
Journal of Applied Intelligence , 10, 247–255 (1999)

c© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Generating Heuristics to Control Configuration Processes⋆

BENNO STEIN

Department of Mathematics and Computer Science—Knowledge-based Systems Group

University of Paderborn, 33095 Paderborn, Germany

stein@uni-paderborn.de

Abstract. Configuration is the process of composing a system from a set of components such that the system ful-

fills a set of desired demands. The configuration process relies on a particular component model, which is a useful

abstraction of the domain and the technical system to be composed.

In this place we deal with configuration problems where the components involved are characterized by simplified

functional dependencies, so-called resource-based descriptions. On the one hand, the resource-based component model

provides for powerful and user-friendly mechanisms to formulate configuration tasks. On the other hand, the solution

of resource-based configuration problems is NP-complete, which means that no efficient algorithms exist to solve a

generic instance of that problem.

In practice, given a concrete resource-based component model, the search for an optimum configuration can be

realized efficiently by means of heuristics that have been developed by domain experts. The paper in hand picks up

that observation: It presents a method to automatically generate heuristics that guide the search when solving complex

resource-based configuration problems.

Keywords: configuration, knowledge-based systems, heuristic search, preprocessing, design

1. Introduction

Configuration is the process of composing a technical

system from a predefined set of objects. The result of

such a process is called configuration too and has to ful-

fill a set of given constraints. Aside from technical re-

strictions a customer’s demands constitute a large part of

these constraints [2, 3, 4, 7, 9].

Each configuration process relies on a particular com-

ponent model. A component model is a useful abstrac-

tion of the domain and the technical system to be com-

posed, and it must be tailored to the configuration prob-

lem [16, 12]. The formulation of adequate component

models is a highly creative job and cannot be automated

in its universality [13].

In this place we deal with the resource-based compo-

nent model; within this model the components involved

are characterized by simplified functional dependencies,

so-called resources. On the one hand, the resource-

based component model provides for powerful and user-

friendly mechanisms to formulate configuration tasks

[6]. On the other hand, the solution of resource-based

configuration problems is NP-complete, which means

that no efficient algorithms exist to solve a generic in-

stance of that problem [12].

Actually, when given a real-world configuration prob-

lem formulated within the resource-based component

model, the search for an optimum configuration can

be realized efficiently by means of heuristics that were

developed by domain experts. Stated another way, a

concrete resource-based component model can be com-

piled by enriching it with control knowledge. The pa-

⋆ Reworked and extended version of a conference paper originally published at the 11th IEA/AIE, 1998.

248 Stein

Force = 2000 N
Velocity−Max = 2.4 m/s
...
...
Values for geometry constraints
...
Other dependencies

Force = 2000 N
Velocity−Max = 2.4 m/s
...
...
Values for geometry constraints
...
Other dependencies

Force = 2000 N
Velocity−Max = 2.4 m/s
...
...
Values for geometry constraints
...
Other dependencies

Force = 2000 N
Velocity−Max = 2.4 m/s
...
...
Values for geometry constraints
...
Other dependencies

Force = 2000 N
Velocity−Max = 2.4 m/s
...
...
Values for geometry constraints
...
Other dependencies

Force = 2000 N
Velocity−Max = 2.4 m/s
...
...
Values for geometry constraints
...
Other dependencies

Demands

Offline Online

 Resource−based
component model

Heuristics

Preprocessing

Configuration
 process

Configured
 system

Fig. 1. Partitioning the resource-based configuration process.

per in hand picks up that observation: It presents a

method to automatically generate heuristics that guide

the search when solving complex resource-based config-

uration problems.

Our approach emphasizes the view that a resource-

based configuration problem can be attacked at two dif-

ferent scenes: At a preprocessing stage, where heuristics

are generated, and at a configuration stage, usually at the

customer’s site, where a concrete configuration problem

is solved. Figure 1 illustrates this view.

That a partitioning of the configuration process is pos-

sible is in the nature of most configuration problems:

Input of the preprocessing step is the entire component

model, and preprocessing must be re-applied whenever

the component model is changed. Such changes come

along when a new components is added or when prop-

erties of existing components are modified. Input of the

configuration step are demand sets, which are customer-

dependent. The ratio of component model changes and

demand set changes is ≪ 1.

The purpose of this paper is twofold.

1. In the subsequent section, resource-based configura-

tion is introduced, its pros and cons are discussed,

and the balance algorithm, a method to process

resource-based component models, is outlined.

2. The performance of the standard balance algorithm

can be significantly improved by exploiting heuris-

tics that provide a decision base during the search.

This is the starting point of Section 3, where we

show in which way such heuristics can be derived

within a preprocessing step.

The concepts presented in this paper have been oper-

ationalized and evaluated for a real-world configuration

problem [7], which is outlined in Section 4.

2. Resource-Based Configuration

There exist a lot of methodologies that describe in which

way configuration problems can be tackled. Their ad-

equacy depends on the configuration task, the domain,

and, of course, the description of the single configura-

tion objects, called components. Especially when con-

figuring modular technical devices, resource-based con-

figuration is an important configuration methodology.

2.1. The Resource-Based Component Model

The resource-based component model establishes an ab-

straction level that reduces a domain to a finite set of

functionality-value-pairs. More precisely, all technical

properties that are relevant for the configuration process

form a set of resources, which are supplied or demanded

by the components [5].

E. g. when configuring a small technical device such

as a computer, one property of power supply units could

be their power output, and one property of plug-in cards

could be the cards’ power consumption. Both proper-

ties are reflected by the resource “power”: A power sup-

ply unit supplies some power value, while each plug-in

card demands some power value. Figure 2 depicts some

resource-based descriptions of computer components.

Note that dependency networks as shown in Figure 2

represent a simplified functional models of the domain.

Actually, resource-based configuration means the instan-

tiation and simulation of such a functional model.

The resource-based component model is suitable for

a configuration problem if the following conditions are

fulfilled:

• Structural information plays only a secondary role.
• The components can be characterized by resources

that are supplied or demanded.

Generating Heuristics to Control Configuration Processes 249

o

fo

Initial demand

f o supplies n units of functionality f

o demands n units of f

n

n

Board

Card B

RAM Extension

Mount placeSlot place

Power valueCard A

Box

Power
supply

1

2

4

1
1

8 1 1

2

20015

15

60

SCSI Interface

Fig. 2. Resource-based modeling of simple computer components.

• The components’ properties are combined in order

to provide the system’s entire functionality.

In the following we give a precise specification of the

simplified resource-based configuration problem and its

solution.1

Definition 2.1 (Configuration Problem). A simplified

resource-based configuration problem Π is a tuple 〈O,

F, P, D〉 whose elements are defined as follows.

1. O is an arbitrary, finite set. It is called the object set

of Π.

2. F is an arbitrary, finite set. It is called the function-

ality set of Π.

3. For each object o there is a property set, po, which

contains pairs (f, x), where f ∈ F and x ∈ Z, and

each functionality f ∈ F occurs at most once in po.

P = {po | o ∈ O} is comprised of these property

sets. A property set specifies the values of certain

functionalities of a given object.

4. D is an arbitrary, finite set of demands. Each de-

mand d is a pair (f, x), where f ∈ F and x ∈ Z,

and each functionality f ∈ F occurs at most once in

D. A demand set describes the desired properties of

the system to be configured.

The resource-based component model distinguishes

between supplied and demanded properties of the com-

ponents. This semantics is not reflected explicitly by the

objects’ property sets po, but can be modeled easily by

using positive and negative functionality values for sup-

plies and demands respectively.

Definition 2.2 (Configuration). Let Π = 〈O, F, P, D〉
be an instance of the above configuration problem. A

configuration C is a set of items of the form (o, k), stat-

ing that object o ∈ O is used k times in the configured

system. In analogy to an object’s property set, pC de-

notes the configuration’s property set, and its elements

are canonically defined as follows:

If (f, x) ∈ po, (o, k) ∈ C then (f, z) ∈ pC ,

with z =
∑

{ki · xi | (oi, ki) ∈ C ∧ (f, xi) ∈ poi
}.

Definition 2.3 (Solution). A configuration C is a solu-

tion of a configuration problem Π = 〈O, F, P, D〉 if and

only if for each demand d = (f, x) ∈ D there exists a

property (g, y) ∈ pC , such that f = g and x ≤ y.

2.2. Processing Resource-Based Descriptions

If there exists a configuration C that solves the resource-

based configuration problem, C can be determined with

the balance algorithm. This algorithm operationalizes a

generate-and-test strategy and has been implemented in

the configuration systems COSMOS, CCSC, AKON, and

MOKON [5, 8, 17, 14]. The generate part, controlled by

propose-and-revise heuristics or simply by backtracking

[10], is responsible for selecting both an unsatisfied func-

tionality f and a set of objects that supply f . The test part

simulates a virtual balance. A functionality (resource) is

called unsatisfied, if its supplied amount x is smaller than

its demanded amount y.

250 Stein

f1

f1 f2

o1 o2

...

o1 o2

...

...

Demands:

Supplies: {(f1, 4)}

{(f1, −6), (f2, −1)}

Balance

Fig. 3. Configuration situation after the first decision.

Basically, configuration works as follows. First, the

demand set of the virtual balance is initialized with all

demanded functionalities, and C is set to the empty set.

Second, with respect to some unsatisfied f , an object set

is formed; its related supplies and demands are added to

the corresponding functionalities of the balance, and C

is updated by the object set. Third, it is checked whether

all functionalities are satisfied. If so, C establishes a so-

lution of the configuration problem. Otherwise, the con-

figuration process is continued with the second step.

Consider a simple configuration problem where an ini-

tial demand set D = {(f1,−6)} is given. Two compo-

nents, o1 and o2, can be used to fulfill this demand; they

are defined in the following table:

Properties o1 {(f1, 2), (f2, 1)}
Properties o2 {(f1, 4), (f2,−1)}

After initialization, the balance has a single entry,

(f1,−6). Now the configuration algorithm has to choose

a component that fulfills the unsatisfied demand at prop-

erty f1. If we assume that component o2 is chosen, the

balance and the actually explored search space will look

as depicted in Figure 3.

Note that in the configuration situation of Figure 3,

both a decision regarding component selection and func-

tionality selection must be made. A solution of the

example is given with C = {(o1, 1), (o2, 1)} or with

C = {(o1, 3)}.

3. Speeding Up Balance Processing

Resource-based component models provide great knowl-

edge acquisition support since the configuration knowl-

o
1

fo

fo

o supplies f

o demands f

f6f1

o
2

o
3

o
4

f3

f2

Fig. 4. Object-functionality graph.

edge consists of local connections for the very most part

[12]. However, the basic balance processing algorithm is

of exponential time complexity.

In many real-world configuration problems the opti-

mum solution must be found for a given demand set D.

Hence, if no powerful heuristics are at hand that control

the functionality and component selection steps, merely

small configuration problems can be tackled by resource-

based configuration.

Functionality selection is related to the search space’s

total depth in first place; component selection affects the

effort necessary for backtracking. An “intelligent” strat-

egy within these selection steps is the major engine of

efficient balance processing [15].

In this connection the preprocessing idea comes into

play. By preprocessing the resource-based component

model, implicit knowledge relating a selection strategy

can be made explicit, e. g. in the form of an estimation

function. The following subsections outline preprocess-

ing techniques. The considerations are not of a purely

theoretical nature but have been operationalized within

the configuration system PREAKON [7].

3.1. Preprocessing Relating Functionality Selection

Consider the object-functionality graph in Figure 4. A

demand (f, x) ∈ D should only be processed, if all com-

ponents of the system that also need this functionality are

already determined. E. g., since component o3 supplies

nothing, it should be selected first, and while o1 demands

nothing, it should be selected last.

Obviously, the number of o’s instances required to sat-

isfy a functionality can be determined without backtrack-

ing, if o’s outdegree in the object-functionality graph is

Generating Heuristics to Control Configuration Processes 251

zero (on condition that the components selected and the

functionalities processed are deleted in the graph). Note

that the sequence of nodes we get by this procedure cor-

responds to a reversed topological sorting of the graph.

The order by which functionalities occur in this sorting

defines the succession by which unsatisfied functionali-

ties should be selected from the balance.

Remarks. Because a object-functionality graph g(V, E)
might contain cycles, all strongly connected components

of g must be detected first. This computation can be

done in O(|E|) for a connected directed graph [1]. Then,

given the strongly connected components, the condensed

graph can be constructed where each strongly connected

component is represented by one node.

3.2. Preprocessing Relating Component Selection

One example for a component selection strategy is the

following:

“To satisfy an open demand at functionality f ,

select from all components that supply f the cost

minimum one.”

In fact, such a local strategy is often too shortsighted.

Thus we are looking for a strategy that has global config-

uration knowledge compiled in. Such a strategy can be

operationalized by means of a function that computes a

reliable estimation of the follow-up costs bound up with

the selection of a particular component.

The subsequent simplifications are a reasonable com-

promise when constructing such an estimation function:

1. A configuration situation shall solely be character-

ized by those functionalities that are currently un-

satisfied.

2. A functionality shall only be satisfied by compo-

nents of the same type.

3. Components shall be regarded as suppliers of a sin-

gle resource.

Remarks. Point 1 neglects that unused resources in a par-

tial configuration may be exploited in a further course of

the configuration process. Point 2 neglects that a com-

bination of different components may constitute a more

adequate solution for an unfulfilled functionality than a

set of components of the same type. Point 3 neglects that

a component may supply several resources each of which

is demanded in the partial configuration.

Based on the above simplifications an estimation func-

tion h(o, f, n) for the computation of follow-up costs can

be directly constructed.2 f denotes the demanded func-

tionality, n denotes the amount to which f is demanded,

and o denotes a component that supplies f and that is

used to satisfy the open demand. We will construct h

within three steps:

1. Each component o has some “local” cost c(o), but

it also causes particular follow-up costs. Together

they make up a component’s total cost ct.

2. A component’s follow-up costs result from its de-

mands. More precisely: Let o be a component and

d(o) the demanded functionalities of o. Then, of

course, we would like each demand vd(o, g) of com-

ponent o at functionality g ∈ d(o) to be satisfied at

minimum costs. Note that all components that will

be selected to satisfy g entail follow-up costs on their

turn. I.e., if we selected a component o in order to

satisfy a required demand f , we would expect the

following total cost ct:

ct(o, f) := c(o) +
∑

g∈d(o)

min
ω∈o(g)

{ct(ω, g)} ,

where c(o) ∈ R+ is the local cost of component o,

d(o) the demanded functionalities of o, and o(f) are

components that supply f .

Note that the term for ct assumes that each required

demand can be satisfied by exactly one component.

This shortcoming is addressed within the next step.

3. A component o may require the functionality f to

an arbitrary amount vs(o, f) ∈ R+. Hence we in-

troduce a term that computes for a given amount n

at functionality f the number of components o that

are necessary to satisfy f :
⌈

n

vs(o, f)

⌉

Putting the pieces together results in an estimation

function h that computes for a component o and a de-

mand f at the amount of n the total costs:

h(o, f, n) :=

⌈

n

vs(o, f)

⌉

·



c(o) +
∑

g∈d(o)

min
ω∈o(g)

{h(ω, g, vd(o, g))}



 ,

where c(o) ∈ R+ is the local cost of component o, d(o)
the demanded functionalities of o, o(f) are components

252 Stein

that supply f , vs(o, f) ∈ R+ is the supply at functional-

ity f of component o, and vd(o, f) ∈ R+ is the demand

at functionality f of component o.

3.3. Configuration Example

Remember the example of Section 2 where a simple

knowledge base containing two components, o1 and o2,

and two functionalities, f1 and f2 was given. In this

place we elaborate on the same example, but we define

aside from the components’ properties also their local

costs c:

Properties po Local cost

o1 {(f1, 2), (f2, 1)} 100

o2 {(f1, 4), (f2,−1)} 10

According to the formula previously derived, h is de-

fined as follows:

h(o1, f1, n) =
⌈

n
2

⌉

· 100 (no follow-up costs)

h(o1, f2, n) = n · 100 (no follow-up costs)

h(o2, f1, n) =
⌈

n
4

⌉

· (10 + 100) (follow-up costs for f2)

h(o2, f2, n) = ∞ (f2 can never be satisfied by o2)

The demands at the system searched for are D =
{(f1,−6), (f2, 0)}. The resulting search tree is depicted

in Figure 5.

Remarks. The search tree is two-layered and consists of

two types of nodes. Filled nodes establish choice points

regarding the functionality to be satisfied next. The re-

lated balance is shown framed above the node. Outlined

nodes establish choice points regarding the component

to be selected next. The edges of the search tree are la-

beled with the configuration decisions. Below the actu-

ally selected components, put in parentheses, the estima-

tion function’s values are annotated.

The tree shows in which way the control information

of h is exploited. If alternative components are given

to satisfy an open demand, h defines an order by which

components shall be tried. In the example, component

o2 is chosen at the first choice point, while o1 is chosen

at the next. The earlier a solution is found, the earlier its

cost information c can be used to cut off partial config-

urations exceeding c. Note that h cannot be a function

that estimates a configurations total cost.

(300) (220)

(200) (110) (100) (110)

(100) (110) (200)

(100)

C=300 C=210

C=220

f1

o1

o1 o2 o1 o1 o2

o1 o2 o1

o1

f1 f2 f1

f1 f2

f2

Initial demands:

*C =110

{(f1, −6), (f2, 0)}

o2

{(f1, −4), (f2, 1)} {(f1, −2), (f2, −1)}

{(f1, −2), (f2, 2)} {(f1, 0), (f2, 0)} {(f1, 2), (f2, −2)}

{(f1, 0), (f2, 3)} {(f1, 3), (f2, 3)} {(f1, 4), (f2, −1)}

{(f1, 6), (f2, 0)}

Balance

Component selection

Functionality selection

Fig. 5. Search tree of the configuration example.

4. Application

The computation of h with respect to our example was

very easy. As argued earlier, h can neither be computed

precisely nor represented totally for real-world applica-

tions, since an exhausting search for all values in o, f ,

and n had to be performed.

The telecommunication application outlined below is

such a real-world application.

4.1. Configuration of Telecommunication Systems

The configuration of telecommunication systems is

grounded on technical know-how since the right boxes,

plug-in cards, cable adapters, etc. have to be selected

and put together according to spatial and technical con-

straints. Customer demands, which form the starting

point of each configuration process, include various tele-

phone extensions, digital and analog services, or soft-

ware specifications. Typically, there exist a lot of al-

ternative systems that fulfill a customer’s demands from

which—with respect to some objective—the optimum

has to be selected.

Generating Heuristics to Control Configuration Processes 253

Fig. 6. Graphical representation of a knowledge base of a Telenorma telecommunication system. Dashed lines represent supply dependencies, solid

lines indicate demand dependencies.

For this kind of domain and configuration problem the

resource-based component model establishes the right

level of abstraction: Technical constraints are allowed

to be reduced to a finite set of functionality-value-pairs,

which are supplied or demanded from the components.

To cope with their huge and increasing num-

ber of telecommunication system variants and to re-

duce the settling-in period for their sales personnel,

Bosch/Telenorma, Frankfurt, started along with our

working group the development of the resource-based

configuration system PREAKON [7]. Early versions of

PREAKON showed the necessity of a heuristic search

space exploration, if optimum configurations should be

found in an acceptable time when given realistic demand

sets D.

However, for the following reasons we refrained from

a manual integration of such heuristic control knowl-

edge:

1. Discussions with domain experts revealed that their

control knowledge often was contradictory and in-

complete.

2. The additional maintenance effort would have com-

plicated the configuration system’s introduction.

3. Each modification of the knowledge base (e. g. be-

cause of new components) could have invalidated

existing heuristics.

Instead, we pursued the concept presented in this

paper—the automatic generation of control knowledge

by means of preprocessing.

Order of Magnitude Background. A typical knowledge

base in this telecommunication application consists of

more than 100 components providing about 200 func-

tionalities; on average each component supplies and de-

mands 8 functionalities; and a configuration problem

usually starts with more than 20 initial functionalities

each of which representing a customer demand. Figure 6

shows a part of the graphical representation of a telecom-

munication knowledge base in the PREAKON configura-

tion system.

Clearly, an exact computation of the estimation func-

tion h is not possible here. As a way out, aside from the

simplifying assumptions already made, h can be approx-

imated in the following way:

Depending on both the functionalities, f ∈ F , and the

components, o ∈ O, bound the recursion depth of h by

some number k. If a search depth of k is reached while

the balance is still unsatisfied, an approximate value esti-

mating the remaining cost is assumed. Based on an eval-

uation in a few points, interpolate h.

These simplifications result in a family of O(|O| · |F |)
functions hof

(n), which can be evaluated at configura-

tion runtime.

254 Stein

Exactly this way estimation functions have been em-

ployed within PREAKON. The result was a significant

speed-up for realistic instances of Telenorma’s config-

uration problem; PREAKON was the first configuration

system at Telenorma that provided realistic means for

being used at the customer site. Technical details, an

evaluation, and a comparison of the outlined as well as

of related estimation functions can be found in [15].

4.2. Discussion

The estimation function h should not be seen as an ab-

solute search control for balance processing. However,

it establishes a useful heuristic that is based upon several

assumptions:

• A component’s occurrence in a configuration is not

constrained to a fixed number.
• There are no restrictions between the components

other than their supplies and demands.
• No user-defined constraints need to be considered.

Depending on both the actual configuration problem

and specialties of the domain, h can be improved or con-

structed according to other paradigms:

• Aside from a preprocessing that first selects a re-

source f and then decides which of the components

o is suited best, a combined consideration of f and

o is conceivable.
• Instead of computing an optimum estimation func-

tion with respect to single resources, it might be use-

ful to simultaneously consider particular combina-

tions of several resources.
• When bounding the recursion depth of h, it is useful

to predefine “obligatory” resources that need to be

satisfied in any case.

5. Summary

Each configuration process relies on a particular com-

ponent model, which realizes a useful abstraction of the

domain and the technical system to be composed. In

this paper we focused on the resource-based component-

model.

The resource-based component-model comes along

with important configuration benefits respecting knowl-

edge acquisition and knowledge maintenance. These

advantages are bought with a considerable increase in

knowledge processing cost. However, when taking a

look at configuration practice, we see domain experts

formulating heuristics that make resource-based config-

uration a working concept.

This observation has been picked up here. We de-

veloped the idea of a preprocessing related to resource-

based configuration problems, and we showed how it is

put into practice:

1. Off-line, within a preprocessing phase, heuristics

that control the configuration process are generated

automatically. These heuristics, which are encoded

in the form of estimation functions, give an approx-

imate estimate of the follow-up cost for each con-

figuration object o. The follow-up cost recursively

sum up o’s total cost consequences, if o is used in

the system to be configured.

2. Online, during the actual configuration process, this

heuristic control knowledge is used to guide com-

ponent selection, when several alternatives stand to

reason to satisfy an open demand.

A particular approximation of the estimation func-

tion was realized and evaluated for the configuration of

large telecommunication systems at Bosch/Telenorma,

Frankfurt. The operationalization of this kind of control

knowledge emerged to be the key factor for an efficient

configuration process.

Notes

1. Compared to the original definitions in [11], the definitions here are

weakened within the following respects:

(a) The value set of all functionalities is Z, (b) the only way to

combine two functionalities is the addition of their values, and (c)

supplies and demands are compared with the “≤”-operator.

Thus symbolic functionalities or sophisticated configuration con-

straints cannot be formulated straightforward. However, the defini-

tion reflects a great deal of the required modeling power for typical

resource-based configuration problems.

2. The estimation function discussed here was proposed and opera-

tionalized by D. Curatolo [6].

References

1. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data

Structures and Algorithms. Addison-Wesley, Massachusetts,

1983.
2. David C. Brown and B. Chandrasekaran. Design Problem Solv-

ing. Morgan Kaufmann Publishers, 1989.
3. R. Cunis, A. Günter, I. Syska, H. Peters, and H. Bode.

Plakon—An Approach to Domain-independent Construc-

tion. Technical Report 21, BMFT cooperation project, University

of Hamburg, Department of Computer Science, March 1989.

Generating Heuristics to Control Configuration Processes 255

4. John S. Gero. Design Prototypes: A Knowledge Representation

Scheme for Design. AI Magazine, 11:26–36, 1990.
5. M. Heinrich and E. W. Jüngst. A Resource-based Paradigm for

the Configuring of Technical Systems for Modular Components.

In Proc. CAIA ’91, pages 257–264, 1991.
6. Hans Kleine Büning, Daniel Curatolo, and Benno Stein. Config-

uration Based on Simplified Functional Models. Technical Re-

port tr-ri-94-155, University of Paderborn, Department of Math-

ematics and Computer Science, 1994.
7. Hans Kleine Büning, Daniel Curatolo, and Benno Stein.

Knowledge-Based Support within Configuration and Design

Tasks. In Proc. ESDA ’94, London, pages 435–441, 1994.
8. T. Laußermair and K. Starkmann. Konfigurierung basierend auf

einem Bilanzverfahren. In 6. Workshop “Planen und Konfiguri-

eren”, München, FORWISS, FR-1992-001, 1992.
9. Mary Lou Maher. Process Models for Design Synthesis. AI Mag-

azine, pages 49–58, 1990.
10. Sandra Marcus and John McDermott. Salt: A Knowledge Ac-

quisition Language for Propose-and-Revise Systems. Artificial

Intelligence, 39:1–37, 1989.
11. Oliver Najmann and Benno Stein. A Theoretical Framework of

Configuration. In Proc. IEAAIE ’92, Paderborn, 1992.
12. Benno Stein. Functional Models in Configuration Systems. Dis-

sertation, University of Paderborn, Department of Mathematics

and Computer Science, 1995.
13. Benno Stein and Daniel Curatolo. Model Formulation and Con-

figuration of Technical Systems. In Jürgen Sauer, Andreas Gün-

ter, and Joachim Hertzberg, editors, 10. Workshop “Planen und

Konfigurieren”, Bonn, volume 3 of Proceedings in Artificial In-

telligence, ISBN 3-92037-97-1, 1996.
14. Benno Stein and Jürgen Weiner. Model-based Configuration. In

OEGAI ’91, Workshop for Model-based Reasoning, 1991.

15. Martin Sueper. Effiziente Lösungsstrategien für ressourcenorien-

tierte Konfigurierungsprobleme. Diploma thesis, University of

Paderborn, Department of Mathematics and Computer Science,

1994.

16. Christopher Tong. Towards an Engineering Science of

Knowledge-based Design. Artificial Intelligence in Engineering,

2(3):133–166, 1987.

17. Jürgen Weiner. Aspekte der Konfigurierung technischer Anlagen.

Dissertation, Gerhard-Mercator University of Duisburg, Depart-

ment of Computer Science, 1991.

Benno Stein is researcher in the Knowledge-based Systems

Group at the Department of Mathematics and Computer Sci-

ence, University of Paderborn. He conducts research in both

knowledge-based analysis and synthesis tasks, focusing on the

automation of complex design problems. His special field

of research is the operationalization of engineering know-how

within model formulation problems.

Dr. Stein has received degrees from the Universities of Karl-

sruhe and Paderborn.

⋆ Reworked and extended version of a conference paper originally published at the 11th IEA/AIE, 1998.

