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Abstract Knowledge that quantifies the similarity between complex objects
forms a vital part of problem-solving expertise within several knowledge-
intensive tasks. This paper shows how implicit knowledge about object similari-
ties is made explicit in the form of a similarity measure.
The development of a similarity measure is highly domain-dependent. We will
use the domain of fluidic engineering as a complex and realistic platform to
present our ideas. The evaluation of the similarity betweentwo fluidic circuits
is needed for several tasks: (i) Design problems can be supported by retrieving
an existing circuit which resembles an (incomplete) circuit description. (ii ) The
problem of visualizing technical documents can be reduced to the problem of
arranging similar documents with respect to their similarity.
The paper in hand presents new approaches for the construction of a similarity
function: Based on knowledge sources that allow for an expert-friendly knowl-
edge acquisition, machine learning is used to compute an explicit similarity func-
tion from the acquainted knowledge.
Keywords. Machine Learning, Knowledge Acquisition, Case-Based Reasoning

1 Introduction

This paper addresses a key aspect within various knowledge-based analysis and synthe-
sis tasks: The construction of a measure that adequately models the similarity between
two problem instances. This may be the similarity between two documents within a
document retrieval task, the similarity between two cases within a case-based reason-
ing task, or a similarity assessment between two points in a graph when working on a
visualization task.

When given two problem instances, a domain expert is in a position to assess the
similarity between these instances with respect to a problem solving task in hand. It is
a question of high importance, and it is the central questionof this paper how this part
of an expert’s problem-solving expertise can be elicited and made explicit.

In its general form, a set of objects (problem instances),O, is given, where each
object is described by a set of featuresx1, . . . xn. The similarity between two objectsx
andy is taken to assess the usability of a solution of instancex as a solution for instance
y. Usability can be stated a-posteriori only while the similarity between two objects can
be stated immediately [14]. The quantification of the concept usability by means of the
similarity between two feature vectors shows the crucial importance that comes up to
the computation of the features.

In the following, the similarity between two objectsx and y is designated by a
relation “sim” wheresim(x, y) determines a value from the interval[0; 1]. The larger
is the value ofsim the more similar arex andy to each other.
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1.1 Where Similarity Measures Come from

A similarity measure establishes a particular form of knowledge, which—using AI
terminology—can be acquainted from some source. An often applied concept to elicit
similarity knowledge is the interview of domain experts: “Are these two problem in-
stances,x andy, similar?” “What are the significant features that makex andy simi-
lar?” “To which extent arex andy similar?”

These sample questions make problems of the concept “knowledge acquisition by
questioning” obvious. On the one hand, it is hard for the domain expert to give quantifi-
able answers, while on the other hand, it is hard for the knowledge engineer to access
the quality of these answers.

Note that a similarity measure can also be constructed from other knowledge
sources; for instance from the knowledge that is encoded within an existing object
classification [21]. Obviously, each classification implies knowledge about feature rel-
evance and feature similarity with respect to the classifiedobjects. Given such a knowl-
edge source, methods from the field of machine learning can beused to transform im-
plicit knowledge on object similarities into an explicit similarity measure.

In Section 4, we will concentrate on three different knowledge sources where clas-
sification knowledge can appear in:

1. Partial Similarity Quantification.Similarity assessments are known for only a sub-
set ofO × O, which is called the learning set here.

2. Partitioning ofO. The knowledge on object similarity is encoded through the di-
vision of (a subset of)O into equivalence classes respecting particular similarity
aspects.

3. Graphical Similarity Specification.The knowledge on object similarity is encoded
within geometric distances of a 2-dimensional plot.

The development of a similarity measure is highly domain dependent. Hence we
will introduce a particular domain from which the object setO is drawn and which will
serve as realistic example throughout the paper. This domain is the domain of fluidic
engineering.

2 Using Similarity Measures in Fluidic Engineering

Similarity measures can be used for those tasks in fluidic engineering that are not treated
at a deep, physical level of behavior but at the much more abstract level of function.
At this level, the complex physics of a fluidic circuit is reduced to a set of features
which characterizes the circuit’s usability to fulfill a desired function. The following
list outlines tasks that are solved at an abstract functional level.

– Functional Analysis.Check whether two fluidic systems are similar with respect to
their intended operation [22].

– Fluidic System Design.Construct a new fluidic system by coupling together already
designed units (fluidic axes) from different systems [20,9].

– Document Retrieval.Query a database for diagrams of fluidic systems that are sim-
ilar with respect to a given set of demands.
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The model of fluidic function as specified in Definition 1 establishes the knowledge
level at which the mentioned tasks are solved. Subsection 3.2 shows in which way this
functional model is encoded as a feature vector for fluidic circuit objects.

Taken an engineer’s point of view, the gist of a model of fluidic function consists
of a set of state variables,FX , along with the discrete state prescription function,∆.
Each state variable inFX represents a subfunction of a fluidic axis;∆ characterizes the
behavior of the fluidic axes by means of the working phases of the output units, which
are cylinders in most cases.

Definition 1 (Model of Fluidic Function). LetS be a fluidic system. A model of fluidic
function ofS is a discrete event model〈FX , FY , X , Y, ∆, Λ〉 whose elements are
defined as follows.

1. FX is the set of state variables. Each state variable corresponds one-to-one to a
fluidic axis inS and defines the phases that can be adopted by this axis. Hence,
|FX | is the total number of axes inS. FY is the set of output variables, defining
the positions, the velocities, and the pressures at the working elements within the
fluidic axes.

2. The setsXf andYf designate the domains of the variablesf in FX andFY respec-
tively. Likewise,X designate the Cartesian product of the state variable domains,
andY designate the Cartesian product of the output variable domains.

3. ∆ : R+ → X is the discrete state prescription function and specifies the phase
transitions of a model of fluidic function. Given a point in time,t ∈ R+, ∆ deter-
mines a vector of phases.

4. Λ : X × R+ → Y is the output function. Given a vector of phases,x ∈ X , and a
point in time,t ∈ R+, Λ determines an output vector,y ∈ Y.

F1 , x1 , v1 , p1 F2 , x2 , v2 , p2

A1 A2

Figure 1.Hydraulic circuit with two axesA1, A2. F1, F2, x1, x2, v1, v2, p1, andp2 designate the
forces, positions, velocities, and pressures respectively that are necessary to define a functional
model of the circuit.

Example.The example specifies the functional model of the fluidic system in Figure 1.
The shown circuit contains two axes each of which having three states, say, phases.

1. Variables.FX = {P1, P2}, FY = {x1, x2, v1, v2, p1, p2}, F = FX ∪ FY .
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2. Domains.XP1
= XP2

= {constant-drive-in, constant-drive-out, fast-drive, null-
phase, hold-pressure}, Yf = R+, f ∈ {x1, x2, p1, p2}, Yv1

= Yv2
= R.

3. State Prescription.∆ : R+ → XP1
× XP2

. Given an absolute point in timet, the
function∆ is given in Table 1 (left-hand side).

Table 1. State prescription (left-hand side) and output function (position-time diagrams, right-
hand side) of the hydraulic axes,A1, A2.

t P1 P2

[0; 1.6) constant-drive-out null-phase
[1.6; 3.2) constant-drive-in hold-pressure
[3.2; 4.0) null-phase fast-drive
≥ 4.0 null-phase null-phase

null-phase

constant-drive-out constant-drive-in




null-phasehold-pressure

null-phase

x (m)

A2

A1

t (s)2.0 4.5 5.5

fast-driveA2

A1

4. Output Function.Typically, the output function is represented by means of differ-
ent graphs which show the courses of the positions, velocities, or pressures at the
working elements for a particular input. The right-hand side of Table 1 shows the
phase transitions and position-time diagrams for a particular input.

Remarks.The abstraction from a physical behavior model, which is grounded on contin-
uous time, towards a functional model, which is event-based, can be done automatically.
For this, the state prescription function of the continuoustime model is simulated and
investigated with respect to intervals of stationary velocity. However, the development
of such an abstraction is not discussed in this place.

3 Learning Similarity Measures

Since any automatic comparison between fluidic drawings themself is hardly possible,
an abstract circuit description has to be found. The functional model developed in Sec-
tion 2 captures the abstract aspects of fluidic drawings thatare also used by an expert to
assess circuit similarities.

The subject of this section is the application of learning methods to the construc-
tion of similarity measures. These algorithms bridge the gap between implicit expert
knowledge about circuit similarities and explicit similarity functions.

In order to apply machine learning, the functional model hasto be encoded into a
so-called feature vector. A feature vector is a list of values describing an system. For
instance,〈Smith, James, 1967, 85 kg〉 is a feature vector describing a person.

3.1 On Similarity Measures in General

Much work has been done in the last decades on similarity measures; good overviews
can be found in [16,7,12,23,15]. A common similarity measure is the simple weighted
linear similarity function. Let(f (1)

1 , . . . , f
(1)
p ), (f

(2)
1 , . . . , f

(2)
p ), p ∈ N be two feature

vectors. Then the simple weighted linear similarity measure is defined as:
∑

1≤i≤p

wi · (f
(1)
i ⊖ f

(2)
i ), wi ∈ R
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The definition of the operator⊖ depends on the feature’s type:

– Cardinal.We call a features cardinal if and only if all values of the feature are real
numbers. Typical cardinal features are height, temperature, or distances. Values of
cardinal features can be added, subtracted, multiplied, and divided and the result is
still a reasonable value for the feature. For cardinal features,x ⊖ y is normally de-
fined as|x− y|, i. e. the simple weighted linear similarity measure can be rewritten

as
∑

1≤i≤p wi · |f
(1)
i − f

(2)
i |, wi ∈ R.

– Nominal.Nominal values can only be compared with respect to equality. Name
or profession of a person are nominal features. If a nominal feature has only two
possible values (e. g. gender of a person), it is called a binary feature. For nominal
features,x, y, the following definition is often used [24]:

x ⊖ y =

{
0, if x = y

1, otherwise

Note that learning such functions means finding values for the parameterswi. More
complex distance functions have been examined by the authors in [21].

3.2 A Similarity Measure for Fluidic Systems

As described in Section 2, each fluidic systemS can be reduced to a functional model.
In accordance with [9,22], the similarity between two hydraulic systems,S1, S2, is
defined using the similarities between individual axes in the respective circuits:

sim(S1, S2) =
∑

A1∈A1

max{simaxes(A1, A2) | A2 ∈ A2}

whereA1 denotes the axes ofS1, A2 denotes the axes ofS2, simaxes denotes a func-
tion measuring the similarity between two axes, and|A1| ≤ |A2| holds.

For two axes,A1, A2, the similarity functionsimaxes(A1, A2) is defined by the
function sim(f(A1), f (A2)) wheref (Ai) denotes a vector of cardinal features de-
scribingAi, i. e. f (Ai) ∈ Rm, i = 1, 2. In the following text, the simple weighted
linear similarity functionsim(f(A1), f (A2)) =

∑m

i=1 wi · |f
1
i − f2

i | is used.
The feature vector of fluidic axes,f(A), which is necessary to compute the simi-

larity between two fluidic circuits,S1, S2, can directly be extracted from the functional
models ofS1 andS2. Each axis is described by two types of features: (i) phase descrip-
tions and (ii ) phase orders. These groups of features are defined as follows.

(i) Phase Descriptions.Phases are classified into the categoriesconstant-drive, po-
sition-drive, hold-position, accelerate, fast-drive, hold-pressure, and press; each
category in turn is characterized by 6 features:
1. How many phases of the specific category exist in the respective axis?
2. How long (in seconds) is the duration of the phase ?
3. Which distance (in mm) is covered by the working element?
4. Which force (in Newton) is applied to the working element?
5. How precisely must the axis work? This is a value from[0; 1] that defines the

acceptable deviations from the duration, the distance, andthe force.
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(ii ) Phase Orders.These 49 featuresford
i,j , 1 ≤ i, j ≤ 7 capture the order of the phases.

For example,ford
1,2 is the number of times a phase of category1 (constant-drive) is

directly followed by a phase of category2 (position-drive).

Together, the feature vectorf(A) for an axisA is of the following form:

f(A) =
(

(phase descriptionconstant-drive), (phase descriptionposition-drive),
(phase descriptionhold-position), (phase descriptionaccelerate),
(phase descriptionfast-drive), (phase descriptionhold-pressure),

(phase descriptionpress), (phase orders)
)T

Related to the example from Page 3, the feature vectors for the axesA1 andA2 are
given as follows.

f(A1) =
(

(2, 1.6, 500, 300, 0.8), (), (), (), (), (), ()
︸ ︷︷ ︸

phase descriptions

, (1, 0, . . . , 0)
︸ ︷︷ ︸

phase orders

)T

f(A2) =
( ︷ ︸︸ ︷

(), (), (), (), (1, 0.8, 500, 0, 0.6), (1, 1.6, 500, 2000, 0.8), (),

(0, . . . , 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
︸ ︷︷ ︸

phase orders

)T

3.3 Methods for Constructing Similarity Measures

Existing methods for constructing similarity measures canbe divided into two main
classes: (i) Methods that employ reinforcement-learning and (ii ) algorithms that rely on
statistical analysis for the main part.

Reinforcement-learning methods predict a similarity value and ask the user or a
different system to rate the prediction. Based on this rating the weightswi are adjusted.
Statistical methods analyze given examples and deduce appropriate weights. Table 2
lists representatives of well known methods; more examplescan be found in [4,1,19].

Table 2.Selected existing methods for the construction of similarity measures.

Name Type Remarks Literature
EACH reinforcement-learning extra parameters needed [17]
RELIEF reinforcement-learning binary weights [13]
CCF statistical only binary features [6]
GM-CDW statistical [11]

These methods have in common that the knowledge acquisitionstep (how to obtain
the necessary knowledge from an expert) and the learning step (finding appropriate
values for the weightswi) are not treated separately. Our approach, which is described
in the next section, differentiates between these two steps.

Combining the knowledge acquisition step and the learning step entails several
problems:

– Since the expert is integrated into such methods in a predefined manner, no flexi-
bility is granted in the way the knowledge is obtained. Henceadditional knowledge
sources cannot be tapped.
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w1=1.45

w2=0.02

w3=0.4

...

f(A1), f(A2), sim(f(A1), f(A2))

f(A3), f(A4), sim(f(A3), f(A4))

f(A5), f(A6), sim(f(A5), f(A6))

...

Step1: 

Knowledge

Acquisition

Step 2: 

Learning

Knowledge

source

Figure 2. The general framework for the construction of similarity measures.

– Although the methods mentioned in Table 2 rely on standard learning paradigms
such as reinforcement learning, they do not apply standard learning algorithms
such as regression or neural networks but employ proprietary algorithms. While for
standard learning algorithms advantages and disadvantages have been examined,
almost nothing is known about the proprietary algorithms.

– Verifying a combined method is difficult since learning problems cannot be distin-
guished from knowledge acquisition problems.

3.4 A General Framework

Figure 2 shows the general framework for constructing similarity measures used in this
paper: Two main steps are identified, a knowledge acquisition step and a learning step.
This separation allows for the usage of both different acquisition methods and different
learning methods to obtain the necessary information from an expert. The first step
always results in a set of feature-vector-pairs whose similarity is known (see Figure 2),
e. g.{(A1, A2, sim(f(A1), f(A2))), (A3, A4, sim(f(A3), f (A4))), . . .}

The second step uses the rated vector pairs and applies a supervised learning strat-
egy to find values for the weightswi. For our applications both regression and neural
networks have been used. Note that only a small but typical set of objects, the learning
set, is used for learning purposes.

4 Knowledge Acquisition

In Section 3, the definition of similarities between fluidic circuit has been reduced to
the problem of finding similarities between fluidic axes. Finding such similarities poses
a knowledge acquisition problem, because experts have the necessary knowledge only
implicitly. When asked to express their knowledge about axes similarities explicitly as
a mathematical function, most experts are overstrained.

Below, three methods that tackle the knowledge acquisitionproblem are presented.
The methods differ from each other in the explicitness of theunderlying knowledge
source.

4.1 Knowledge Source 1: Partial Similarity Quantification

This technique is quite simple: The expert assesses the similarity of m axes pairs which
are presented to him, e. g. on a scale from0 to 10. These assessments are used to learn
a similarity measure which then is used to compute the similarity betweenn, n ≫ m,
pairs of axes.
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Exploiting this knowledge source has disadvantages:
– If m axes are used to build the measure, the expert has to ratem2

2 −m object pairs.
– The similarities have to be comparable; i. e., the expert hasto decide whether object

A is more similar to objectB then objectC toD. Such decisions turn out to be quite
difficult.

In the field of statistics, the problem of assessing object similarity is well known.
Most methods,1 such as ranking, free sorting, or anchor stimulus, rely on a user who de-
fines all object similarities. Hence, no learning or abstraction mechanisms are applied.

4.2 Knowledge Source 2: Partitioning the Set of Objects

For this method the expert has to classify the axes. Two axes are similar if and only
if they belong to the same class. LetA = {A1, . . . , An} be the set of axes and let
c : A → C be the classification function, whereC comprises the set of possible classes.
The classification functionc is specified by the domain expert. Then the similaritysim

is defined as follows.

∀A1,A2,∈A : sim(f(A1), f(A2)) =

{
1, if c(A1) = c(A2)
0, otherwise

Reasonable classes, for example, areC = {manipulation, press, hold} or C =
{high-pressure, low-pressure, fast-drive}.

The main disadvantage bound up with this knowledge source isthat a partitioning,
say, a disjunctive classification, is sometimes difficult tobe stated. The advantages of
this knowledge source are:

– n classifications definen
2

2 similarities.
– Domain experts have few problems in classifying fluidic axes.

Although in the learning set only the similarity values0 and1 are given, learning
algorithms like regression result in similarity measures that can yield any similarity
value from the interval[0; 1]. This is because the given data is abstracted by the learning
algorithms.

4.3 Knowledge Source 3: Graphical Similarity Specification

The method presented now demands a minimum of explicit knowledge. The expert is
asked for an exemplary visualization of his understanding of the similarity between
objects. By means of a computer, this visualization is abstracted towards a graph, from
which a similarity measure is computed. No additional knowledge is demanded from
the expert, i. e., this method can always be applied.

Again letA = {A1, . . . , An} be the set of axes. The expert manually defines a
layout by specifying a functionρ : A → N × N, which defines a two-dimensional
position for each axis. The similarity of two axesA1, A2 is defined by:

sim(f(A1), f (A2)) = −||A1, A2||2

where||x, y||2 denotes the Euclidean distance between the positions ofx andy.

1 Good overviews can be found in [2,5].
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The following points distinguish this knowledge source from the previous one:

– The graphical definition of similarities is closer to the mental model of the user than
is the definition of a classification functionc.

– By placingn objects,n
2

2 similarities are defined.

A difficulty of the graphical similarity specification is that by placing one axis,
the distances ton − 1 other objects must be taken into account. To simplify this layout
problem, only object distances up to certain maximum distance are considered. For this,
the layout is clustered in a first step, say, groups of closelyrelated objects are identified.

5 Learning and Results

Input for the learning step (cf. Figure 2) was a set of rated axes pairs{(A1, A2,

sim(f(A1), f (A2))), (A3, A4, sim(f(A3), f(A4))), . . .}, which was used to find
values for the weightswi of the similarity functionsim(f(A1), f (A2)) =

∑m
i=1 wi ·

|f1
i − f2

i |. Learning was done by applying least-square regression andby means of
neural networks. Details can be found in [3,18,25,10].

The acquisition methods described in Subsection 4.2 (knowledge source 2) and 4.3
(knowledge source 3) have been implemented and applied to the learning of similarity
measures for fluidic axes.

– Knowledge Source 2.67 fluidic axes were classified into 9 classes by a domain ex-
pert. Using the method described on Page 8, a similarity measure was constructed.
The error rate was defined as the percentage of axes pairs whose similarity was
assessed incorrectly by the learned measure. The error rateon the learning set2

was 12%, while the error rate on a test set3 was 16%. Obviously, a good similarity
measure has been constructed.

– Knowledge Source 3.A graphical arrangement of circuit documents, which has
been proposed by the domain expert, was analyzed and similarity measures were
constructed. To evaluate the quality of the learned measures the Mean Square Error
(MSE) was used:

√
∑

Ai,Aj

(simt(Ai, Aj) − sime(Ai, Aj))2,

Ai and Aj denote fluidic axes,simt denotes the similarity as predicted by the
learned similarity measure, andsime denotes the empirical similarity measure de-
fined by the manual layout. On a test set, an MSE of0.22 has been achieved. All
similarity values are from the interval[0, 1], hence the MSE defines an average
variation from the correct similarity. I. e., also with thisknowledge source a good
similarity measure could be constructed.

2 The learning set comprised axes pairs used for the learning process.
3 The axes pairs in the test set have not been used for the learning process.
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