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Abstract Knowledge that quantifies the similarity between complejecis
forms a vital part of problem-solving expertise within seteknowledge-
intensive tasks. This paper shows how implicit knowledgeulobject similari-
ties is made explicit in the form of a similarity measure.

The development of a similarity measure is highly domaipefelent. We will
use the domain of fluidic engineering as a complex and realgatform to
present our ideas. The evaluation of the similarity betwem fluidic circuits
is needed for several tasks$) Design problems can be supported by retrieving
an existing circuit which resembles an (incomplete) cirdaiscription. if) The
problem of visualizing technical documents can be reducethé problem of
arranging similar documents with respect to their simtjari

The paper in hand presents new approaches for the constrgitia similarity
function: Based on knowledge sources that allow for an eéxfpendly knowl-
edge acquisition, machine learning is used to compute dicgimilarity func-
tion from the acquainted knowledge.

Keywords. Machine Learning, Knowledge Acquisition, Case-Based Beaiag

1 Introduction

This paper addresses a key aspect within various knowlbeged analysis and synthe-
sis tasks: The construction of a measure that adequatelglmtite similarity between
two problem instances. This may be the similarity betweem documents within a
document retrieval task, the similarity between two casilsinva case-based reason-
ing task, or a similarity assessment between two points irmplgwhen working on a
visualization task.

When given two problem instances, a domain expert is in aipodio assess the
similarity between these instances with respect to a prolglving task in hand. It is
a question of high importance, and it is the central quesifahis paper how this part
of an expert’s problem-solving expertise can be elicited made explicit.

In its general form, a set of objects (problem instanc€s)is given, where each
object is described by a set of featurgs. . . x,,. The similarity between two objecis
andy is taken to assess the usability of a solution of instanag a solution for instance
y. Usability can be stated a-posteriori only while the simifyabetween two objects can
be stated immediately [14]. The quantification of the comcspbility by means of the
similarity between two feature vectors shows the cruciglontance that comes up to
the computation of the features.

In the following, the similarity between two objecisandy is designated by a
relation “sim” where sim(z, y) determines a value from the intervél 1]. The larger
is the value ofsim the more similar are andy to each other.
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1.1 Where Similarity Measures Come from

A similarity measure establishes a particular form of krenge, which—using Al
terminology—can be acquainted from some source. An oft@liexpconcept to elicit
similarity knowledge is the interview of domain expertsréAthese two problem in-
stancesg andy, similar?” “What are the significant features that makandy simi-
lar?” “To which extent are: andy similar?”

These sample questions make problems of the concept “kdgelacquisition by
guestioning” obvious. On the one hand, itis hard for the daregpert to give quantifi-
able answers, while on the other hand, it is hard for the kadgé engineer to access
the quality of these answers.

Note that a similarity measure can also be constructed frtmerdknowledge
sources; for instance from the knowledge that is encodeklinvan existing object
classification [21]. Obviously, each classification implieowledge about feature rel-
evance and feature similarity with respect to the classdlgdcts. Given such a knowl-
edge source, methods from the field of machine learning carsée to transform im-
plicit knowledge on object similarities into an explicitlarity measure.

In Section 4, we will concentrate on three different knowjedources where clas-
sification knowledge can appear in:

1. Partial Similarity QuantificationSimilarity assessments are known for only a sub-
set ofO x O, which is called the learning set here.

2. Partitioning of O. The knowledge on object similarity is encoded through the di
vision of (a subset ofp into equivalence classes respecting particular simylarit
aspects.

3. Graphical Similarity SpecificatiorThe knowledge on object similarity is encoded
within geometric distances of a 2-dimensional plot.

The development of a similarity measure is highly domaineshelent. Hence we
will introduce a particular domain from which the object 6eis drawn and which will
serve as realistic example throughout the paper. This dormdahe domain of fluidic
engineering.

2 Using Similarity Measures in Fluidic Engineering

Similarity measures can be used for those tasks in fluidimeeging that are not treated
at a deep, physical level of behavior but at the much moreatidevel of function.
At this level, the complex physics of a fluidic circuit is redhd to a set of features
which characterizes the circuit’s usability to fulfill a desl function. The following
list outlines tasks that are solved at an abstract fundtiewal.

— Functional AnalysisCheck whether two fluidic systems are similar with respect to
their intended operation [22].

— Fluidic System DesigiConstruct a new fluidic system by coupling together already
designed units (fluidic axes) from different systems [20,9]

— Document RetrievaQuery a database for diagrams of fluidic systems that are sim-
ilar with respect to a given set of demands.
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The model of fluidic function as specified in Definition 1 edisties the knowledge
level at which the mentioned tasks are solved. Subsectiat®ws in which way this
functional model is encoded as a feature vector for fluidicuif objects.

Taken an engineer’s point of view, the gist of a model of floiflinction consists
of a set of state variable$;y, along with the discrete state prescription functigh,
Each state variable if'x represents a subfunction of a fluidic axi$characterizes the
behavior of the fluidic axes by means of the working phasebebttput units, which
are cylinders in most cases.

Definition 1 (Model of Fluidic Function). Let S be a fluidic system. A model of fluidic
function of S is a discrete event modéFx, Fy, X, Y, A, A) whose elements are
defined as follows.

1. Fx is the set of state variables. Each state variable corregjgarme-to-one to a

fluidic axis in.S and defines the phases that can be adopted by this axis. Hence,

|Fx| is the total number of axes ifi. Fy is the set of output variables, defining
the positions, the velocities, and the pressures at the wgridements within the
fluidic axes.

2. The setXy andY designate the domains of the variabjesm Fx and Fy respec-
tively. Likewise X designate the Cartesian product of the state variable domai
and) designate the Cartesian product of the output variable dosma

3. A: Rt — X is the discrete state prescription function and specifiesphase
transitions of a model of fluidic function. Given a point imé,t € R+, A deter-
mines a vector of phases.

4. A: X x Rt — Y is the output function. Given a vector of phasess X, and a
pointin time,t € R*, A determines an output vectgr,c ).

4 [Eflmpl AEL[‘ETEZ’_X;VZM
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Figure 1. Hydraulic circuit with two axesA, As. F1, F»>, x1, x2, v1, v2, p1, andp. designate the
forces, positions, velocities, and pressures respegtihelt are necessary to define a functional
model of the circuit.

ExampleThe example specifies the functional model of the fluidiceaysin Figure 1.
The shown circuit contains two axes each of which havingetstates, say, phases.

1. Variables.Fxy = {Pl,PQ}, Fy = {:L'l,xg,vl,vg,pl,pg}, F=FxUPFy.
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2. Domains.Xp, = Xp, = {constant-drive-in, constant-drive-out, fast-drive, Inul
phase, hold-pressufeY; = R, f € {z1,22,p1,p2}, Y, =Ys, = R.

3. State PrescriptionA : Rt — Xp x Xp,. Given an absolute point in time the
function A is given in Table 1 (left-hand side).

Table 1. State prescription (left-hand side) and output functioos{fion-time diagrams, right-
hand side) of the hydraulic axed;, A-.

Ay |constant-dri\/e-out|constant-dr\ve-in| null-phase |

t P1 P2 Azl null-phase hold-pressure |fast-drive null—phasel

[0;1.6) constant-drive-out null-phase x(m) ‘ ‘ ‘
[1.6; 3.2) constant-drive-in hold-pressure A
[3.2;4.0) null-phase fast-drive
>4.0 null-phase null-phase A, /\

2.0 45 55 t(s)

4. Output FunctionTypically, the output function is represented by means fiédi
ent graphs which show the courses of the positions, vedscitir pressures at the
working elements for a particular input. The right-handesid Table 1 shows the
phase transitions and position-time diagrams for a pdsti¢aoput.

RemarksThe abstraction from a physical behavior model, which isigaed on contin-
uous time, towards a functional model, which is event-bas@abe done automatically.
For this, the state prescription function of the continutie® model is simulated and
investigated with respect to intervals of stationary viéjo¢tiowever, the development
of such an abstraction is not discussed in this place.

3 Learning Similarity Measures

Since any automatic comparison between fluidic drawings#edf is hardly possible,
an abstract circuit description has to be found. The funetionodel developed in Sec-
tion 2 captures the abstract aspects of fluidic drawingsaiteadilso used by an expert to
assess circuit similarities.

The subject of this section is the application of learninghuods to the construc-
tion of similarity measures. These algorithms bridge the lgatween implicit expert
knowledge about circuit similarities and explicit simitgrfunctions.

In order to apply machine learning, the functional modelfoelse encoded into a
so-called feature vector. A feature vector is a list of valdescribing an system. For
instance(Smith, James, 1967, 85kés a feature vector describing a person.

3.1 On Similarity Measures in General
Much work has been done in the last decades on similarity unessgood overviews
can be found in [16,7,12,23,15]. A common similarity meadarthe simple weighted

linear similarity function. Let £, ... £V), (@, ..., £*),p € N be two feature
vectors. Then the simple weighted linear similarity meassidefined as:

Z w;j -+ (fi(l) S fi(Q))vwi eR

1<i<p
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The definition of the operat@p depends on the feature’s type:

— Cardinal. We call a features cardinal if and only if all values of thetéea are real
numbers. Typical cardinal features are height, tempesaturdistances. Values of
cardinal features can be added, subtracted, multiplietidasided and the result is
still a reasonable value for the feature. For cardinal festu: © y is normally de-
fined asz — y|, i. e. the simple weighted linear similarity measure candveitten
asy, < wi | — 7], wi € R.

— Nominal.Nominal values can only be compared with respect to equaiiyne
or profession of a person are nominal features. If a nomeetufre has only two
possible values (e. g. gender of a person), it is called apieature. For nominal
featuresy, y, the following definition is often used [24]:

_Jojifz=y
roY= {1, otherwise

Note that learning such functions means finding values ®ptrameters,;. More
complex distance functions have been examined by the auitih§i21].

3.2 A Similarity Measure for Fluidic Systems

As described in Section 2, each fluidic syst8man be reduced to a functional model.
In accordance with [9,22], the similarity between two hydia systems,S,, Ss, is
defined using the similarities between individual axes eréspective circuits:

sim(S1,S2) = Z max{siMmages(A1, A2) | A2 € As}
Ae Ay

whereA; denotes the axes ¢f;, .A> denotes the axes 6k, simq..s denotes a func-
tion measuring the similarity between two axes, aAd| < |.A-| holds.

For two axes,A;, Az, the similarity functionsimg,.s(A1, A2) is defined by the
function sim(f (A1), f(A42)) where f(A;) denotes a vector of cardinal features de-
scribing 4;, i.e. f(A;) € R™,i = 1,2. In the following text, the simple weighted
linear similarity functionsim(f (A1), f(A2)) = >0", w; - | f} — f?|is used.

The feature vector of fluidic axeg,(A), which is necessary to compute the simi-
larity between two fluidic circuits$y, Sz, can directly be extracted from the functional
models ofS; andS,. Each axis is described by two types of featurgpliase descrip-
tions and i) phase orders. These groups of features are defined asgollow

(i) Phase DescriptionsPhases are classified into the categodesstant-drive, po-
sition-drive, hold-position, accelerate, fast-drive,lti@ressure and press each
category in turn is characterized by 6 features:

1. How many phases of the specific category exist in the réispeaxis?

2. How long (in seconds) is the duration of the phase ?

3. Which distance (in mm) is covered by the working element?

4. Which force (in Newton) is applied to the working element?

5. How precisely must the axis work? This is a value friorr ] that defines the
acceptable deviations from the duration, the distancettantbrce.
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(i) Phase OrdersThese 49 featureﬁ?jrd, 1 < ,j < 7 capture the order of the phases.
For exampleff?gd is the number of times a phase of categbfgonstant-drivgis
directly followed by a phase of catega2y(position-drive.

Together, the feature vectgi{ A) for an axisA is of the following form:

f(A) = ( (phase descriptiononstant-drive, (phase descriptioposition-drive),
(phase descriptiohold-positior), (phase descriptioacceleratg,
(phase descriptiofast-driveg, (phase descriptiohold-pressurg,
(phase descriptiopress, (phase ordeljs)T

Related to the example from Page 3, the feature vectorsdantasd; and A, are
given as follows.

f(A1) = ( (2,1.6,500,300,0.8),(),0), 0,0, 0,0, (1,0,...,0) )T
phase descriptions phase orders

F(A2) = (0,0,0,0,(1,0.8,500,0,0.6), (1, 1.6, 500, 2000, 0.8), (),
(0,...,0,1,0,0,0,0,0,0,0,0,0) )"

phase orders

3.3 Methods for Constructing Similarity Measures

Existing methods for constructing similarity measures bardivided into two main
classes:ij Methods that employ reinforcement-learning aipalgorithms that rely on
statistical analysis for the main part.

Reinforcement-learning methods predict a similarity eatind ask the user or a
different system to rate the prediction. Based on this gdtie weightsy; are adjusted.
Statistical methods analyze given examples and deduceagie weights. Table 2
lists representatives of well known methods; more examgaese found in [4,1,19].

Table 2. Selected existing methods for the construction of sintijarieasures.

Name Type Remarks Literature
EACH reinforcement-learning extra parameters needed [17]
RELIEF reinforcement-learning binary weights [13]
CCF statistical only binary features [6]
GM-CDW statistical [11]

These methods have in common that the knowledge acquisti@n(how to obtain
the necessary knowledge from an expert) and the learnimg(8teding appropriate
values for the weights);) are not treated separately. Our approach, which is destrib
in the next section, differentiates between these two steps

Combining the knowledge acquisition step and the learnteg entails several
problems:

— Since the expert is integrated into such methods in a preztefiranner, no flexi-
bility is granted in the way the knowledge is obtained. Hemdditional knowledge
sources cannot be tapped.
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Step1: (AL, (), S?m(szl)E(Az)) wi=1.45
Knowledge —» |knowledge | => f(Aq). T(A4), sim(f(Ag), A1) —> —> W=0.02
source w3=0.4

Acquisition f(As), f(Aq), sim(f(As), f(Ag))

Figure 2. The general framework for the construction of similarityaseres.

— Although the methods mentioned in Table 2 rely on standaarhlag paradigms
such as reinforcement learning, they do not apply standsarhing algorithms
such as regression or neural networks but employ propyiatgorithms. While for
standard learning algorithms advantages and disadvanteye been examined,
almost nothing is known about the proprietary algorithms.

— Verifying a combined method is difficult since learning plerhs cannot be distin-
guished from knowledge acquisition problems.

3.4 A General Framework

Figure 2 shows the general framework for constructing sirityf measures used in this
paper: Two main steps are identified, a knowledge acquissiep and a learning step.
This separation allows for the usage of both different asitjah methods and different
learning methods to obtain the necessary information fronexpert. The first step
always results in a set of feature-vector-pairs whose aiitylis known (see Figure 2),
e.9.{(A1, Az, sim(f(A1), f(A2))), (As, Ay, sim(f(As), F(A4))), .-}

The second step uses the rated vector pairs and appliesisegddearning strat-
egy to find values for the weights;. For our applications both regression and neural
networks have been used. Note that only a small but typi¢aifsebjects, the learning
set, is used for learning purposes.

4 Knowledge Acquisition

In Section 3, the definition of similarities between fluidiccait has been reduced to
the problem of finding similarities between fluidic axes.dtitg such similarities poses
a knowledge acquisition problem, because experts havestteseary knowledge only
implicitly. When asked to express their knowledge abousasimilarities explicitly as
a mathematical function, most experts are overstrained.

Below, three methods that tackle the knowledge acquisfiroblem are presented.
The methods differ from each other in the explicitness ofuhderlying knowledge
source.

4.1 Knowledge Source 1: Partial Similarity Quantification

This technique is quite simple: The expert assesses thiastyof m axes pairs which
are presented to him, e. g. on a scale fioto 10. These assessments are used to learn
a similarity measure which then is used to compute the siityilaetweenn, n > m,
pairs of axes.
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Exploiting this knowledge source has disadvantages:
— If m axes are used to build the measure, the expert has té%ﬁatem object pairs.
— The similarities have to be comparable; i. e., the expertddscide whether object
Ais more similar to objecB then object” to D. Such decisions turn out to be quite
difficult.

In the field of statistics, the problem of assessing objeutlarity is well known.
Most methods,such as ranking, free sorting, or anchor stimulus, rely osea who de-
fines all object similarities. Hence, no learning or absteecmechanisms are applied.

4.2 Knowledge Source 2: Partitioning the Set of Objects

For this method the expert has to classify the axes. Two axesimilar if and only

if they belong to the same class. Ldt = {A;,..., A,} be the set of axes and let
¢ : A — C be the classification function, whefecomprises the set of possible classes.
The classification functionis specified by the domain expert. Then the similasity:

is defined as follows.

Vay, as.ea: sim(f(Ar), f(Ag)) = {1, if (A1) = c(As)

0, otherwise

Reasonable classes, for example, @re= {manipulation, press, holdor ¢ =
{high-pressure, low-pressure, fast-drjve

The main disadvantage bound up with this knowledge sourtetsa partitioning,
say, a disjunctive classification, is sometimes difficulbtostated. The advantages of
this knowledge source are:

— n classifications defin@i similarities.
— Domain experts have few problems in classifying fluidic axes

Although in the learning set only the similarity valuésnd1 are given, learning
algorithms like regression result in similarity measutest tcan yield any similarity
value from the intervgD; 1]. This is because the given data is abstracted by the learning
algorithms.

4.3 Knowledge Source 3: Graphical Similarity Specification

The method presented now demands a minimum of explicit kedge. The expert is
asked for an exemplary visualization of his understandihthe similarity between
objects. By means of a computer, this visualization is alotd towards a graph, from
which a similarity measure is computed. No additional kremgle is demanded from
the expert, i. e., this method can always be applied.

Again let A = {A;,...,A,} be the set of axes. The expert manually defines a
layout by specifying a functiop : A — N x N, which defines a two-dimensional
position for each axis. The similarity of two axds, A, is defined by:

sim(f (A1), f(Az2)) = —|[A1, Azl
where||z, y||2 denotes the Euclidean distance between the positiongntly.

! Good overviews can be found in [2,5].
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The following points distinguish this knowledge sourcenrthe previous one:

— The graphical definition of similarities is closer to the rte@model of the user than
is the definition of a cl2assification functien
— By placingn objects,- similarities are defined.

A difficulty of the graphical similarity specification is thaéy placing one axis,
the distances ta — 1 other objects must be taken into account. To simplify thyla
problem, only object distances up to certain maximum distare considered. For this,
the layoutis clustered in a first step, say, groups of closthted objects are identified.

5 Learning and Results

Input for the learning step (cf. Figure 2) was a set of ratedsapairs{(A;, As,
sim(f (A1), f(A42))), (As, A4, sim(f(As), f(A4))), ...}, which was used to find
values for the weights); of the similarity functionsim(f (A1), f(A2)) = >, w; -
|f1 — f?|. Learning was done by applying least-square regressiorbgndeans of
neural networks. Details can be found in [3,18,25,10].

The acquisition methods described in Subsection 4.2 (kenbge source 2) and 4.3
(knowledge source 3) have been implemented and appliec tednning of similarity
measures for fluidic axes.

— Knowledge Source B7 fluidic axes were classified into 9 classes by a domain ex-
pert. Using the method described on Page 8, a similarity aneagas constructed.
The error rate was defined as the percentage of axes pairewsimgarity was
assessed incorrectly by the learned measure. The erroomatiee learning sét
was 12%, while the error rate on a test’sgas 16%. Obviously, a good similarity
measure has been constructed.

— Knowledge Source 3A graphical arrangement of circuit documents, which has
been proposed by the domain expert, was analyzed and stynitaeasures were
constructed. To evaluate the quality of the learned meashesMean Square Error
(MSE) was used:

D (simt(A;, Aj) — sime(A;, Aj))?,
Ai,Aj

A; and A; denote fluidic axessim’ denotes the similarity as predicted by the
learned similarity measure, arédn® denotes the empirical similarity measure de-
fined by the manual layout. On a test set, an MSB.02 has been achieved. All
similarity values are from the intervdl), 1], hence the MSE defines an average
variation from the correct similarity. 1. e., also with thieowledge source a good
similarity measure could be constructed.

2 The learning set comprised axes pairs used for the learmoupgs.
% The axes pairs in the test set have not been used for theriggrrocess.
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