-
tions are to be repaired, this strategy is to short-
sighted. Then, a blackboard architecture is much more
adequate (Hayes-Roth, 1985; Hayes-Roth, 1983). Fig-
ure [d shows a possible structure.

Knowledge sources | Scheduler |

1 Modification scheme 11
I Repair rule1.1
1

! Repajr rulelm
1

Blackboard

Agendd Focus

1 Modification scheme ni

1t Repair rulen.1 1
1 1
! Repair rulen.m !
1 1

Figure 7. Blackboard organization of the design.

The blackboard makes the design object, the circuit,
available. The modification schemes form knowledge
sources providing hydraulic design knowledge in the
form of repair rules. Applicable modifications appear
on the agenda, and a focus concept helps to concen-
trate on a selected number of knowledge sources. The
scheduler controls the search by choosing modifica-
tions from the agenda.

Note that a smart scheduling requires the combina-
tion of several strategies, among others the following:
“Exploit divide-and-conquer properties.”
Modifications with no side effects should be carried
out first, to fix the related malfunction.

“Sort demands.”

Assess to which phase of the design process a demand
is related to obtain a suitable sequence when process-
ing modifications. For example, it is not advisable to
optimize a controller while a working element does
not provide the desired velocity.

“Avoid loops.”

Avoid modifications that lead to new unfulfilled de-
mands of earlier design phases.

4.2 Language-specific Issues

In first place, our design language resembles concepts
of imperative programming languages. Its number of
commands is intentionally left small to keep the lan-
guage concept clear, and to make its application easy.
Other concepts are:

e Identifier Binding. Identifiers are bound stati-
cally to their respective definitions. Their scope
is determined by the block that is implicitly de-
fined by a macro or a modification definition.

e Typing. The types of formal parameters in
a macro parameter list are bound statically,
whereas the types of local variables are deter-
mined dynamically—a strategy that simplifies
the usage of local variables.

e Program Control Elements. The iteration over
lists adopts the simplicity and elegance from
LISP: A variable steps through a list, which in
turn is allowed to comprise elements of different
types (here: paths, components, parameters).

e Tailored API. An application programming in-
terface with core functions for the manipulation
and simulation of fluidic systems is provided (cf.

Figure H).

5. SUMMARY

Given a preliminary design C’, a sequence of modifi-
cations can be found that transforms C’ towards the
desired circuit C'. To automate such a modification
approach, among others the following questions need
to be answered:

(1) Of which form is the typical modification knowl-
edge in hydraulics?

(2) How can the modification knowledge be opera-
tionalized?

(3) How can an adequate sequence of modifications
be found?

This paper gives answers to these questions. Its main
contribution is a tailored design language that enables
an engineer to formulate modification knowledge in
hydraulics. This language has prototypically been im-
plemented.

However, key challenge concerning future work is the
efficient search in the design space, which has two as-
pects: (i) The development of heuristics that evaluate
unfulfilled demands and differentiate between mea-
sures, and (i1) the development of concepts for a smart
design progress control, e.g. in the form of a black-
board architecture.

REFERENCES

Gero, John S. (1990). Design Prototypes: A
Knowledge Representation Scheme for Design.
Al Magazine 11, 26-36.

Hayes-Roth, Barbara (1983). The Blackboard
Architecture: A General Framework for Problem
Solving. Heuristic Programming Project
HPP-83-30. Stanford University, Computer
Science Department, Heuristic Programming
Projekt.

Hayes-Roth, Barbara (1985). A Blackboard
Architecture for Control. Artificial Intelligence
16, 251-321.

Krafthofer, Constantino (1997). Untersuchung
konstruktiver Maffnahmen zur Beinflussung des
dynamischen Verhaltens hydraulischer Antriebe.
Study work. Gerhard-Mercator-Universitéit - GH
Duisburg, MSRT.

Nakashima, Yusei and Tomio Baba (1989). OHCs:
Hydraulic Circuit Design Assistant. In: First
Annual Conference on Innovative Applications
of Artificial Intelligence. Stanford. pp. 225-236.

Piechnick, Martin and Alfred Feuser (1994). MosIHS
— Programmsystem zur Simulation komplexer
elektrohydraulischer Systeme. In: AFK,
Aachener Fluidtechnisches Kolloguium.
Mannesmann Rexroth GmbH, Lohr, Germany.

Schlotmann, Thomas (1998). Formulierung und
Verarbeitung von Ingenieurwissen zur
Verbesserung hydraulischer Systeme. Diploma
thesis. Universitit-GH Paderborn, FB 17
Mathematik / Informatik.

Stein, Benno (1995). Functional Models in
Configuration Systems. Dissertation. University
of Paderborn, Department, of Mathematics and
Computer Science.

Uecker, Stefan (1997). Statische Auslegung
hydraulischer Translationsantriebe bei der Neu-
und Anderungskonstruktion. Study work.
Gerhard-Mercator-Universitdt - GH Duisburg,
MSRT.

Vier, Elmar and Benno Stein (1998). Modeling of
Design Strategies for Hydraulic Control
Systems. In: MIC 98, IASTED International
Conference on Modelling, Identification and
Control, Grindelwald, Switzerland.

	Introduction
	Improving Hydraulic Systems
	Formulating Design Knowledge in Fluidics
	Basic Concepts
	Modification Schemes
	Meta Knowledge

	Processing Design Knowledge
	Search in the Design Space
	Language-specific Issues

	Summary

