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Abstract: Case-based reasoning is a knowledge processing concept that has shown
success in various problem classes. One key challenge in CBR is the construction
of a measure that adequately models the similarity between two cases.

Typically, a similarity measure consists of a set of feature-specific distance functions
coupled with an underlying feature weighting (importance) scheme. While the
definition of the distance functions is often straightforward, the estimation of the
weighting scheme requires a deep understanding of the domain and the underlying
connections.

The paper in hand addresses this problem. It shows how discrimination knowledge,
which is coded within an already solved classification problem, can be transformed
towards a similarity measure. Moreover, it demonstrates our approach at the prob-
lem of diagnosing heart diseases.

1 Background and Related Theory

Discrimination knowledge that is coded within an already solved classification
problem can be transformed towards a similarity measure of a case-based
reasoning (CBR) system.

This chapter first points out relationships between classification and similarity
assessment in a case-based reasoning system. It then motivates and defines
a generic transformation procedure from a case base to a similarity measure;
the last two sections of this chapter discuss related realizational aspects.
Chapter 2 presents an application, the diagnosis of heart diseases, to demon-
strate the development of a similarity measure at a real-world problem.

1.1 Classification and Case-based Reasoning

Let x denote a problem or some description of a situation. Then a common
task is to find another problem y amongst a set S of problems, such that y is
more similar to x than it is to any other z € S.

Using the terminology of case-based reasoning, we are given a pair (C'B, sim),
where C' B, the case base, denotes a set of cases, and sim denotes a similarity
measure, sim : CB x CB — [0,1]. With z,y, and z € C'B the semantics of
sim is as follows. sim(z,y) > sim(x, z) < “x is more similar to y than it is
to z.”
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A case x € C'B usually embodies both a problem description and a related
solution. A basic idea of CBR is to exploit previously solved cases when
solving a new problem. I.e., the collection of cases, C'B, is browsed for the
most similar case, whose solution then is adapted to solve the new problem.

However, within a classification task one is not interested in case adaptation:
A case’s solution simply defines a concept or a class. More precisely, the
paper in hand considers cases as tuples (Z,c,), where Z denotes a feature
vector, say, object description, and c,, the solution, denotes a particular class
or concept from a set of classes C'.

Case-based classification classifies new instances based on their similarity to
stored cases: When given a new feature vector z, the set of the k most similar
cases i, - ..,y retrieved from CB is used to define the class membership of
x.

Observe that case-based classification systems implicitly describe the classi-
fication concept, say, the discrimination knowledge. This knowledge is dis-
tributed over the containers vocabulary, similarity measure, and case base,
where each container is able to contain all available knowledge (Richter
(1995)).This view on knowledge distribution leads to the central contribu-
tion of this paper:

Given a knowledge base with cases of the form (z,c,), the feature-vector-
class-relation can be used to derive a similarity measure.

Remarks. A classification task can also be tackled by a “symbolic” learning
approach (Michalski et al. (1983)). By symbolic learning, Wess and Globig
(1994) subsume approaches that code the knowledge of the cases explicitly, by
means of a symbolic representation of the concept such as formulas or rules.
Decision tree induction and version space are two representatives for algo-
rithms that learn an explicit concept description (Quinlan (1986), Mitchell
(1982)).

1.2 From a Case Base to a Similarity Measure

Let a case base C'B with cases (Z,c,)—but no similarity measure be given.
The question is, whether C'B can be exploited to define such a measure. In
the following, a generic procedure for this job is motivated.

Observe that for each two cases (Z, c,), (y,¢,) € CB a reasonable similarity
measure sim would produce a value sim(z,y) close to 1, if ¢, = ¢, holds.
Conversely, sim(Z,y) would be closer to zero than to 1, if ¢, # ¢, is true.

A similarity measure for a pair of feature vectors is typically based upon a
metric M, which combines the distances between the features’ instantiations.
If all features that describe the cases were of equal importance, and if
they were homogeneous, continuous-valued, and canonically to normalize,
the formation of sim would be straightforward: sim(z,y) = 1 — M(z,y),
where, for example, M(Z,y) could denote the Euclidean distance metric

\/ El(ﬂ?z —yi)?.
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However, usually the world is not that simple, and similarity measures are
developed, tested, and improved by domain experts (Kolodner (1994)). A
commonly used structure of a linear similarity measure is the following:

|Z|

simy(Z,y) =1 — (wo + Zwi 03 (25, 47)) (1)

=1

where the w; define the features’ weights, so to speak, their importance, and
the 9; define feature-specific distance computations. Note that it is useful to
introduce feature-specific distance functions to handle different types such as
nominal, continuous-valued, or linear discrete features.

While distance functions can be operationalized canonically, an estimation
of the w; requires a deep understanding of the domain and the underlying
connections. It is possible to estimate the w; by exploiting the classification
knowledge of the case base C'B, using the following procedure:

(i) Construct a case base C'Ba of “classified” difference vectors. Each
element in CB, is a tuple (7 © 9, P.,—,), with

TOYy = (51(x17y1)7'"aém(xmaym))
P.,—., =1,if x and y belong to the same class and 0 otherwise

(71) Approximate the relation # © § — F,,—.,, which is implicitly de-
fined by C'Ba, with the similarity measure sim,;(z,y) by means of
regression.

Note that unlike other approaches, which use reinforcement learning to ad-
just or parameterize a similarity measure (e.g. ISAC Bonzano, Cunningham
and Smyth (1997), EACH Salzberg (1991), RELIEF Kira and Rendell (1992),
IB4 Aha (1992), GCM-ISW Aha and Goldstone (1992)), our approach trans-
forms the problem onto a standard regression task. As a consequence, the
parameterization of a similarity measure is no longer a special enhancement
to a CBR system, but can be treated as a separate regression problem. This
allows for a direct application of algorithms and results from the fields of
statistics and machine learning to the field of automatic parameterization of
similarity measures.

The following sections discuss the two steps of our procedure.

1.3 Distance Functions

The learning and classification capability of an instance-based learning sys-
tem depends decisively on the similarity measure and its underlying distance
function(s). Many distance functions are available for such uses, including the
Euclidean, the Manhattan, the Canberra, or the Chi-square distance metrics
(Wilson and Martinez (1997)).
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A feature can be nominal (symbolic), linear discrete, or continuous-valued.
Notice that none of the previously mentioned distance functions appropriately
handles non-continuous features.

A metric that has been used for nominal features is the overlap metric, which
is defined as follows.

if 2. = s
oo = { & B
One way to handle feature vectors with both nominal and continuous features
is the combination of different distance functions within a heterogeneous dis-
tance function. The distance function 0", which is used in the IB systems
(see Aha et al. (1991), Aha (1991)) and which is also used by Giraud-Carrier
and Martinez (1995), combines the overlap metric with the range-normalized
distance rna:

1, if x; or y; is unknown
6wy, y;) = { overlap(z;,y;), if feature ¢ is nominal (2)
™A, , otherwise

I.e., if either of the values of feature i is unknown, 0 returns the maximum
distance, which is 1. The distance function rna, is defined as follows.

|z — v
ma, = —————,
max; — min;
where max; and min; are the maximum and minimum values respectively,
occurring in the training set for feature i. As a result, 6 typically returns a
value in [0, 1].

The ©-operator can now be defined as

TOY = (5?(3:173/1)7 ceey 57hn<xm7ym))7

with Z and § denoting the (possibly heterogeneous) feature vectors of the
cases x,y € CB. The overall distance, say, the case distance or similar-
ity between two cases x and y may be defined by means of a combination
function f(z © y), or by the Euclidean distance metric, or by some other
non-linear function.Applying the Euclidean distance metric leads to the Het-
erogenous Euclidean-Overlap Metric HEOM as described by Wilson and

Martinez: HEOM (z © §) :=

1.4 Computing a Weighting Scheme

Since features may differ in their discrimination quality, it is useful to incorpo-
rate a weighting scheme into the distance computation. As argued previously,
such a weighting scheme can be estimated by regressing P ,—., on T © g, em-
ploying the similarity measure (1) as regression function.
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This regression problem can be solved by either a statistical or a neural net-
work (NN) approach. The similarity measure (1), for example, establishes a
linear regression model and can be modeled as a perceptron with a linear ac-
tivation function, as shown in Figure 1 on the left hand side (cf. Sarle (1994),
Weisberg (1985), or Myers (1986)).

o

-
Figure 1: A simple perceptron for multiple linear regression (left), and a functional
link network for polynomial regression (right).

Our classification problem is dichotomous, i.e., the observed outcome P, —.,
is restricted to either the value 0 or 1. Thus it makes sense to apply a
logistic regression model, which—from the NN perspective—is modeled by
a perceptron with a logistic activation function (cf. Hosmer and Lemeshow
(1989)).

As well as that, a similarity measure in the form of a polynomial can be
regressed by so-called functional link networks (Pao (1989)). Neural networks
of this type provide a functional hidden layer that computes the polynomial
terms from the input variables (see Figure 1, right hand side).

Remarks. Learning feature importance has also been discussed in Aha (1991).
While our approach corresponds to a least squares estimation of the function
defined through C'Ba, Aha pursues in the system CBL4 a k-nearest-neighbor
prediction along with some local weight correction. He plans future extensions
of CBL4 being able to learn also “context-dependent” feature importance.

Observe that from a statistical perspective, context dependency of features
means interaction amongst feature variables. Put another way, context de-
pendency of features can be learned by our approach if the model behind sim,
a polynomial for instance, reflects feature interaction. In fact, the application
presented in this paper pursues this idea.

2 The Heart Diseases Application

Motivation and testbed for our similarity learning approach is a problem
from the field of medical diagnosis: Identifying children’s heart problems
by analyzing examination records with physiological information (= feature
vector Z). The respective cases were recorded at a local children’s hospital and
include a diagnosis as stated by a physician, such as “no sports” or “weight
reduction necessary” (= class ¢,).

Here, CBR can solve the following problems, which arise when applying a
symbolic classification method to the field of medicine: (i) The identification



259

of explicitly coded expertise, e. g. in the form of rules, is very difficult. (ii) The
acceptance of medical diagnosis systems, even when combined with strong
explanation components, proved to be rather weak.

Also the physicians’ requirement, namely the identification of the most similar
case given a new case y = (g, 7) instead of “simply” classifying g, speaks for
the CBR approach. Hence the “only” task to do is the development of an
adequate similarity measure.

2.1 Developing a Tailored Similarity Measure

As discussed in Section 1, the development of a similarity measure from the
heart diseases case base requires two steps: (i) Creating the difference vectors
T Oy for cases x,y, and (ii) choosing an appropriate structure for a similarity
measure and computing its weights.

Since the greater part of the medical features are nominally-valued or
cardinally-valued, the distance function (2) will serve most of our purposes.
However, some of the features are “tree-valued”, i.e., a respective feature
value indicates a special taxonomic relationship.

For a feature ¢ of such a type we define the difference between two values
x; and y; by means of the normalized depth of their first common ancestor
in the taxonomy tree. The first common ancestor of two vertices is the first
common vertice on the paths from these vertices to the root.

0, if v =y,
treea (s, yi) 7= | _ depthlanclwsy.))

mazdepth, otherwise

Function anc(z;,y;) denotes the first common ancestor of z; and y;, while
mazdepth; denotes the maximum depth (= tree height) related to feature i.
Figure 2 shows a fictitious tree-valued feature.

Figure 2: A tree-valued feature with a maxdepth of 3. For instance, the distance
between G and H as defined by treea is 1/3, the distance between D and E is 2/3.

Having completed the heterogenous distance function 67 from Section 1.3 by
treen,, we are ready to construct the case base of difference vectors, C'Ba.
Recall that a case in C'Bj is of the form (7 © ¢, P.,—.,), with

1oy = (Mxn,y), .. 0 (T ym)) = (dy, ... dy) =d
P.,—c, = 1,if z and y belong to the same class and 0 otherwise
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As mentioned in Section 1.2, the function most commonly used as a similarity
measure is

|Z| |d|

simy(Z,y) =1 — (wo + Zwi . 5?(%, yi)) =1 — (wo + Zwi -d;)  (3)

i=1 =1

The w; weight the features und thus are used to model the respective feature’s
importance. Notice that by using this function the independence between
features is implicitly presumed. Stated another way, the importance of a
feature does not depend on other feature values—an assumption which does
not hold in many real world applications.

Also in the field of children heart disease diagnosis various interdependen-
cies between features can be observed: For example the features “age” and
“weight” correlate to a high degree—as do the features “weight” and “maxi-
mum strain during examination”.

To express inter-feature dependency, a stronger and more complex similarity
measure of the following structure is needed:

|d]
sim(Z,y) == 1 — (wo + Z fildy, .o dicy, digas oo diy) - di) (4)

=1

As a consequence, the functional connections f; (instead of the simple weights
w;) must be estimated in order to define the similarity measure sim. Since the
analysis of our data revealed that the majority of existing feature correlations
establish pairwise interdependencies, it was reasonable to restrict the f; to
linear type:
|d|
fi = )\i(] + Z >\ij . dj (5)
J=1

i

Putting (5) into (4) while substituting w; for A\;p and w;; for \;; + Aj; yields:

|d| ld|  |d|
sim(z,7) =1 — (wo+ > _w;-di + Y Y wij - didy) (6)
i=1 i=1 j=i+1

Actually, (6) is the similarity measure that we have presumed in the heart
disease domain. Its corresponding weights can be estimated as described in
Section 1.2 by regressing P, —., onto sim(Z,y), using the data base C'Ba as
set of observations.

Technically, the regression is realized by a functional link network with a
logistic activation function. The network’s functional hidden layer models the
(|d|? + |d|)/2 polynomial terms of (6); using superwised learning the network
was trained by least squares. Chapter 3 contains figures of the underlying
technical data as well as the experimental results regarding sim’s classification
quality:.
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2.2 Feature Selection as a Means of Preprocessing

Methods for determining a weighting scheme are judged by both the qualitity
of the learned weights, say, the learning and classification error, and the effort
necessary for computing them.

For the proposed similarity measure (6) the latter criterion may cause prob-
lems since O(|z|*) weights must be estimated. However, in many real-world
problems the discrimination knowledge is not equally distributed on all fea-
tures. Feature selection, i.e., leaving out features by setting their weights
constantly to zero, provides one way to integrate additional knowledge into
the learning process.

The naive approach of testing all 21! feature subsets is usually not practicable,
and various algorithms for selecting good subsets have been developed. They
consist of a generation function, responsible for feature-subset creation, and
an evaluation function for evaluating this subset according to a given criterion
(Dash and Liu (1997), Aha and Bankert (1994)). Evaluation functions in
turn are either realized as filter methods, which work independently from
the classifier, or as wrapper methods, which employ the classifier for testing
purposes.

For the domain of heart diseases we pursue a wrapper approach: The absolute
values of the learned weights are used for selecting important features. This
obviously makes sense because of the direct correlation between weights and
feature distances in the structure of the discussed similarity measures.

3 Results and Conclusion

Our database with cases of heart disease diagnosis comprises more than 200
cases; a case consists of 50 features, from which are 10 nominal, 35 cardinal,
and 5 hierarchical. These cases are (rather equally) distributed amongst 8
diagnosis classes. We divided this database into a training set and a test set,
from which, in a second step, two sets with about 20.000 difference vectors
were formed.

Regression was carried out as previously described, and, for comparison pur-
poses, both the simple similarity measure (3) without—as well as the complex
similarity measure (6) with interaction terms was learned. Moreover, vari-
ants of these measures with only 10 features were constructed according to
the outlined feature selection strategy. Applied to the test set, the measures
led to classification results as shown in Figure 3.

66% | 61% 57% | 52%

1 Complete feature set
1 Reduced feature set Complex measure Simple measure

Figure 3: Classification results of different similarity measures. Note that “mis-
classified” cases were not assessed completely wrong but assigned to neighbored
classes.
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In a nutshell, the paper presents a generic method for learning similarity
measures for case-based reasoning by analyzing a given case base.

Starting point was the observation that the weighting scheme behind a sim-
ilarity measure is essential to adapt CBR to different domains—but hard to
be set up manually, because of its need for domain knowledge.

The paper shows how such weighting schemes can be derived automatically.
It motivates the method theoretically and shows how it is applied to the
difficult domain of medical diagnosis.
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