

Model Construction
in Analysis and Synthesis Tasks

Habilitation Thesis

Benno Maria Stein

Dept of Mathematics and Computer Science University of Paderborn

Contents

[Prefacel

I__Framework
(1__Models and More|

[1.1 Motivation and Disambiguatigﬂ

1.2 Model Construction (I

1.3 S;gn‘_thgsjsTgskd RN

[1.4 The AI Point of View

17
21

25
26
35
39
42

59
61
65
71
77

iii

iv

CONTENTS

IL_Case Studies 87
[A_Model Simplification 89
[A.1_Case-Based Designin Fluidicd 91
[A2_Structure Synthesis in Chemical Engineering 109
[B_Model Compilation 123
[B.1_Generating Control Knowledgd 124
[B.2_Flattening Deep Models for Diagnosis Purposed 138
[C_Model Reformulation| 159
i igital Structures 160

ni imilarity Measured 180

D M | Envisionin 193
in 1 lationforLANY 194

intainin ledgeBased 208

D.3 Analyzing the Structure of Fluidic Sgstemd 220

[References

231

Preface

This thesis is on the automation of knowledge-intensive tasks.

The term “task” can be further narrowed with respect to analysis tasks and syn-
thesis tasks in engineering domains. To the former we count classification problems,
simulation problems, or diagnosis problems; to the latter we count configuration
problems, design problems, or planning problems. Each of these problems may en-
tail problems in turn, relating to knowledge acquisition, solution assessment, or hy-
pothetical reasoning—to mention only a few. We call the tasks knowledge-intensive
because either a problem solving method is not at hand and must be constructed at
first, or, we do not know which of the available methods should actually be applied.

The term “automation” comprises a wide spectrum of interpretations. Ideally,
task automation means to us that we can abandon the human engineering factor in
the course of problem solving. However, in practice, a computer-based automation
is restricted to selected aspects of the task in question: simulation, decision support,
expert critiquing, model construction, search in synthesis spaces, visualization, etc.
The focus of the thesis in hand lies on model construction.

Automating engineering tasks means working in an interface area: Even if we
restricted ourselves to a single, particular diagnosis or design problem, knowledge
and methods from various fields would have to be combined in a skillful way.

Of course, this situation makes the automation of knowledge-intensive tasks both
an exciting challenge and an artistic discipline. However, this situation also makes a
text that is concerned with this interface area vulnerable from positions of the fields
that it touches: Engineering design (207), method engineering (285), systems engi-
neering and design (305, 310), object-oriented modeling and simulation (38), software
engineering (88), artificial intelligence (230,/203), knowledge-based methods for anal-
ysis and synthesis (214, 257). Starting from a pure engineering field and going to the
field of artificial intelligence, own fundamentals and theories have been developed
which cannot be integrated to their full extent, or whose latest developments may
not be adopted within an interdisciplinary text.

This thesis is written from the position of a computer scientist and artificial intelli-
gence researcher, however, with the intention to come—in the intersecting areas—as
close as possible to engineering terminology and way of thinking. The thesis may
be useful for computer scientists who are concerned with interdisciplinary problem

vi

PREFACE

solving, say, who work in a close cooperation with engineers or domain experts on
the automation of analysis and synthesis tasks.

The Starting Point Our starting point is characterized as follows. We are given
either a system, S, or a set of systems, S, along with a shortcoming of information
about S or §. From the viewpoint of a domain expert, the underlying models of S
and S are well defined, and the question that is to be answered can be formulated in
a definite way—for example:

e Which component is broken in S? (diagnosis ~ analysis)
e How does S react on the input u? (analysis)

e Does a system with the desired functionality exist in S? (synthesis)

If these analysis and synthesis questions shall be answered automatically, both
adequate algorithmic models along with the problem solving expertise of the human
problem solver must be operationalized on a computer. In this context, the construc-
tion of an adequate model often establishes the actual challenge when tackling the
problem. That is the place where this thesis sets in.

Contributions

Model construction (model creation, model formulation, model finding, model build-
ing) is an artistic discipline, which highly depends on the reasoning job to be done.
Model construction can be supported by means of a computer, and we investigate
selected aspects from this field; the theoretical and conceptual contributions of this
thesis can be grouped as follows.

o Classification of Existing Work to Automated Modeling. We classify existing ap-
proaches to model construction with respect to their position in the model hier-
archy. Nearly all of the existing methods support a top-down procedure of the
human modeler; they can be characterized as being either structure-defining
(top), structure-filling (middle), or structure propagating (down).

o Model Construction from a Metamodel Perspective. Domain experts or knowledge
engineers seldom start from scratch when constructing a new model; instead,
they develop an appropriate model by modifying an existing one. Following
this observation, we analyzed the projects on which we have worked (or are
still working) from a metamodel perspectiveﬂ We classify the found model
construction principles as follows: Model refinement, model simplification,
model compilation, model reformulation, and model envisioning.

1A metamodel is a model of the modeling process itself; it is closely related to metamodeling:
“By metamodeling, we imply a process of design carried out at the metalevel, by which we define how
the process of modeling (at the lower level) is to be carried out.” (Gigch, 93, pg. 92).

PREFACE

While model simplification and model refinement establish rather known prin-
ciples to tackle analysis and synthesis problems in technical domains, the other
principles have not been characterized in a generic form. In this context, we
introduce model envisioning as a problem solving method which implies no
constructional mission—we use it as a collective term for methods that prepare
structure models in a graphical way in order to provide insights or to simplify
the access when dealing with large systems.

o Modeling Knowledge on Structure. The aforementioned model construction prin-
ciples can be subsumed under the term “system morphism”, which was em-
ployed by [Wymore and extended by |Zeigler et al! (305, [310). With the intro-
duction of so-called design graph grammars we make an instrument available
to describe system morphisms with the focus on structure models.

Design graph grammars are an advancement of classical graph grammar ap-
proaches and have been developed with a close look at expressiveness and
applicability in engineering domains. They serve as an efficient concept to cre-
ate and to manipulate structure models of technical systems when working on
synthesis tasks. In particular, they can be used as a formal tool to quantify the
quality of automatically generated solutions for a synthesis problem.

Since design graph grammars provide a precise semantics for the structural
modification a model undergoes during its simplification or transformation,
they are used throughout the case studies of Part II as a formal description
methodology.

Aside from the above conceptual considerations, each of the case studies in Part II
establishes a contribution on its own in the field of knowledge-based problem solv-
ing. In the style of a paper title from|Falkenhainer and Forbus, the case studies could
be summarized under the motto “Constructing the Right Model for the Job”B The fol-
lowing results may be emphasized.

e Chapter [Alintroduces the paradigm of functional abstraction—a generic pro-
cedure to tackle complex synthesis problems. Put it overstated, the paradigm
says: At first, we construct a poor solution of a design problem, which then
must be repaired.

e Section[ATl(model simplification) shows how the paradigm of functional ab-
straction is successfully applied in the fluidic domain. Besides, this section
contributes some aspects to the field of case-based reasoning.

2“Compositional Modeling: Finding the Right Model for the Job” (Z1). The article presents con-
cepts and strategies to automatically construct a “useful model” when given three things:
A general domain theory, a structural description of a specific system, and a query about
the system’s behavior. [Falkenhainer and Forbus'work addresses the problem of answering
a query while minimizing extraneous detail.

vii

viii

PREFACE

Section B.Jl (model compilation) presents a preprocessing concept to speed up
the method of resource-based configuration. This way it becomes possible to
combine the user-friendly (local) resource-based modeling method with the
efficiency of a global, variant-based configuration strategy.

Section [B.2] (model compilation) exploits the idea of fault models of the GDE+
(275) to generate tailored heuristic diagnosis models from first principles. Our
approach overcomes some problems of model-based diagnosis approaches,
which are caused by long interaction paths and feedback structures in the sys-
tem of interest.

Moreover, this section presents a domain-independent measure to assess the
diagnosability of a technical system S. This measure relies on an information-
theoretical interpretation of a database with simulation results of S.

Section [C.1] (model reformulation) shows how a synthesis scheme for the de-
sign of wave digital structures is operationalized on a computer. Our approach
is based on the triconnected component algorithm of[Hopcroft and Tarjan (111))
and leads to a linear time procedure (in the number of the electrical circuit ele-
ments). It is optimum with respect to both the synthesized structures and the
runtime.

Section (model reformulation) addresses the construction of a similarity
measure from a classified collection of objects. At heart, we pick up [Richter’s
argumentation: Similarity knowledge is distributed over the containers vocab-
ulary, similarity measure, case base, and solution transformation, where each
container is able to contain all available knowledge (223).

Chapter[Dl demonstrates how model envisioning is applied as a powerful rea-
soning concept. We present three applications each of which exploits envi-
sioning in a different connection: As model formulation aid for computer net-
works, to simplify the understanding and maintenance of knowledge bases,
and for the functional analysis of fluidic systems.

Section [D.1] (model envisioning) introduces a new measure to detect “natural”
structures in graphs. The measure is called A, it is based on a graph’s con-
nectivity, and a maximization of a graph’s A-value leads to clustering results
superior to existing graph clustering algorithms.

Moreover, the heuristic algorithm MAJORCLUST is presented that maximizes
the weighted partial connectivity A. Our experiments show that MAJORCLUST
outperforms the well-known clustering approaches with respect to both run-
time and clustering results.

PREFACE

Thesis Structure

The thesis is organized into two parts. Part I presents general and theoretical aspects
of model construction; Part I is comprised of the case studies that are concerned with
the operationalization of knowledge-intensive tasks.

Part] Framework Chapter[Tlstarts with a short discussion on models and model
construction; in particular it relates the term “model”, which is coined by the con-
ception of system analysis, to the term “model space” that is to be seen in connec-
tion with synthesis tasks. Main contributions of this chapter are Section [[.2]and [I.3]
which address the question of how model construction can be supported by means
of a computer.

Chapter P presents a framework for the description of models for modular tech-
nical systems. The framework is powerful enough to become applied to a variety of
domains and modeling scenarios; however, a great deal of attention has been paid to
keep it as clear and simple as possible.

Our view to models and model construction is oriented at structure and behavior;
and, by specifying the concepts of locality, causality, and no-function-in-structure, the
interweaving of structure and behavior becomes quantifiable.

In particular, Section 2.4] introduces, isolated from a specific problem and a con-
crete domain, the five different model construction principles mentioned above.

Chapter [3 is devoted to design graph grammars. It starts with an introduc-
tion and motivation around structure model manipulation and then develops design
graph grammars as an appropriate means for this objective.

The use of design graph grammars is connected to various theoretical issues,
which are addressed in the last two sections of this chapter. They examine the re-
lationship of design graph grammars to classical graph grammars and present issues
concerning the application of graph grammars in structure analysis and system de-
sign.

Partll Case Studies The case studies presented in Part Il have been selected from
our research activities. Of course, they should not be regarded as a representative
spectrum with respect to model construction in analysis and synthesis tasks. On the
other hand, especially against the background that recipes for the operationalization
of a model construction principle can hardly be stated, the realized implementations
may serve as a pool of ideas when tackling new analysis and synthesis tasks.

To work out common ground and differences between the mentioned construc-
tion principles, the models in the case studies (that stem from different domains and
applications) are formalized in a unique manner. In a way, this involves a descrip-
tion of a model under a structural point of view, under a behavioral point of view, or
under both.

ix

Moreover, each case study comes along with the same set up: It starts with a
(hopefully) illustrative outline of the respective task. Then follow four subsections;
the first of which contains a formal specification of the underlying models while the
last subsection recapitulates the case study in brief outlines.

Clearly, different readers have more or less previous knowledge regarding a case
study’s underlying domain theory, problems, or methods. We tried to make up for
this situation by a consistent problem formulation, which, however, may be too suc-
cinct or too long winded, as the case arises.

Instead of a Conclusion

Within each of the case studies a conclusion may be drawn against the background
of the domain in question. Nevertheless, if we had to draw a comprising conclusion
it would express the considered opinion that a powerful model construction support
is possible. But, we cannot expect that there is a recipe for constructing adequate
models automatically.

The success of a diagnosis or design approach depends on the underlying prob-
lem space—say, its size, and the way it is explored. A tractable problem space is
in first place the result of adequate models, which in turn are the result of a skillful
selection, combination, and customization of existing construction principlesﬁ

3The statement is in accordance with|Tolvanen's observations, who has investigated modeling
tools for incremental method engineering (285).

Part |

Framework

Models and More

Numerous definitions, explanations, and introductions have been formulated about
the term model. However, the reader may not be anxious that an exhaustive dis-
cussion of this term is given here. Instead, I will start with my favorite definition,
which stems from Minsky, and bring in extensions, different interpretations, as well
as additional explanations at the appropriate places.

“To an observer B, an object A* is a model of an object A to the extent
that B can use A* to answer questions that interest him about A.”

Minsky, (1965, pg. 45

In this thesis
o the interesting objects, A, are technical systems,

e the observer, B, is a domain expert who works on a problem solving task from
the field of analysis, such as a diagnosis task, or synthesis, such as a design
task,

o the questions are embedded in a ternary way; they relate to the technical sys-
tem, to the problem solving task, and to the domain expert,

o the models, A*, are exactly that whatIMinsky has pointed out above.

Before we start talking on model construction, we go back one step and clarify
in the next section, [T} purpose and meaning of models. Main contributions of this
chapter are Section [[.2Z]and [[.3] which discuss how the construction of models and
model spaces can be supported, and which develop a classification scheme for the
various types of model construction approaches. Finally, Section [L4] outlines con-
tact points and differences of our work in respect to developments from the field of
Artificial Intelligence.

MODELS AND MORE

1.1 Motivation and Disambiguation

Models are the essential element within the human ability to reason about systems. A
system, S, can be considered as a clipping of the world and has, as its salient property,
a boundary. On account of this boundary, it can be stated for each object of the world
whether or not it is part of sl As quoted at the outset, the purpose of a model is to
answer questions about a system of interest. The process of developing a model for
a system is called model formation, model creation, or modeling.

In the following we shed light on this process and motivate why models can be
used to answer questions about systems.

Our starting point is characterized as follows. We are given a system S along
with a shortcoming of information about S. In the case that S represents a technical
device this information may relate to an open question about the behavior of S, or
about the probability that S will be break down when being run with overload, or
simply—about the cost of S.

Answers to such questions can be found by performing tailored experiments with
S. Such experiments comprise purposeful excitations of S while accurately observ-
ing its reactions or modifications, which are called behavior here. By interpreting a
system’s behavior, answers to the question of interest may be found (see Figure[l.T]
which is derived from Goldschmidt (97, pg. 3)).

[Syseem] + [Questor

Figure 1.1. Experimentation as a concept to eliminate information deficits relating to a system.

Clearly, experimenting with a system is not possible if the open questions are of a
hypothetical nature and relate to an, up to now, non-existing system. As well as that,
even if a system S exists, several reasons may forbid experimentation with S. Some
of them are: The experiment cannot be set up at all, the system’s reactions are too
slow and too fast respectively to become observed, the experiment is too expensive
or too risky to be executed, or the experiment’s influence onto the system cannot
be accepted. Jeffers (124), Cellier (37, pg. 10), or Murray-Smith (190, pg. 13) present
discussions of these problems.

Given such a situation, a way out is the creation of a model M from the system S
and then to execute the experiment on M (see Figure[[.2)). Performing an experiment
on a model is called simulation since Korn and Wait (see (150) quoted in Cellier (37,
pg. 6))-

As depicted in Figure[I.Zl a model does not depend on the system as the only
source of information but is formed purposefully, in close relation to the question

LThis characterization of the term system is derived from (Gained’s definition (87), which, like
other definitions, can be found in the well written introduction of |Cellie’s book on continu-
ous system modeling (37).

1.1 MOTIVATION AND DISAMBIGUATION

| System |+ |Question|

- J
—~—

Model
formation
terpretation

Figure 1.2. Simulation as a concept to eliminate information deficits relating a system.

of interest and/or the experiment to be performed on it. |Cellierl and Minsky count
the experiment as a vital part of each model formation process.—Note however, that
the interesting question may imply the instructions for the experiment, or the exper-
imental frame as called by Zeigler (309, 310), and hence, the experiment may not be
a mandatory source of information within the model formation process. Under the
problem-solving view of Artificial Intelligence this is standard practice: The interest-
ing questions (diagnosis or planning problems) prescribe the problem representation
(the model) and yet the problem-solving method (the “simulation” algorithm) (214).

Model
formation ¢ Model M

\

Figure 1.3. On the equivalence of system behavior, 85, and model behavior, 5.

Prerequisite for the use of models when reasoning about a system is that the func-
tions depicted in Figure[I.3]can be instantiated such that the following relation holds.

Bs = t(a(9(5)))

MODELS AND MORE

where
Bs behavior of the system S,

@ formation of a model M for the system S,
a simulation (analysis) of the model M,
T transfer of the model behavior 3, onto the system S.

Recall that the validity of the above relation cannot be of a generic nature for a
system S; the functions 7, &, and ¢ are developed in compliance with the interesting
question for S.

Creating Models of Technical Systems

Giving the gist of what Kowalk said, a system is a spatio-temporally closed and logi-
cally interconnected unit (152, pg. 27). A system, and in particular, a technical system
consists of elements, called subsystems, and relations. The relations divide into in-
ternal relations, which connect subsystems, and external relations, which connect
subsystems and objects beyond the system boundary, that is, objects from the envi-
ronment.

Both subsystems and relations are characterized by attributes, called variables.
Variables that do not change over time are called parameters; time-depending vari-
ables that are necessary to prescribe the system behavior are called states.

Variables that characterize external relations divide into input variables and out-
put variables. Input variables are extraneous; they act from the environment on the
system and modify the system’s states. Input variables and state variables deter-
mine the system’s output variables, which in turn affect the environment. Systems
form modular building blocks: By unifying input and output variables of different
systems, systems can be coupled to form a new system. The boundary of the new
system is defined by the input and output variables that have not been unified.

Creating a model of a technical system S means to shape its underlying concept
or idea—a process that is first of all mental, and that always involves three major
steps.

(1) Identification of the system’s boundary = black-box model.
(2) Identification of the subsystems and relations of S = structure model.

(8) Characterization of constraints between the variables of the subsystems and
relations = behavior model.

Identifying a system’s boundary, Step[I] relates to the focusing. In the field of en-
gineering, focusing is realized among others by the well-known Method of Sections.
Identifying a system’s structure, Step [relates to the modeling granularity. Within
this step, the system’s parameters along with its input, output, and state variables

1.1 MOTIVATION AND DISAMBIGUATION

are defined. Characterizing a system’s behavior, Step[3 relates to the modeling accu-
racy or fidelity. Both modeling granularity and modeling fidelity define the modeling
deepness, which is directly connected to the model’s complexity./Goldschmidt writes
in this connection:

“A model must render only those properties of a system that are
necessary to answer the question of interest.”

Goldschmidt, 1996, pg. 6

Note that a concise formulation of a question allows the use of a specialized
model, which in turn is bound up with the risk that this model cannot be used to
answer related questions. This tradeoff renders the creation of “adequate” models an
artistic discipline.

The outlined model shaping steps happen in our mind, and a model at this stage
is called a mental model.|Gentner and Stevens argue that a mental model describes the
way people understand some domain of knowledge (seel91,[17).

To communicate a mental model it must be given a representation. A mental
model becomes representational as a physical or material model by craftsmanship.
A mental model becomes representational as a symbolic or formal model by devel-
oping a prescription for the constraints, which are characterized in the third model
formation step. Figure [classifies models with respect to their representational
form.

~
Mental model Physical model Symbolic model

N\

Scale model Graphical model
Iconic model Mathematical model

Analogical model Verbal model

Figure 1.4. Classification of models with respect to their representational form.

Important physical models are scale models, iconic models, and analogical mod-
els. Scale models are investigated as part of an artificial environment, and scale-up
knowledge or similarity rules are used to reason about the behavior of the system.
Iconic models are used for illustrative purposes in first place. Analogical models
exploit analogies between different scientific disciplines.

Important symbolic models are graphical models, mathematical models, and ver-
bal models. Graphical models show subsystems along with their relations; they rep-

MODELS AND MORE

resent a structure model of the system. Examples are fluidic or electrical diagrams,
signal-flow graphs, bond-graph diagrams, and mechanical structure sketches. Math-
ematical models comprise the total set of constraints that are defined over the sys-
tem’s variables. In connection with technical systems mathematical models are also
called behavior models (39,154). Verbal models describe a system by means of textual
information.

Remarks. Using the representational form of a model establishes the most familiar
approach to model classification. However, other approaches to classification exist;
they rely upon the model purpose and differentiate between explanation models,
optimization models, and forecasting models (121, 206), upon the model accuracy
and differentiate between quantitative models and qualitative models (23,143), upon
the number of inputs and outputs, or upon the type of the behavior specification
(253, pg. 147). The unified modeling perspective that is presented in Section
is grounded on the distinction between structural and behavioral information con-
tained in models.

1.2 Model Construction (I)

We use the term model construction as a collective term for all kinds of processes
where a given model is transformed into another model. Model construction takes
very different forms. The most common situation where we encounter model con-
struction is the transformation of an abstract model, which is close to the human un-
derstanding, into a computer model, that is to say, a program. The execution of this
program represents an experiment at a symbolic model, and hence is a simulation

A model construction process that maps a model M onto a less abstract model
is also called top-down model construction, model synthesis, or model instantiation
(151); it is strongly related to system analysis (143). Model construction processes
that work bottom-up are not treated here; they play an important role in reverse
engineering and identification tasks (cf.1310, pg. 12).

The transformation of a mental model into a computer model usually happens
in several steps wherein intermediate models are constructed: a structure model, a
behavior model, and an algorithmic model (see Figure [.5] which shows a modified
version of Wallaschek’s presentation (293)).

Typically, the human designer materializes his mental model as a textual or
graphical structure model, for instance as a drawing or a diagram representation
of the system S. The structure model, which defines subsystems and relations of S,
becomes a behavior model of S by specifying a behavior prescription for each subsys-
tem. Since behavior descriptions are often defined in a mathematical form, behavior

%In Section[2.3, Page[4Q, a precise and more generic specification of the term “simulation” in
connection with mathematical models is given.

1.2 MODEL CONSTRUCTION (I)

High abstraction
9 : | Mental model |

Interpretation of the
l concrete model in terms
of the abstract model.

| Structure model

l

| Behavior model |

l

| Algorithmic model |

Low abstraction

| Computer model |

Figure 1.5. A hierarchy of models. Top-down model construction means to map abstract models
onto less abstract models. Final objective is the operationalization of the mental model in the
form of a computer program.

models are also designated as mathematical models (293). In the majority of cases
the behavior model must be prepared with respect to the simulation algorithms em-
ployed. This step includes the introduction of a causal order for the behavior equa-
tions, the normalization of behavior equations, or other algebraic operations. The
specification of an algorithmic model within a computer language or a simulation
language like ACSL (185) yields a computer model.

Remarks. Moving down the model hierarchy means going in structure-to-behavior
direction and is a process of increasing concretization. Model construction processes
of this type resemble|Zeigler et al.’s so-called association mappings (cf.|310, pg. 295).
Note that model construction needs not to be a vertical process; the next but one
subsection, starting on Page[IT] shows that model construction can also be a mapping
between models at the same level.

Model Construction Support

To support model construction many approaches have been developed. Most of them
are top-down; they aim at a reduction of the distance between abstract models and
less abstract models. Ideally, a mental model should be translated automatically into
a computer program.

10

MODELS AND MORE

(1)| System | + |Questi0n|

A

J

Mental model

@
Behavior model ®3) [Behavior model

Algorithmic model
Computer model

I

Figure 1.6. The shaded areas indicate the three major places at which top-down model con-
struction is supported (from left to right): System boundaries and relevant phenomena, model
deepness and model coherence, model synthesis and model processing.

Top-down approaches in the field of model construction belong to one of the
following three classes, which are also illustrated in Figure[L.d

@

@

System + Question — Mental Model — Structure Model. Support at this place
relates to the model construction steps [Iland P stated on Page [l Creating
a mental model includes the problem of phenomena selection, which in turn
is closely connected with the problem of identifying adequate system bound-
aries. Note that no sharp line may be drawn between mental models and
graphical structure models (293).

Known representatives are: The model fragment idea for the organization of
phenomena by Nayak and [Fikes et all (193, 194, 195, [75), the reasoning on hy-
pothetical scenarios for the determination of system boundaries by Rickel and
Porter (225), the CFRL paradigm from lwasaki and I.evy that maps from func-
tion onto behavior (118,119,1287), the approaches to ontological reasoning from
Sasajima et al. (235) or Liu and Farley (163), the case-based design approaches
that map from demand specifications onto technical devices (96, 154, [169).

Structure Model — Behavior Model. Support at this place relates to the model
construction steps Pland Bl stated on Pagelél Creating a behavior model means
to select and compose local behavior models from a given domain theory ac-
cording to a structural description of a systemE

Known representatives are: The model composition approach developed
by [Falkenhainer and Forbus and its variants (71, 27), the graphs of models

3In Section Page B1] a definition of local behavior models is given.

1.2 MODEL CONSTRUCTION (I)

paradigm from|Addanki et all (5,191)), the use of model hierarchies in the field
of diagnosis (4, 40,1276)), the selection of local behavior models with respect to
the desired accuracy for predefined phenomena (279).

(8) Behavior Model — Algorithmic Model + Computer Model. Support at this place
relates to one of the following tasks: Synthesis of an algorithmic model from
a given set of local behavior models, generation of normal forms required for
numerical algorithms, behavior model processing.

Known representatives are: Continuity and compatibility constraint introduc-
tion as realized in FLUIDSIM and standardized in MODELICA (65, 38), task-
oriented selection of efficient numerical procedures (47), symbolic manipula-
tion of equation systems such as BLT-partitioning or automatic tearing (164),
minimum coordinate determination in kinematics computations, coherent syn-
thesis of local behavior models (120, [101, [160, 259), automation of Jordain’s
principle as realized in AUTOLEV (129, 2).

Remarks. The operationalization of model construction knowledge at the mental
model level, (1), does not hit the mark in many modeling problems. Especially when
diagnosing or configuring an existing system, one is rather concerned with aspects
of adequacy and efficiency. Phenomena selection is a worthwhile objective, though,
but it is usually too challenging to be handled by a computer at present.

Model Construction Based on Source Models

Let a system, S, and a question about S be given. The contributions of this thesis
ground on the observation that in many cases some well-tried model M of S exists,
which is, possibly, a remnant from an earlier problem solving task.

The thesis investigates in which ways from an existent model M, called the source
model, a new model M’ can be constructed that is suitable to solve a particular analysis
or synthesis problem (see Figure[L.7). For instance, the structure information that can
be derived from a local behavior model may form the base when tackling a related
configuration problem, or, by evaluating a complex behavior model at selected points
in time a heuristic model for diagnosis or control purposes can be derived.

We have organized the model construction methods that have been applied in
this thesis within the following groupsH

Model Refinement. Adapting a model by filling gaps.

Model Simplification. Coarsening a model by stripping off unused parts.

Model Compilation. Making a model more efficient by introducing shortcuts.

Model Reformulation. Switching to another modeling paradigm.

o Model Envisioning. Providing insights by rendering the model structure.

4In Section 4] Page l2] this classification is introduced in greater detail.

12

MODELS AND MORE

| Structure model' |

+ |Question'| T > | Behavior model' |

| Structure model | /
|

| Behavior model

| Algorithmic model' |

Figure 1.7. Utilization of a source model to construct an adequate model regarding some ques-
tion. Question” designates an analysis or synthesis task; the shaded area indicates the underly-
ing knowledge source.

Remarks. (1) While model construction support as depicted in Figure[[.6lmeans mov-
ing down the model abstraction hierarchy, does model construction that is based
on source models establish a horizontal mapping in most cases. Model construction
processes of this type resemble|Zeigler et al|'s so-called morphisms (308,1310). (2) Our
observations are made from a perspective which is also designated as “metamodel-
ing” (93,1285): The focus is on the modeling process itself.

If a source model, M, guides model construction, M establishes the primary
knowledge source, say, pattern when building the new model M’. Anyway, addi-
tional knowledge sources, which give answers to the following questions, are in-
evitable.

o Model Refinement. What is to be filled into the gaps?

Model Simplification. Which parts shall be stripped off?

Model Compilation. Where is a hidden shortcut?

Model Reformulation. How does the migration rule looks like?
o Model Envisioning. Whereby is the model structure characterized?

The nature of the additional knowledge sources unveils that instances of these
model construction approaches are much more specialized with respect to the do-
main and to the question of interest then are the top-down approaches of the pre-
vious subsection. This in turn means that we cannot expect recipes for horizontal

1.2 MODEL CONSTRUCTION (I)

model construction: Model compilation, for instance, designates a construction prin-
ciple rather than a construction method.

Most of the case studies presented in Part II of this thesis contain new ideas for
model construction, which pertain either to conceptual aspects or to the realized al-
gorithms. These solutions are organized according to the above classification scheme
and may serve as a pool of ideas when tackling new analysis and synthesis tasks.

How Model Construction is Operationalized

Recall the three main places where top-down model construction can be supported,
shown in Figure[[.6] Automation in this connection means to derive

(1) necessary phenomena from the question of interest,
structural information from necessary phenomena,
structural information from the desired function,

(2) behavioral information from necessary phenomena,
behavioral information from functional requirements,
behavioral information from structural information,

(3) algorithmic information from behavioral information.

Following this view, top-down model construction methods can be characterized as

(1) structure-defining methods,
(2) structure-filling methods, and

(3) structure-propagating methods.

This classification says a lot about how these methods work. Structure-propagat-
ing methods, (3), is a collective term for mathematical procedures that form a global
algorithmic model by “propagating” the constraining implications of the local behav-
ior models along a given structure. Since structure-propagating methods operate on
the mathematical model level, by far the largest part of them is domain-independent
and task-independent.

Structure-defining methods, (1), as well as structure-filling methods, (2), are
based on libraries of device models, component models, or model fragments. The
models in the libraries describe systems, building blocks, or phenomena from a par-
ticular domain

SDepending on the context, these libraries are also called case-base, taxonomy, or ontology
(166,15,129€6).

MODELS AND MORE

Example. A model of an analog lowpass filter is a device model from the electrical
engineering domain. A resistor of this filter is a component, and one of its model
fragments is given by Ohm’s law, v(t) = R - i(t); another model fragment may take
the resistivity depending on the temperature, T, into account. In this case the model
fragment consists of two additional equations, R = p-I/A and p = po(1 + (T —
To)), where I, A, po, and « designate the resistor length, the cross-sectional area, the
resistivity at Ty, and the coefficient of the resistivity respectively.

« Function « Phenomena « Numerical
qualifier .

qualifier ualifier

Device Model Model

model fragment fragment
High abstraction Low abstraction
(structure-defining) (structure-filling)

Figure 1.8. Libraries with different kinds of models and qualifiers. Device models (left), as used
in case-based design, define the structure of an entire system; depending on the qualifier, model
fragments can play the role of both structure-defining (middle) and structure-filling (right).

The models in the libraries are tagged by qualifiers that encode knowledge about
their applicability (see Figure [[.8). Generally speaking, the job of structure-defining
and structure-filling methods is the selection of models from libraries by processing
the qualifier constraints of the chosen models. The qualifiers can be of very different
forms:

o In case-based design the qualifiers encode an abstracted functional description
of devices. The job of a case-based reasoning system is to find for a given
functional demand the best fitting case from the device model library (76,154,
215, [168). Qualifier processing here relates to the computation of similarity
measures and to case retrieval (82, 218).

e Model fragment qualifiers as used by Nayak (193, [195) or by Iwasaki and
Levy (119) encode relations amongst phenomena, typically formulated within
propositional logics. Given two model fragments, 1, m,, the contradictory re-
lation states whether m; and m, go along with each other; the approximation
relation, on the other hand, states whether m; is a more approximate descrip-
tion of some phenomena compared to . Additionally, coherence constraints
and precondition constraints are used to define domain-dependent modeling
restrictions. Qualifier processing here aims at the synthesis of device models
that are causal, coherent, and minimum. This synthesis problem is in NP (195,

pg. 69).

1.2 MODEL CONSTRUCTION (I)

e Model fragment qualifiers are also employed to encode mathematical prop-
erties or hints respecting behavior processing. This includes knowledge about
signal ranges, model linearity, model stiffness, system orders, numerical condi-
tioning, steady states, oscillation behavior, damping, processing difficulty, and
processing performance. Pos et al. (212) use this kind of knowledge under the
name “modeling assumptions”. Qualifier processing here means assumption
management.

Remarks. Aside from tagging models absolutely, by means of qualifiers, also a relative
classification of models with respect to their applicability is reasonable. Case-based
design does this in a natural way: A similarity value can be computed for any two
device models of a case library, thus defining an order between model candidates
for a demanded functionality. |Addanki et al.’s approach points in a similar direc-
tion: He proposes libraries that organize models and model fragments as complete
graphs. The edges, which link the models, are grouped into priority classes and can
be interpreted as a model distance measure (cf. 5, pg. 1433).

Methods for model construction based on source models, which realize the hor-
izontal mapping shown in Figure[[7, transform a structure model, M, into another
structure model, M, and a behavior model, Mg, into another behavior model, Mj,.
Anticipating the notation of the next chapter, we establish this form of model con-
struction as two functions, ys, yp, which map from the source model onto a new
model:

Ms > My, Mg % Mj

Note that the functions ys and ¥ can describe both a slight modification and a
fundamental reformulation of the source model.

As opposed to structure-defining and structure-filling methods, the functions ys
and yp cannot be classified in a uniform way. This is in the nature of things. Nev-
ertheless, we have developed a formalism that enables us to specify a wide range of
structure model mappings v, the so-called design graph grammars.

Design graph grammars possess the flexibility to model even very specific kinds
of domain knowledge while still providing a broadly understood semantics. By ap-
plying graph transformation rules

e astructure model can be analyzed,

e an incompletely and coarsely defined structure model can be completed and
refined, and

o even the reformulation of a structure model with respect to another paradigm
becomes possible.

Figure[L.9 gives such a reformulation example from the field of theoretical com-
munications engineering: A series-parallel decomposition of an electrical circuit is

16

MODELS AND MORE

@ Series connection
@ Parallel connection

[] series adaptor

[i1] Parallel adaptor

Figure 1.9. A series-parallel decomposition tree (left-hand side) is transformed into a so-called
adaptor structure (right-hand side).

transformed into an adaptor structure[The related design graph grammars consists
of two structure-modifying rules. Design graph grammars are introduced in Chap-
ter B

Remarks. The largest group of commercial tools that support model construction con-
centrate on structure filling; moreover, they are restricted to situations where the
model deepness has been predefined by the human designer.

An important role for the effectiveness of such tools comes up to the user inter-
face. It can provide powerful graphical support and be close to the mental model
of the human designer, for example as realized within FLUIDSIM: Based on CAD
drawings of even large and complex electro-fluidic systems, FLUIDSIM generates the
related algorithmic models without any human support (262). AUTOLEV (236) and
the IMECH toolbox (11) are tools for textually describing mechanical multibody sys-
tems. Models in AUTOLEV are formulated within a proprietary mathematical lan-
guage, models in the IMECH toolbox are formulated by instantiating C++ objects. A
comparison of these tools can be found in (97).

Because of its popularity the SIMULINK toolbox is worth to be noted here. Al-
though SIMULINK comes along with a fully-fletched graphical interface, it does not
provide model construction support at one of the mentioned places. Working with
SIMULINK means to specify algorithmic models manually, by drawing block dia-
grams.

6Section[C Tl presents this instance of a model reformulation task in greater detail.

1.3 SYNTHESIS TASKS

1.3 Synthesis Tasks

The given exposition respecting “model formation” and “model construction” is per-
fectly adequate when treating analysis tasks, like diagnosis or simulation. Within
such tasks the questions of interest relate to a single system. This is not the case for
synthesis tasks and its most prominent representative: system design. Here we are
confronted with questions that relate to a set of systems.

This section addresses this shortcoming. It recapitulates the concepts of the pre-
ceding sections and interprets them from the standpoint of system design.

Motivation and Disambiguation

Our starting point is characterized as follows. We are given a set of systems, S, called
the system space, along with an open question. The question may ask whether a
system with a desired functionality exists, say, is member of S, or how much a system
with a desired functionality at least costs.

Answers to such questions can be found by designing the desired system and
analyzing its functionality (see Figure[1.10).

Synthesis
A

Figure 1.10. A design task defines a set of systems, called the system space, as well as a question
that asks whether a system of a certain functionality does exist. An answer can be found by
designing and analyzing the system.

Clearly, designing a system solely for answering an open question cannot be ac-
cepted in the very most cases. A way out is the creation of a bijective function, ¢,
that maps each system s € S onto a model in a model space (see Figure[L.11). Usually
the model space is described intensionally, by means of a finite number of combin-
able objects along with operations that prescribe how objects can be connected to
each other. Put in a nutshell, design problems are solved by developing a systematic
search strategy that turns the model space into a search space.

Note that the prerequisite for the use of models when reasoning about systems,
which is illustrated in Figure[[.3 on Page B] remains untouched. We claim that func-
tions T and & can be instantiated such that the following relation holds.

MODELS AND MORE

System | 4 :

space Question

N v
——

Model
formation
Model
ode! | ——Gearcd)—

Figure 1.11. Design problems are solved by means of a systematic search in the model space—
provided that a bijective mapping from the system space onto the model space can be stated.

where
behavior of the system S,

Bs
@ mapping between system space and model space,
a simulation (analysis) of the model M,

T transfer of the model behavior 3, onto the system S.

Creating a model space means to capture the underlying concepts of the interest-
ing system space—a process that, again, is first of all mental, and that involves three
major steps.

(1) Identification of possible system building blocks = subsystems.
(2) Identification of system construction principles = system space.

(8) Mapping of the system building blocks and construction principles onto ob-
jects and connection operations = model space.

Identifying the possible system building blocks, Step [, relates to destructuring.
Identifying the construction principles, Step [2lrequires a deep understanding of the
domain and the allowed design principles. The definition of a mapping ¢, Step[3] is a
challenging model formation problem. Aside from modeling system building blocks
also the synthesis operations upon these building blocks have to be translated in the
model world.

The outlined process happens in our mind, analog to the model creation process
on Page [} and a model space at this stage is called a mental model space. To com-
municate a mental model space it must become representational, as a physical or a
symbolic model space. Figure classifies model spaces with respect to their rep-
resentational form.

The different model spaces develop from the different model representations in
a natural way, by providing a facility to work on sets of models. A CAE-system,
for instance, provides a facility to work on sets of graphical models, while a virtual
prototyping system provides a facility to work on sets of behavior models.

1.3 SYNTHESIS TASKS

Model space

PN

Mental model space | |Physica| model space | |Symbo|ic model spacel

Miniature lab CAE-system |
Construction kit Virtual prototyping system |
|

Figure 1.12. Classification of models spaces with respect to their representational form.

Model Space Construction

Note that a model space is no end it itself; it serves as a collection of candidate models
from which one model has to be selected. This model represents the solution of the
design task. Also note that the selection process may happen at any level of abstrac-
tion, at the level of the mental model space, at the level of the structure model space,
or at the level of the behavior model space. If, for instance, the solution is searched
in the mental model space, the subjacent levels will never come into being.

The construction of a model space for a given system space is a creative job. It
requires both experience and profound technical skills in the respective domain and
is done by a human designer.

Depending on the model space structure also the search within a model space can
be creative job—however, exactly at this place computer assistance is brought into
play. Prerequisite is that the mental model space is transformed into an algorithmic
model space. A computer program that encodes an algorithmic model space along
with an efficient search strategy is called design system, configuration system, expert
system for design, or expert system for configuration (257, [117).

The model space grows exponentially in the number of objects and connection
operations. The human designer, who constructs the model space, will hence shape
the models in the model space as simple as possible. The consequence is not surpris-
ing: Design problems are often tackled at the level of structure models or at the level
of simplified behavior models (34,92, 242).

Computer systems for configuration or design are distinguished by the type of
constraints that the knowledge engineer can use to materialize his mental model
space. They transform either a structure model space, a behavior model space, or
a combination of both into an algorithmic model space (see Figure[T.13).

(1) Structure Model Space — Algorithmic Model Space. Enable the task-adequate
formulation of structure constraints. Structure constraints specify global syn-
thesis knowledge and fall into the following classes: Compositional “part-of”
constraints, which define the skeleton of the system to be designed (cf. 213,

19

20

MODELS AND MORE

(1)| Structure model space | (2)| Behavior model space | (3)| Structure model space |

+

| Behavior model space |

|Algorithmic model spacel |Algorithmic model spacel

|Algorithmic model spacel

Figure 1.13. The shaded areas indicate the starting points from which model space construction
is realized within design systems.

@

®)

pg- 137); taxonomic “is-a” constraints, which are used to formulate functional
hierarchies (187); spatial constraints, which define arrangement and place re-
strictions (239); and associative constraints, which is a collective term for other
structure constraints between submodels. The design graph grammar ap-
proach developed by Stein and Schulz (268) provides an operational semantics
to define all types of structure constraints.

Behavior Model Space — Algorithmic Model Space. Enable the task-adequate for-
mulation of behavior constraints. Behavior constraints that can be mastered in
design tasks are resource-based constraints (105, 1272) and local value propa-
gation schemes (102, [116). More complex behavior constraints are conceivable
but must be specialized with respect to a concrete task, as realized for instance
in systems for industrial mixer design or elevator design (33,1172).

Structure Model Space + Behavior Model Space — Algorithmic Model Space. Enable
the formulation of structure models in combination with simple behavior con-
straints, as realized for instance in the configuration platform PLAKON (46).
Also case-based design, if implemented according to the case-adaptation phi-
losophy, is a representative of such a hybrid approach (95,[110).

Remarks. Overviews on design systems and their underlying theory can be found in
(117,1256, [189) and in the annual workshop proceedings of the GI expert group 1.5.3,
“Planning and Configuration”.

Recall that the main focus of this thesis is model construction. Model construc-
tion and model space construction are strongly related to each other: The horizontal
model construction principles, presented on Page establish a natural and power-
ful approach to model space construction. When working on a synthesis task, the

1.4 THE AI POINT OF VIEW

application of these principles to a given source model will have the following im-
pacts on the respective model space.

o Model Simplification. The model space becomes smaller, say, tractable.
o Model Compilation. Search in the model space is speeded up.

o Model Reformulation. The model space is mapped onto another model space.

The case studies of the Sections[Al[B] and [exploit these effects.

1.4 The Al Point of View

Research in Artificial Intelligence (AI) produced strategies and methods to solve anal-
ysis and synthesis tasks. To which extent answer these developments questions of
modeling and model construction?

This section comments contact points and differences between Al developments
and our work. In particular, we will discuss the concept of problem solving meth-
ods and sketch out their basic architecture. It is not intended to present an in-depth
discussion on all related Al developments; this clearly goes beyond the scope of this
section and, in fact, is not necessary to motivate the contributions of our model con-
struction ideas.

Problem Classes and Problem Solving Methods

Problem classes provide a scheme for the characterization of knowledge-intensive
tasks. The idea of a classification scheme was firstly introduced by Hayes-Roth et al.
(104) and results from the following wishful thinking: When given a particular prob-
lem TT, a solution for IT could be easily constructed if we are given a look-up-table
that associates problems with methods solving them. The latter are called problem
solving methods.

PN

PN

| Identifyl | Predictl | Control | | Specifyl | Design | | Assemblel

| Monitor | | Diagnosel |Configure| | Plan | | Modifyl

Figure 1.14. The hierarchy of problem classes according to Clancey (41)).

Figure [L.T4 shows [Clancey’s hierarchy of problem classes (41), which is a sub-
strate of the work of Hayes-Roth et al. (104). (Clancey pursued the following idea:

22

MODELS AND MORE

“We group operations in terms of those that construct a system and
those that interpret a system, corresponding to what is generally
called synthesis and analysis.”

Clancey, 11985, pg. 315

Remarks. Other, less popular criteria for the classification of problems have been de-
veloped. They are based on generic problem solving methods (20), on the type of the
model realized within a system (257), or on the domain.

The term problem solving method designates a procedure, a concept, or an al-
gorithm that is employed to tackle a clearly defined problem. [Bauer et al! distin-
guish between three types of problem solving methods (20): Methods that specify
a conceptual procedure for knowledge processing like HEURISTIC CLASSIFICATION
or HYPOTHESIZE AND TEST, role-limiting-methods (67, [176) that “merely” need to
be filled with domain knowledge like PROPOSE AND REVISE or COVER AND DIF-
FERENTIATE, and methods that realize basic knowledge processing techniques like
FORWARD CHAINING or FUZZY INFERENCE.

Additionally, a distinction between “strong” and “weak” is often made (176,1213).
These attributes do not characterize a method’s efficiency but indicate its range of
application. A weak problem solving method is less specialized and hence, it can
be used for a wide range of knowledge processing tasks. A strong problem solving
method, on the other hand, is tailored towards a problem-dependent task. Due to
its specialization its range of application is narrow, but it can provide far-reaching
knowledge acquisition support.

Remarks. To put it overstated, if the problem-solving-method idea worked for all
kinds of knowledge-intensive tasks, model construction would be a thing of the past.
Obviously this is not the case, and despite of this fact—or just because of it—it makes
sense to shed light on the architecture of problem solving methods.

Problem Solving Methods and Model Construction

One of the furthest developed lattices of problem solving methods comes with the
KADS models of interpretation (32, [130, 292). KADS, which is an abbreviation of
“Knowledge Acquisition and Design Structuring”, has been developed from 1985
to 1989; it provides a methodology for the model-based design of knowledge-based
systems (300). A central role within the KADS methodology play the so-called con-
ceptual models, which are used to specify problem solving expertise within four lay-
ers: strategic, task, inference, and domain. The upper three layers form the domain-
independent interpretation model.

Interpretation models assign roles to problem solving knowledge (called meta-
classes) and an inference structure between them (called knowledge sources). For

1.4 THE AI POINT OF VIEW 23

instance, the inference structure for the problem solving method HEURISTIC DIAG-
NOsIs, which actually is the underlying diagnosis approach of MYCIN (41), looks as
depicted in Figure

; Match Solution
Variables > abstractions
Transform Specify
Observables Solutions

Figure 1.15. The inference structure of the problem solving method HEURISTIC DIAGNOSIS.

The metaclasses of the inference structure are: observables, variables, solution
abstractions, and solutions. The knowledge sources are: transform, match, and spec-
ify. Each knowledge source is characterized by its inferential semantics, its input and
output (the incident nodes in the inference structure graph), the method that realizes
the inference, and maybe support knowledge. To get an idea of the explicitness of
interpretation models, the inferential semantics of the knowledge sources employed
in HEURISTIC DIAGNOSIS is specified in Table[L.1]

Knowledge source Inferential semantics

Transform Data abstraction: System data are transformed into variables
Match Abstracted data are matched by direct association

Specify Solution abstractions are refined into specific solutions

Table 1.1. The inferential semantics of the knowledge sources in HEURISTIC DIAGNOSIS.

Of course more complex, but with the same constructional means, interpretation
models for various knowledge-intensive tasks have been developed as part of the
KADS project. They cover tasks for all problem classes shown in Figure[[.T4]

Another substantial collection of problem solving methods has been compiled by
Puppe (213). Compared to the KADS models of interpretation, his specification of
problem solving methods is at a less abstract level; it is grounded on the three pillars
knowledge representation, knowledge manipulation, and knowledge acquisition.

Regarding the method HEURISTIC DIAGNOSIS the elements of the knowledge
representation component are: symptoms, symptom abstractions, solution classes,
solutions, and rules. Puppe describes these elements verbosely and pretty close to
the level of data types. Placed at this level, an algorithmic specification of the desired
inference task forms the gist of the knowledge manipulation component.

Remarks. Problem solving methods can unfold a high inferential power on knowledge
intensive tasks. With respect to inference and modeling flexibility, they represent an

MODELS AND MORE

advancement of the classical expert system paradigm. They specify the involved
kinds of knowledge and clearly assign roles that the kinds of knowledge play in the
inference process. On that account, problem solving methods have the potential to
bridge the gap between knowledge engineering and software engineering—a fact
that has been proven time and again.

Straight out, one should not expect that the conception of well-defined problem
solving methods will contribute a great deal to tasks such as model construction.
Model construction requires, in the very first place, the determination of an adequate
modeling level, and secondly, not less demanding, the formulation of a human’s per-
ception of the interesting system at this modeling level.

Both jobs allow of no solution pattern but require a sense of the underlying do-
main, experience, and creativity instead (296, 3). Model construction is by far more
than knowledge acquisition and the assignment of knowledge roles. Problem solv-
ing methods, on the other hand, come into play if both an adequate modeling level
is found and a model of the system (not of the problem solving process!) is already
constructed. A glance at the above example shows that.

Remember that at model construction time one may be confronted with following
and other situations.

o The model is incomplete with respect to certain system properties.
o The model of the system is too complex.
e The modelis in a disadvantageous representation.

e The model cannot answer the interesting question.

The reality is by far too complex to solve problems of this type in a recipe-like
manner, and the structure of the work in hand reflects this matter of fact: The model
construction methods mentioned on Page [11| designate principles rather than meth-
ods; the case studies in Part II exemplify the operationalization of these principles.

A Framework for Model Construction

The previous chapter gave a discussion on types of models, the construction of mod-
els, and related aspects. In this chapter we concentrate on models of modular techni-
cal systems and draw up a framework for both the description and the construction
of such models. The framework is powerful enough to become applied to a variety
of domains and modeling scenarios; however, a great deal of attention has been paid
to keep it as clear and simple as possible.

Our view to models and model construction is bivalent: it is oriented at structure
and behavior (see Figure[2T)).

| ! |

System of the real world | Structure model | | Behavior model |

Model
construction

Figure 2.1. Bascially, model construction divides into structural and behavioral considerations.

A structure model renders the structural or topological setup of a system, a be-
havior model reproduces, in extracts, a system’s behavior[l In this connection, model
formation relates to both structural composition and behavior specification. Simi-
larly, the construction of a new model from a given source model can take effects onto
the source model’s structure, by means of adding or removing model constituents,
but also onto the source model’s behavior, by changing the focus or the resolution of
the interesting phenomena.

The next section provides for a formal basis of structure models and behavior
models. Moreover, by specifying the concepts of locality, causality, and no-function-
in-structure, the interweaving of structure and behavior becomes quantifiable (see
Figure[2.2). Section[2.2 and R.3]engage into different behavior model types and sim-
ulation approaches. Finally, Section 2.4l introduces, isolated from a specific problem
and a concrete domain, five different concepts to model construction.

In other places, the term structure is also used to specify non-topological aspects of a system.

26

A FRAMEWORK FOR MODEL CONSTRUCTION

Behavior model
N

Global behavior modell | Local behavior model | |Causal behavior model

L - Interweaving between >
High structure and behavior > Low

Figure 2.2. Depending on its degree of interweaving with the structure model, a behavior model
is called global, local, or causal.

2.1 A Unified Modeling Perspective

Let S be a system of the real world. A model of S is a restriction of S with respect to
a set of interesting functionalities, attributes, or properties. If the model is composed
from submodels, which should be the normal case when dealing with modular tech-
nical systems, the functionalities are distributed amongst these submodels in some
way.

Each such distribution of functionalities prescribes a frame wherein structure
models and behavior models can be formed. This observation motivates our fol-
lowing plain—but clear and universal—definition of the term model (see 99 and also
31, pg. 47).

Definition 2.1 (Model, Graph of a Model) A model is tuple (F, M), where F is an
arbitrary, finite set, called the set of interesting functionalities or properties. M is a
finite collection of nonempty sets, M = {M;, M,,...,M,}, M; CF,i=1,...,n. The
M; € M are called submodels, objects, or components.

A multigraph G = (V,E), V = {1,...,n}, is called a graph of the model (F, M),
if the following holds.

(1) |[MyNM,| #0 = E contains {v, w} with frequency k, 1 < k < |M, N M|
(2) G is called the complete graph of a model, if |E| = z |M, N M)
v=1,..,

w=1,..,v

Remarks. (1) The edges Ey, C E that are incident to v € V are called the terminals
of submodel M,. (2) An edge e € E may be directed; it then is written as an ordered
set (v, w) with tail v and head w. (3) |F| constitutes a relative measure for the models
accuracy or fidelity; it corresponds to the term “resolution” as used by Zeigler et al.
(see|310, pg. 330). (4) | M| constitutes a relative measure for the model’s granular-
ity and corresponds to [Zeigler et all’s term “size”. (5) The “product” of fidelity and
granularity, |F|x | M|, is called the analytic complexity of a model (see alsol310).

Example. The definition is illustrated at the small electrical circuit of Figure[2.3] a
series connection of a voltage source, a resistance, and a capacitance. Please note that

2.1 A UNIFIED MODELING PERSPECTIVE

this example shall demonstrate the syntax of our model definitions in first place; an
interpretation from an engineering point of view is allowed but not necessary.

e Functionalities.
F - {R/ C/ e, il/ i2/ i3/ d)l/ d)2/ d)3}'

e Submodels.
M = {M;, M, M5}, where My = {R,i1,i2, 1, P2}, Mo = {C, iz, i3, 2, 3},
and M; = {e, iy, i3, 1, 3 }.

e Graph.
G =(V,E),where V ={1,2,3} and E = {{1,3},{1,3},{1,2},{2,3},{2,3}}.
The right-hand side of Figure[2.3lshows this graph of (F, M).

M1 ={R, iy, ip, @1, @}

4 F

+ M, 3 {C, iy, i3, ¢, @3}
N
—

M3 ={e, iy, i3, @1, @3}

Figure2.3. A model consisting of the three submodels M;, M, and M3 (left-hand side). The
right-hand side shows an incomplete graph—out of 8 possible graphs—of this model.

Observe that each submodel of a model (F, M) corresponds to a node in a graph
G of (F, M). Also note that each functionality that is shared amongst two submodels,
M,, M,,, defines some kind of interaction path between M, and M,,. This way, G can
be regarded as a structure description of a model. The graph G is a particular kind of
intersection graph, and, in this connection, the set F is also called host (100).

Typically, both the submodels and the interaction paths between submodels are
subject to categorization, which forms the basis to define equivalence classes amongst
the submodels. For instance, all resistances in an electrical circuit are indistinguish-
able from a structural point of view; they have two terminals each of which is of type
conductive.

Since labeling provides a sufficient means to define building blocks within a
graph of a model, a categorization can be realized by means of labeling. The follow-
ing definition introduces the concept of a structure model by restricting the labeling
of a graph with respect to the building block metaphor: Two submodels of a model
(F, M) can get assigned the same label only if they provide the same interaction
paths.

Definition 2.2 (Structure Model) Let (F, M) be a model, and let (V,E) be a graph
of this model. Moreover, let X be a set of node labels and edge labels, and let o :
VUE — X be a labeling function.

27

A FRAMEWORK FOR MODEL CONSTRUCTION

(V,E,0) is called a structure model over (F, M) if the edges that are incident to
two equally labeled nodes are of equal number, orientation, and have equal labels—
stated precisely: LetE} and E; denote the edges (1, v) € E and (v, u) € E respectively;
furthermore let £ = {o(e) | e€ Ef} and £; = {o(e) | e € E; } be multisets com-
prising the labels associated with E and E; . Then the following holds.

(1) (V,E,0) isastructuremodel & (o(v) =o(w) = Lf =I5 A L, =1,)
Remarks. (1) A structure model over (F, M) is designated with S(F, M); likewise,
the set of all structure models over (F, M) is designated with S(F, M). (2) The la-
beling function, o, divides the sets of nodes and edges into classes of equal physical
properties. (3) If the edges e € E are undirected, E} and E; collapse to a single set E,,.

Example. Figure[2.4](left and middle) shows two graphs of the circuit model where
the components have been abstracted towards electrical dipoles. Since the equally la-
beled nodes coincide in both number and labels of their incident edges, these graphs
represent structure models.

Connectors

Figure 2.4. Two structure models of the circuit example (left and middle) and a port-and-con-
nector model (right-hand side), which corresponds to the left structure model. Ports with an
equal role are colored equally.

Structure models as introduced here form a theoretical basis for Stefik’s so-called
port-and-connector models (seel256, pg. 610). The ports on each submodel correspond
to the different roles that submodels can play with respect to each other. Unlike the
above structure model paradigm, submodels of the same type may provide different
ports; moreover, Stefik restricts the port-and-connector methapor to a special abstrac-
tion level for configuration tasks.

A structure model can be represented as a port-and-connector model in a canon-
ical manner: Between the nodes and edges of both representations a bijective map-
ping is defined. Moreover, two adjacent ports in the port-and-connector model get
assigned the same role, which is prescribed by the edge label of the corresponding
edge in the structure model (see Figure R.4).

Structure models are a powerful means to define a model’s composition space—
without committing the level of abstraction at which a technical system is described.

2.1 A UNIFIED MODELING PERSPECTIVE 29

Note that a structure model says nothing about the models type or purpose, whether
it establishes a qualitative model, a dynamic behavior model, or some other model.

However, the functionalities of a model of a technical system constrain each other,
and the underlying constraints are usually referred to as behavior. This point is ad-
dressed in the following definitionf

Definition 2.3 (Behavior Model) Let (F, M) be a model. A behavior model over
(F, M) is a tuple (Fy, Fz, Fy, V, A, A) whose elements are defined as follows.

e [y, Iz, Fy aresubsets of F, with Fy N Fz = (. Fy, Fz, and Fy are called input vari-
ables, constraint variables, and output variables respectively. The functionality
set Fp = F\ (Fy U F; U Fy) constitutes the set of component properties or com-
ponent parameters. (If unmistakable the terms “functionality” and “variable”
will be used as synonymes.)

e For each functionality f € F, Fz, Fy, and Fp there is an arbitrary, possibly infi-
nite set Uy, Zr, Yy, and Py respectively, called the domain of f.

Moreover, for each f € F; there is an additional domain, U}, of partially de-
fined functions in the parameter time, U = {u | u : T — Uyt — u(t)}.
Depending on the model’s time base, which may be continuous time, discrete
time, or discrete event, T may be an interval from R*, an interval from N, or a
linearly ordered finite set.

V comprises the domains of all f € F. As a matter of convenience, the Carte-
sian products of the domains of the variables in Fy, Fz, Fy are designated with
Z/{,Z/IT,J), and Z. Eg,y = Yfl ><Yf2>< e XYJ(\FY ,f,' € Fy.

e A is a function, it is called the global state prescription function. A declares a
set of state variables, Fx C Fz, and a state space, X, which is the projection of
Z with respect to Fx. Given a state vector x € X, a vector of input functions
u(t) eUT, and some point in time t € T, A determines a constraint vectorz € Z
including a new state, say, A : X xUTxT — Z.

e Aisa function, it is called the output function. The output function might be a
function of constraint variables and input or only a function of constraint vari-
ables. Given a constraint vector z € Z and an input vector u € U, /A determines
an output vectory € Y, say, A : ZxU — Y or A: Z —).

2The behavior model definition developed in this place points at a similar direction as the
work of [Zeigler et allin (310). Distinctions to Zeigler et all’s approach include among others:
State variables and constraint variables are clearly distinguished here, model behavior can be
mapped intuitively onto a model’s structure, and, the long winded dichotomy between sys-
tem structure specification and system specification has been abandoned. Note that in this
place, as well as in connection with the construction of models, the work of Wymore should
be mentioned, whose clearly formulated ideas form the base for many successors (305).

A FRAMEWORK FOR MODEL CONSTRUCTION

Remarks. (1) A behavior model over (F, M) is designated with B(F, M); likewise,
the set of all behavior models over (F, M) is designated with B(F, M). (2) A is called
state prescription function (in place of state transition function) since the state space X’
may be singleton or empty. (3) For an initial state, X0 = (x,..., X|Fy|), x" € X, the set
of all states that actually can be adopted by the model is called the model’s admissible
state space, X, (yw,). The admissible state space restricts the domain and range of A
related to an initial state. (4) The elements in AT are called input trajectories or input
signals. (5) The restriction of A with respect to some initial state x’ € X and some
input function u(t) € U7, say, A(x°, u(t),t), defines a unique state trajectory along
the time base T.

Example. We draw upon the electrical circuit from Figure but introduce func-
tionalities for the components’ voltage drops. Input functionality is e, the voltage
at the source; output functionalities are the voltage drops at the resistance and the
capacitance, vg, Uc.

o Functionalities.
F= {R/ C/ e, il/ i2/ i3/ d)l/ d)2/ d)3/ UR,9c, Z.)C}'

e Submodels.
M = {M1, M,, M3}, where M; = {R, i1,12, P1, 2, UR},
M2 = {Cr iZ/ i3/ d)Z/ (1)3/ oc, Z.)C}/ and MS = {el i]/ i3/ d)l/ (1)3}

o Functionality Roles.
FU - {E}, FZ - {i1/i21i3/ d)l/ d)Z/ (1)3/ Oc, Z.)C}/ FY - {UR/ Z}C}/ FP - {R/ C}

o Functionality Domains.
U, = R, U] is the set of continuous functions, T = R*,
Zf = R with f S {i], i, 13, Uc, f)c}, Zf =R" Wlthf S {(b], b, (1)3},
Yy, =R, Yo = Zy., and Py = R with f € {R,C}.

e State Prescription Function.
Fx ={vc} C Fz, Xoo = Zoe, A Xooe XU XT — Z (defined implicitly),

vc

Uc = C'. in
v = Gr— 3
R-iy = ¢1—¢»
a={ B = d-d
51 = I
ih = i3
i3 = I
¢ = 0

o Output Function.
AW le)l XZ¢2XZ¢3 — YUR XY?)C/

_ 1
A(b1, 2, ¢3) : < (1) 1 _(1J) ¢ | = (oR >

Uc
¢3

2.1 A UNIFIED MODELING PERSPECTIVE

Remarks. Of course the sets F and M and the state prescription function A could have
been formulated differently, e. g., by defining the continuity conditions in a different
way. However, modern modeling/simulation environments such as MODELICA or
FLUIDSIM provide powerful means to derive continuity, compatibility, or connection
constraints automatically.

The effort that is necessary to process a behavior model B(F, M) is called con-
straint complexity. Beside the size of A in the number of variables and equations, the
constraint complexity depends on several factors, numerical properties for instance:
Numerical properties include the desired accuracy, the convergence behavior of A,
and stability conditions during simulation.

An important postulation when working with behavior models is the locality
principle. It claims that each submodel M has a private computation rule, Ay, that
is complete and exclusive. Completeness means that all constraint variables of the
submodel can be determined by Ay; exclusivity means that Ay, affects solely the
functionalities of the submodel. Exclusivity implies that an exchange of information
between the submodels must happen via the explicit interaction paths. The locality
principle hence imposes certain conditions on the global state prescription function
A, which are captured by the subsequent definition.

If A is represented by a set of relations, A can be partitioned with respect to
(F, M)E Note, however, that a subset of these relations, Ay C A, forms a proper
state prescription function only if the domain variables in Ay are elements from Fy;
and Fy, referred to as Fy,, and Fx,, # 0, and if the range variables of Ay, Fz,,, form a
superset of Fx,,. l.e., Ay @ Xy x UTXT — Zy, where Xy and Zy define the related
state space and constraint domain; U]} is a projection of U respecting the input vari-
ables Fy;,, of Ay. Typically, Ay does not establish a state prescription function but
some other relation on U, x Zy;, where both Xy C Zy and U, may be empty.

Definition 2.4 (Local Behavior Model) Let (F, M) be a model, and let B(F, M) =
(Fu, Fz, Fy, V, A, A) be a behavior model over (F, M). B(F, M) is called a local
behavior model with respect to (F, M), if for each submodel M € M a local behavior
relation Ay C A can be specified such that the following conditions hold.

(1) VéeA VMe M : FsCM&sdeAy,
where Fs comprises the variables that occur in 6.

2 U au=A

MeM

Remarks. (1) A local behavior model is sometimes called a component model (137,
205). (2) There exists at most one decomposition of A into local behavior relations
Ap, M € M, that fulfills the conditions of a local behavior model with respect to
B(F, M).

3A can be represented in a monolythic manner, e. g. in the form of a single look-up table.

A FRAMEWORK FOR MODEL CONSTRUCTION

Example. Again we draw upon the electrical circuit from Figure P.3]and investigate
the previously defined state prescription function, A, with respect to the partitioning
conditions of Definition[2.4] Altogether, three sets of relations Ay, vef1,23), Am, € A
must be formed, which are shown in Table [ZTl Obviously, the state prescription
function A fulfills the locality conditions.

v Ap, €A Domain and variables of Ay,
1 {R'i1*¢]+¢2:0, 1'171‘2:0} PRXZﬁXZizXZKMXZle’
with {R, 1,2, ¢1, 2} C My
2 {oc—C1iy=0,0c—¢dr+¢3=0, P X Xop X Zso X Ziy X Zin X Z gy X Lo,
¢3 =0,ip —i3 = 0} with {C,v¢, 0c, iz, i3, §2, p3} C M>

3 fe—di+d3=0,d3=0i1—i3 =0} UexZixZiyxZp,xZg,,
with {e, i1, 13, ¢1, P3} € M3

Table 2.1. Covering the global state prescription function, A, by three sets, A My By By, of
submodel relations.

Another interesting property of behavior models is bound up with the concept
of causality. By introducing a cause-effect direction for the local behavior relations,
causality imposes additional restrictions on the locality property. In this connection
we agree on the following notions: For a directed graph G = (V, E) of a model (F, M)
and an edge (v, w) € E, a functionality f € M, N M,, is called supplied functionality
respecting v and demanded functionality respecting w. Based on the definitions al-
ready introduced, causality can be defined in an elegant manner.

Definition 2.5 (Causal Behavior Model) Let (F, M) be a model, and let B(F, M) =
(Fu, Fz, Fy, V, A, A) be a local behavior model over (F, M) with the local behavior
relations Ay, v = 1,...,|M|. A behavior model B(F, M) is called causal if the
following conditions hold.

(1) Input or output functionalities are not supplied and demanded respectively:
Vowe{l,...,M}tov#w: (M,NM,)N(FyUFy) =10
The model (F, M) has a directed, complete grapHi G such that

(2) each local behavior relation Ay, defines a function that has no supplied
functionality amongst its domain variables and no demanded functionality
amongst its range variables,

(3) G contains no cycles.

Remarks. (1) Within a causal behavior model no submodel depends on itself in a
feedback manner. (2) Each causal behavior model defines a feedback-free signal flow

4See DefinitionZ1l

2.1 A UNIFIED MODELING PERSPECTIVE

graph. (3) Causality entails locality, i. e., locality establishes a necessary condition for
causality.

Example. We analyze whether the local behavior model of our example, B(F, M),
is causal. Assertion: B(F, M) does not establish a causal behavior model because
condition (3) of Definition[Z5]lcan never be fulfilled. Idea: An acyclic, directed graph
has at least one node v whose indegree is zero; such a node v cannot be found in any
directed, complete graph* of (F, M) in the example. Proof (indirect): If the indegree
of a node v is zero, the relations in Ay, contain no demanded functionalities. This
implies that all constraint functionalities of M, are determined by Ay;,, which in turn
implies that the number of equations in Ay, either equals or exceeds the number of
constraint functionalitities. Since M, N F; designates the constraint functionalitities
in M,, the inequation |Ay, | > |M, N Fz| must hold at least for one node v. As can be

seen in Table[2.2] this is not the case. o
v Ap, €A M, NFz
1 {R-ij—¢p1+¢2=0,i —ip =0} {i1, i2, b1, P2}
2 {oc—Cliip=0,vc—dr+d3=0, ¢3=0, i —i3 =0} {uvc,oc, iz, i3, b2, P3}
3 {e—p1+¢3=0, ¢p3=0, i1 —iz3 =0} {i1, i3, d1, b3}

Table 2.2. Contrasting local behavior relations and constraint variables for the submodels of the
example. In a steady-state analysis the equation v¢c = 0 is added to Az, by the constraint
processing method, in a dynamic analysis the equation v¢(0) = vg, vg € R.

Observe that the equations in A can be sorted in such a way, that all unknown
variables can be computed by local value propagation (see Figure[2.5). Within this
computation at first values for the potentials, ¢,, are determined and afterwards val-
ues for the currents, i,. In this sense A could be called causal at the level of constraint
variables—however, it is not causal at the level of the submodels M;, M», and Ms.

Current law Zh
- < i
® ®
M1
Voltage law /(-Pl\ _i | Voltage law
source \Z/ "1 | resistance

........................... M2
Voltage law Current law |
capacitance resistance
@ State law | () /

capacitance

Figure 2.5. Computing sequence for the example circuit: The graph of the behavior laws and
constraint variables forms a DAG; at the submodel level the graph contains cycles.

A FRAMEWORK FOR MODEL CONSTRUCTION

The modeling of complex systems often happens in a bottom-up manner: Small
building blocks, the submodels or components, are synthesized towards a sin-
gle global model. Obligatory for this purpose is a context-free description of the
submodels—a requirement that is also referred to as no-function-in-structure principle.
The principle claims that the behavior of a synthesized model emerges in a consis-
tent manner from the behavior of its submodels, independently of the global model’s
internal structure and the number and type of the submodels used[§

Prerequisite for the no-function-in-structure principle is locality, which guaran-
tees that the state prescription function A can be divided according to the submod-
els’ functionalities. However, no-function-in-structure tightens the locality restric-
tion: The behavior relation of a submodel M, Ay, must not depend on any other
submodel, say, no state or parameter within Ay; contains assumptions or is affected
by a state or parameter of another submodel. In this sense, no-function-in-structure
restricts the definition of Ay, while locality restricts the effects of Ay during simula-
tion.

The no-function-in-structure principle is infringed in some examples of this work,
and, possibly surprising, this violation forms the key for a powerful model simplifi-
cation. In this place it is specified what the no-function-in-structure principle means
in connection with a behavior model B(F, M) that is defined over a model (F, M).
Note that a quantifying description of the no-function-in-structure principle does not
exist in the literature on the subject.

Definition 2.6 (No-Function-in-Structure Principle) Let (F, M) be a model, and let
B(F, M) = (Fy, Fz, Fy, V, A, A) be a behavior model over (F, M). Then B(F, M)
complies with the no-function-in-structure principle if the following holds.

(1) B(F, M) is a local behavior model.

(2) No state or parameter functionality is shared amongst two submodels:
Vowe{l,...,IM|}, v #w: (M,NM,)N(FxUFp) =0

Example. Again, the electrical circuit example from Figure is considered. The
capacity submodel, M,, is extended by the functionalities R and ¢, and the local be-
havior relation, Ay, is reformulated respecting R and e. Note that the resulting new
behavior model and the original behavior model from Page [30] specify the same be-
havior.

o Modified Submodels.
M2 = {Rr C/ e, iZ/ i3/ (1)2/ (1)3/ oc, UC}

5“The laws of the parts of the device may not presume the functioning of the whole.” ({39, pg. 16).
And, as|Kuipers points out in this connection: “The behavioral repertoire of a type of component
must be specified completely, and independently of the contexts in which instances of that component
might appear.” (153, pg. 6).

2.2 BEHAVIOR MODEL TYPES

o Modified Behavior Relations.

Amy :0c+ 76 -vc — = =0, Xoo — Xo. (defined implicitly)

Re

e The other elements of B(F, M) remain unchanged.

In the modified behavior model the local behavior relations Ay, and Ay, share
the parameter variable R. Hence B(F, M) does not fulfill the no-function-in-structure
principle; nevertheless, B(F, M) establishes a local behavior model.

2.2 Behavior Model Types

This section defines several specializations of the generic behavior model (Fy, F,
Fy, V, A, A). These specialization affect the global state prescription function, the
underlying time base, and the domains of the variables in F. All specialization men-
tioned here play a role in one or more of the projects described in Part II of this thesis;
anyway, the listing is not complete in every respect.

Note that the presented behavior models are time-invariant. A behavior model is
called time-invariant, if its state prescription function A responds in an identical way
when applied to the same combination of a state vector x and an input vector u(#).

The following three subsections organize the properties of the specialized behav-
ior models within three orthogonal classes. For instance, whether a model is input-
free does neither depend on its underlying time base nor on the ranges of the in-
volved variables. Figureshows these classes in the form of three separate trees.

Input-free

[Behavior model J¢—
Input-depending

Continuous time

- {BrareJe—|—{omrewome

Behavior model |[¢—

Quantitative
Qualitative

Figure 2.6. The properties of the specialized behavior models can be represented within three
orthogonal classes.

Behavior model |[¢—

35

A FRAMEWORK FOR MODEL CONSTRUCTION

Special State Prescription Forms

Definition 2.7 (Input-Free Behavior Model) Let (F, M) be a model. An input-free
behavior model over (F, M) is a tuple (Fz, Fy, V, A, A\) whose elements, Fz, Fy, and
V are defined just as for the behavior model in Definition[2.3, Page[29

o A is the global state prescription function with time base T. As before, A de-
clares a set of state variables, Fx C F;, and a state space, X, which is the pro-
jection of Z with respect to Fx. Given a state vector x € X and some point
in time t € T, A determines a constraint vector z € Z including a state, say,
A: XxT — Z.

e A is the output function. Given a constraint vector z € Z, A determines an
output vectory € Y, say, A : Z —).

Remarks. Input-free behavior models cannot respond to inputs. Systems that are rep-
resented by input-free behavior models are also called “autonomous systems” (310).

Definition 2.8 (Memoryless Behavior Model) Let (F, M) be a model. A memory-
less behavior model over (F, M) is a tuple (Fy, Fz, Fy, V, A, A) whose elements, F,
Fz, Fy, V, and A are defined just as for the behavior model in Definition[2.3, Page[29

o A is the global state prescription function. A declares a set of state variables,
Fx C F;. If Fx is nonempty, the state space, X, contains a single element only.
Given a vector of functions u(t) € UT and some point in time t € T, A deter-
mines a constraint vectorz € Z say, A: UTxT — Z.

Remarks. (1) Models with a singleton or an empty state set are called stationary, as
opposed to dynamic models, which can undergo a state change. The output of sta-
tionary models depends in a definite way from its input. |Zeigler et al. denotes sys-
tems that can be represented by memoryless behavior models as “function specified
systems” (310). (2) An input-free behavior model with a singleton or an empty state
set is called constant.

Constant behavior models are used in Section[B.1] in the form of resource-based
configuration descriptions, and within all model envisioning applications of Chap-

ter

There is the important case of stationary models whose state space is known to
be a singleton, x, but the vector x is unknown a-priori. Such cases may arise when
simulating a stationary model that has been derived from a dynamic model: It is
known that the model has only a single state—the stationary state—but it is unknown
which. A stationary model whose state is unknown is called a selective-state model
here.

2.2 BEHAVIOR MODEL TYPES

Different Time Bases

Depending on the underlying time base a generic dynamic model can assume differ-
ent shapes, which are specified in the following. Note that this specialization does
not apply to memoryless behavior models.

Definition 2.9 (Continuous Time Model) Let (F, M) be a model. A behavior model
(Fu, Fz, Fy, V, A, A\) over (F, M) establishes a continuous time model, if its global
state prescription function, A, is a continuous function in the parameter time.

Remarks. Typically, the state prescription function of continuous time models does not
provide an explicit mapping onto the state space, X', but defines the state vector’s rate
of change, x'. A general form for such a description is a differential-algebraic system
(DAE):

_dx

5(x(t),x'(t),u(t)) =0, where x'(t) = N

Of course the representation as a differential-algebraic system includes other
forms, such as the explicit state space form:

X'(t) = 8(x(t), u(t))

Definition 2.10 (Discrete Time Model) Let (F, M) be a model, and let B(F, M) =
(Fu, Fz, Fy, V, A, A) be a behavior model over (F, M) with time base T. B(F, M)
establishes a discrete time model if its global state prescription function, A, is defined
only for a finite number of elements in each finite subset of T.

Remarks. Typically, discrete time models result from a discretization of continuous
time models.

Definition 2.11 (Discrete Event Model) A behavior model (Fy, Fz, Fy, V, A, \) over
(F, M) establishes a discrete event model, if the state space, X, defined by the global
state prescription function, A, contains only a fixed number of elements.

Remarks. Note that for a finite period the state space of a discrete time model also
contains a finite number of elements only. However, this number depends on the
time unit chosen, a fact which distinguishes discrete time models from discrete event
models. [Fishwick designates discrete event models as declarative simulation models

(79, pg. 19).

Models of real systems must not be purely continuous or discrete but can com-
prise properties from each of the mentioned time bases. For instance, models of flu-
idic systems usually combine continuous and event-based state prescriptions.

A FRAMEWORK FOR MODEL CONSTRUCTION

Different Domains and Ranges

It is difficult to draw a line between quantitative models and qualitative models. Is a
simplistic model that is based on numerical equations a quantitative or a qualitative
model? Or, if a model M’ represents an abstraction of some other model M, should
M’ be called a qualitative model?

In this place we will not engage into these and related questions. The defini-
tions presented below are oriented at the domain sets of a model’s variables. This
makes sense within two respects. Firstly, a restriction of a variable’s value set to a
finite number of elements clearly indicates a qualitative character of the associated
functionality. Secondly, a state prescription function that defines constraints on qual-
itative variables inevitably encodes qualitative laws of behavior.

Definition 2.12 (Quantitative Behavior Model) Let (F, M) be a model. A behavior
model (Fy, Fz, Fy, V, A, A) over (F, M) is called quantitative behavior model, if the
domains of the functionalities in F are number fields.

Definition 2.13 (Qualitative Behavior Model) Let (F, M) be a model. A behavior
model (Fy, Fz, Fy, V, A, A) over (F, M) is called qualitative behavior model, if the
domains of the functionalities in F are finite symbol sets.

Border cases that cannot be definitely classified may be called semi-quantitative
models. Examples: (1) A model that contains both quantitative and qualitative vari-
ables. (2) A model whose variables are defined over a number field, but whose state
prescription, however, does not obey to physical laws. The resource-based model,
which plays a role within design problems, could be called semi-quantitative (see

Section B.T).

Table 23llists the projects presented in this thesis and characterizes the underly-
ing behavior models. Within some projects two models are involved.

2.3 BEHAVIOR MODEL PROCESSING

Task Locality States Time base Variable domain

[AT] Case-based reasoning global dynamic continuous quantitative
in fluidic design

[A2] Conceptual design in global memoryless - semi-
chemical engineering quantitative

Generate heuristics for local constant - semi-
configuration quantitative

B2 Flatten deep models for local, dynamic continuous quantitative
diagnosis causal

[CI] Generatea WDS from a local, dynamic continuous, quantitative
reference circuit causal discrete-time

Learn similarity global dynamic discrete-event quantitative,
measure from classes qualitative

D1 Model formulation for local memoryless discrete-event qualitative
local area networks

Maintaining structure model
knowledge bases

[D3 Analyzing fluidic structure model

system structures

Table 2.3. Tasks presented in this thesis and their underlying behavior models.

2.3 Behavior Model Processing

Each behavior model (Fy, Fz, Fy, V, A, A) along with an input u or u(t) is a set
of constraints that prescribe particular values for the variables in F;. Processing a
behavior model means constraint processing in the broader sense.

Given a memoryless behavior model, an instantiation of the variables in F; that
fulfills all constraints is called consistent behavior model instance, or simply: behav-
ior. Given a dynamic behavior model, a sequence of consistent instantiations of the
variables in F7 is called behavior. This sequence must comply with the underlying
time base, which implies among others that the instantiations are linearly ordered
according to the parameter “time”.

When working with behavior models, frequently occurring questions are con-
cerned with the admissibility of variable assignments: Can a partial variable assign-
ment be completed towards a behavior? By which values can a partial variable as-
signment be completed to become a behavior? The next definition introduces neces-
sary concepts to reason about such questions.

39

A FRAMEWORK FOR MODEL CONSTRUCTION

Definition 2.14 (Behavior Model Instance) Let (F, M) be a model, let (F, Fz, Fy, V,
A, A) be a behavior model over (F, M), and let Fz be a subset of F;. A behavior model
instance with respect to (Fy, Fz, Fy, V, A, A) and an input vector u is a mapping 3,
B ={(f,vs) | f €FEg v € Zs}. It may fulfill one or more of the following properties.

o A behavior model instance (3 is called partial, if Fg is a proper subset of F.

¢ A behavior model instance f3 is called consistent, if a mapping B = {(f,vy) |
f € F;\ Fg,vs € Zy} exists such that all constraints defined by A are fulfilled. (3
is called a completion of 3 with respect to u.

e A consistent behavior model instance (3 is called determined, if for any two
completions 31 and 3, applies that B; = [B,. Otherwise 3 is called under-
determined.

e A determined behavior model instance 3 is called over-determined, if a subset
of f3 is also determined. Otherwise f3 is called definite.

e A behavior model instance is called contradictory if no completion 3 exists
such that all constraints defined by A are fulfilled.

Remarks. If 3 represents a definite behavior model instance, its associated set of func-
tionalities, Fg, forms a set of state variables.

Example. We pick up the electric circuit example of Figure[2.3, Page[27Zl For the vector
of component properties, (R, C), the values (2,20) with [R] = kQ and [C] = uF are
put in; the input function is chosen constant, e¢(t) = 10 with [¢] = V. Based on these
values, Table 24l gives examples for the different types of behavior model instances;
[in] =mA, [¢p] =V, [vc] = V.

Instance type i i i3 ¢ P2 Pz vc Oc
Partial 3 (*) 1 1 1 10.0 1 1 1 1
Determined (definite) 3 L 1 1 1 L 1 0.0 1
Over-determined j3 50 L 1L 1 L 1 0.0 1L
Contradictory 3 50 L L 1L 1 1.0 €L
Completions of (*) 50 5.0 5.0 0.0 0.0 0.0 250

45 45 45 1.0 0.0 1.0 225

Table 2.4. Examples of the different behavior model types for the electrical circuit. The L-sign
indicates that 3 is not defined for the respective functionality.

The computation of a completion 3 of some behavior model instance f is called
simulation. Depending on the constraints defined by A, say, the behavior model type,
several simulation methods can be distinguished. Given a state vector and some in-
put, simulation encompasses both the computation of the next state for the variables

2.3 BEHAVIOR MODEL PROCESSING

in Fy, and the computation of the remaining constraint variables in Fz \ Fx. For in-
stance, when processing a continuous-time behavior model specified in the form of
a differential-algebraic system, these computations are intertwined and are realized
by a single method such as DASSL (210). When processing an event-based behavior
model, the state computation and the computation of the remaining constraints may
happen within two steps.

(G o]
—| Multi-state model |4—

Monotonic
Nonmonotonic

Figure 2.7. Simulation approaches of multi-state models and selective-state models used in this
thesis.

sl —

—| Selective-state model |4—

The figures organize this view. Figure 27 shows different approaches to state
computation given a multi-state model and a selective-state model respectively. Fig-
ure shows various methods for symbolic and numerical constraint processing
utilized during the simulation of the different types of behavior models.

Numerical

[t Je—
Constraint computation |4—
——[umercal ¢

—| Combinatorical

Figure 2.8. Constraint processing methods used in this thesis.

Both the simulation approaches and constraint processing methods can be clas-
sified with respect to causality. Altogether three appearances of causality and non-
causality can be distinguished:

(1) Continuous multi-state models are processed by numerical integration meth-
ods. An integration method is called causal if it employs only values at prior
computation time samples; a method is called non-causal if in addition to prior
values also values of time samples at and after the present time are employed
(310). Causal and non-causal methods are also referred to as explicit and im-
plicit methods respectively.

42

A FRAMEWORK FOR MODEL CONSTRUCTION

(2) When processing selective-state models, the unknown single or final state has
to be determined (refer back to PageB6). Of course the final state can be com-
puted by starting with the initial state and going through all intermediate states
until the final state is reached. We call such a strategy causal or monotonic since
it follows the linear order of states. A non-causal or non-monotonic method
leaves this linear order and applies some kind of generate-and-test strategy.

(8) The third type of causality corresponds in a one-to-one manner to local and
global constraint processing methods. A constraint processing method is called
causal or local, if it only considers one constraint at a time to solve a con-
straint satisfaction problem. Otherwise the constraint processing method is
called non-causal or global.

2.4 Model Construction (ll)

Main concern of this thesis is the identification and utilization of model construction
approaches to solve complex analysis and synthesis problems. Based on the defini-
tions just given this section introduces five generic principles.

Starting point for model construction is always a source model, which is modified
in the model construction phase. The idea is that the new model—possibly along
with readjusted inference methods for model processing—is better suited to solve
the problem at hand, say, to answer the interesting question (see Figure 2.9).

Model construction phase

Source
model

Adapted
inference

New model

Figure2.9. Instead of using the source model to answer an interesting question, a new model,
which is constructed from the source model, and an adapted inference method are employed.

Let (F, M) be a model, and let S(F, M) € S(F, M) and B(F, M) € B(F, M) be a
structure model and a behavior model over (F, M). Together, S(F, M) and B(F, M)
form the source model. Model construction can be considered as two mappings, ¥s,
g, which map from the source model onto a new model:

S(F, M) 25 S'"(F, M"Y, B(F, M) 2% B'(F, M)

2.4 MODEL CONSTRUCTION (II) 43

where S'(F, M’) and B'(F, M') designate a structure model and a behavior model
over (F; M’'). The effects of a structure model mapping, ys, and a behavior model
mapping, vz, may range from a superficial variation up to a radical reformulation of
the source model. At any rate, the application of ys and y; has teleological character:
Both functions address deficits respecting the source model or its utilization—deficits
that are quantifiable by means of one or more of the following properties: time, place,
handling, maintenance, intricateness, comprehensibility, algorithms, representation.

Here is a key point where this thesis sets in. The functions ys and yp can be
classified—with respect to the mentioned properties and with respect to the prob-
lem class for which the new model is constructed. In this connection we introduce
the following model construction approaches (principles): model refinement, model
simplification, model compilation, and model reformulation. Moreover, the concept
of “model envisioning” is introduced; under this term we summarize methods that
prepare structure models in a graphical way. In order to make the model construc-
tion approaches comparable to each other they are characterized according to the
properties specified in Table 2.5

Property Semantics

Characteristics The intended modification of the structure model and the
behavior model.

Modeling effects The effects of a modification from the modeling perspective,
say, a user’s point of view.

Processing effects The effects of a modification with respect to model
processing. It includes

(1) processing efficiency, typically the runtime complexity,

(2) processing difficulty, which describes how intricate
the employed algorithms are, and

(3) model handling, which relates to the maintenance
effort of the modified model.

Area of application The problem classes, where the model construction approach
typically plays a role.

Techniques Techniques, algorithms, and strategies to implement the
model construction approach; say, the functions ys and yp.

Case studies Problem instances, where the model construction approach
has been applied.

Table 2.5. The basic properties that have been used to characterize the model construction
approaches.

Note that our list of model construction approaches cannot be complete, and, of
course, additional approaches will be developed in the future. However, in this place
we do not only aim at an overview of model construction but show also how it is put
into practice: The mentioned approaches have been employed successfully within

A FRAMEWORK FOR MODEL CONSTRUCTION

several projects—a part of which is presented in Part II of this thesis. Especially
against the background that recipes for the operationalization of a model construc-
tion approach can hardly be stated, the realized implementations can serve as a pool
of ideas when tackling new analysis and synthesis tasks.

Remarks. (1) The functions ys and yp can be compared to the “system morphism”
idea of [Wymore and Zeigler et al| System (homo-, iso-) morphisms are a concept to
transform one system description into another. The main contribution of Wymore
and Zeigler et al. is the development of a generic framework for system description,
system design, and system analysis. Nevertheless, their work is less concerned with
the identification and characterization of special instances of morphisms. In particu-
lar they do not investigate different morphisms respecting different problem classes,
and they engage only to a small extent in the realization and application of mor-
phisms within analysis and synthesis tasks. (2) The function ys operationalizes de-
sign knowledge on structure. To provide a means for the specification of this kind
of knowledge, Chapter 3 introduces design graph grammars (268, 241)), which come
along with a clear and widely-accepted semantics.

Model Refinement

Model refinement does not relate to complexity issues. Instead, we comprise meth-
ods under this term that are used to round out an incomplete model, to adapt
an almost adquate model, or to repair a model that has minor defects. Confer
Stein and Curatolo:

“By model refinement we designate a completion process to such an
extent that the instance of the problem class can be mastered with the
refined model.”

Stein and Curatold,[1996, pg. 58

Formal Description Let (F, M) be a model, and let (V, E,0) and (Fy, Fz, Fy, V, A,
A) be a structure model and a behavior model over (F, M).

(1) Characteristics.
The behavior model is adjusted; i.e., the complexity of A is not influenced.
Component parameters f € Fp are modified or get assigned a value at all.

The graph of the model, (V, E), remains unchanged; possibly, the labeling func-
tion o is redefined (see Figure2.10).

(2) Modeling Effects.
Gaps in the structure model or in the behavior model are filled, thus becoming
complete. The behavior model becomes more precise or processible at all.

2.4 MODEL CONSTRUCTION (II)

e'e.c.
©
(D—)—®

Source model Refined model

Figure 2.10. The structure model of the refined model is isomorphic to the graph of the source

model.

®)

4)

©)

(6)

Processing Efficiency.
The processing efficiency, the processing difficulty, and the model handling
remain unchanged.

Area of Application.

There are two typical areas where model refinement is applied: (a) The de-
termination of single of model parameters by means of identification or sim-
ulation. (b) The estimation of confidences or importance values within cause-
effect behavior models.

Techniques.

vs: Identification of missing connections in resource-based models (159), (257,
pg- 81); path differentiation and path division to introduce additional differ-
entiating rules within a rule base for diagnosis (127, pg. 25); symptom condi-
tionalization and symptom distinction to refine existing diagnostic rules with
respect to their confidence factors (127, pg. 26).

vg: Determination of unknown values for functionalities in Fp by means of sim-
ulation or experimentation; estimation of membership functions by domain ex-
perts; quantification of dependencies and adaptation of confidence values with
statistical methods, prevalently regression; identification of inconsistencies in
weighted rules by a tentative inference (127, pg. 23). Prerequisite for statistical
refinement techniques are knowledge sources in the form of example bases or
case bases.

Case Studies.

Instantiating of heuristic diagnosis rules (107); selection and adaptation of de-
sign rules in impeller design (260); evaluating repair rules in hydraulic circuit
design (288, pg. 65). The case studies are not included in this thesis.

45

A FRAMEWORK FOR MODEL CONSTRUCTION

Model Simplification

Model simplification aims at a reduction of either a model’s analytic complexity (cf.
Page [26), a model’s constraint complexity, or both. A reduction of the search space
complexity may be an additional consequence but is not top priority. While analytic
complexity and constraint complexity play a dominant role in analytical problem
solving tasks, the search space complexity is of paramount importance within syn-
thesis tasks: It is a measure for the number of models that have to be synthesized and
analyzed in order to solve a synthetical task, say, a configuration or design problem.

The concept of model simplification has been captured by several researches be-
fore. The authors quoted below are two representatives; they anticipate quite well
the items “characteristics” and “modeling effects” of our formal description. Note,
however, that|Fishwick uses the term “abstraction” instead of “simplification”, and
his term “process” corresponds to “behavior model” in our terminology.

“Model simplification means to reduce the number of interactions or to
substitute simpler interactions for more complex ones between the
model constituents.”

Karplus, 1977, pg. 3

“Abstraction of a process will inevitably involve a reduction in model
components and interactions, along with the reduction in behavioral
complexity of the model when simulated.”

Fishwick, 1988, pg. 18

Formal Description Let (F, M) be a model, and let (V, E,0) and (Fy, Fz, Fy, V, A,
A) be a structure model and a behavior model over (F, M).

(1) Characteristics.

Simplification of behavior models usually happens within two respects. Firstly,
the set of functionalities, F, may be restricted to a subset F/ C F, which entails a
reduction of A’s domain and range. Secondly, the complexity of the functions
in A may be reduced, even up to the total omission of A. The former estab-
lishes an aggregation of function (84) and is directly connected to structure
simplification; the latter falls into the class of behavior aggregation.

If the set of functionalities, F, is restricted to a subset F* C F, edges in (V, E)
are deleted and elements in M may become empty sets, resulting in a simpler
structure model (V’, E’,¢’). The graph (V’,E’) is a contraction of (V, E), as
shown in Figure P.1T]

(2) Modeling Effects.
The lessened interaction between the submodels in M results in the neglection

2.4 MODEL CONSTRUCTION (II)

Simplification

Source model Simplified model

Figure 2.11. The simplified structure model emerges from a contraction of (V, E).

®)

4)

©)

(6)

of physical effects. The simplification of A results in a coarsening of physi-
cal phenomena or in physically wrong connections. The behavior is rendered
inaccurately up to certain degree.

A reduction of M and A makes the simplified model easier to understand (78).

Processing Effects.
Both structure model and behavior model can be processed more efficiently;
the processing difficulty is reduced; the model handling is simplified.

Area of Application.
Analysis of large or numerically demanding behavior models; synthesis of be-
havior models without knowledge about the model structure (= design).

Techniques.

7vs: Elimination of feedback loops; equalization of the node degree in (V, E);
elimination of edges to create a causal ordering, say, a unique computation
sequence when determining unknown functionalities (194, 90).

vg: Fuzzyfication of equations in A; piecewise linear reasoning (232); lineariza-
tion of higher order polynomials; balancing of dominant terms in complex
equations (306); state combination by aggregating similar states; numerical
coarsening by means of scaling down numerical precision of the functionali-
ties in F; order of magnitude reasoning (217); reduction of the source model
onto a structure model by omitting A totally, which is called “representational
abstraction” by|Fishwick (7§).

Case Studies.

Case-based design of fluidic circuits (Section[A.])); conceptual design in chem-
ical engineering (Section[A.Z); graph-based simulation of fluidic circuits (not
included in this thesis).

A model simplification represents a more or less serious intervention in the phys-
ical underpinning of the source model. Hence, model simplification is always bound

47

A FRAMEWORK FOR MODEL CONSTRUCTION

up with model evaluation. It has to be ensured that the simplified model is able to
answer the interesting question in connection with the intended experiment.

Model Compilation

Model compilation is the anticipation of model processing effort; say, processing
effort is shifted from the model utilization phase to the model construction phase.
Model compilation is a powerful construction approach to address a model’s analytic
complexity, its constraint complexity, or the search space complexity. Figuratively
speaking, model compilation means to create a compiled model by introducing ei-
ther (1) computational short cuts within long-winded calculations that are caused by
a complex behavior model, or (2) exploratory short cuts within a large search space
that results from problem-inherent combinatorics.

Q.

'@ e

‘® ¥O)

Source model Compiled model

Figure 2.12. Computational short cuts: Hints in the compiled behavior model short-circuit the
computation of constraints between functionalities of different submodels. For example, the
input set, Fi, could directly be mapped onto the output set, Fy.

The idea behind several model compilation approaches is to break global connec-
tions within the source model down to local connections, which are encoded within
the compiled model in the form of special hints. These hints can take one or more of
the following three forms.

e Hints that use memorization to short-circuit involved state prescription con-
straints between functionalities of different submodels (see Figure2.12). Cause
effect chains are shortened, possibly to simple associations. Involved state pre-
scription constraints, e. g. in the form of equation systems, are typical for tech-
nical systems whose behavior is described by compatibility constraints and
continuity constraints (297).

e Hints that suppose an order within a sequence of tentative search space de-
cisions (see Figure Z.T3)). These hints are introduced as tags at the respective
choice points in the search space and control the search.

2.4 MODEL CONSTRUCTION (II) 49

o Hints that restrict the search space by introducing additional state prescription
constraints (see Figure 2ZT4).

Source model Compiled model

Figure 2.13. Exploratory short cuts: Hints in the compiled structure model define an order on
alternative submodels when exploring the search space while solving a synthesis task.

Model compilation methods can also be characterized by their scalability. Us-
ing a scalable method, there is a trade off between the preprocessing effort and the
knowledge gained for the model utilization phase. The scalable character of a com-
pilation method may be bound up with the depth of the analyzed search space, or
the precision at which simulations are performed. However, a compilation method
that analyzes a model with respect to special structures is normally not scalable. In
Chapter[Blwe will introduce representatives for both kinds of methods.

Source model Compiled model

Figure 2.14. Exploratory short cuts: Hints in the form of additional state prescription constraints
(dashed lines) restrict the search space.

Formal Description Let (F, M) be a model, and let (V, E,0) and (Fy, Fz, Fy, V, A,
A) be a structure model and a behavior model over (F, M).

(1) Characteristics.
The set of functionalities, F, remains unchanged. The behavior model may be
equipped with additional constraints that encode numerical or search-specific
hints.

50

@

®)

4)

©)

A FRAMEWORK FOR MODEL CONSTRUCTION

The labeling function o is redefined if a preference order is encoded on the
nodesin (V, E). New edges are introduced if the state prescription function, A,
is extended by additional constraints (see Figure 2.14).

Modeling Effects.
The modeling accuracy and the level of detail is not reduced, although the
ways of computing model behavior may be completely altered.

Processing Efficiency.

The model can be processed much more efficiently referring to the interesting
problem solving task. However, no respect for the inference intricatenesses is
shown; i.e., the implementation of the necessary inference (simulation) algo-
rithms may be more challenging than before compilation. Moreover, model
handling gets more complicated since modifications of the model may entail a
renewed preprocessing.

Area of Application.

Whenever processing efficiency is highest bid and processing hints can be com-
puted at all, model compilation is expedient. Given this situation, following
further prerequisites must be fulfilled. (a) Firstly, the problem solving task is
apportionable into two phases: A model construction or preprocessing phase,
where computing power and/or computing time are given on a large scale,
and a model utilization or problem solving phase, where computing resources
are short. (b) Secondly, for the portion, p, of problem instances that make a
renewal of the compilation process necessary holds p < 1.

Techniques.

vs: Topological analyses from which computational constraints or search con-
straints are derived; determination of candidates for a dependency-directed or
knowledge-based backtracking; identification of spheres of influence of both
revision and trashing (170, pg. 111); decomposition of equation models into
(a) involved subproblems, which must be processed by a global method, and
(b) feedback-free subproblems, which can be tackled by a local inference ap-
proach (262); model decomposition by causal analysis, which means the appli-
cation of equation model decomposition onto qualitative simulation (42).

v (demanding computation): Pre-computation of typical simulation situa-
tions and encoding of input/output associations in the form of look-up tables;
compilation of rules into a rete-network (83); utilization of an assumption-
based truth maintenance system (ATMS) in order to organize results of com-
putational expensive inference problems (138); sharing of computation results
by identifying and replacing instances of similar submodels, a concept that can
be realized algebraically at the level of A (262) or at the more abstract level of
model fragments; case-based learning of characteristic features to select suited
inference methods for the computation of A (263).

2.4 MODEL CONSTRUCTION (II)

ve (large search space): Behavior aggregation by a precedent detection of re-
peating cycles (295); coalescing a system by methods from the field of inductive
inference (12), which is called “Abstraction by Induction” in (78); extensive or
even exhaustive search in order to analyze the search space or to develop a
decision strategy at choice points; ordering of value assignments in constraint-
satisfaction problems with finite domains (85,152, /53).

(6) Case Studies.
Compilation of dynamic behavior models for diagnoses purposes (Section[B.2);
generation of search heuristics in configuration problems (Section B.I); identi-
fication of nogoods to speed up model fragment synthesis (259) (not included
in this thesis).

Remarks. The techniques presented here address the compilation of models of tech-
nical systems. They take advantage of this fact: Observe, for instance, that within a
diagnosis task not at all points of time all model functionalitities must be known, or
that behavior and structure are coupled, which submits to infer computational hints
for the behavior model from the underlying structure model.

We call a compilation method that is not specially keyed to models of technical
systems a knowledge compilation method. Knowledge compilation methods presup-
pose a determined knowledge representation form, but no problem solving task, no
domain, and no model. The rete-algorithm mentioned above is such a knowledge
compilation method; its prescribed knowledge representation form is the rule form.
Another rule-based knowledge compilation method has been developed by |Zupan!.
While the rete-algorithm has been developed for rule languages whose interpretation
is defined on the recognice-and-act cycle, | Zupan’s compilation method exploits the
fixed-point convergence of the rule language to be compiled (312).

The following examples give an idea of the spectrum of knowledge forms where
compilation methods can be applied. (1) The syntatic analysis and substitution of al-
gebraic terms, which ensures a unique term occurence with respect to a given normal
form, establishes knowledge compilation method. (2) A still more basic knowledge
compilation method is based on Horn approximations (249); its prescribed knowl-
edge representation form are formulas in propositional form. (3) If graphs are the in-
teresting knowledge form, knowledge inference may bound up with graph matching
or subgraph isomorphy. For the latter problem|Messmer and Bunke have developed
a compilation method with scalable preprocessing effort (181).

51

52 A FRAMEWORK FOR MODEL CONSTRUCTION

Model Reformulation

In a literal sense, every construction of a new model from a source model could be
entitled a reformulation. This not the intention here, but the term model reformu-
lation is used as a collective term for model constructions that are indifferent with
respect to both modeling effects and processing efficiency.

Model reformulation aims at issues from one or more of the following fields:
knowledge representation, knowledge acquisition, model maintenance, available in-
ference methods, user acceptance. After a model reformulation, the resulting model
is in a form ready to become used for the problem solving task in question. Model
reformulation does not target on complexity issues in first place.

Reformulation

Reformulated model
Source model

Figure 2.15. Model reformulation is usually bound up with a paradigm shift in model process-
ing, entailing both a new structure model and behavior model.

Formal Description Let (F, M) be a model, and let (V, E,0) and (Fy, Fz, Fy, V, A,
A) be a structure model and a behavior model over (F, M).

(1) Characteristics.
The set of functionalities, F, may or may not be altered. Typically, the state
prescription function, A, is reformulated. Put another way, there is a paradigm
shift in model processing.

(2) Modeling Effects.
Ideally, there are no effects on the model’s accuracy or its level of granularity.

(3) Processing Effects.
Ideally, the processing efficiency is not affected. Nothing can be said regarding
processing difficulty. The model handling may be simplified.

(4) Area of Application.
There is no specific area of application. Model reformulation comes into play if
a model that has been developed with respect to a special processing approach
shall be transformed for another processing approach.

2.4 MODEL CONSTRUCTION (II)

(5) Techniques.
There is no specific reformulation technique.

(6) Case Studies.
Constructing wave-digital filters from analogous circuits (Section [CT); learn-
ing similarity measures from user specifications (Section[C.2); coding qualita-
tive diagnosis models as propositional formulae (not included in this thesis).

As opposed to model refinement, model simplification, or model compilation,
there is no pool of techniques by which a model reformulation is to be realized. This
is in the nature of things; model reformulation takes a model that has been used suc-
cessfully with processing paradigm A and tries to transform this model such that it
can be used within processing paradigm B. I. e., there is no model-inherent objective;
the reformulation constraints are exogenous variables.

At first sight model reformulation appears to be a close relative of model compi-
lation. This, however, is not the case. The maxim of model compilation is processing
efficiency, and the problem solving task could be done without a compilation—at
a lower processing effiency, of course. We speak about model reformulation, if a
model must be transformed at first into another representation in order to be pro-
cessed within the problem solving task.

Model Envisioning

Model envisioning implies no constructional mission but is a collective term for
analysis methods that base on the rendering of structure models. The objectives of
model envisioning comprise the provision of insights and the simplification of the
access when dealing with complex models. The graphical preparation of a structure
model can be used for analysis, modification, maintenance, or acquisition purposes—
with respect to both structural and behavior model properties.

In this vein model envisioning defines a new kind of problem solving method
that has been developed and applied by Niggemann and Stein within several projects
(265). Model envisioning is the attempt to identify and to visualize a model’s natural
structure. It is related to different areas of visualization and makes heavy use of
methods from the field of cluster detection and graph drawing (282, 169,(134).

Formal Description Let (F, M) be a model, and let (V, E, o) and (Fy, Fz, Fy, V, A,
A) be a structure model and a behavior model over (F, M).

(1) Characteristics.
The graph of the model, (V, E), is modified with respect to the envisioning
goal. Moreover, the resulting graph is enriched by graphical information,
which specify clustering and geometry information that are used for layout
purposes.

53

A FRAMEWORK FOR MODEL CONSTRUCTION

Source model Envisioned model

Figure 2.16. Model envisioning deals with the graphical preparation of structure models.

(2) Modeling Effects.
Of no account, the model is solely used for envisioning purposes.

(3) Processing Effects.
Of no account, the model is solely used for envisioning purposes.

(4) Area of Application.
Representation and preparation of complex structure models whereas the fol-
lowing goals can be pursued: (a) Extraction of insights for special analysis
tasks (diagnosis) or synthesis tasks (model formation, design), (b) providing a
means for understanding and maintaining large models, (c) isolation of partic-
ular parts of a model.

(5) Techniques.
7vs: Identification of sub-structures in (V, E) by means of graph matching; topo-
logical modifications of (V, E) with graph grammars; identification of equiva-
lence classes in V by means of clustering methods; layout of (V, E) by devel-
oping a mapping « that assigns each node in V' a point in the Euklidian plane.

A variety of graph drawing approaches exist to define &, which can be divided
into two classes: (a) Categorical approaches, which try to arrange a graph ac-
cording to a particular scheme, paradigm, or philosophy, such as hierarchical
leveling, attracting forces, or recurring resemblances (280, 160, 1220). (b) With-
out implying any graph structure, where the layout of a graph is defined by a
quality measure, g, that captures a variety of esthetics criteria (49,/18).

(6) Case Studies.
Model formulation for LANs (Section[D.J); envisioning of large configuration
knowledge bases (Section[D.2); envisioning of fluidic axes and their couplings

(Section[D.3).

2.4 MODEL CONSTRUCTION (II)

Discussion

Table[2.6] contrasts the presented model construction approaches. The used symbols
are interpreted as follows: 11 (1) means strong (low) positive impact, while t! (1)
means strong (low) negative impact, the dash stands for no impact. Note that this
table represents the dependencies in an oversimplified way and should only be used
as a road map.

Modeling Processing Processing Handling
Approach quality efficiency difficulty difficulty
Refinement 1 - - -
Simplification 1l 1 ! 1
Compilation - T 1 1
Reformulation - - ! I
Envisioning - - 1 1

Table 2.6. Short characterization of the model construction approaches.

"o

The model construction approaches “simplification”, “compilation”, and “refor-
mulation” could be called process-centered, while “refinement” and “envisioning”
should be called model-centered. This classification reflects the pursued intentions of
the knowledge engineer and is explicated now.

o Process-Centered Model Construction. Model simplification as well as model
compilation relate to the difference between the provided and the required
computing power, when going to solve a problem with the source model. A
model is simplified if the interesting problem solving task cannot be handled
with this model—a situation that occurs if, for instance, a design task is ad-
dressed with a model conceived for an analysis task. In fact, model compi-
lation can provide a way out in such a situation as well. The essentials for a
compilation strategy are twofold: The task in question can be tackled with ac-
ceptable computing power, and, the employment of the necessary computing
power can be alloted a model construction and a model utilization phase.

Model reformulation relates to the conceptual difference between the source
model and the model required for the processing method at hand. Note that,
just as in the simplification or the compilation case, a shortcoming of the pro-
cessing situation is addressed.

o Model-Centered Model Construction. By contrast, model refinement and, in some
degree, model envisioning address a shortcoming in the model itself. The for-
mer approach fills gaps or fixes inaccuracies, while the latter approach modi-
fies a model in order to render structural properties for subsequent knowledge
processing tasks.

56

A FRAMEWORK FOR MODEL CONSTRUCTION

Note that a model simplification strategy is also advisable if the simplified
model is easier to understand or if its behavior is easier to interpret than were
the respective considerations at the source model (78). Given this case, the
related simplification establishes a model-centered construction as well.

Model construction approaches must not be applied as a pure concept but may
complement themselves when applied multiply. For example model simplification
and model compilation go well together for several reasons, as demonstrated within
the case study in Section[B.2

Related Work. Literature on model construction concentrates primarily onto model
simplification (see 310, Chap. 14), for which different nomenclatures are used. Fish-
wick (78), for instance, uses the term “model abstraction” and “abstract model” in a
similar sense as the term “simplification” is used here. An exception forms his sim-
plification method “abstraction by induction”, which should rather be counted as a
model compilation method. [Frantz comprises under the term “model abstraction”
also compilation and refinement operations. [Zeigler et al. use the term “approximate
morphism”.

Structured system - » Structured system'
I/O system = » 1/O system'
I/O function —e » /O function'

: !

I/O relation - 1/O relation'

\

Figure 2.17. Hierarchy of system specifications according to [Zeigler et all (310). The horizontal
lines represent mappings for model construction, called morphisms here.

The (deficient) differentiation between rather different model construction ap-
proaches is the consequence of a generic principle: Existing classifications of both
models and model construction strategies are, in first place, developed from a mod-
eler’s point of view and only to a small extent from the standpoint of problem solving
tasks.

Figureshows the modeler’s point of view as it can be found in (310, pg. 296
or 377). The vertical arrows in this diagram connect a behavior model at different
levels of explicitness. At the lowermost level, behavior is specified by input/output
relations; when going up in the hierarchy, the models get supplemented bit by bit: by
a global state prescription function, by initial states, by local behavior relations, and,
finally, on the topmost level, by a component influence structure. The horizontal
arrows represent mappings between two models; they are called morphisms here
and correspond to our construction functions ys and y3.

2.4 MODEL CONSTRUCTION (II) 57

| Structured system | Structured system'
Source
models
I/O system |- I/0 system'

1/O function'

Tl .
1/O relation /O relation’ | ~ Compiled
model

Figure 2.18. Integrating the idea of model compilation into|Zeigler et all’s hierarchy of system
specifications: A high-level system description, e. g. an equation model, is broken down to plain
1/0 relations by means of model compilation.

1/0 function

»

We can use this diagram to point up the effects of a model compilation that in-
troduces computational short cuts: It is a mapping from a model on the left-hand
side onto the I/O-relation model at the lowermost level on the right-hand side (see

Figure2.18).

58

A FRAMEWORK FOR MODEL CONSTRUCTION

Design Graph Grammars:
Specifying Knowledge on Structure

The previous chapter introduced a modeling perspective for technical systems and,
based on this perspective, formulated several model construction principles. The
following questions may suggest themselves.

e Do universal, i. e., model-independent approaches to the described model con-
struction principles exist?

o Given different instances of the same model construction principle, which as-
pects do they have in common?

e Can a theory of model construction principles be developed?

Since each domain, each task, and each granularity level has its own, particular
modeling constraints, the existence of a generic recipe for the simplification, compi-
lation, or transformation of a model is unlikely. This—expected—answer is also re-
flected by the spectrum of problem solving methods that has been employed within
the projects outlined in Part II of this work.

However, many model modification strategies affect structural properties of a
model (F, M). These modifications can be specified in a uniform way since the
underlying structure models, S(F, M), are of the same form, namely labeled multi-
graphs (V, E, o). A uniform specification reveals similarities when tackling different
model construction tasks and can thus prepare the ground for the development of a
model construction theory.

History. The idea to employ graph grammars as a means to describe, or, as the
case may be, to operationalize knowledge on the analysis and synthesis of struc-
ture models suggests itself. With a close look at expressiveness and applicability in
engineering domains we have developed an advancement of classical graph gram-
mar approaches, which we call “design graph grammars” (268§, 241). Design graph
grammars (DGG) provide a precise semantics for the structural modification a model

60

DESIGN GRAPH GRAMMARS

w w
S<F, M> S<F, M>

=> Design graph grammar application
----#= Control of grammar application

Figure 3.1. Design graph grammars provide a universal means for structure model manipula-
tion. The problem-specific knowledge, which controls the manipulation process, may rely on a
behavior model analysis.

undergoes during its simplification or transformation. They are used throughout the
projects of Part II as a formal description methodology.

Note that the control, say, the application of a design graph grammar, is grounded
on deep domain knowledge and is typically tied to the underlying behavior model
B(FLM) = (Fy, Fz, Fv, V, A, A) (see Figure B). For instance, within an opti-
mization or synthesis task, structure modifications will often realize repair rules,
which improve unsatisfying model behavior detected during the analysis of B(F, M)
(238, 270). The control knowledge can be acquired from domain experts; it makes up
a predominant portion of the solution, and, as said above, it must be developed from
scratch as the case arises.

The remainder of the chapter is devoted to design graph grammars and is orga-
nized as follows. Section[3.1]is intended as an introduction and motivation around
structure model manipulation. Section[3.2] then presents design graph grammars as
an appropriate means for this objective. The development and use of design graph
grammars is connected to various theoretical issues, which are addressed in the last
two sections. Section[3.3 examines the relationship of design graph grammars to clas-
sical graph grammars. Section B4lpresents issues concerning the application of graph
grammars in structure analysis and system design.

3.1 DESIGN TASKS AND TRANSFORMATION RULES

3.1 Design Tasks and Transformation Rules

The design of a system encompasses a variety of different aspects or tasks—not only
the traditional construction process with which it is usually associated. For each of
these tasks different operations of varying complexity are required:

o Insertion and deletion of single items in a system,
o change of specific items and connection types,

e manipulation of sets of items, e. g., for repair or optimization purposes.

The operations delineated above can be viewed as transformations on graphs;
they are of the form target — replacement. A precise specification of such graph trans-
formation rules can be given with graph grammars. A central concept in this connec-
tion is bound up with the notions of matching and context, which, in turn, ground
on the concept of isomorphism (126).

Definition 3.1 (Isomorphism, Isomorphism with Labels) Let G = (V,E) and H =
(Vu, En) be two graphs. An isomorphism is a bijective mapping ¢ : V — Vy for
which holds: {a,b} € E < {¢(a), ¢(b)} € Eq, for any a,b € V. If such a mapping
exists, G and H are called isomorphic.

G and H are called isomorphic with labels, if G and H are labeled graphs
with labeling functions o and oy, and the following additional condition holds:
o(a) = ou(e(a)) for each a € Vi, and o(e) = ou(p(e)) for each e € E, where
p(e) = {w(a), o(b)} ife = {a,b}.

Figure[3.2lshows an example of isomorphic and non-isomorphic graphs.

e A b d
G Hl H2

a c c d a c

Figure 3.2. A graph G, a graph H; that is isomorphic to G, and a graph H, that is not isomorphic
to G.

Definition 3.2 (Matching, Context) Given are a labeled graph G = (V, E, o) and an-
other labeled graph, C. Each subgraph (Vc, Ec, oc) in G that is isomorphic to C, is
called a matching of C in G. If C consists of a single node only, a matching of C in G
is called node-based, otherwise it is called graph-based.

Moreover, let T be a subgraph of C, and let (Vr,Er, or) denote a matching of T
in G. A matching of C in G can stand in one or both of the following relations to a
matching of T in G.

DESIGN GRAPH GRAMMARS

(1) Vr C Vc. Then the graph (Vc, Ec, oc) is called a context of T in G.

(2) (Vr,Er,0r) = (Vc, Ec,0c). Then T is called context-free.

A matching of a graph H in G is denoted by H.In general, we will not differenti-
ate between a graph H and its isomorphic copy.

Figure3.3. Above: A graph C with a subgraph T, and a graph G. Below one can see three
matchings of T and C in G: a) matching of T without context; b) matching of T with context C;
¢) matching of T with context C whereas the matching of T is a strict degree matching.

Remarks. Each matching Hofa graph H within a graph G represents a subgraph of G,
which means that every node of H may be connected to the remainder of G by some
edges. This understanding of matching may be sufficient for many purposes, but the
domain of technical systems requires more flexibility. Thus, the matching concept is
extended to allow a finer control: Let V}; C Vy be a set of nodes in H. Then Hisa
strict degree matching of H in G if no node in Vi C V}; is connected to the remainder
of G by some edge. The use of this type of matching will be indicated by specifying a
set V};. In practice, the nodes in V}; are marked with an asterisk. FigureB.3lillustrates
the notions of matching and context.

Existing graph grammar approaches are powerful, but lack within two respects.
Firstly, the notion of context is not used in a clear and consistent manner, which is also
observed in Drewes et al. (58, pg. 97). Secondly, graph grammars have rarely been
applied to solve synthesis and analysis problems in the area of technical systems.
Instead, graph grammar solutions focus on software engineering problems for the
most part (62, 63,164, 132,133,(149,(162, 222,228, 243, |246).

3.1 DESIGN TASKS AND TRANSFORMATION RULES 63

The systematics of design graph grammars introduced here addresses these
shortcomings. Figure B4l relates classical graph grammar terminology to typical de-
sign tasks; the remainder of the subsection presents examples for differently power-
ful rules of type target — replacement. A precise analysis of the relationship between
classical graph grammar families and design graph grammars can be found in Sec-
tion

Node-based Graph-based

Context-free, i Context-free With context

; Classical
NLC NCE g‘(%Ee without NCE graph
grammars
O O O O

Design
tasks

~+— Matching paradigm

Figure3.4. A graph grammar hierarchy for the various design tasks. The abbreviations NLC
and NCE denote classical graph grammar families.

e Node — Node. Context-free transformation based on node labels. Graph gram-
mars with rules of this type are called node label controlled graph grammars
(NLC grammars). The figure shows a type modification of a mixing unit,
which can be realized by this class of rules.

H = &

e Node — Graph. Context-free transformation based on node labels (NLC gram-
mars). The figure shows the replacement of an ideal voltage source with a
resistive voltage source (synthesis without context).

o Node with Context — Node. Node-based transformation based on node labels
and edge labels. Graph grammars with rules of this type are called neighborhood

DESIGN GRAPH GRAMMARS

controlled embedding graph grammars (NCE grammars). The figure shows the
clustering of graphs (analysis and synthesis with context), an example for this
type of transformation.

e Node with Context — Graph. Node-based transformation based on node labels
and edge labels (NCE grammars). The figure shows the replacement of an
unknown unit by inserting a heat transfer and a pump unit to fulfill the tem-
perature constraints (synthesis with context).

?
Tlow OThigh Tlow . . Thigh

Another example for a transformation of this type is the replacement of an
unknown unit by inserting a heat transfer unit, a pump unit, and a mixing unit
(synthesis with context).

T Tiow Thigh
low) - —>§—>
: high

Thigh

Graph — Graph. Context-free transformation based on graphs without edge
labels (NCE grammars without edge labels). The figure shows the replacement
of two resistors in series with one resistor.

o Fod }to = o 1}

Another example for a transformation of this type is the conversion of a struc-
ture description tree into a parallel-series graph (model transformation).

3.2

3.2

DESIGN GRAPH GRAMMARS

Graph with Context — Graph. Context-sensitive transformation based on graphs
with edge labels (NCE grammars). The figure shows the insertion of a bypass
throttle (repair, optimization).

=
—=> b,

R

Design Graph Grammars

What happens during a graph transformation is that a node ¢ or a subgraph T in the
original graph G is replaced by a graph R. Put another way, R is embedded into G. In
the sequel we will provide a formal basis for the illustrated graph transformations.

Definition 3.3 (Host, Context, Target, Replacement Graph, Cut Node) Within the
graph transformation context, a graph can play one of the following roles.

Host Graph G. A host graph represents the structure on which the graph trans-
formations are to be performed.

Context Graph C. A context graph represents a matching to be found in a host
graph G. The graph C is part of the left-hand side of graph transformation
rules.

Target Graph T. A target graph represents a graph whose matching in a host
graph G is to be replaced. If T is a subgraph of a context graph C, then the
occurrence of T within the matching of C in G is to be replaced. The graph T is
part of the left-hand side of graph transformation rules. In case T consists of a
single node, it is called target node and denoted by t.

Replacement Graph R. A replacement graph represents a graph of which an
isomorphic copy is used to replace a matching of the target graph T in the
host graph. The graph R is part of the right-hand side of graph transformation
rules.

The nodes of the host graph that are connected to the matching of T are called
cut nodes.

Informally, a graph grammar is a collection of graph transformation rules each of
which is equipped with a set of embedding instructions. The subsequent definition
provides the necessary syntax and semantics.

65

66 DESIGN GRAPH GRAMMARS

Definition 3.4 (Context-Free Design Graph Grammar) A context-free design graph
grammar is a tuple G = (X, P,s) with

e I is the set of node labels and edge Iabelﬂ,
o P is the finite set of graph transformation rules, and

e s is the initial symbol.

The graph transformation rules in P are of the form T — (R, I) with
o T = (Vr,Er,or) is the target graph to be replaced,
e R = (Vg, Eg, or) is the possibly empty replacement graph,

o [is the set of embedding instructions.

Semantics: Firstly, a matching of the target graph T is searched within the host
graph G. Secondly, this occurrence of T along with all incident edges is deleted.
Thirdly, an isomorphic copy of R is connected to G according to the semantics
of the embedding instructions.

An embedding instruction in I is a tuple ((h, t,e), (h, v, f)) with
h € X isalabel ofanodevin G\ T,

te XLisalabel ofanodewinT,

e € L is the edge label of {v, w},
- f € X is another edge label not necessarily different from e, and

- re V¢ isanodeinR.

Semantics: If there is an edge labeled e connecting a node labeled h in G\ T
with a node labeled t in T, then a new edge with label f is created, connecting
the node labeled h with the node r. If no edge labels are used, an embedding
instruction may be abbreviated as ((h, t), (h,) B

The execution of a graph transformation rule r on a host graph G yielding a new
graph G’ is called “derivation step” and is denoted by G =, G’. A sequence of such
derivation steps is called derivation. The set of all graphs that can be generated with
G is designated by L(G).

1Within rules, labels can also be used as variables for other labels (cf. Page[/0). To avoid con-
fusion, variable labels will be denoted with capital letters, while all other (type-specifying)
labels get small letters.

2Grammars that do not change edge labels in the embedding process are called neighborhood
uniform grammars.

3.2 DESIGN GRAPH GRAMMARS

Figure 3.5. Application of a context-free graph transformation rule, T — (R,I), to a host
graph G.

Example 1. The transformation of a graph G into a graph G’, depicted in Figure[3.5]
illustrates how a graph transformation rule works. The rule T — (R, I) has the fol-
lowing components.

o Targetgraph T = (Vr,Er,0or) = ({1,2},{{1,2}},{(1,b),(2,¢)})
e Replacement graph R = (V, Eg, or) = ({3}, {}, {(3,n)})

e Embedding instructions I = {((a, b, f), (a,n, f)), ((e,c, f), (e,n, f))}. Alterna-
tively, one can employ variable labels, which yields I = {((A, B, f), (A,n, f))}.

o A graphical specification of the rule may look as follows. The dashed lines
represent an arbitrary number (inclusive zero) of incident edges.

Example 2. Let G = (X,P,s) be a design graph grammar from the domain of
chemical engineering that specifies some transformation from Section BIl L =
{?,A,B,C,D, Tiow, Thig, heater, pump, mixer}, P contains rules similar to the follow-
ing.

T = (Vr, Er,or) = ({1,2,3,4},{(1,3),(2,3),(3,4)},{(1,4),(2,B), (3,?),
(4,0), ((+3), Tiow), ((2,3), Thign), ((3,4), Thign) })

R = (Vk, Ex,0r) = ({5,6,7,8,9,10},{(5,7),(7,8), (8,9), (6,9),(9,10) }, {(5, A),
6,B), (7, heater), (8,p ump (9, mixer), (10,C), ((5,7), Tiow),

, (
/(((6/9)/Thigh)/((,10), Thign) })

(6,B),
((7,8), Thign), ((8,9), Tii
), (D D,C))}

)
I'={((D, A),(D, A)),((D,B), (D, B)), ((D,C),

A

Tiow Thigh

. g

Tlow ?Th-h c ==
For =

A
B
--»(Y Thigh o

68 DESIGN GRAPH GRAMMARS

Context-Sensitive Designh Graph Grammars

This subsection introduces the notion of context into design graph grammars, leading
to the context-sensitive variant of Definition

Definition 3.5 (Context-Sensitive Design Graph Grammar) A context-sensitive de-
sign graph grammar is a tuple G = (X, P,s) as described in Definition whose
graph transformation rules P are of the form (T,C) — (R, I) with

o T = (Vr,Er,0r) is the target graph to be replaced,
o C is a supergraph of T, called the context,
e R = (Vg, Eg, or) is the possibly empty replacement graph,

o [is the set of embedding instructions for the replacement graph R.

Semantics: Firstly, a matching of the context C is searched within the host
graph G. Secondly, an occurrence of T within the matching of C along with
all incident edges is deleted. Thirdly, an isomorphic copy of R is connected to
G according to the semantics of the embedding instructions.

The set I of embedding instructions consists of tuples of the same form and
semantics as in the context-free case in Definition

In the following we will not explicitly distinguish between both graph grammar
types, since the used variant is obvious from the context and rule form.

Figure 3.6. Application of a context-sensitive graph transformation rule, (T,C) — (R,I), to a
host graph G.

Example. The transformation of a graph G into a graph G, depicted in Figure B.6} il-
lustrates how a context-sensitive graph transformation rule works. The rule (T, C) —
(R, I) has the following components.

3.2 DESIGN GRAPH GRAMMARS

T = (Vr,Er,or) = ({1,2}, {{1,2}},{(1,b),(2,¢)})
C=(V¢,Ec,oc) = ({3,4,5,6,7,8},{{3,4},{3,7},{7,8},{4,8},{3,5},
{5,6},{6,8}},{(3,a),(5,b),(6,¢), (8,4d),
({3,5}. 1), ({6,8},8)})
R = (Vk, Eg,0r) = ({9}, {},{(9,n)})
={((a,b,f),(a,n,f)), ((dcg) (dng)}

With variable labels, the set I may also be formulated as {((4, B,C), (A,n,C))}.

Remarks. Design graph grammars differ not only in matters of context but also in
the size of the target graph. If all target graphs in the graph transformation rules
consist of single nodes, the graph grammar is called node-based, otherwise it is called
graph-based. The Figures[3.7]and B.8 illustrate some cases where node-based graph
transformation rules are insufficient. Note that such rules are required for optimiza-
tion and repair tasks.

A R =2

Figure 3.7. Replacement of a partial chain consisting of a mixer, a pump, and a heat transfer
unit by a mixer device with built-in heat transfer. Again, the dashed lines stand for a variable
number of edges. For the sake of simplicity edge labels have been omitted.

*E—’@\
,g_,@/

Figure 3.8. Combination of two identical partial chains through relocation. Depending on the
properties of the substances involved, a different mixer device has to be used.

The distinction between node-based and graph-based graph grammars is of rele-
vance, since they fall into different complexity classes due to the subgraph matching
problem connected to the latter (see Section[3.4] Page[Z8).

69

DESIGN GRAPH GRAMMARS

On the Semantics of Labels

Labels are of paramount importance for the graph transformation process; all tasks
belonging to a transformation step such as matching of target and context graphs
or the embedding of replacement graphs rely on them. This section addresses some
issues related to labels: terminal and nonterminal labels, variable labels, and conflict-
ing embedding instructions.

Terminal and Nonterminal Labels Several graph grammar approaches distin-
guish between terminal and nonterminal labels: Terminal labels may appear only
within the right-hand sides of graph transformation rules; nonterminal labels are
used within both sides. In this regard, a graph is called terminal or final if it contains
only terminal labels.

Design graph grammars use the classic idea of graph matching, and there is no
syntactical distinction with respect to terminals and nonterminals in the set Z. Note
that this philosophy does also reflect the human understanding of modeling in many
technical domains. For the same reason, the concept of final graphs has been aban-
doned.

Variable Labels Variable labels are introduced for convenience purposes: They al-
low for the formulation of generic rules, which match situations belonging to identi-
cal topologies that differ with respect to their labels. Without variable labels one rule
for each such situation would have to be instantiated, leading to a large rule set due
to the combinatorial explosion.

Furthermore, the use of variable labels within rules and embedding instructions
leads to the question of binding: Variable labels that occur exclusively within the
embedding instructions of some rule are called unbound, and their matching is not
restricted. Variable labels that occur within the context graph or target graph of a rule
are bound to the label of the actually matched node; they retain their value during
the replacement and embedding processes.

Observe that variable labels prevent a simple distinction between terminals and
nonterminals: The labels in £ cannot be assigned to either class by a superficial anal-
ysis of the graph transformation rules in P.

If the use of variable labels leads to conflicting embedding instructions, the princi-
ple of the least commitment shall apply (230): The most specialized embedding instruc-
tion is to be chosen.

3.3 RELATION TO CLASSICAL GRAPH GRAMMARS

3.3 Relation to Classical Graph Grammars

An important question pertains to the justification of design graph grammars, which
represent a further graph transformation formalism amidst existing graph grammar
concepts. In the following we describe the two general approaches to graph transfor-
mation along with their most prominent graph grammar representatives and point
out their advantages and disadvantages. We then compare design graph grammars
with the classical graph grammars and establish their relationships.

The Connecting Approach

The connecting approach is a node-centered concept that aims at the replacement
of nodes or subgraphs by graphs. The item to be replaced is deleted along with
all incident edges, and the replacement graph is embedded into the host graph by
connecting both with new edges. These new edges are constructed by means of some
mechanism that specifies the embedding.

In the literature, graph grammars are often distinguished by the size of the left-
hand sides of rules, leading to two approaches of inherently different complexity:
node replacement graph grammars and graph replacement graph grammars. Ad-
ditionally, each of these two approaches is divided into context-free and context-
sensitive subclasses.

Several graph grammars follow the connecting approach. According to (66),
the most well-known node replacement graph grammar families are the node label
controlled (NLC) and the neighborhood controlled embedding (NCE) graph grammars,
whose node-based versions we describe in the following.

NLC Graph Grammars Node label controlled graph grammars perform graph
transformations on undirected node-labeled graphs. A graph transformation step
is based merely on node labels, i. e., there are no application conditions or contexts to
be matched. The embedding is determined by a set of embedding instructions shared
by all graph transformation rules. The following definition resembling the one of (66)
introduces NLC grammars formally.

Definition 3.6 (NLC Graph Grammar) An NLC graph grammar is a tuple G =
(X, P, 1,s) with

e I is the set of terminal and nonterminal node labelsﬁ

o P is the finite set of graph transformation rules of the form t — R, wheret € L
and R is a labeled graph,

3In the graph grammar literature it is usually distinguished between different label sets. For
the sake of clarity, we use a single set I containing all labels.

DESIGN GRAPH GRAMMARS

o [is a set of embedding instructions, and

e s is the initial symbol.

An embedding instruction (h,r) € I states that the embedding process creates an
edge connecting each node of the replacement graph labeled r with each node of the
host graph labeled h that is adjacent to the target node.

Remarks. The domain of technical systems imposes requirements some of which
cannot be met by NLC grammars: (1) There is no way to specify a context. There-
fore, it is not possible to distinguish between different situations related to a single
item. (2) There is no way to distinguish between individual nodes in the replacement
graph, since the embedding mechanism relies solely on labels.

NCE Graph Grammars Neighborhood controlled embedding graph grammars
perform graph transformations on directed or undirected labeled graphs[ﬁ A graph
transformation step is also based on edge labels, which provide further discerning
power. The embedding is determined by a set of embedding instructions belonging
to each graph transformation rule.

Definition 3.7 (NCE Graph Grammar) An NCE graph grammar is a tuple § =
(X, P,s) with

o Y is the set of terminal and nonterminal node labels and edge labels,
o P is the finite set of graph transformation rules, and

e s is the initial symbol.

The graph transformation rules in P are of the form t — (R, I) with
e € ¥ is the label belonging to a node v in the host graph,
e R = (Vg, Eg, or) is the non-empty replacement graph,

o [is the set of embedding instructions for the replacement graph R and consists
of tuples (h,e/ f,r) where
— h e Xisanode label and e € ¥ is an edge label in the host graph,
- f € X is another edge label, and

- r € Vg is a node of the replacement graph.

“In the literature on the subject, NCE grammars with and without edge labels or edge direc-
tions are distinguished by the prefixes “e” (for edge labels) and “d” (for directed edges)
added to the NCE acronym. Thus, there are NCE, eNCE, dNCE and edNCE graph gram-
mars. We will omit these prefixes and use always NCE.

3.3 RELATION TO CLASSICAL GRAPH GRAMMARS

An embedding rule (h,e/ f,r) has the same meaning as in Definition[3.4, where it
is written as ((h, t,e), (h,7, f)).

Remarks. Despite their superiority over NLC graph grammars, the weak context
mechanisms of NCE graph grammars render them unusable for our purposes:
(1) Context descriptions are restricted to the incident edges of the target node.
(2) Contexts are treated not until embedding time; i.e., they cannot serve as appli-
cation condition at matching time.

The Gluing Approach

The gluing approach is an edge-centered concept that aims at the replacement of hy-
peredges or hypergraphs by hypergraphs. Each hyperedge or hypergraph possesses
a series of attachment nodes. Within a replacement step, the item to be replaced is
deleted from the host hypergraph with exception of the attachment nodes, which
are at the same time external nodes of the host hypergraph; the new hypergraph is
embedded in its place by unifying (gluing) its attachment nodes with the external
nodes.

There exist several hypergraph grammar types following the gluing paradigm.
The most well-known family is called hyperedge replacement (HR).

HR Grammars Similarly to the connecting approach case, where node-based and
graph-based grammars are distinguished, we distinguish between hyperedge-based
and hypergraph-based HR grammars. Hyperedge-based HR grammars are defined
as in (58).

Definition 3.8 (Hyperedge Replacement Grammar) A hyperedge replacement
grammar is a tuple G = (X, P,s) where

e I is the set of terminal and nonterminal hyperedge labels,

e P is the finite set of hypergraph transformation rules over L each of which
has the form T — R, where T is a hyperedge label and R is the replacement
hypergraph, and

e s is the initial symbol.

Remarks. Like the NLC and NCE graph grammars, HR grammars are also not pow-
erful enough for the design tasks envisioned: (1) HR grammars are intrinsically
context-free, since the item of the left-hand side of a rule is completely deleted and
replaced by the hypergraph of the right-hand side. Context that shall function as
application condition must be integrated into the target. (2) With respect to their
expressiveness HR grammars are weaker than the NCE grammars (66, pg. 4).

DESIGN GRAPH GRAMMARS

Hybrid Approaches Apart from design graph grammars there exist other hybrid
approaches in the literature. In (@) present the so-called handle
hypergraph grammar. This hybrid graph grammar is based on the hyperedge re-
placement approach and has some additional node replacement features. A similar
approach that has a simpler rewriting mechanism is the HR grammar with eNCE
rewriting, presented in . Another hybrid approach, the hypergraph NCE graph
grammar, is introduced in (142); this concept is based on the node replacement ap-
proach.

Design Graph Grammars

As seen in the previous section, neither classical node replacement nor hyperedge
replacement grammars provide sufficient means for solving technical design tasks;
even the powerful hybrid approaches proved to be inadequate for our needs (241).
Design graph grammars, on the other hand, represent an approach combining the
strengths of node replacement and hyperedge replacement grammars while over-
coming their weaknesses (see Figure[B.9).

+ Context by target graph
+ Connection by gluing
+ Graph with hyperedges

* Target graph
* Replacement graph
* Graph with labels
* Cut nodes

+ Context by embedding rules
+ Connection by embedding

Figure 3.9. Relationship of design graph grammars to the classical grammars with respect to
their features.

The core of the design graph grammar approach is node replacement based,
though:

o Replacement Paradigm. Concise formulation of node-based graph transforma-
tion rules (NLC/NCE).

e Embedding. Access to individual nodes of the replacement graph (NCE);
unique embedding through attachment nodes (HR).

3.3 RELATION TO CLASSICAL GRAPH GRAMMARS

Furthermore, design graph grammars add some features on their own:
o Context. Context that serves as application condition.
e Matching. Fine grained control of matching.

o Embedding. Extended replacement graph formulation; enhanced embedding
instructions; flexible rule formulation by means of variable labels.

In the following we present some formal results that establish the relationship
between design graph grammars and the classical graph and hypergraph grammars.
The set Lciss comprises for each grammar G € Class the set of graphs, L(G), that can
be generated by G.

Theorem 3.1 (Lnic € Lpgs) Every NLC graph language generated by a node-based
NLC graph grammar can be generated by a node-based, context-free design graph
grammar.

Proof. Let an arbitrary NLC grammar G = (X, P, I,s) for an NLC graph language L
be given. We construct a node-based, context-free DGG G’ = (X', P’,s') based on G
such that L(G’) = L.

Obviously, s' = s and L' = X. The set of graph transformation rules P’ is defined
as follows. P’ contains a graph transformation ruler' : t — (R, I') for each r € P with
r:t — R;I' = I. For each embedding instruction i € I withi = (h,r) there is an
embedding instruction i’ € I' withi = ((h,t, L), (h,v, L)), where og(v) = r. It is
clear that L(G') = L. o

Theorem 3.2 (Cnce € Lpgs) Every NCE graph language generated by a node-based
NCE graph grammar can be generated by a node-based, context-free design graph
grammar, whereas the opposite does not hold.

Proof. Taking an arbitrary NCE grammar G = (X, P,s) for an NCE graph language
L as a starting point, we construct a node-based, context-free DGG G' = (X', P’,s')
whose generated language L(G') = L.

Due to the similarity between both concepts, the construction is straightforward.
WesetL =X, P' = P,ands’ = s. The graph transformation rules are identical in syn-
tax and semantics for both concepts; only the syntax of the embedding instructions
differ: For each NCE embedding instruction i € I withi = (h,e/f,r) there is a DGG
embedding instructioni’ € I’ withi' = ((h,t,e), (h,7, f)). Obviously, L(G') = L. ¢

Theorem 3.3 (Cyr € Lpcs) Every HR language generated by a hyperedge-based
HR grammar can be generated by a node-based, context-free design graph grammar,
if hypergraphs are interpreted as bipartite graphs.

75

DESIGN GRAPH GRAMMARS

Proof. According to Engelfriet and Rozenberg @, pg- 57), Ls,,-eince = Lur. Hence,
HR languages generated by HR grammars can be generated by nonterminal neighbor
deterministic boundary edNCE grammars, which in turn can be simulated by DGGs,
since Lp,,—cance € Lp-—cince € Leance. Thus, DGGs can generate HR languages and
it follows that Lyr € Lpge. o

Figure[3.IJ0lsummarizes the above statements by illustrating the expressive power
of design graph grammars.

NCE
Neighborhood-controlled
embeddding

HR
Hyperedge replacement
graph grammar (bipartite)

Figure 3.10. The expressive power of design graph grammars with respect to the languages that
can be generated.

Relationship to Programmed Graph Replacement Design graph grammars as
proposed here shall enable domain experts to formulate design expertise for various
design tasks. Design graph grammars result from the combination of different fea-
tures of the classical graph grammar approaches, while attention has been paid to
keep the underlying formalism as simple as possible.

When comparing design graph grammars to programmed graph replacement
systems (PGRS) one should keep in mind that the former is located at the concep-
tual level while the latter emphasizes the tool character. PGRS are centered around a
complex language allowing for different programming approaches. PROGRES, for
instance, offers declarative and procedural elements , 245)) for data flow oriented,
object oriented, rule based, and imperative programming styles. A direct comparison
between PROGRES to the concept of design graph grammars is of restricted use only
and must stay at the level of abstract graph transformation mechanisms.

5We chose PROGRES for illustration purposes only; the line of argumentation applies to other
tools such as PAGG (see @) for a description and further pointers) or FUJABA @) as well.

3.4 STRUCTURE ANALYSIS AND DESIGN EVALUATION

However, it is useful to relate the concepts of design graph grammars to PGRS un-
der the viewpoint of operationalization. PGRS are a means—say: one possibility—to
realize a design graph grammar by reproducing its concepts. In this connection PRO-
GRES fulfills the requirements of design graph grammars for the most part. However,
PROGRES lacks the design graph grammar facilities for the formulation of context,
deletion operations, and matching control, which have to be simulated by means of
complex rules. Such a kind of emulation may be useful as a prototypic implemen-
tation, but basically, it misses a major concern of design graph grammars: Their in-
tended compactness, simplicity, and adaptiveness with respect to a concrete domain
or task.

3.4 Structure Analysis and Design Evaluation

The foregoing sections introduced design graph grammars as a concept to de-
scribe the transformation of a structure model S(F, M) into another structure model
S'(F)M’) and, this way, as a means to encode model construction knowledge.
Mainly in this sense design graph grammars are used within Part II of this work.

Note that this is only the descriptive side of the coin. The other is that design
graph grammars possess the potential to automate demanding reasoning tasks re-
specting the analysis and synthesis of structure models. The basic ideas and related
theorems are explained now.

The next subsection focuses on the analysis question: Does a design, say, a struc-
ture model S(F, M) fulfill a given set of technical constraints? The question can be
answered by solving the membership problem for the related graph G, whereas the
constraints are defined implicitly by a task- and domain-specific graph grammar G.
The next but one subsection, starting at Page[8] presents a new answer to the prob-
lem of design evaluation: How good is a design, say, a structure model S(F, M)?
Here, the question is answered by computing the “distance” between S(F, M) and
an optimum solution S*(F} M*) that has been provided by a human designer.

Analysis Means to Solve the Membership Problem

Structure analysis means to solve the membership problem for a given graph G and a
graph grammar G. This job requires to find a derivation of G from the start symbol s;
a derivation in turn is based on the application of graph transformation rules defined
in G; and, to fire a rule it is necessary that a matching of the left-hand side be found
within the host graph.

Figure hints the connection between the mentioned problems. Moreover,
the figure shows two rectangles with special properties and graph grammars: Asso-
ciativity, confluence, boundary, leftmost, precedence graph, and flowgraph. In the
general case, the membership problem is PSPACE-complete (28); however, the listed
concepts may decisively reduce the complexity of the graph membership problem.

78

DESIGN GRAPH GRAMMARS

|Ana|ysis of S <F,M>| ~ | Membership | <—|Derivation from s | <—|Ru|e application | <—| Matchingl

o)
Associativity, Confluence Rooted flowgraph,
Precedence graph
Leftmost,
<— |s based on Boundary Special grammars
~¢---- Simplifies Special properties

Figure 3.11. Structure analysis can be tackled by graph membership, which in turn is based on
derivation, rule application, and matching. The rectangles below contain properties and graph
grammars that reduce the complexity of the membership problem.

They are introduced in the remainder of this subsection and—if possible—related to
design graph grammars.

Remarks. Matching is already a nontrivial issue in the context-free, graph-based case,
as implied by the subgraph matching problenfd, which is NP-complete (89,[145). The
inclusion of context adds to the complexity of matching, because node-based match-
ings with context are comparable to graph-based matchings.

Associativity and Confluence A graph grammar can be regarded as the equiva-
lent of a Chomsky grammar for the area of labeled (multi)graphs, and as such it has
similar properties. Because of its far-reaching consequences, the probably most im-
portant property is confluence: Particular NP- or PSPACE-complete problems related
to graph grammars that have, among others, this property can be solved in polyno-
mial time, such as the membership problem. However, before we proceed with the
definition of confluence, we provide some other basic notions.

Lemma 3.1 (Associativity of Design Graph Grammars) Let G = (L, P,s) be a de-
sign graph grammar with graph transformation rules Ty — (R, L) and T, —
(Ra, Ib). Moreover, let G be a host graph and Ry contain a matching of T,. Then
the following equation holds.

G[T1|R1][T2|R>] = G[T1|R1[T2|Ry]]

Definition 3.9 (Confluence (66)) A context-free design graph grammar G = (X, P, s)
is confluent, if for every pair of rules T — (Ry,) and T, — (R, I,), R; containing a
matching of T jc(1,2), and for any arbitrary host graph G containing matchings of T
and T, the following equality holds.

G[T1|R1][T2|Ro] = G[T2|Ro] [Th| Ry]

®In the field of graph theory this problem is known as the subgraph isomorphism problem.
It should not be mistaken with the graph isomorphism problem, which lies in NP, but for
which it is still open whether it is NP-complete (89, 13, 145, [179).

3.4 STRUCTURE ANALYSIS AND DESIGN EVALUATION

Put in other words, a design graph grammar is confluent if the sequence of rule
application is irrelevant with respect to the set of derivable graphs.

The following definition of confluence develops from the definition of confluence
for edNCE grammars in (66)); it is more detailed and makes an a-priori statement
possible.

Definition 3.10 (Confluence 2) A context-free design graph grammar G = (%, P,s) is
confluent, if for all graph transformation rules Ty — (Ry, ;) and T, — (Ry,) in P,
all nodes v, € Vi, v, € Vg,, and all edges labels «, 6 € L, the following equivalence
holds.

Hﬁ c€x: ((fz, f],OC), (fz, U],ﬁ)) el and ((O'(t]), tz,ﬁ), (O'(f]),vz, 5)) el
-

3‘}/6 PAE ((t],tz, DC), (t],Uz,’)/)) cl and ((O'(fz),f],‘)/), (O'(fz),l)],é)) el

Remarks. The definition allows for an algorithmic confluence test of context-free de-
sign graph grammars. Observe that the presence of destructive graph transformation
rules makes a confluence statement improbable.

Theorem 3.4 (Context-Free Design Graph Grammars and Confluence) Context-
free design graph grammars are not inherently confluent.

Proof. Let G = (%, P,s) be a context-free design graph grammar and G = ({v}, {},
{(v,t1)}) a host graph. Letry,r, € P be two graph transformation rules as follows.

ri: t] — <R],I]> with R] = {} and I] = {}

r2: B — (Rp, L) with R, = ({v1, 02}, {(v1,02)}, {(v1, t1), (02, t2), {1, 02},€)})
and I, = {}.
With these two rules the subsequent derivations are possible.

1) G =, G1 =, Gz = {}
2) G =, G2 =4, G = ({02}, {} {(02,12)})

Since G1 # Gy1, G is not confluent. o

Leftmost and Boundary We present now two restrictions to node-based design
graph grammars each of which implies confluence or even stronger properties: Left-
most derivation and boundary transformation rules. The following definitions and
results are based on (66).

Leftmost derivations of design graph grammars are achieved by imposing a lin-
ear order on the nodes of the right-hand sides of the graph rules—this is necessary
since there is no natural linear order as in the case of string grammars.

DESIGN GRAPH GRAMMARS

Definition 3.11 (Ordered Graph, Ordered Design Graph Grammar) A graph G =
(V,E, o) is an ordered graph, if there is a linear order (vy,...,v,) with v; € V for
1 <i<mnandn = |V|. A design graph grammar G = (%, P,s) is ordered if for each
rulet — (R, I) in P the replacement graph R is ordered.

Let G be an ordered design graph grammar containing a graph transformation
rule t — (R, I). When embedding the replacement graph R with order (ws, ..., wg)
into a host graph G with order (vy,...,0i_1,t,0iy1, ..., 0c), the order of the resulting
graph G’ is constructed as follows: (vy,...,vi_1, W1, ..., WR, Vit1, - ., VG).

Definition 3.12 (Leftmost Derivation) Let G be an ordered design graph grammar.
For an ordered graph G a derivation step G =, G’ generated by G is a leftmost
derivation step if v is the first nonterminal node in the order of G; p represents the
graph transformation rule used. A derivation is leftmost if all its steps are leftmost.
The graph language leftmost generated by G is denoted by Ly,,(G).

Lemma 3.2 (Expressiveness of Leftmost Generated Languages) Let G be an or-
dered design graph grammar. Then L,,,(G) does not depend on the sequence of rule
applications.

Proof. See (66, pg. 40) where |Engelfriet and Rozenberg show that the restriction to
leftmost derivations is equivalent to the restriction to confluent grammars. The same
argumentation holds for design graph grammars. o

The boundary property defines a subclasses of the whole class of design graph
grammars by restricting the form the transformation rules in P.

Definition 3.13 (Boundary Design Graph Grammar (229)) A design graph gram-
mar G = (X, P,s) is called boundary if one of the following properties holds for every
graph transformation rule T — (R, I).

(1) R does not contain adjacent nonterminal nodes.

(2) I does not contain embedding instructions ((h, t,e), (h,x, f)) where h is non-
terminal.

Lemma 3.3 (Expressiveness of Boundary Design Graph Grammars) Every bound-
ary design graph grammar is confluent.

Proof. According tolEngelfriet and Rozenberg, boundary graph grammars are conflu-
ent by definition; this follows from property (2) of Definition (66, pg. 56). o

Remarks. Leftmost derivations and boundary design graph grammars come along
with interesting properties: (1) Confluent design graph grammars are associative.
(2) The membership problem for confluent design graph grammars is in NPTIME

3.4 STRUCTURE ANALYSIS AND DESIGN EVALUATION

(66, pg. 82). (3) The membership problem for boundary design graph grammars is in
PTIME, if, due to labeling restrictions, the subgraph matching problem can be solved
in polynomial time (251).

One way to make a node-based design graph grammar boundary is the insertion
of additional terminal nodes (junctions) into rules that have adjacent nonterminals
on the right-hand side; this will ensure property (1) of Definition

Rooted Flowgraph and Precedence Graph Grammars For rooted context-free
flowgraph languages and for languages generated by precedence graph grammars
the membership problem can be solved in polynomial time. Because of this remark-
able property they are subject matter of this paragraph.

Flowgraph languages supply a suitable mechanism to represent the control flow
of source programs. They have a strong resemblance to series-parallel graphs, to
which the graphs generated by our design graph grammars for chemical engineer-
ing (see Section[AZ) are also similar. To test whether a given graph belongs to the
language of rooted context-free flowgraphs, both the given graph and the flowgraph
grammar are serialized by imposing ordered spanning trees. Based on the tree or-
dering, membership recognition can be realized in polynomial time in the size of
the input graph. Whether a similar algorithm for the membership problem for non-
rooted flowgraph grammars exists still remains an open problem. Details may be
found in (162) and (161).

Precedence graph grammars are context-free graph grammars that have been en-
riched with precedence relations. For this grammar class the membership problem is
decidable in O(n?) time if certain conditions are met, where n designates the number
of nodes of the input graph. In a precedence graph grammar every pair of adjacent
nodes, (v, w), gets assigned a precedence determining whether v is to be processed
before, after, or in parallel to w. Moreover, the precedence relation must be unique,

the graph grammar must be confluent, and its productions reversible. Details may
be found in (132).

Evaluation Means to Compute the Graph Distance

The computer-based evaluation of design solutions is of upcoming importance, es-
pecially against the background that design problem solving on a computer becomes
better and better (264, 1110). This subsection presents a new answer to the question
of —what we call—a solution’s relative design quality. The relative design quality des-
ignates a quality assessment that employs a benchmark in the form of another design
solution for the same probleml?]

"The concept of relative design quality has been applied to evaluate the generated designs
within Case Study (cf. Page[106). Clearly, the concept can have its pitfalls, which are
connected with the structure of the solution space.

DESIGN GRAPH GRAMMARS

Given two design solutions, i.e. in our case, two graphs G and G* that encode
a machine-generated structure model S(F, M) and a well-designed or “optimum”
human-generated structure model S*(F% M*), then the similarity between G and G*
tells us a lot about the quality of G.

The standard approach to similarity assessment is to weigh meaningful feature
vectors of the interesting objects (7, 223, 1301), an avenue which we follow in Sec-
tion[ATland Observe that such a compiled view is not necessary here, since we
can fall back on knowledge from first principles: When using the graph grammar G to
derive G from G* (or vice versa), the complexity of the derivation can be interpreted
as a measure of their similarity. Since this way follows the constructional principles
of the domain, the complexity of the derivation corresponds to the true transforma-
tional effort—under certain conditions. These conditions relate to the concepts of
shortest derivation, monotonicity, and shortcut-free, which are introduced now. Fig-
ure[3:12]illustrates the connections.

|Quality of S <F,/\/1>| ~ |Distance | <—|Derivation from S* <F* M*> <—|Shortest derivation from s |

4

Monotonicity,
~— |s based on Shortcut-free

~¢--- Disambiguates Special properties

Figure 3.12. The evaluation of a structure model can be tackled by computing its distance, say
by deriving it from an optimum solution 5*(F% M*).

Shortest Derivation The length of a derivation is a measure for the complexity
of a design. Depending on the design graph grammar used and on the order of
graph transformation rules applied, a derivation will take at least linear time with
respect to the size of the graph. On the other hand, the worst case runtime complexity
for a derivation is unbound if cyclic partial derivations exist or if destructive graph
transformation rules are applied. Thus, a statement can be ventured for the shortest
derivation only.

Definition 3.14 (Derivation) A derivation is a sequence of graphs m = (Gy, ..., Gy)
for which the derivation steps G; =, Gi1,i € {1,...,n — 1}, have been achieved
by applying the graph transformation rules r; € P (cf. Definition on Pagel66). 7y
denotes some derivation based on graph transformation rules of the design graph
grammar G = (X, P,s), and 715 (G) denotes a derivation (s, ..., G). A shortest deriva-
tion is denoted by 7*.

3.4 STRUCTURE ANALYSIS AND DESIGN EVALUATION

Definition 3.15 (Derivation Rule Sequence) Let m = (Gy,...,G,) be a derivation.
We define the derivation rule sequence belonging to m as p, = (r1,...,1,_1), where
G;i = Gij;1 is achieved by applying the graph transformation ruler;, 1 <i <n —1.

Typically, the human understanding of the design of technical systems bears a
monotonic character. This means that the design process is constructive, deletion op-
erations are avoided where possible, leading to a system with the smallest number of
construction steps possible. The following definitions shed some light on this matter.

Definition 3.16 (Deletion Operation) A deletion operation is a graph transforma-
tion step G = G’ such that

|Vr| > |Vk| or |Er| > |Eg|

where (Vr, Er,or) and (Vg, Eg, or) designate the target and replacement graph re-
spectively.

Remarks. Definition tolerates that constructive graph transformation steps may
perform partial deletions, as long as there are more insertions. Figure B.13]illustrates
the consequence of the presence of deletion operations within a derivation.

Destructive

derivation

S =>
<=

Constructive

derivation

Figure 3.13. A derivation containing deletion operations. Due to possible cycles the derivation
length is unbound.

With the aid of the above notions, the aforementioned restriction to rule struc-
tures can be introduced formally.

Definition 3.17 (Monotonicity, Shortcut-Free) Let G, G’ be graphs and G a design
graph grammar. A derivation m = (G, ..., G’) is called monotonic, if and only if p,
does not involve deletion operations.

e G is monotonic, if and only if for every G € L(G) there exists a monotonic
derivation 7i¢(G).

o G is called shortcut-free, if for every G € L(G) the shortest derivation is a mono-
tonic derivation.

DESIGN GRAPH GRAMMARS

2
O— =

~ 2
’O’ => ~.7
- /O/

N
: —E-D_
—— =>
~mem SE—-
et et
Figure 3.14. A monotonic derivation of a chemical plant’s structure model.

Distance between Graphs Shortest derivations play a role when computing the
distance between two graphs. As mentioned at the outset, the quality of a design G
can be measured by the distance between G and the ideal design G*, as provided by
an expert. In practice, this is done by determining the necessary graph transformation
steps required for the derivation (G, ..., G*) and calculating the involved effort.

Since our approach depends on a concrete design graph grammar within a given
domain, it is assumed that the ideal design G* is also derivable with the given gram-
mar. In this connection we distinguish between the direct distance between two
graphs and their derivational distance. Figure[3.I5]illustrates the notions.

A

{ Derivational i Direct)
% transformation i transformation

Common
ancestor G,

Figure 3.15. Distance between a design G and the ideal design G* with respect to the design
graph grammar derivation.

Talking about Figure it is clear that the derivational distance between the
two designs is equivalent to the effort necessary for the “derivation” (G, ..., Ga,
.., G*). Put in other words, the distance between G and G* is bound by the effort
required to transform G back into an ancestor G4 plus the effort required to derive

3.4 STRUCTURE ANALYSIS AND DESIGN EVALUATION

G* from this common ancestor G 4.

Remarks. The concept of derivational transformation is brought into play since do-
main knowledge for 715(G), i. e., for a construction from scratch, is available in many
cases. In contrast, starting a design process with an existing structure model requires
knowledge for an arbitrary design adaptation. Observe that in some favorable cases
it may happen that a design G is an ancestor of the ideal design G*.

Determining the Transformation Effort Determining the graph transformation se-
quence for the derivation (G, ..., G*) depends on two factors: The knowledge about
the derivation of G and G* and the desired granularity of the distance statement.
With respect to the former it can be argued that the design G has been automatically
generated—its derivation is therefore known; a derivation of G*, if not available,
must be determined by some heuristic search procedure (209).

As far as the desired granularity of the distance statement is concerned, a naive
approach consisting of a simple comparison of derivations is conceivable. It implies
an element-wise comparison of 77(G) and 7(G*), i.e., to search for a graph G, in
7(G) N 7(G*). A more elaborate approach involving finding the largest common
ancestor results in a more meaningful upper bound for the derivational distance.

The search for a common ancestor is a nontrivial task involving the graph match-
ing problem mentioned on Page [/8; the search for the largest common ancestor is
even more toilsome, since there may exist more than one derivation for a given graph.
Note that this problem does not correspond to the NP-hard maximum common sub-
graph problem (146), although the algorithms described there could be used to find
at least an approximation of the largest common ancestor.

Again, the monotonicity property proves to be a valuable feature of a design
graph grammar: The absence of deletion operations reduces the search space con-
siderably. A sufficient, even though rarely satisfiable condition for monotonicity is
the following.

Lemma 3.4 (Monotonicity Condition) Let a design graph grammar G = (X, P, s)
be given. G is monotonic if the following holds for every graph transformation rule
r=(T,C) — (R,I), r € P: R encompasses a matching of T.

Put in other words, the target graph is a subgraph of the replacement graph.

After determining the graph transformation rules required for the derivation
(G, ..., G*), the effort necessary for this transformation can be calculated from both
the domain and the graph-theoretical point of view.

In order to take the domain into account, we introduce a function ¢, : P — R,
which yields for a graph grammar G = (Z, P, s) the effort of the application of a rule
r € P within the domain dom. Then, the overall domain effort when transforming a
design according to a derivation 7t then is:

effort(m) = z Caom (T)

r€px

86 DESIGN GRAPH GRAMMARS
If a function ¢4, cannot be stated, a function cpge : P — Ry that computes
a graph-theoretical effort, including aspects such as context and matching, must be

used instead:
effort(m) = Z cpea(r)

repn

Part Il

Case Studies

87

Model Simplification

The term model simplification speaks for itself: By reducing a model’s complexity a
problem solving task in question shall become tractable. Within analysis tasks, model
simplification aims at a reduction of a model’s constraint complexity; with synthesis
tasks, search space complexity is of paramount importance: It is a measure for the
number of models that have to be synthesized and analyzed in order to solve a con-
figuration or design problem. See Page B8, Section 4] for both an introduction to
generic model simplification techniques and a comparison to other model construc-
tion approaches.

The two case studies of this chapter present approaches to solve complex design
tasks. Both tasks comprise creative aspects, and for neither a design recipe is at hand:
The acquisition effort for the design knowledge exceeds by far the expected payback

), and, moreover, the synthesis search spaces are extremely large and scarcely to
control—despite the use of knowledge-based techniques.

Two possibilities to counter this situations are “competence partitioning” and
“expert critiquing”. The idea of competence partitioning is to separate the creative
parts of a design process from the routine jobs, and to provide a high level of automa-
tion regarding the latter (see , pg- 93) or)). Expert critiquing, on the other
hand, employs expert system technology to assist the human expert rather than to
automate a design problem in its entirety (108, 77).

Level of
function

Behavior model Adaptation Behavior model
Level of Demands D B'<F',M"> S, B <F.M>
h i 4
behavior (raw design) (acceptable)

Figure A.1. The paradigm of functional abstraction in design problem solving.

MODEL SIMPLIFICATION

The paradigm of “design by functional abstraction”, illustrated in Figure [A]
can be regarded as a special expert critiquing representative. We have chosen this
name for the problem solving method to reveal its similarity with the problem solving
method HEURISTIC DIAGNOSIS, which became popular as the diagnosis approach
underlying MYCIN (.

The key idea of design by functional abstraction is a systematic construction of
candidate solutions within a very simplified design space, which typically is some
structure model space. A candidate solution, S(F, M), is transformed into a prelim-
inary raw design, B'(F, M’), by locally attaching behavior model parts to S(F, M).
The hope is that B'(F, M) can be repaired with reasonable effort, yielding an accept-
able design B(F, M).

Design by functional abstraction makes heuristic simplifications at least at two
places: The original demand specification, D, is simplified towards a functional spec-
ification D (Step (1) in the figure), and, S(F, M) is transformed locally into B’ (F, M)
(Step (3) in the figure). Both, the synthesis step and the adaptation step may be oper-
ationalized with complete algorithms (Step (2) and (4) in the figure).

The solutions in the following case studies were developed after this paradigm.

1See Section[T4] PagelZJ) for a discussion and a graphical illustration of this method.

A.1 CASE-BASED DESIGN IN FLUIDICS

A.1 Case-Based Design in Fluidics

Fluidic drives are used to realize a variety of production and manipulation tasks.
Even for an experienced engineer, the design of a fluidic system is a complex and
time-consuming task, that, at the moment, cannot be automated completely. Design-
ing a system means to transform demands, D, towards an explicit system description,
which is a behavior model B(F, M) of the desired system in most cases:

D— B(F,M) (A1)

Taken the view of configuration, the designer of a fluidic system selects, param-
eterizes, and connects components like pumps, valves, and cylinders such that D is
fulfilled by the emerging circuitf Solving a fluidic design problem at the component
level is pretty hopeless, and we will apply model simplification to reach tractabil-
ity. Note that model simplification must not be bound up with a coarsening of the
behavior model or a reduction of the number of components involved: As pointed
out in pg- 27), the reduction of an unconstrained synthesis space towards an
(even large) space of variants can transform an innovative design problem towards
a tractable configuration problem. This strategy is applied successfully here; the ra-
tionale was already given in (258), under the label “functional decomposition” and
“functional composition” respectively.

Model construction

reasoning

Physical behavior model Restricted synthesis s

Figure A.2. Model simplification is realized by restricting the space of possible structure models
towards a regular subset. Based on the simplified model, the design problem can be tackled
with methods from the field of case-based reasoning.

The principle claims to perform a configuration process at the level of functions
(instead of components), which in turn requires that fluidic functions possess con-
structional equivalents that can be treated in a building-block-manner. This require-
ment is fairly good fulfilled in the fluidic domain, and the respective building blocks
are called “fluidic axes”.

2The ideas presented in section have been verified in the hydraulic domain in first place; how-
ever, they can be applied in the pneumatic domain in a similar way, suggesting us to use
preferably the more generic word “fluidic”.

MODEL SIMPLIFICATION

Definition A.1 (Fluidic Axis) A fluidic axis both represents and fulfills a function D
of an entire fluidic plant. The axis defines the connections and the interplay among
the working, control, and supply elements that realize DA

The overall design approach developed in this section follows the paradigm
depicted in Figure [A]] Page (1) The original demand specification, D, is ab-
stracted towards a functional specification D. (2) At this functional level a structure
model S(F, M) according to the coupling of the fluidic functions in D is generated.
(3) S(F, M) is completed towards a tentative behavior model B'(F, M') by plugging
together locally optimized fluidic axes; here, this step is realized by a case-based
reasoning approach (see Figure[A.2). (4) The tentative behavior model B'(F, M’} is
repaired, adapted, and optimized globally.

Remarks. A human designer is capable of working at the component level, implicitly
creating and combining fluidic axes towards an entire system. His ability to automat-
ically derive function from structure—and vice versa: structure for function—allows
him to construct a fluidic system without the idea of high-level building blocks in the
form of fluidic axes.

Underlying Models

A fluidic system can be described at different levels (layers) of abstraction. From the
standpoint of design problem solving, the following layers are important: The de-
mand layer, which specifies a complex set of demands D, the functional layer, which
specifies the model of fluidic function B(F, M), and the component layer, which spec-
ifies the electro-fluidic system model B(F, M).

The demand layer contains the entire specification for the desired behavior of a
fluidic system. [Vier et all discuss possible demands in detail, such as tolerance con-
straints, operating restrictions, boundary values, etc. (291). Central elements of D,
however, are the cylinder profiles, which prescribe the courses of the forces, the ve-
locities, or the pressure. Implicitly, these profiles characterize particular phases of the
working process, such as a speed phase, a slowing down phase, or a press phase.
Figure shows cylinder profiles for a hydraulic system that operates in the low
pressure range and that contains two axes, which perform a combined manipulation
and pressing task.

A model of fluidic function, B(ﬁ,M), is a discrete event model. The gist of
B(F, M) is a set of state variables, Fy, along with the discrete state prescription func-
tion, A. Each state variable in Fx represents the function of a fluidic axis in M; A
characterizes the behavior of the fluidic axes by means of the working phases of the
output units, which are cylinders in most cases. A formal specification of B(E, M) is

3The same definition is also given in Section[D.3] which deals with the functional analysis of
fluidic systems.

A.1 CASE-BASED DESIGN IN FLUIDICS

Cylinder y Hold pressure
Cylinder x F(t)
()
x(t) /\
T T T T > ! ' ' ' I
1 2 3 4 5 o2z 8 4 5t

Figure A.3. Demanded cylinder profiles for a hydraulic system.

given in Case Study on Page [[82] where a model of fluidic function is reformu-
lated into a similarity measure. In this place we confine ourselves to an illustration
of B(F, M) at the example.

Global phase schedule
Phase Phase Type Value
Axis x f1 const-drive-out 0.5m/s .
f2 const-drive-in ~ —0.8m/s Axisy
Axisy fi hold-pressure Time 0s 2s 4s
f2 fast-drive —2.0m/s

Table A.1. Functional layer that corresponds to the demand layer of Figure[A:3} four phases
have been identified and scheduled.

Table [AT] shows the functional layer that corresponds to the demand layer of
Figure Here, four phases have been identified and scheduled. The respective
fluidic axes must be coupled sequentially to realize D.

An electro-fluidic system model, B(F, M), is a combined discrete event/continu-
ous time model. The elements in M designate hydraulic or pneumatic components
and, for control purposes, electrical components; the elements in F designate flu-
idic and electrical quantities. B(F, M) is based on local behavior constraints for the
components in M, represented by algebraic and differential equations. Typically,
B(F, M) contains feedback loops, and the simulation of A requires global compu-
tation methods. A formal specification of B(F, M) is given in Case Study B2 on
Page where an electro-fluidic system model is compiled into a heuristic rule
model. In this place we confine ourselves to an illustration of B(F, M) in the form of
the circuit diagram in Figure[AZl

The shown circuit realizes the functional description above; it thus represents a
solution of the design task outlined in Figure[A3]

93

94

MODEL SIMPLIFICATION

B<F Mo [—= x0 B<F, M,> [F=—=F 0. F0

Figure A 4. Circuit diagram with two axes By(Fy, My) and By (F,, M,). Putting together the
components’ local behavior descriptions according to the diagram yields the behavior model

B(F, M).

Model Simplification

The design task in question contains creative parts: The structure of a fluidic system is
not predefined and has to be created. Moreover, demanding model formulation and
inverse simulations must be performed to compute unknown parameters as well as
to check the system with regard to the desired demands.

By model simplification the design task can be made tractable—but, in contrast
to the far-reaching restrictions applied in Case Study[A2] model simplification here
concerns only size and structure of the synthesis space. The behavior fidelity, F, the
behavior granularity, M, and the state prescription function, A, retain their complex-

ity.

The model simplification idea goes back on the observation that human engi-
neers tackle design tasks not at the component level, but at the level of function.
Equation[Adlthen reads as follows:

D — D — B(FEM)

where D is a functional description of the desired system, corresponding to the model
of fluidic function, B(ﬁ, M) What makes this observation so interesting here, and
not, e.g., for Case Study [A2) is the fact that the mapping D — B(F, M) can be
decomposed into rather independent subproblems. This principle, which we call
“functional composition” (258), says that

(1) each specification of demands, D, can be translated into a set of fluidic func-
tions, D = {Dy,..., Dy},

(2) each function D € D can be mapped one to one onto a fluidic axis Bp (Fp, Mp)
that operationalizes D,

A.1 CASE-BASED DESIGN IN FLUIDICS

(8) D can be realized by coupling the respective axes for the functions in D,
whereas the necessary coupling information can be derived from D, and

(4) the coupling structure is formed by a recursive application of couplings from
the type set {series, parallel, sequential} (explained below).

While the first point goes in accordance with reality, the Points (2) and (3) imply
that a function D is neither realized by a combination of several axes nor by construc-
tional side effects. This assumption, as well as the assumption made in Point (4) rep-
resent noticeable simplifications.

Anyway, under this working hypothesis, D can be transformed towards an
electro-fluidic system model, B(F, M), within two design steps: by separately de-
signing a fluidic axis for each fluidic function D in D, and by coupling these axes in
a qualified way. Figure[A.Bldepicts this view.

Separate Axes
design composition

D} — > {Bi<FL My> ..., B<F M} ————— B<F,M>

Fluidic functions Fuidic axes Electro-fluidic
system model
(raw design)

Coupling scheme

Figure A.5. Automating fluidic circuit design by functional composition.

The scope of the structural simplifications that are implied by the principle of
functional composition is reflected by the (small) size of the design graph grammar,
G = (X, P,?), that defines the restricted synthesis space L(G). £ = {b, ¢, f, s, c, w,
A, B, C, D} where the nonterminals designate a biconnection, triconnection, fluidic
function, supply element, control element, and working element. P contains seven
rules of the form T — (R, I) presented below; apart from rule (1b) only the graphical
form is shown.

(1a) Initial rule. O =>

95

96 MODEL SIMPLIFICATION

The rules (2a)—(2c) encode the introduction of a series coupling, a parallel cou-
pling, and a sequential coupling respectively.

b b f b f b

b f
@) O—O0—0- = ~O0—0—0—0—O-

b f b b f b
@ -O—O0—0~ = .

The following display rules change the appearance of the labeled graph into a
building block structure.

O = O =
-0 = -0 =

Figure[A.6 shows the circuit from the example and its building block structure.
The building block structure corresponds to the derivation (1a) — (1b) — (2c) —
(1c), followed by an application of the matching display rules.

(3) Display rules.

A.1 CASE-BASED DESIGN IN FLUIDICS

d
Gy

P

Figure A.6. Circuit diagram and related building block representation.

Remarks. The SCHEMEBUILDER system developed by Oh et al! also pursues a design
approach that is based on model simplification (204, 48): A demand set D is interac-
tively decomposed into subtasks, assuming that each of the subtasks is realized by
means of a single hydraulic axis. The axes in turn are retrieved from a database con-
taining carefully selected design prototypes. However,|Oh et all’s approach lacks es-
pecially in two respects: (1) Axes can only be connected in parallel at a single nesting
depth, which restricts the possible designs to a uniform circuit type. (2) An analysis
of a composed circuit in the form of a simulation is not integrated.

Working with Simplified Models: Case-Based Design

Taking the simplifying view of the design process as shown in Figure[A5 the step
{Ds,..., Dy} — {Bi(Fi, M1),...,Bi(F, M)} can be realized by case-based rea-
soning (short: CBR) methods—provided that the following can be developed: A sim-
ilarity measure for fluidic functions and an adaptation concept for fluidic axes.

The following paragraphs introduce the case-based design approach in greater
detail. We start with a short introduction to design problem solving and CBR; the
next but one paragraph develops a similarity measure for fluidic functions D € D.
This measure is vital to realize the retrieve step in the CBR approach: For a given
function D it identifies the most similar fluidic axis Bp (Fp, Mp) from a collection C of
axes. The two paragraphs thereafter are devoted to revision; it is shown in which way
misfitting axes and even entire circuits can be adapted. The last paragraph presents
some evaluation results.

Note that the coupling of the selected axes, i.e., the step {Bi(F, M4), ...,
By (Fi, My)} — B'(F, M), does no longer constitute a design (or search) problem,
since we strictly follow the coupling scheme defined by the design graph grammar G.

Case-Based Reasoning and Designh Let a case combine a description of a prob-
lem along with a solution. Basic idea of case-based reasoning (CBR) is to exploit
previously solved cases when solving a new problem. I e., a collection of cases is
browsed for the most similar case, which then is adapted to the new situation. The
commonly accepted CBR cycle shown in Figure[A.7] goes back to|Aamodt and Plaza
and is comprised of four steps (1).

97

98

MODEL SIMPLIFICATION

(1) Retrieve. A case relevant for the problem is retrieved.

(2) Reuse. Having performed more or less adaptations, the retrieved case may be
reused.

(8) Revise. Having evaluated the adapted case, additional repair adaptations may
be applied.

(4) Retain. The new case, consisting of the problem along with a solution, is stored.

@’\(\e\‘e I:
Q_
Similar
cases
— : g
ase
Adapted
Revised
case

Figure A.7. The classical CBR cycle, as it can be found in (1), for instance.

Configuration, design, synthesis—these terms stand for problem classes where
the Al paradigm “generate and test” has been applied rather successfully (34, 46,
170). CBR, however, follows the paradigm “retrieve and adapt” (156). Both concepts
can work fine together to solve design problems.

A previously solved design problem that contributes a good deal to the desired
solution may bound difficult synthesis and adaptation tasks to a tractable rest prob-
lem. Following this idea, the starting position of a design problem should be cre-
ated with CBR methods, while for the heuristic and search-intensive adaptation tasks
other Al paradigms come into play.

For the time being, our focus is on design problems stated in the form of a desired
fluidic function D; a solution of such a problem is every electro-fluidic system model
B(F, M) of a fluidic axis whose behavior complies with D.

Remarks. There exist two concepts of how a problem’s solution can be defined: One
of them codes the problem solving process, the other codes the result of a problem
solving process, for example in the form of a system description B(F, M). From this
distinction result two analogy concepts in CBR, namely that of derivational analogy
(belonging to the former) and that of transformational analogy (belonging to the lat-
ter) (36,195,[109). For reasons of clearness, the considerations of this paper are oriented

A.1 CASE-BASED DESIGN IN FLUIDICS

at the latter, i.e., at the system description view, but they could be reformulated to
the process-centered view as well.

Definition A.2 (Case, Case Base, Query) Let D be a set of design problems, and let
S be a set of design solutions. A case C isa tupleC = (D,S),D €D, S € S, where S
constitutes a solution for D. A set C consisting of cases is called a case base. A case of
the form Q = (D, -) is called query or problem definition to a case base.

When given a query Q = (D, -) to a case base C, two jobs must be done to obtain
a solution to Q: The retrieval of a similar case C, and the adaptation of C such that D
is fulfilled.

Wesd mentions three approaches to define similarity (298): Similarity based on
predicates, similarity based on a preference relation, and the most generic concept,
similarity based on a measure. In connection with design problem solving, only the
last is powerful enough, and the following definition will formalize a similarity mea-
sure for design case bases.

Definition A.3 (Case Similarity, Similarity Measure) Given is a symmetric
function simp : DxD — [0;1], which additionally has the reflexivity property,
simp(Dy,D,) = 1 & Dy = D,. Moreover, let C, = (D.,Sy) and C, = (D,,S,),
C., C, €C, be two cases. Then the case similarity sim : CxC — [0;1] is defined by
means of simp in the following way: sim(Cy, C,) = simp(Dy, D).

Remarks. (1) The semantics of simp shall be as follows. The more similar two fluidic
functions Dy and D, are, the larger shall be their value simp(Dy, D). (2) The sym-
metry property guarantees that sim(Cy, C,) = sim(Cy, Cy); the reflexivity property
defines the self-similarity of a case.

A Similarity Measure for Fluidic Functions Note that a similarity measure for flu-
idic engineering must anticipate the constructional effort that is necessary to trans-
form a fluidic system—and not its functional abstraction: Given two fluidic systems,
Sy, Sy, and two related functional descriptions in the form of the cases C,, C,, then
sim(Cy, C,) must quantify the effort to reconstruct S, into S,, and vice versa (see Sec-
tionB.4] Page[81] for a concept to measure transformational efforts in design tasks).

Supposed there is a case base, C, with cases of the form (D, B(F, M)), and a query,
(D, -), for which a suited fluidic axis shall be retrieved from C. Then a mapping, simp,
with the following properties is required.

(1) simp is defined on the domain D x D, where D is a set that comprises the pos-
sible fluidic functions.

(2) simp is a similarity measure as defined in Definition[A.3

100 MODEL SIMPLIFICATION

(8) simp is semantically reasonable, or formally:

“simp(D, D) = max {simp(D, D;) | (Dx, B(FE, M)) €C}”
54
“(Dy, By(F,, M,)) € C is the best case in C to realize D,”

Remarks. The similarity measure simp estimates two fluidic functions respecting their
similarity. It maps from the Cartesian product of the domain of fluidic functions
onto the interval [0;1]. The last property, (B), postulates that simp should become
maximum only for those cases in C that realize the demanded function D best.

The elementary characteristic of a fluidic function D is defined by both the se-
quence and the type of its phases. Valuating two fluidic functions respecting their
similarity thus means to compare their phases. However, the phases in turn are char-
acterized by their type, duration, distance, force, or precision, and each of which can
be quantified by a special phase similarity measure. Table[A 2l gives a quantification
for simm s, the similarity of two phases’ types, which is the most important phase
characteristic and which is used in the following definition.

Phase type Position Constant Accelerate Hold-Pos Hold-Press Press Fast

Position 1 0.3 0.5 0 0 0.3 0.7
Constant 0.3 1 0 0 0 0.7 0.7
Accelerate 0.5 0 1 0 0 0.2 0.4
Hold-Pos 0 0 0 1 0.6 0.3 0
Hold-Press 0 0 0 0.6 1 0.8 0
Press 0.3 0.7 0.2 0.3 0.8 1 0
Fast 0.7 0.7 04 0.0 0 0.0 1

Table A.2. The similarity between two phase types, sinn pjgse-

Definition A.4 (Similarity Measure for Fluidic Functions) Let the fluidic function
D, designate the phase sequence (fl(x), . ,fr(,x)) € D, and let the fluidic function D,
designate the phase sequence (f](y), . .,fq(y)) € D for some p,q € N. A phase-type-
based similarity measure for fluidic functions, simp : DxD — [0;1] is defined as
follows.

mpDuDy = LS @ ¢
simp(Dx, Dy) max{p, q} z Sitpnase(f; 7, f;7)
, =

Remarks. (1) Obviously does simp fulfill the conditions of a similarity measure. (2) In
the case p # g not all phases will match and hence not all phases are considered in
the computation of simp. A fact, which does reflect our comprehension of similarity
in most cases—it does not if, for instance, D, and D, are described at different levels
of detail. This and other shortcomings have been addressed in the work of (110): He

A.1 CASE-BASED DESIGN IN FLUIDICS 101

proposed and realized an algorithm that enables a smart matching between phase
sequences varying in length.

In Section[C2 it is shown how a similarity measure for fluidic axes, siff,y,s, can
be constructed automatically by solving a regression problem on a database of simi-
larity samples. Clearly, there is a tradeoff in knowledge acquisition effort and classi-
fication quality: While the function sin,y.s from Section [C2] probably leads to worse
similarity estimations, the construction of simp required substantial acquisition and
implementation time.

Adaptation of Fluidic Axes By means of the above similarity measure for fluidic
functions, simp, the k most similar cases can be retrieved from a case base of flu-
idic axes given a query (D, -). Note, however, that these cases merely form solution
candidates; usually, a retrieved case must be adapted to fulfill the demanded flu-
idic function D. Case adaptation plays a key role in case-based design (148&) and is
performed within the reuse step (bring to mind Figure[A. 7 again).

The following definition specifies the terms “modification” and “adaptation”.
While each adaptation represents a modification, the inverse proposition does not
hold: A modification of some case establishes an adaptation only if the modified
object of the case—in our setting a modified fluidic axis B'(F, M')—fulfills the de-
manded function D to a higher degree than does the unmodified axis B(F, M) of the
original case.

Definition A.5 (Modification, Adaptation (264)) Let C, = <Dx, B:(F,, MX>> € C be
a case, and let Q = (D, -) be a query. A modification of C, respecting Q is a function
u : DxC — DxB, with u(D,Cx) = (D,,B,(F,, M,)). B designates the space of
behavior models for fluidic axes.

A modification of C, is called adaptation of C, if the following condition holdsfl
sim({Dy, B, (F,, M,)), Q) > sin({Dx, Bx(F:, M,)), Q)

Case adaptation can be realized in different ways. A popular approach is the
formulation of adaptation knowledge in the form of (heuristic) modification rules
(19,1106, 270). In technical domains where the behavior of the system to be adapted is
well understood, a particular type of modification rules, called “scaling” rules here,
can be employed to encode modification knowledge.

Definition A.6 (Scale Function, Scalable, Scaling (264)) Given is a query Q =
(D,-), a subset of the demanded fluidic function D' C D, and a case C, =
<Dx, Bx<Fx,/\/lx>> € C. A function v : DxC — DxB is called scale function of C,
respecting D' if the following conditions hold.

(1) ¢, =v(D',C,) = (Dy,B,(F,M)) withD' C D,

4The condition is equivalent to the following: simp(Dy, D) > simp(Dx, D).

102 MODEL SIMPLIFICATION

(2) sim(Cy, Q) > sim(Cy, Q)
C, is called scalable with respect to D, C, is called scaling of C.

Remarks. (1) In other words, with respect to a part of the desired function, D’ C D,
there is a case C, = <Dx, B, (F,, /\/lx>> in the case base whose fluidic axis B, (Fy, M)
can be modified—say: scaled—towards B, (F,, M,) in such a way that B, (F,, M)
provides D’ and C, is more similar to Q than is C,. (2) Obviously does each scaling
establish an adaptation.

.. —

1= —

Figure A.8. Scaling a cylinder respecting a desired force.

Example. Consider the design of a lifting hoist where C,, = <DX, B, (Fy, My) >, the most
similar case found respecting the query Q = (D, -), does not fulfill the maximum
force constraint (Ey,y, w) € D. Given this situation, C, can be scaled up to fulfill D if
the force difference between the existing and the desired system is of the same order
of magnitude (see Figure[A.8).

In this simple example the scaling of the force is possible since the responsible
underlying physical connections, the balance of forces, can be quantified. A reason-
able scale function could utilize this law as follows. It adapts the force value v of C,
according to the demanded value w by scaling the piston area, A.,;, to a new value
with respect to the maximum pressure allowed, p, i.€., Ay = w / Pmax- The result-
ing state prescription function is designated with A,

Formally, the scale function takes two arguments (recall Definition [A.6); the first
of which defines the subset of D to be achieved by scaling, the second is the case to
be modified:

o Cy=v({(Fuy,w)},C.) = (Dy, By(F,, M,)) € DXB

where D, = D\ {(Fey1,v)} U {(Feyr,w)}, and B,(F,, M) = By(F,, My) \ {A,} U
{4y}

Note that condition (2) of Definition is fulfilled: The similarity between the
scaled case C, and the query Q is strictly larger than the similarity between the orig-
inal case C, and Q.

A.1 CASE-BASED DESIGN IN FLUIDICS 103

A Design Language: Adaptation of Entire Circuits The composition of the adapt-
ed fluidic axes follows the coupling scheme from Page @5l and yields a preliminary
design solution, B'(F, M’), a so-called “raw design”. There is a good chance that
B'(F, M’) incorporates the potential to fulfill the specification D, say, that a sequence
of modification steps can be found that transforms B’ (F; M) into a behavior B(F, M)
which complies with D. An example for such a modification is the following piece of
design knowledge.

“An insufficient damping can be improved by installing a by-pass throttle.”

This measure encodes a lot of implicit engineering know-how, among others:
(1) A by-pass throttle is connected in parallel, (2) the component to which it is con-
nected is a cylinder, (3) if there are several cylinders in the system, an engineer knows
the best-suited one, (4) a by-pass throttle is a valve. Figure illustrates the repair

rule.
= ﬁ[% ==
=> => A

s L L
o [& L1

Figure A.9. Tllustration of the repair rule “An insufficient damping can be improved by installing a by-
pass throttle.”: Interpret context (cylinder), choose the best context amongst several candidates
(left cylinder), apply repair action to context (connect throttle in parallel).

What is more, engineers use design knowledge in a flexible way; i. e., a particular
piece of knowledge can be applied to different contexts in a variety of circuits. Flex-
ibility is a major reason which makes it difficult to encode the expressiveness of the
above example on a computer. Suppose we were confronted only with systems of
the same topological set-up, then measures like the above (“Install a by-pass throttle.”)
could simply become hard-wired within a would-be design algorithm.

To formulate sophisticated modification knowledge as in the example above, a
more powerful concept than scaling rules is sought. One possibility getting the knack
of the outlined problems is to specify implicit knowledge explicitly. For these pur-
poses, we have been experimenting with a prototypic scripting language tailored to
fluidic circuit designﬁ This language was a precursor of the design graph grammar
concept, which is introduced in Chapter [§ of this thesis. In this place we will not
delve into the design language’s syntax and semantics but shortly outline its con-
cepts; details can be found in (238, 270).

e Action Types. Figure[AI0lshows the basic action types that are available in the
design language.

5The research was part of the OFT-project, which was supported by DFG grants KL 529/7-1,2,3
and SCHW 120/56-1,2,3.

104

MODEL SIMPLIFICATION

= [select |
4— Component action 4—
Set

Figure A.10. All kinds of modifications must be put down to the five basic action types shown
in the figure.

e Separation of Location and Action. Each action can be equipped with location

information that specifies where the action shall take place. This way, knowl-
edge of location and knowledge of action are strictly distinguished—a separa-
tion that resembles the distinction of structure and behavior. The semantics of
a location specifier corresponds to a matching with context as it is defined in

Section B.TJon Page

e Modification Schemes. Actions can be organized within so-called modification

schemes, which provide simple macro facilities with local variables, loops, and
branching.

o Meta Knowledge. To control the application of different adaptation measures,

we characterize them with values from [0; 1] indicating the effectiveness, the
undesired side effects, called repercussion, and the realization cost, (290, 289).
From these values an overall confidence k can be derived that is conform to
application requirements and the designer’s preferences k.ff, Krep, and keost. Ta-
ble[A3lshows an expert’s evaluation of measurements to increase a cylinder’s
damping factor.

Here, installing a throttle in by-pass to the cylinder (see Figure[A.9) is ranked
first option; the resulting drain flow through the by-pass moves the eigenval-
ues of the related transfer function to a higher damping. An extensive theory
on the analysis, the assessment, and the adaptation of hydrostatic drives is
given in (288).

Modification Measure Effectiveness Repercussion Cost K

Throttle in mainstream 0.1 0.4 0.8 0.39
Throttle in side stream 04 0.4 0.5 0.44
Throttle in by-pass 0.8 0.4 0.5 0.64
Damping network 0.9 0.8 0.1 0.61

Table A.3. Possible remedies to increase a cylinder’s damping factor that has been judged being
too low. The computation of « relies on the preferences «, ff = 0.5, krep = 0.15, and kst = 0.35,
which have been proposed by an domain expert.

Observe that the scaling function v in Definition[A.6](Page[I01) gets by without an

extra evaluation step. L. e., the effects of an adaptation can completely be foreseen, or,

A.1 CASE-BASED DESIGN IN FLUIDICS 105

at least, they can be estimated within narrow bounds. This cannot be guaranteed for
more complex adaptations, such as exemplified in Figure[A9 or as they can specified
within our design language. In practice, each modification step must be followed
by an evaluation step in order to assess the actual state of design quality.ﬁ However,
evaluability is no matter of course, which leads to the following definition.

Definition A.7 (Evaluable (264)) Let D be a set of design problems, and let S be a set
of design solutions. A case C = (D, S), D € D, S € S, is called evaluable if a function
¢:S — D withe(S) = D can be stated.

Evaluability prepares the ground for complex adaptations. Using CBR terminol-
ogy, these adaptations are called “repair” or—along with a preceding evaluation—
“revise”. Obviously, adaptation plus evaluation can be performed several times,
leading to a cycle that renders the design cycle presented at the outset in Figure[A.7]
Here CBR forms a frame where an approach for design problem solving is embedded.

Remarks. Automatic evaluation often turns out to be a complex job involving de-
manding reasoning and simulation tasks (94, 259).

Experimental Results Most of the concepts of this subsection have been opera-
tionalized. In this regard, [Hoffmann has implemented a hydraulic design assistant
(110), which is linked to ARTDECO, our drawing and simulation environment for flu-
idic systems (257,1262). The design assistant enables a user to formulate his demands
of the desired circuit as a functional specification D. For each D € D a sequence of
phases can be defined, where for each phase a set of characteristic parameters, such
as duration, precision, or maximum values can be stated.

Given some D, the retrieval mechanism of the assistant searches the case base for
axes fitting best the specified functions, according to the measure sinp. Afterwards,
these building blocks are scaled and composed towards a new system, and, finally,
a drawing is generated which can directly be simulated and evaluated. Figure[A.11]
shows a query (top left), the functional description of the generated design (below),
and the related drawing.

Clearly, a direct evaluation of generated design solutions must be limited within
several respects since

(1) an absolute measure that captures the quality of a design does not exist, and

(2) the number of properties that characterizes a design is large and their quantifi-
cation often requires a high effortf]

6 Adaptations whose effect cannot be predicted at a sufficient accuracy are called “Level 2 adap-
tations” in (264).

7Characterizing properties include: number of components, reliability, cost, effort for setting
into operation, effort for maintenance, degree of standardization, fault-proneness, diagnos-
ability.

106 MODEL SIMPLIFICATION

[Que il h:tmpsimpl~vh.ct - | O |£|

2

T axisl
= Constant Dut

[.In |
ﬁé:(IFS’rEBSS Ij:I T

ol r-%\

gReuse1 N =

57 Axis1 Of Casel03
= Constant Out ‘F“&%
ol

57 Axis1 Of Case044 —l l

— Fress

ol <« | _’l—/d,l

Figure A.11. A design query (top left), the functional description of a solution (below left), and
the automatically generated drawing of the design solution.

=

Anyway, the quality of a generated design can also be rated indirectly, by quan-
tifying its distance to a design solution created by a human expert. The term “dis-
tance” is used with the semantics of our theory in Section[3.4, Page[81] and stands for
the necessary modification effort to transform the machine solution into the human
solution. The experimental results presented in Table [A.4 describe such a competi-
tion. The underlying experiments have been performed by [Hoffmann (110); a more
detailed discussion of evaluation concepts can be found at the same place.

|D| Retrieve Reuse simp > 0,8 simp>0,9 OX. Expert modification

1 <1s 0.10s 17 13 10 10x(+), 6x(0), 1x(-)
2 < ls 0.63s 16 1 9 8x(+), 7x(0), 1x(-)
3 < ls 0.91s 17 10 7 7x(+), 8x(0), 2x(-)
4 < 1s 1.43s 15 8 5 3x(+), 10x(0), 2x(-)
5 < ls 2.00s 18 1 1x(+), 15x(0), 2x(-)

Table A.4. Runtime results and modification effort for automatically generated designs (see an
explanation of the entries below).

Description of the table columns:

e |D|. Number of axes of the queries in the test sets; a test set contains 20 queries.
o Retrieve. Average time of a retrieve step in seconds.

o Reuse. Average time of a reuse step in seconds.

Al

CASE-BASED DESIGN IN FLUIDICS 107

simp > 0.8. Number of generated designs where sinp, the averaged similarity
simp over all axes, is not smaller than 0.8.

simp > 0.9. Number of generated designs where simp, the averaged similarity
simp over all axes, is not smaller than 0.9.

Simulation O.K. Number of generated designs whose simulation results fulfill
the demands of the query.

Expert Modification. Evaluation of a human expert. The symbols (+), (0), and (-)
designate a small, an acceptable, and a large modification effort to transform
the machine solution into a solution accepted by the human expert.

Note that this evaluation follows the paradigm of structure model distance,
which is introduced and formalized in Section[3.4 Page

Test environment was a Pentium II system at 450 MHz with 128 MB main mem-
ory; the operating system was Microsoft Windows NT 4.0.

Synopsis

Problemclass Design of technical systems.

Problem Solving Method Design by functional composition: Synthesis of func-
tional building blocks that have been retrieved and adapted by CBR methods.

Source Model Discrete event/continuous time model B(F, M) = (Fy, Fz, Fy, V, A,
A), defined over (F, M).

Fidelity Level F. Fluidic, mechanical, and electrical quantities.
Granularity Level M. Fluidic and electrical components.
Input Fy. Driving profiles for the cylinder forces.

State Prescription Function A. Explicit local differential equations; implicit non-
linear algebraic equations.

Output Function A. Courses of selected physical quantities.

Behavior Model Processing. Differential-algebraic system solving.

108 MODEL SIMPLIFICATION

Simplified Model Collection of single fluidic axes. Each fluidic axis is a discrete
event/continuous time model B(F, M) similar to the source model. The simplifica-
tion results from the isolated processing and simulation of the axes, neglecting feed-
back, constructional side effects, and functionality that results from structure.

Knowledge Source Principle of “functional composition” copied from human de-
signers (258).

A.2 STRUCTURE SYNTHESIS IN CHEMICAL ENGINEERING 109

A.2 Structure Synthesis
in Chemical Engineering

This section introduces an approach to synthesize structure models in the field of
chemical engineering. The approach may be applied to various kinds of chemical
design problems, but by now we focus on a particular type of chemical processes
only, the design of plants for the food processing industry (241, 242).

A chemical plant can be viewed as a graph where the nodes represent the de-
vices, or unit-operations, while the edges correspond to the pipes responsible for the
material flow. Typical unit-operations are mixing (homogenization, emulsification,
suspension, aeration etc.), heat transfer, and flow transport. The task of designing a
chemical plant is defined by the given demand D, in the form of properties of vari-
ous input substances, along with the desired output substance. The goal is to mix or
to transform the input substances in such a way that the resulting output substance
meets the imposed requirements.

The design happens by passing through (and possibly repeating) the following
five steps: Preliminary examination, choice of unit operations, structure definition,
component configuration, and optimization. An automation of the steps at a behav-
ioral level would be very expensive—if possible at all. Present systems limit design
support to isolated subjobs; they relieve the human designer from special simulation
or configuration tasks, and the effort involved there is high enough (33,1144).

Model construction Model utilization
A
&
~ B
e
Physical behavior model Simplified structure model

Figure A.12. The behavior model is abstracted to a structure model, say a design graph grammar
G, where physical quantities are represented as linguistic variables. This way, the synthesis
space is restricted to the set of graphs L(G).

Primary concern of our project was the investigation of possibilities to support
the design process as a whole, with the long-term objective to operationalize step-
spanning optimization knowledgeﬁ The result of our research is comprised best at
Figure [Adl on Page (1) The properties of the input and output substances, D,
are abstracted towards linguistic variables, D. (2) At this functional level a structure

8The section describes a cooperative work with André Schulz in the WIMOM project; the
project was supported by DFG grants PA 276/23-1 and KL 529/10-1.

110 MODEL SIMPLIFICATION

model S(F, M) is synthesized that fulfills D and that is used as a solution candi-
date for D. (3) S(F, M) is completed towards a tentative behavior model B'(F, M'),
(4) which is then repaired, adapted, and optimized.

Clearly, the mentioned steps will not happen at the highest level of behavioral
and structural details, and the underlying model is simplified in several respects.
The remainder of this section outlines Step (1) and Step (2) of our work as it is illus-
trated in Figure[A. T2l The next subsection introduces the source model as it is used
by the human designer, the next but one subsection describes the model simplifica-
tion measures taken, while the last subsection specifies, in extracts, the design graph
grammar that accomplishes the structure model synthesis.

Note that this section cannot tell a success story; Step (3) and Step (4) are not
developed far enough to make a meaningful evaluation of our ideas possibleﬂ and,
consequently, emphasis is put on modeling here. However, this new approach to the
complex design problems in chemical engineering seems promising to us, and, its
most interesting property is its flexibility:

o Due to the use of design graph grammars, design problem solving is not re-
stricted to variations of a fixed plant structure. As well as that, new design
knowledge on structure can easily be integrated, at the human designer’s de-
sired level of granularity.

o The completion of a structure model towards a behavior model (Step (3) in Fig-
ure[A] PageB9) is not prescribed. Hence, behavior can be modeled at an ar-
bitrary level of fidelity—falling back on existing simulation tools for chemical
behavior models, such as ASCEND, MODEL.LA, or SPEEDUP (211,274, 208,1173).

Underlying Models

The design of a food processing system as meant here grounds on behavior descrip-
tions of intermediate complexity: Most of the partial and ordinary differential equa-
tions have been abstracted to purely algebraic relations or to rules of thumb. This
description level is sufficient for standard design tasks in chemical engineering and
is approved.

Definition A.8 (Stationary Chemical Engineering Model) Let S be a chemical engi-
neering system and let (F, M) be a model of S. A stationary chemical engineering
model over (F, M) is a memoryless behavior model, B(F, M) = (Fy, Fz, Fy, V, A, A\),
whose elements are defined as follows.

(1) F = FyU Fz U Fp is a set of functionalities, described below. The elements in
M designate different types of mixers, heaters, and pumps.

9 Actually, a prototypic realization of the concept was presented on the ACHEMA 2000 fair in
Frankfurt.

A.2 STRUCTURE SYNTHESIS IN CHEMICAL ENGINEERING 111

(2) The input variables, F;, the constraint variables, F;, and the output variables,
Fy, describe the same physical quantities, i.e., substance properties such as
state of aggregation, temperature, granularity, uniformity of the mixture, or
viscosity. In particular, F; defines the substances’ initial properties, and F;
defines the substance properties at various places within the system S. Fy C F;
specifies the properties of the output substances in S. Fp = F\ (Fy U Fy) is the
set of component properties.

(3) The sets Uy and Zy designate the domains of the variables f in F. Likewise, U,
Z, and Y designate the Cartesian products of the input variable domains, the
constraint variable domains, and the output variable domains. V comprises
the domains of all functionalities.

(4) The set of state variables, Fx, is empty; i.e., B(F, M) is memoryless. The al-
gebraic state prescription function A : Y — Z maps an input vector onto the
global vector of substance properties, F;.

B(F, M) is a local behavior model (cf. Page[31): The behavior constraints § € A
can be mapped one-to-one onto the components in M.

(5) A is the identity mapping.

Remarks. In a design problem only the substance properties of the input and output
substances, F; and Fy, are given, and the task is to complete these sets towards a
structure model S(F, M). The next paragraph provides an example.

Example Given is the task specification excerpt in Table[A.5] describing the proper-
ties of three input substances (starch syrup, water, sugar) and the desired properties
of the output substance, caramel syrup.

Name State Mass Temperature Viscosity
Starch syrup liquid 36.63% 20°C 0.2-1.6 Pas
Water liquid 15.75% 20°C 0.0010012 Pas
Sugar solid 47.62% 20°C -
Caramel syrup liquid 100.00% 110°C ?

Table A.5. Substance properties of the input quantities sugar, water, starch syrup, and the
output substance caramel syrup.

Based on this specification, the five design steps of the general procedure men-
tioned at the outset are as follows.

(1) Preliminary Examination. The first observation made by the engineer is that
one of the substances, sugar, is a solid and must be dissolved within one of
the other input liquids. Since water has a lower viscosity than starch syrup,

112

@

MODEL SIMPLIFICATION

it will be better to mix sugar and water first and then add the starch syrup to
the solution. Depending on the mass ratios the water may have to be heated
beforehand to increase solubility.

Choice of Unit-Operations. The comparison of the mass ratios of sugar and wa-
ter leads to the conclusion that heating is necessary; thus, a heat transfer unit-
operation is needed to heat the water. The heated water and the sugar are
then mixed—for this purpose a mixing unit-operation for lower viscous sub-
stances is appropriate. To avoid recrystallization, the starch syrup should also
be heated, thereby making another heat transfer unit-operation necessary. Fi-
nally, the heated sugar solution and the heated starch syrup are mixed. In
order to reach the required temperature of 110°C, another heat transfer unit-
operation will be needed. Furthermore, pump unit-operations are required to
transport the substances between devices.

Starch
syrup
Water»§+

Sugar ——— |

Caramel
@»@»E»

Figure A.13. A possible design of the example process.

®)

(4)

©)

Structure Definition. The choice of unit-operations, although having no direct
impact on the structure, allows for certain conclusions pertaining to the or-
dering of the unit-operations. In this case this ordering is relatively evident;
Figure[A.13 depicts the chosen topology. Note that this is one possible struc-
ture complying with the simplified demands; the remaining steps determine
the behavior of the design and make some corrections, if applicable.

Configuration of Devices. Based on the mass, the volume, and the other proper-
ties of the involved substances, matching devices are chosen from databases or
data sheets. For the sake of simplicity we will refrain from a detailed descrip-
tion here and refer to Figure where the abstract design with additional
data from the underlying model is shown.

Optimization. The computed properties of the plant design usually represent
feasible values, but improvement may still be possible. With this goal in mind,
the parameterization process is repeated and parameters adjusted accordingly.
In our case the last heat transfer unit-operation of the process chain represents
an overkill—the last mixing unit-operation is then slightly changed so that only
devices with a built-in heat transfer unit are considered. This change shortens
the process chain, thereby reducing costs and mixing time.

Remarks. Alternatively, another design with fewer devices is conceivable. For in-
stance, water and starch syrup could be mixed first, and the resulting solution used to
dissolve sugar. This structure choice would require one heat transfer unit-operation

A.2 STRUCTURE SYNTHESIS IN CHEMICAL ENGINEERING 113

Propeller

- [o50°C]] O-O.5m3lh Range: [0-50°C] 1001
<110°C <110°C
Starch _20C 70°C, < 0.2Pas =4pas = 4Pas
syrup > H
Cara:\mel
Water—> 70°C, < 0.001Pas syrup

Sugar
H Propeller [0-0. 5m3/h]
15kg 75% Solution
=60°-70°C
= 30Pas

Figure A.14. Design solution showing part of the underlying model.

less than the proposed design because both water and the starch syrup have to be
heated to the same temperature, which is best done if both substances are mixed to-
gether beforehand. However, this alternative would cause a longer mixing time, since
the sugar must be dissolved in a more viscous solution (compared to pure water).

Model Simplification

Instead of deriving a concrete solution at the modeling level that is imposed by the
supplied demands, the physical model is simplified to an abstract model. On this
abstract level, a solution can be efficiently calculated and transferred back to the
physical level, although some adjustments may be necessary at this point (recall the
paradigm illustrated in Figure[A.T). The following model simplification steps lead to
a more tractable design problem; they are oriented, in as much as it is possible, at the
taxonomy of model abstraction techniques compiled by |Frantz (84).

Model Boundary Assumptions pertaining to the external features of the model—
input variable space, global restrictions etc.—are made.

o Single Task Assumption. It is general practice to combine different chemical pro-
cesses in order to share by-products or partial process chains. Such a combined
design corresponds to the solution of different tasks simultaneously—a proce-
dure which belongs to optimization. Here, design is restricted to n : 1 case,
and overlapping plant structures are split and dealt with separately as shown
in Figure[AT5 Say, Fy comprises the properties of a single substance.

o Model Context.The way models, or parts of models, are embedded into a con-
text is clearly defined. Pumps, for example, have a strict structural relation-
ship; they have one input and one output, i.e., the degree is fixed, and the
predecessor of a pump must be another device.

114 MODEL SIMPLIFICATION

BT 5

Figure A.15. Single task: Overlapping plant structures are split and treated separately.

o Limited Input Space. Firstly, we concentrate on tasks of the food processing
branch of the chemical engineering domain. This restriction results in further
simplifications: The chemical plants to be designed do not exceed a certain
magnitude, as well as the range of some variables, such as temperature, which
is limited to “small” values, say, below 200° C.

Furthermore, the focus is laid on liquid mixtures. This means that at least one
input has to be a fluid.

Another restriction is the number of relevant substance properties. During
design generation, decisions are taken based on the abstract values of a small
set of substance properties, such as temperature, viscosity, density, mass and
state. Properties such as heat capacity, heat conductivity or critical temperature
and pressure are neglected at this point.

o Approximation. Instead of using different functions and formulas that apply
under different conditions, only one function or formula covering the widest
range of restrictions is used in each case. For example, there are more than
50 different formulas to calculate the viscosity of a mixture, most of which are
very specialized versions and only applicable under very rare circumstances.
The formula In(n) = 5, ¢; - In(n;), however, is very often applicable and de-
livers a good approximation, even in the complicated Caseslﬁ

Behavioral Simplification Now the focus is shifted to aspects within the model,
where the behavior of components is simplified:

o Causal Decomposition. To prevent components from exerting influence on them-
selves, feedback loops are ruled out. This simplification step makes structural
manipulation and behavioral analysis easier.

19The symbols ¢; and 1; designate the volume portion and the viscosity of input i.

A.2 STRUCTURE SYNTHESIS IN CHEMICAL ENGINEERING 115

The situation depicted below shows a cycle within a chemical plant. The pur-
pose of the backward edge is to transport evaporated substance back into the
mixer; this gaseous substance condenses on the way.

Su -

o Numeric Representation. Although the use of crisp values leads to exact results,
fuzzy sets are used to represent essential value ranges. This simplification di-
minishes the combinatorial impact on our graph grammar approach, since sub-
stance properties are coded into edge labels and the use of crisp values would
lead to an excessive number of rules.

The following figure shows the fuzzy representation of the substance property

“viscosity”:
Membership . .
1.0 4- low - medium R high
0.5
o T T T T T >
1 500 5000 mPas

o State Aggregation. In general, the material being processed within a device is
not in one state, but actually in various different ones. For instance, inside
a heat transfer device a fluid may be, depending on the reading point, cold,
warm, in liquid form or gaseous. This behavior is simplified by assuming that,
inside any device, a material will be in one single state.

o Temporal Aggregation. Time is neglected, making any statements about contin-
uous changes to material properties no longer possible; changes to material
properties are connected to entry and exit points within the plant structure.

o Entity Aggregation by Function. Different device entities are represented by one
device performing a function common to all devices. For example, all different
mixer types could be described by one special mixer, as shown below.

L]
0 =[]
%]

116 MODEL SIMPLIFICATION

o Entity Aggregation by Structure. Devices usually consist of different parts that
can be configured separately. For instance, a plate heat transfer device is com-
posed of a vessel and a variable number of plates. The arrangement of the
plates within the vessel is a configuration task.

The following figure sketches the composition of a plate heat transfer device
and of an anchor mixer.

[1-E=8 O-u=0U

o Function Aggregation. In contrast to entity aggregation by function, where de-
vices are represented by a special device, we aggregate here functions. For
instance, mixers are capable of performing different functions, such as homog-
enization, emulsification, aeration, suspension etc.

Derived Relationships Some fields of chemical engineering still remain unveiled
and are dealt with as black boxes. In such cases one has to resort to look-up tables
and interpolation, as far as sufficient information is available. For example, the out-
put of a mixer, measured in terms of the Reynolds and Newton numbers, has to be
determined experimentally, and this data is usually only available as tables.

Some model aspects of minor consequence are ignored, thereby simplifying the
model as a whole. One good example are pipes used to transport the substances
within the plant: In general, the length and the material of a pipe determine the
degree of thermal loss of a substance being conveyed.

Remarks. The model simplification steps listed above can be classified into two differ-
ent types: Steps pertaining to the model structure and steps belonging to the model
behavior. Note that steps may be connected to both structure and behavior.

The steps that simplify the model structure—simple task assumption, model con-
text, limited input space, causal decomposition, numeric representation, entity ag-
gregation by function—yield a model that is fitting to be processed with graph gram-
mars. These steps restrict the graph structure and specify the types and granularity
of node and edge labels.

The steps belonging to the model behavior—limited input space, approximation,
causal decomposition, numeric representation, state and temporal aggregation, en-
tity aggregation by structure, function aggregation, derived relationships—result in
a model suitable for qualitative simulation.

The model simplification steps performed here relate to the domain of chemical
engineering. For other domains not necessarily the same steps will be appropriate;
the modeler has to determine which model simplification steps are fitting individu-
ally.

A.2 STRUCTURE SYNTHESIS IN CHEMICAL ENGINEERING 117

Working with Simplified Models: Structure Synthesis

This section presents excerpts of a design graph grammar, G, for the synthesis of
structure models in chemical engineering; the grammar has been developed within
the WIMOM project. The algorithm SYNTHESISSTEP operationalizes the search in the
structure space L(G). Starting point of SYNTHESISSTEP is the grammar G and some
labeled graph G encoding a partial structure model of the desired system. Initially,
G consists of a center node labeled “?” and adjacent nodes for the input and output
substances. Figure[AT6lshows the start graph related to the previous example.

Starch £z
Syrup S e,
&

?
Water (){Slu t, v} O {sp, t} O Cg)r/?l%el

Sugar O\Ss%'

Figure A.16. Start graph for the algorithm SYNTHESISSTEP related to the example. The edge
labels are sets abbreviating the substance properties from Table[AH] s, s; for solid and liquid
state, t;, f;, for low and high temperature, and v}, v, for low and high viscosity.

SYNTHESISSTEP
Input. A graph grammar G and a structure model G = S(F, M).
Output. A structure model containing only terminal nodes or the symbol fail.

(1) if terminal-p(G) then result = G

(2) else

3) result = fail

4) rules = find-matchings(G, G)

(5) while rules #) A result = fail do

(6) rule = select-rule(rules, G)
(7) rules = rules \ {rule}
® result = SYNTHESISSTEP (G, apply-rule(rule, G))
) end
(10) end

(11) return result

The algorithm employs calls to four subfunctions:

(1) Terminal-P. A Boolean function that checks whether G contains a node labeled
with “?”. If not, terminal-p(G) returns true.

(2) Find-Matchings. Searches for all possible matchings of rules in G in the partial
structure model G, according to Definition Pagel6ll In this regard, Sec-
tionB.4] Page [78] provides some complexity remarks.

118

®)

4)

MODEL SIMPLIFICATION

Select-Rule. The most knowledge-sensitive function with respect to search ef-
ficiency and design quality. By now, in the WIP system the rules are selected
according to static rule precedences. However, the static precedences shall be
replaced by a dynamic, context-sensitive precedence function, that has been
computed by means of the model compilation method described in Section[B.1]

Apply-Rule. Applies a rule in compliance with the semantics specified in Defi-
nition B.4](Pagel66) and 3.5 (Page [68) respectively.

Chemical Engineering Grammar In the sequel, rules of the design graph grammar
for the structural design of food processing plants are shown; a complete listing and
a formal specification can be found in (240).

Available Unit-Operations. There are many devices that can be used for the same
task (heating, conveying, mixing). In this place the rule set is limited to one
heat transfer unit-operation, one conveying unit-operation, and two mixing
unit-operations for low and high viscous substances. Additionally, two com-
bined mixing and heat transfer unit-operations are allowed (see Figure[A.T7).

S C X S 1y 28 01

Figure A.17. available unit-operations of the graph grammar rule set.

Substance Properties. The most relevant substance properties are temperature,
viscosity, and state. Further properties of importance are density, heat capacity
etc., but we refrain from taking these into consideration here.

Label Class Granularity. For each scalar substance property we choose to use a
label consisting of two different variants: “low” and “high”. Thus, temperature
is represented by f; and t;, and viscosity by v; and v;,. The property state is
represented by s;, s;, and s, corresponding to the three states “solid”, “liquid”
and “gaseous”.

Let G = (L, P) be a design graph grammar for the synthesis of chemical plants
with = ZunitU Zsubstance- Zunit = {P/ h/ Mpropeller, Manchor, hmpropeller/ hmanchor A/ B/ C/
D, E} where the nonterminals designate a pump, a heater, mixers, and heater-mixer
combinations; Lsubstance = {11, tn, V1, Un, Ss, Si, sg}. P is the set of graph transformation
rules of the form T — (R, I); the rules are divided into groups related to the substance
properties state, temperature, and viscosity.

A.2 STRUCTURE SYNTHESIS IN CHEMICAL ENGINEERING 119

State-related rules: (1) Splitting of solids and fluids, and (2) improvement of sol-
ubility by heating (only graphical).

(1) T=(Vr,Er,or) = ({1,2,3},{(1,3),(2,3)},

{(1,4),(2,B),(3,0),((1,3),5), ((2,3),5)})
R = (Vg Eg,0r) = ({4,5,6,7},{(4,6),(5,6),(6,7)},
{(4,A),(5,B),(6,C),(7,C),((4,6),51),((5,6),55)})
I={((D,AE), (D, AE)),(D,BE),(D,B,E)),((DCE),(D,7E))}
A A
"'*O{Ac B S c ¢
g SO => B O—'{‘}"*
(2) A A
-- —=> B -

Temperature-related rules: (1) Improvement of mixing properties by heating an
input, (2) improvement of mixing properties by dealing with warm inputs separately
(only graphical), and (3) aggregation of mixer and heating chain into combined de-
vice (only graphical).

(1) T=(Vr,Er,or) = ({1,2,3},{(1,3),(2,3)},
{(1,4),(2,B),(3,C),((1,2),4),((2,3),t)})
R = (Vk, Ex,0r) = ({4,5,6,7,8},{(4,5),(5,6),(6,7),(7,8)},{(4, A),(5,h),
(6,p).(7,B),(8,C),((4,5),t:),((6,7),t1),((7,8), tn) })
I={((D,A,E), (D, AE)),(D,B,E),(D,B,E)),((D,C,E),(D,CE))}

(2) A
U RN N G
h
g SO = s OO~
e th S th A

120 MODEL SIMPLIFICATION

Viscosity-related rules: (1) Choice of mixer for lower viscous inputs, (2) im-
provement of mixing properties by dealing with high viscous inputs separately (only
graphical), and (3) improvement of mixing properties by heating high viscous input
(only graphical).

(1) T=(Vr,Er,or) = ({1,23},{(1,3),(2,3

R = (Vg,Eg, 0r) = <{4,5,6}/§(

~—
~

I'={((D,A,E), (D, AE)),(D,B,E),(D, B,E)/)f + (D, Manchor, E)) }
A

*Q\ e
*Q/ T o ;

(2) A A
TR © IR N N R
o 0 =, OO
I, Vh ! e Vh ?
(3) A

Remarks. Observe that the substance property under consideration determines the
types of structural manipulation that are possible. For instance, all substance proper-
ties lead to splitting rules, the property “temperature” is connected to optimization
rules, and the property “viscosity” implies choice rules. Likewise, the other substance
properties not covered by the above design graph grammar are also associated with
specific structural transformations.

A.2 STRUCTURE SYNTHESIS IN CHEMICAL ENGINEERING 121

Synopsis

Problemclass Design of technical systems.

Problem Solving Method Design by functional abstraction: Synthesis of a struc-
ture model, which is then completed and adapted with respect to its physical behav-
ior.

Source Model Memoryless behavior model, B(F, M) = (Fy, Fz, Fy, V, A, A), de-
fined over (F, M).

o Fidelity Level F. Substance properties such as state of aggregation, tempera-
ture, granularity, uniformity of the mixture, or viscosity, which are specified as
numbers from R.

o Granularity Level M. Chemical engineering devices like mixers, heaters, and
pumps.

o Input Fy. Properties of the input substances.
o Output Fy. Properties of the single output substance.

e State Prescription Function A. Algebraic behavior descriptions; locality principle
fulfilled: The constraints § € A can be mapped one-to-one onto the components
in M.

o Behavior Model Processing. Local and global constraint processing methods.

Simplified Model Memoryless behavior model, B(F, M) = (Fy, Fz, Fy, V, A, A),
defined over (F, M).

o Fidelity Level F. Elimination of less significant component parameters and sub-
stance properties. Abstraction of the remaining numerical substance properties
towards linguistic variables.

o Granularity Level M. Corresponds widely to the source model.
o Input Fy. Fuzzified properties of the input substances.
o Output Fy. Fuzzified properties of the single output substance.

e State Prescription Function A. Design graph grammar. Simplified algebraic be-
havior descriptions.

e Behavior Model Processing. Derivation based on design graph grammars. Local
and global constraint processing methods.

Knowledge Source Simplifications proposed by domain experts, relating the
model boundary, the synthesis space, and the behavior.

122 MODEL SIMPLIFICATION

Model Compilation

The aim of model compilation is to shift processing effort from the model utilization
phase to the model construction phase. Model compilation is a powerful construction
approach to address a model’s analytic complexity, its constraint complexity, or the
search space complexity. The idea behind several model compilation approaches is
to break global connections of the source model down to local connections. In the
compiled model the local connections may be encoded as (1) exploratory short cuts
within a large search space or as (2) computational short cuts bridging long-winded
calculations. See Page B8] Section 24}, for a comparison to other model construction
approaches.

This chapter presents a synthesis and an analysis case study. In Section[B.I] model
compilation is used to automatically generate control knowledge that guides the
search when solving complex resource-based configuration problems. In Section[B.Z]}
model compilation (along with model simplification) is used to derive a heuristic
diagnosis model from a deep behavior model that is based on state prescription con-
straints.

In this sense, the first case study aims at the identification of exploratory short
cuts while the second case study depends on the possibility to formulate computa-
tional short cuts. Both compilation approaches are scalable. Scale factor in the con-
figuration case study is the depth of the analyzed search space; scale factor in the
diagnosis case study it is the precision at which simulations are performed.

124 MODEL COMPILATION

B.1 Generating Control
Knowledge in Configuration Tasks

Configuration is the process of composing a model of a technical system from a pre-
defined set of components. The result of such a process is called configuration too
and has to fulfill a set of given constraints. Aside from technical restrictions a cus-
tomer’s demands constitute a large part of these constraints (@, @, @,m,[@).

A configuration process may rely on both a structure model and a behavior
model. If emphasis is on the former model, the configuration approach is called
skeleton configuration or structure-based configuration. If a behavior model forms
the backbone of the configuration process, only very few standardized configura-
tion approaches exist. An important representative in this connection is the so-called
resource-based configuration approach, which becomes center in this place.

Within the resource-based configuration approach the components involved are
characterized by simplified functional dependencies, so-called resources. On the one
hand, a resource-based modeling provides for powerful and user-friendly mecha-
nisms to formulate configuration tasks). On the other hand, the solution of
resource-based configuration problems is NP-complete, which means that no effi-
cient algorithms exist to solve a generic instance of that problem (257).

Actually, when given a real-world configuration problem formulated within a
resource-based description, the search for an optimum configuration can often be
realized efficiently by means of heuristics that were developed by domain experts.
Stated another way, a concrete resource-based system description can be compiled
by enriching it with control knowledge. This section picks up that observation:
It presents a method to automatically generate control knowledge that guides the
search when solving complex resource-based configuration problems.

The compilation approach emphasizes the view that a resource-based configura-
tion problem can be attacked at two different scenes: At a preprocessing stage, where
heuristics are generated, and at a configuration stage, usually at the customer’s site,
where a concrete configuration problem is solved. Figure[Blillustrates this view.

Model construction

Resource-

based Configuration

model

Control process

knowledge

Figure B.1. Partitioning the resource-based configuration process.

That a partitioning of the configuration process is possible is in the nature of

B.1 GENERATING CONTROL KNOWLEDGE 125

most configuration problems: Input of the preprocessing step is the entire configura-
tion model, and preprocessing must be re-applied whenever this model is changed.
Such changes come along when new components are added or when functionalities
of existing components are modified. Input of the configuration step are demand
sets, which are customer-dependent. The ratio, p, of component model changes and
demand set changes satisfies p < 1.

The remainder of the section is organized as follows.

(1) Inthe next subsection, resource-based configuration is introduced, and the bal-
ance algorithm, a method to process resource-based component models, is out-
lined.

(2) The performance of the basic balance algorithm can be significantly improved
by exploiting heuristics that provide a decision base during the search. This is
the starting point of the next but one subsection, where we show in which way
such heuristics can be derived by model compilation within a preprocessing
step.

The concepts presented here have been operationalized and evaluated at a real-
world real-world setting(141), which is outlined in “Implementation” subsection.

Resource-Based Models and Configuration

There exist a lot of methodologies that describe in which way configuration prob-
lems can be tackled. Their adequacy depends on the configuration task, the domain,
and, of course, the description of the configuration building blocks. Especially when
configuring modular technical systems, resource-based configuration is an important
configuration methodology.

Introduction to Resource-Based Models The resource-based model establishes
an abstraction level that reduces a domain to a finite set of functionality-value-pairs
(105). More precisely, the functionalities that are involved in the configuration pro-
cess are divided into equivalence classes, the resources. Functionalities of the same
resource class can be charged against each other, rendering the components to sup-
pliers and demanders of resources.

E. g. when configuring a small technical device such as a computer, one function-
ality of a power supply unit could be its power output, f;, and one functionality of
a plug-in card could be its power consumption, f,. Both functionalities are elements
of the resource “power”: A power supply unit supplies some power value f; = a;,
while each plug-in card demands some power value f, = a,. In its simplest form,
demanded values are represented by negative numbers, which are summed up with
the supplied, positive numbers. Within a technically sound model the balance of each
resource must be zero or positive. Figure B.2ldepicts a resource-based descriptions of
computer components.

126 MODEL COMPILATION

a /
2
Power Power

supply a;—» {fy, T, fo}

{fl} i <,
a;+a,+ag20 = (cadB
{f3}

@— n —FIIl M supplies n units of resource R
@ ~—n —El M demands n units of resource R

Figure B.2. Resource-based modeling of simple computer components.

With respect to the example, (F, M) is defined as follows: F = {fi, f>, f3}, M =
{AL{A 2 51 {2}, {fs}}- Note that the set M contains both components and
resources. Also note that a dependency network as shown in Figure B2represents a
structure model of (F, M). Resource-based configuration means the instantiation of
such structure models and the simulation of the underlying behavior models.

In the simplified resource-based configuration model all components have only
a single state. As a consequence, the state description function, A, is constant. The
output of a resource-based model is a vector comprising the summed up resources.
If a component is used k times, its functionalities are k-fold supplied or demanded.
Hence, the output function, A, is a linear form.

It is the aim of a configuration process to synthesize a model that fulfills a set
of demands. Under the resource-based model, demands are charged against the
output vector. Figure B.3extends the example by introducing the resource “RAM-
extension”, which comprises the functionalities f; and fs. For a given demand d at
resource “RAM-extension” both conditions, a; +k-a, +a3 > 0and k-ay +as > d,
must be fulfilled.

Card A
k-a,=Y \dfx fa} k-a,
Power Power 2 ~

suppl a —— RAM extension
ied 1 {fy fo, f3} {f fs}

) — <a3 —
a, +ka,+ag 20 ™= (cadB s ka, +ag 2d
{f3. fs}

@— n —>E| M supplies n units of resource R
@ ~—n —El M demands n units of resource R

Figure B.3. In the example, (F, M) is defined as follows: F = {fi, fo, f3, fa, fs}, M =
Nk Af fo S} A fa fad A fs S5} { fas f51)

The resource-based model is suitable for a configuration problem if the following
conditions are fulfilled:

e Structural information plays only a secondary role.

B.1 GENERATING CONTROL KNOWLEDGE 127

o The components can be characterized by functionalities that are supplied or
demanded.

e The components’ functionalities are combined in order to provide the system’s
global behavior.

In the following we give a precise specification of the simplified resource-based
configuration problem and its solution]|] As introduced by (114), these definitions
specify the state prescription function, A, in a normal form as a matrix A. Each col-
umn of A represents the functionality vector of a component; likewise, the rows of A
represent the resources. I. e., an element 4;; defines the amount at resource i of com-
ponent j. A configuration problem then is a linear inequation system defined on A.
For the example of Figure[B.3 the matrix and the inequation system are given below.

_ a; da; 4as T 0
A= (5 me), ae ()

Definition B.1 (Resource-Based Model) Let (F, M) be a model. A simplified re-
source-based model over (F, M) is a constant behavior model, B(F, M) = (Fz, Fy,
V, A, A\), whose elements are defined as follows.

(1) F is a set of functionalities; the elements in M are called objects (or compo-
nents) and resources.

(2) F;isthe set of constraint variables, and Fy is the ordered set of output variables.
The domain for each f € F is Z. V comprises the domains of all functionalities.

(8) The set of state variables, Fx, is empty. The state prescription function A is
constant, it assigns each functionality in F; a value from Z. A can be written as
an r xo0 matrix A, whose rows and columns define the resources and objects in
M respectively. In the following we will use the symbols O C M and R C M
to designate the set of objects and resources respectively.

Between a resource R € R, an object O € O, and a matrix element a;; the fol-
lowing relation holds:

aij = 0 & ONR= @
a;; >0 = ONR =1, Semantics: O supplies a;; units of R
a;; <0 = ONR =1, Semantics: O demands a;; units of R

1Comparecl to the original definitions in (192), the definitions here are weakened within the fol-
lowing respects: (1) The value domain of all functionalities is Z, (2) the only way to combine
two functionalities is the addition of their values, and (3) supplies and demands are com-
pared with the “<”-operator. As a consequence, symbolic functionalities or sophisticated
configuration constraints cannot be formulated straightforwardly. However, the definition
reflects a great deal of the required modeling power for typical resource-based configuration
problems.

128 MODEL COMPILATION

(4) The output function A is given by Ak, say, Fy = Ak. In this connection k € N°
is called the vector of object occurrences, or simply, configuration.

Remarks. Note that the output function A depends on the number of object occur-
rences.

Definition B.2 (Resource-Based Configuration Problems) Given is a simplified re-
source-based model (F7, Fy,V, A, \) over (F, M), several configuration problems can
be stated (192,/257)F

e FINDCONF
Let d be a vector from N’, called the demand vector.
Problem: Determine a configuration k € N° such that the inequation system
Ak > d is fulfilled.

e FINDOPTCONF
Let d be a demand vector from N', and let c : © — R™ be a cost function that
assigns some cost to each object in O.
Problem: Determine a configuration k € N° that fulfills Ak > d and that is
cost-minimum.

In the following we abbreviate the problem FINDCONF with IT and the problem
FINDOPTCONF with TT*.

Processing Resource-Based Models If there exists a configuration k that solves
the resource-based configuration problem IT, k can be determined with the balance
algorithm. This algorithm operationalizes a generate-and-test strategy and has been
implemented in the configuration systems CosmMos, CcsC, AKON, and MOKON
(103, 155, 294, 1273). The generate part, controlled by propose-and-revise heuristics
or simply by backtracking (171), is responsible for selecting both an unbalanced (or
unsatisfied) resource R and a set of components that supply f € R. The test part sim-
ulates a virtual balance. A resource is called unsatisfied, if the sum of its demanded
functionalities exceeds the sum of its supplied functionalities.

Basically, configuration works as follows. First, the demand set of the virtual bal-
ance is initialized with all demanded functionalities, and k is set to the zero-vector.
Second, with respect to some unsatisfied resources R, an component set is formed;
its functionalities are added to the corresponding resources of the balance, and k is
updated by the component set. Third, it is checked whether all resources are satis-
fied. If so, k establishes a solution of the configuration problem TT. Otherwise, the
configuration process is continued with the second step.

Consider a simple configuration problem where an initial demand vector d7 =
(R1,Ry) = (6,0) is given. Two components, O; and O, can be used to fulfill the
demand vector; they are defined in table[B.1]

2 At the same place the authors introduce also a number of decision problems.

B.1 GENERATING CONTROL KNOWLEDGE 129

Component Functionalities Resource Functionalities
Oy {i=2f=1} Ry {fi, f3}
0, {fs=4fi=-1} Ry {f2 fa}

Table B.1. Resource model of the example.

After initialization, the balance has the entry {(R;, —6), (R, 0) }. Now the config-
uration algorithm has to choose a component that fulfills the unsatisfied demand at
resource R;. If we assume that component O, is chosen, the balance and the actually
explored search space will look as depicted in Figure[B.4

© Resource selection
O Component selection

Figure B.4. Configuration situation after the first decision.

Note that in the configuration situation of Figure[B.4] both a decision regarding
component selection and resource selection must be made. A solution of the example
is given with kT = (Oy, 0,) = (1,1) or kT = (3,0).

Compiling Resource-Based Models

Resource-based component models provide great knowledge acquisition support
since the configuration knowledge consists of local connections to the very most part
(257). However, the basic balance processing algorithm is of exponential time com-
plexity.

In many real-world configuration problems the optimum solution must be found
for a given demand vector, say, some instance of TT* must be solved. Hence, if no
powerful heuristics are at hand that control the functionality and component selec-
tion steps, merely small configuration problems can be tackled by resource-based
configuration.

Resource selection is related to the search space’s total depth in first place; compo-
nent selection affects the effort necessary for backtracking. An “intelligent” strategy
within these selection steps is the major engine of efficient balance processing (278).

130 MODEL COMPILATION

In this connection the preprocessing idea comes into play. By preprocessing the
resource-based component model, implicit knowledge relating a selection strategy can
be made explicit, e. g. in the form of an estimation function. The following subsections
outline preprocessing techniques. The considerations are not of a purely theoreti-
cal nature but have been operationalized within the configuration system PREAKON
(141).

Computing a Precedence Order for Resources Let (V,E) be a graph of a
resource-based model. Note that, by definition, (V, E) is bipartite, each edge e € E
corresponds one-to-one to a non-zero element in A, and that the incident nodes of e
correspond to one object and one resource.

Definition B.3 (Component-Resource Graph) Let B(F, M) = (Fz, Fy, V, A, A) des-
ignate a resource-based model over (F, M). A directed, bipartite graph (V,E) of
(F, M) is called component-resource graph, if for each edge (v, w) € E with matrix
entry a € A the following holds.

a > 0 < v corresponds to a component and w corresponds to a resource
a < 0 & v corresponds to a resource and w corresponds to a component

Component-resource graphs reflect the supply and demand dependencies of a
resource-based model. Consider the component-resource graph in Figure A
demand in d should only be processed, if all components of the system that also need
this resource are already determined. E.g., since component O; supplies nothing, it
should be selected first, and while O; demands nothing, it should be selected last.

AN
=]
©)

-
@—> IE' O supplies R
@ <—|E| O demands R

Figure B.5. A sample component-resource graph.

Obviously, the number of O’s instances required to satisfy a resource can be de-
termined without backtracking, if O’s outdegree in the component-resource graph
is zero (on condition that the components selected and the resources processed are
deleted in the graph). Note that the sequence of nodes we get by this procedure cor-
responds to a reversed topological sorting of the graph. The order by which resources
occur in this sorting defines the succession by which unsatisfied resources should be
selected from the balance.

B.1 GENERATING CONTROL KNOWLEDGE 131

Remarks. Given the case that (F, M) represents a non-causal model, the related
component-resource graph (V, E) will contain cycles. To compute a topological sort-
ing, all strongly connected components must be detected first, a computation that
can be done in O(|E|) for a connected directed graph (9). Then, the condensed graph
can be constructed where each strongly connected component is represented by one
node, and a topological sorting based on this graph can be computed.

Computing a Precedence Order for Components To satisfy an open demand at
aresource R, a simple selection strategy is to choose from all components that supply
R the cost-minimum one. Certainly such a greedy strategy is often too shortsighted,
and we are looking for a strategy that has global configuration knowledge compiled
in. Such a strategy can be operationalized by means of a function that computes a
reliable estimation of the follow-up costs bound up with the selection of a particular
component.

The subsequent simplifications are a reasonable compromise when constructing
such an estimation function:

(1) A configuration situation is solely characterized by those resources that are
currently unsatisfied.

(2) A resource is satisfied by components of the same type.
(8) Components are regarded as suppliers of a single resource.

(4) There exist no restrictions between components.

Remarks. Point [1| neglects that unused resources in a partial configuration may be
exploited in a further course of the configuration process. Point 2 neglects that a
combination of different components may constitute a more adequate solution for an
unfulfilled resource than a set of components of the same type. Point 3 neglects that
a component may supply several resources each of which is demanded in the partial
configuration. Point l neglects that other constraints than supplies and demands
must be satisfied by a configuration (mounting restrictions for instance).

Based on the above simplifications an estimation function (O, R, n) for the com-
putation of follow-up costs can be directly constructedl R denotes the demanded
resource, 1 denotes the amount to which R is demanded, and O denotes a compo-
nent that supplies R and that is used to satisfy the open demand. We will construct
within three steps:

(1) Each component O € O has some local cost c(O), but it also causes particular
follow-up costs. Together they make up a component’s total cost c;.

3The estimation function discussed here was proposed and operationalized by Curatolo (140).

132 MODEL COMPILATION

(2) A component’s follow-up costs result from its demands. More precisely: Let O
be a component and d(O) the set of resources demanded by O. Then, of course,
we would like each demand v,;(O, R’) of component O at resource R’ € d(O) to
be satisfied at minimum costs. Note that all components that will be selected
to satisfy R’ entail follow-up costs on their turn. I. e., if we selected component
O1in order to satisfy a required demand R, we would expect the following total

cost ¢;:
¢i(O,R):==c(O)+ 5 min {c(O,R)},
riédo) 9 Es(R)
where
c(O) e R local cost of component O
d(0) demanded resources of O
s(R) components that supply R

Note that the term for ¢; assumes that each required demand can be satisfied
by exactly one component. This shortcoming is addressed within the next step.

(3) The following term computes for a given amount 7 at resource R the number
of components O that are necessary to satisfy R:

o]

Putting the pieces together results in an estimation function & that computes for
a component O and a demand R at the amount of # the total costs:

H(O, R, n) = [#RJ . (C(O) £ 3 gmin [h(0/, R, w0, R’))}) /

where

c(O) eR* local cost of component O
d(0) demanded resources of O
s(R) components that supply R

v5(O,R) € N supply at resource R of component O
v4(0O,R) € N demand at resource R of component O

Example. Recall the example from Page[129] where a simple knowledge base contain-
ing two components, O; and O,, and two resources, R; and R, was given. In this
place we elaborate on the same example, but we define aside from the components’
resources also their local costs c.

According to the formula previously derived, / is defined as follows.

h(Oy,Ry,n) = [%]-100 (no follow-up costs)

h(O1,Ry,n) = n -100 (no follow-up costs)

h(O2,Ry,n) = [%]-(10+100) (follow-up costs for R;)
h(Oy,Ry,n) = o0 (R, can never be satisfied by O,)

B.1 GENERATING CONTROL KNOWLEDGE

133

Component Functionalities Local cost Resource Functionalities
Oy {i=2f=1} 100 Ry {fi, f3}
0, {fs=4fi=-1} 10 Ry {f2 fa}

Table B.2. Resource model of the example with local cost.

Again, the demand vector at the system searched for is d” = (R, R,) = (6,0).

The resulting search tree is depicted in Figure[B.6]

{(Ry, 'G(sz 0)}

{(Ry, 0), (Ry, 3)} {(Ry, 3), (Ry, 3)}
C =300 c=210
:| Balance

© Resource selection
O Component selection

Figure B.6. Search tree of the configuration example.

(200)

{(Ry, 4), (Ry, -2)}

Ry
O o,
(100)

{(Ry, 6), (Ry, O)}

C =220

The search tree is two-layered and consists of two types of nodes. Filled nodes
establish choice points regarding the resource to be satisfied next. The related balance
is shown framed above the node. Outlined nodes establish choice points regarding
the component to be selected next. The edges of the search tree are labeled with the
configuration decisions. Below the actually selected components, put in parentheses,

the estimation function’s values are annotated.

The tree shows in which way the control information of is exploited. If alterna-
tive components are given to satisfy an open demand, h defines an order by which

134 MODEL COMPILATION

the nodes are expanded. In the example, component O, is chosen at the first choice
point, while O; is chosen at the next. The earlier a solution is found, the earlier its
cost information ¢ can be used to cut off partial configurations exceeding c.

Properties of the Precedence Order Functions The precedence order for re-
source selection is optimum if (F, M) is causal. Following up this order will correctly
inform the balance algorithm respecting the total demand at some resource. If (F, M)
is not causal, the tie amongst the resources involved in a dependency cycle must be
broken by some heuristic: For instance, the resources could be ranked according to
their size, which minimizes the number of backtracking candidates amongst the com-
ponents.

The precedence order for component selection is based on the cost estimation
function h. The function h cannot be used to realize an admissible Best-First search
of type A*, since & is neither consistent nor optimistic.

Remarks. (1) An algorithm is admissible if it is guaranteed to return an optimal so-
lution whenever a solution exists (209). (2) Consistency implies that the estimation
function is optimistic, and, consistency is equivalent to monotonicity (202).

Observe that the computation of the sum cost of all unsatisfied resources of a
balance by means of i clearly leads to an overestimation of a configuration’s total
cost. In fact, even if a balance is assessed by the cost of only one unsatisfied resource,
h cannot be considered as an optimistic estimation function for a configuration’s total
cost. This is shown now.

Let h(O, R, n) be the estimated cost for a configuration that uses O to fulfill a
demand of n at resource R, and let i*(O, R, n) be the optimum cost for such a con-
figuration. h is optimistic if the inequation h(O,R,n) < h*(O,R,n) holds for all
O €5(R), R, and n. Consider the sum term of h:

> min) {h(O', R’,v4(O,R)) }

R &H0) O'Es(R

For each resource R’ € d(O) separate cost estimations are performed and accu-
mulated. But, there may be some interactivity between two objects O; and O, that
are used to satisfy two resources Ry, R, € d(O): Object O; may also supply the de-
manded resource Ry, rendering a separate treatment of R, superfluous. Given this
kind of interactivity between objects, i > h*.

Depending on both the actual configuration problem and specialties of the do-
main, i can be improved or constructed according to other paradigms:

e In place of a preprocessing that first selects a resource R and then decides
which of the components is suited best, a combined consideration of resources
and components is conceivable. This way restrictions between components
can be taken into account.

o Instead of assessing the cost with respect to a single resource, estimation func-
tions for the simultaneous treatment of resources can be developed.

B.1 GENERATING CONTROL KNOWLEDGE 135

Implementation at a Real-World Problem

The configuration of telecommunication systems is grounded on technical know-how
since the right boxes, plug-in cards, cable adapters, etc. have to be selected and put
together according to spatial and technical constraints. Customer demands, which
form the starting point of each configuration process, include various telephone ex-
tensions, digital and analog services, or software specifications. Typically, there exist
a lot of alternative systems that fulfill a customer’s demands from which—with re-
spect to some objective—the optimum has to be selected.

For this kind of domain and configuration problem the resource-based compo-
nent model establishes the right level of abstraction: Technical constraints can be
reduced to a finite set of functionality-value-pairs, which are supplied or demanded
from the components. In a nutshell, the configuration problem in hand forms an
instance of TT*.

To cope with their huge and increasing number of telecommunication system
variants and to reduce the settling-in period for their sales personnel, Bosch Te-
lenorma, Frankfurt, started along with our working group the development of the
resource-based configuration system PREAKON (141). Early versions of PREAKON
showed the necessity of a heuristic search space exploration if optimum configura-
tions should be found in an acceptable time, given realistic demand vectors d.

For the following reasons we refrained from a manual integration of control
knowledge:

(1) The control knowledge of domain experts is usually contradictory and incom-
plete.

(2) The additional effort bound up with maintenance of heuristic knowledge com-
plicates a configuration system’s introduction.

(3) Each modification of the knowledge base (e.g. because of new components)
can potentially invalidate existing heuristics.

Instead, the model compilation concept presented in this place was pursued—the
automatic generation of control knowledge by means of preprocessing.

A precise computation or a complete representation of / is impossible here, since
an exhausting search for all values in O, R, and 7 had to be performed. As a way out,
aside from the simplifying assumptions already made on Page[[31] / is approximated
in the following way.

Firstly, depending on both the resources, R € R, and the components, O € O, the
recursion depth of & is bound to some number k. If a search depth of k is reached
while the balance is still unsatisfied, an approximate value estimating the remaining
cost is assumed. Secondly, (O, R, n) is computed only for a few points n, including
typical minimum and maximum demand values. The sampling points are used to

136 MODEL COMPILATION

construct for each component O and each demanded resource a function that inter-
polates 1. The result is a family of |F| functions /(n), which can be evaluated at
configuration runtime.

The implementation of such estimation functions /(1) within PREAKON led to
a significant speed-up for realistic instances of Telenorma’s configuration problem.
PREAKON was the first configuration system at Telenorma that provided realistic
means for being used at the customer site. Technical details, an evaluation, and a
comparison of the outlined as well as of related estimation functions can be found
in (278).

Synopsis

Problemclass Synthesis of modular technical systems according to a demand vec-
tor d.

Problem Solving Method Balance configuration.

Source Model Constant behavior model (Fy, Fz, V, A, A), defined over (F, M).

o Fidelity Level F. Aggregated physical properties. No compatibility or continuity
constraints.

o Granularity Level M. Definition of components, O C M, and resources, R C
M.ONR=0,0UR =M.Letr=|R|and o = |O|

e State Prescription Function A. The functionalities f € F are constants, Fx = 0
(memoryless). A defines both object-functionality-value triples, (O, f,v), with
O €O, f € F7, v € Z and linear inequations on the elements in R. A can be
represented as an r x 0 matrix A. The definition of A guarantees locality but not
causality.

o Output Function A. A is a linear combination Ak, k € N°. k is the vector of
component occurrences, also called configuration.

o Order of Magnitude of the Application. |O| ~ 100 and |R| ~ 200; the size of a
particular resource R € R varies from 1 (specialty) to o (ubiquity). On aver-
age, resource size and component size are of the same order of magnitude and
smaller than 20.

o Behavior Model Processing. Systematic generate-and-test, realized by backtrack-
ing on an And-Or-graph.

B.1 GENERATING CONTROL KNOWLEDGE 137

Compiled Model (F, M) and (Fy, Fz,V, A, A) correspond to the source model.

o Resource Precedence Function. Reversed topological sorting of the component-
resource graph of (F, M).

o Component Precedence Function. Realized by h(O, R, n), a cost estimation func-
tion that recursively considers follow-up costs. For runtime and space ef-
ficiency reasons, h is bound in depth and interpolated at selected sampling
points.

o Behavior Model Processing. General best-first search with delayed termination

and non-monotonic cost estimation function.

Knowledge Source Graph-theoretical analysis. Search space exploration. Selec-
tive evaluation and interpolation of cost estimation functions.

138 MODEL COMPILATION

B.2 Flattening Deep
Models for Diagnosis Purposes

Let a technical system S and a related behavior model B(F, M) over (F, M) be given.
If B{F, M) describes the behavior of the correctly working system, then deviations
between the predicted behavior of the simulated model B(F, M) and the observed
behavior of the faulty system are called symptoms. Diagnosis means to explain
symptoms in terms of one or more misbehaving components in M.

The diagnosis of systems that are described by complex behavior models is a
challenge (57): Both the heuristic approach and the model-based approach entail
large difficulties. Following the heuristic paradigm requires the elicitation of diag-
nosis rules by questioning domain experts or evaluating records from the past—a
road which is insecure, fault-prone, and tedious.

Following the model-based paradigm means to synthesize and simulate a behav-
ior model and to compare predicted behavior to observed behavior (221). Model-
based diagnosis, e. g. in the form of the GDE (51, I81), requires excellent simulation
capabilities because several inverse simulation runs (from symptoms back to causes)
are necessary til all symptoms are covered. Among others, following problems are
connected to diagnosis based on first principles. (1) Long paths of interaction be-
tween components result in a large number of diagnosis candidates, which in turn
result in a large number of measurements to be carried out. (2) Many technical sys-
tems have a feedback structure; as a consequence, cause-effect chains, which form
the base for GDE’s reasoning process on violated assumptions, do not exist.

Model construction Model utilization
Low 0000 0000 0.0
? 1000 oo oom oo
100 G000 0 2ad
235 200000 000 o6
235 00000 ooto o6
3.466 200,000 200.000 0.000 —
S35 200000 200,000 -20,002 Heuristi
At 3,467 200000 199.990 -20.092 f e . euristic
Compilation G oo e 20 Simplification > | Rule [———{()
2997 0000 0000 60000 model diagnosis
1000 oo oo ‘oe
1001 oot 0o o2
235 00000 000 ok
535 0000 0ol 02
55 200000 200000 0000
S35 200000 200000 o000

Behavior model Simulation data base

Figure B.7. Simulating a fluidic circuit in various fault modes yields a database from which, in
turn, a rule-based diagnosis model is constructed.

In this section we present an approach for the automatic generation of tailored
diagnosis systems for fluidic systems—it shall disburden us from long expert inter-
views and from consistency problems bound up with large rule bases. Clearly, an
automatically generated diagnosis system cannot be expected to detect very particu-
lar faults, but it can provide a reasonable support with respect to frequently occurring
component defects.

Our diagnosis approach is based on model compilation: By simulating a fluidic

B.2 FLATTENING DEEP MODELS FOR DIAGNOSIS PURPOSES 139

circuit in various fault modes and over its typical input range a simulation database is
compiled. From this database a simplified rule-based behavior model is constructed
where the long cause-effect chains have been replaced with much simpler associa-
tions and which is optimized for a heuristic classification of the interesting faults (see
Figure B.7). It thus may have the potential to combine the advantages of a model-
based approach, such as behavior fidelity and modularity, with the efficiency and
robustness of a heuristic approach.

1.0
0.8
0.6 -
0.4
Proposal of component 0.2
set (< 3) including fault _ Number of
[unique fault proposal 1 2 3 4 5 5 " observers

Figure B.8. Classified faults depending on the number of installed measuring devices (ob-
servers). Dark bars indicate a unique proposal of the faulty component, light bars an ambiguous
proposal (< 3 components including fault).

An implementation of the approach and tests with medium-sized hydraulic sys-
tems, from which Figure[B.-8]shows an extract, are promising. The diagnosis task was
to detect unseen instances of realistic component faults, which established variations
of 12 different fault models.

Underlying Models

Definition B.4 (Electro-Fluidic System Model) Let S be a fluidic system and let
(F, M) be a model of S. A electro-fluidic system model over (F, M) is a combined
discrete event/continuous time model, B(F, M) = (Fy, Fz, Fy, V, A, A), whose ele-
ments are defined as follows.

(1) F = FyUF; is a set of functionalities, described below. The elements in M
designate fluidic, i. e., hydraulic or pneumatic elements and, for control pur-
poses, electrical elements. To the former count cylinders, motors, different
types of valves, pumps, tanks, and measuring devices. To the latter count re-
lays, switches, and power supplies, among others.

(2) Ey is the set of input variables, defining the extrinsic forces at the cylinders,
but also the switching events signaled by a numerical control; F; is the set of
constraint variables for the fluidic and electrical quantities. Fy C Fy is the set
of output variables, i.e., quantities in F; that shall be observed: Velocities of
the cylinder pistons and pressure and flow variables at various places.

(3) The sets Uy, UfT, and Zy designate the domains of the variables f in F. Like-
wise, U, UT, Z, and Y designate the Cartesian products of the input variable

140 MODEL COMPILATION

domains, the constraint variable domains, and the output variable domains.
The time base T is a subset of R*. V comprises the domains of all functionali-
ties.

(4) A declares a set of state variables, Fx C Fz, and a state space, X, which is
the projection of Z with respect to Fx. If S does not contain structural sin-
gularities, there is a state variable (continuous or discrete) for each reactive
element. Given a state vector x € X, a vector of functions u(t) € U7, and
somet € T, A determines a constraint vector z € Z including a new state, say,
A: XxU™XT — Z.

(5) A is the identity mapping.

The precedent definition can be regarded as a correct behavior model specifi-
cation for an electro-fluidic system. For our model-based diagnosis approach we
need also a model of fault behavior in the sense of the GDE+ (275,277, 54). A fault
behavior model is an extension of the above electro-fluidic system model: There
is an additional state variable set Fp and a second state prescription function A’.
Fp defines fault states of the components M € M, such as resistance deviations,
leaking amounts, or decreases in performance. Consequently the domain of A’ is
Dx X xU™T; A specifies the fault behavior relations of the components in M.

Remarks. (1) A defines a nonlinear differential-algebraic system; details respecting be-
havior laws for fluidic components can be found in (15,122, 70,1174, [175). (2) Both the
electro-fluidic system model and its fault model extension are local behavior models.
That is to say, a special one-to-one correspondence between the relations in A (A’)
and the components M € M can be stated (cf. Section 2] Page [31)). In particular,
we claim that the fault behavior model complies with the no-function-in-structure
principle (same Section, Page[34).

Fault Behavior in Fluidics In the following, we list important faults of fluidic
components; moreover, exemplary fault behavior relations from A’ are stated for the
check valve and the cylinder.

o Check Valve Faults. Jamming, leaking, broken spring.

These faults affect the resistance characteristic of the valve in first place. Let p;
and p, be the pressure values at the two valve connections, let g be the flow
through the valve, and let R its hydraulic resistance. Then, the pressure drop
at a turbulent flow is

Ap=R-q* where Ap:=p;—ps.

The resistance law is given in Table for both the correct and the faulty be-
havior. If the valve is operating in its range of control, the fractions are well
defined and Ap > po.

B.2 FLATTENING DEEP MODELS FOR DIAGNOSIS PURPOSES 141

Correct resistance behavior Faulty resistance behavior

(Ap - PO)Z (AP —Po- (l + gvalve))z

Table B.3. Behavior law for the resistance of a correct and a faulty check valve operating in its
control range. The deviation coefficient ey,1ve € Fp specifies a component-specific random
variable according to the characteristic shown in Figure B9l (left).

The variable ya1ve in the faulty resistance equation is a state variable from Fp.
Since the resistance of a malfunctioning valve is a continuous quantity, &yaive
is modeled as a continuous random variable. The left-hand side of Figure
shows a characteristic density function for &yaive, the right-hand side classifies
the fault behavior with respect to its seriousness based on two Fuzzy member-
ship functions for the linguistic variables “simple fault” and “severe fault”. See
(24,159) for an introduction to Fuzzy modeling.

Densil Membershi
functic% 10 4------ N P smmmmm
—— Simple fault
- - - Severe fault
0 T T ™ &alve 0 T t ™ Evalve
-0.2 0~O0.K. 0.2 -0.2 0~O0.K. 0.2

Figure B.9. A sample distribution of the resistance deviation of a faulty check valve (left) and the
fault classification with respect to fault seriousness (right). Note that the left curve does nothing
say about the valve’s failure rate.

o Cylinder Faults. Slipping, interior or exterior leaking.

The next but one equations from A’ model a pressure-dependent leakage flow
resulting from a defect sealing. Let p; and p, be the pressure values at the
two cylinder connections, and let g; and g, be the respective flows. Then the
balance of forces at the cylinder always is

F=a-p1—a,-po+d-x+m-%
where ay, a,, d, and m designate the piston area, the ring area, the coefficient of

friction, and the moved mass. The flow equations take a leakage flow g; into
account:

g1=ag-X+q go = —a,-Xx—q where g :=/|p1—p2| ey

As before, a component-specific density function and a fault behavior classifi-
cation must be stated for the deviation coefficient ., € Fp.

142 MODEL COMPILATION

o Throttle Valve Faults. Incorrect clearance, sticking.
o Directional Valve Faults. Defect solenoid, contaminated lands.

o Pump Faults. Decrease in performance.

Flattening a Deep Model by Compilation

This subsection introduces a powerful diagnosis approach for systems that are de-
scribed by behavior models B(F, M) as specified in Definition B.4—i.e., complex,
continuous time models, which may also contain feedback loopsH Main idea of the
diagnosis approach is model compilation. However, model simplification does also
play a role: Simplification techniques are employed to generalize the compiled model
and to make it manageable. The entire model construction process comprises five
steps.

(1) Behavior Model Contamination. The local behavior specification Ay C A of some
component M € M is replaced with its faulty counterpart A}, C A’, resulting
in a fault behavior model B’ (F, M’). Whichever of the single fault or multiple
fault assumption is pursued, the behavior contamination happens either for
one component at a time or for several components at once.

(2) Systematic Simulation. The objective is to learn as much as possible about
B'(F, M’). For this purpose B'(F, M’) is excited with meaningful values for
the input variables in F;.

Step @) and (@) are repeated for all fault candidates M € M. Together, they re-
alize a compilation of B'(F, M'): Processing effort, i.e., the simulation in our case,
is shifted from the model utilization phase to the model construction phase (cf. Sec-
tion 4] Page 24). Result of the compilation is a simulation database C. The sub-
sequent steps, B)-(8), make up the model simplification. Figure[BZ on Page 38|
illustrates this division of the model construction process.

(8) Data Abstraction. Abstraction means to generalize the simulation database C by
mapping its values onto a small number of deviation intervals (the symptoms),
without loosing too much of the discrimination information. Result of this step
is an interval database C;.

(4) Focusing. By a simulation, all physical quantities of a model can be observed.
In contrast, at a real system, symptoms can be observed only at the few points
where measuring devices have been installed. To ensure that these points are
useful for diagnosis purposes we determine them—following the objective to
maximize their fault discrimination capability. Result of this step is the observ-
able subset of C;, the observer database Cp, where Cp < C;.

4The approach was operationalized and verified in a close cooperation with Uwe Huse-
meyer (115).

B.2 FLATTENING DEEP MODELS FOR DIAGNOSIS PURPOSES 143

(5) Rule Generation. By means of data mining methods, which treat the different
intervals as propositional symbols, associations, say, rules between symptoms
and faults are sought within Co. Result of this step is a rule database Cr where
Cr < Co.

The remainder of this subsection is devoted to selected aspects of the model con-
struction steps (2)—(5). Clearly, since all construction steps are fairly complex their
succinct presentation cannot come up to all respects, and references for further read-
ing are given.

Systematic Simulation The evaluation results, a few of which are presented later
on, significantly prove the success of our ideas. This paragraph outlines reasons for
this success from the modeling and simulation standpoint.

One pillar of our approach is the approximation of a huge amount of simulation
data by a comparatively small rule set. This is fruitful only if the simulation data
can be generalized, that is to say, learned. Recall in this connection that B(F, M) (or
B'(F; M'")) establishes a combined discrete event/continuous time model. Le., the
trajectories of the constraint variables in Fz can be considered as piecewise continu-
ous segments, which are called “phases” here. The discrete constraint variables such
as valve positions, relays, and switches are constant within a phase, and between
each two consecutive phases one or more of them change their values. The contin-
uous constraint variables such as pressures, flows, velocities, positions, etc., which
are the target of our learn process, follow continuous but diverse curves. Due to the
dynamic nature of B(F, M) the curves show a decreasing, increasing, oscillating, or
some superimposed characteristic.

From the viewpoint of diagnosis, the (quasi-)stationary values (in each phase) of
the continuous constraint variables are in the role of symptoms, since they can be
observed at the measuring devices. Our working hypothesis is that between the con-
tinuous input variables and many of the continuous constraint variables a monotonic
characteristic can be assumed—as long as a single phase is considered. The simula-
tion procedure reflects this “single-phase-monotonicity hypothesis” as follows.

Given are an initial state vector xo € X or xg € DxX, a vector of—typically
constant—input functions u(t) € U7, and some t € T. Then, during simulation, sam-
ples z of the resulting vector of constraint trajectories are drawn at those points
in time 7, T < t, where a state change is imminent. Each constraint vector z =
(z1,...,2|r,) extracted this way is taken as a vector of stationary values representing
the phase where it was drawn. With respect to the compilation process it is enriched
by further information: A unique number 7 € N designating its phase, the respon-
sible vector of input function values at time 7, u(t) = (u1,...,4g,), and a vector d
encoding component faults d € D along with membership values specifying the seri-
ousness of the faults. For the time being we commit ourselves to the single-fault case,
and d is of the form (d, py). Altogether, a fault-simulation vector ¢ is constructed:

c(m,u,d) = (m,uy,..., Uy, 21, - 2|5, 4, Ha)

144 MODEL COMPILATION

If the behavior model was not contaminated, that is to say, a faultless simulation
has been performed, we write ¢(77, u) instead of ¢(7, u, d).

Under the single-fault assumption, the total number of simulations, 1, depends
on the number of input quantities, |Fy|, the desired resolution of the input range, r,
the number of component faults, |D|, and, for the faulty component currently chosen,
its number of fault behavior graduations, s. Hence, the input sample number is in
O(rlful), the fault behavior variations are in O(|D|-s), and n is in O(r/ful . |D| - 5).
The n samples of simulation vectors ¢ make up the simulation database C.

Remarks. (1) Note that each simulation entails for each phase 7 a model syn-
thesis problem followed by a solution of the resulting state-space or steady-state
model. (2) Related to our purposes, the systematic simulation of a combined dis-
crete event/continuous time model provides some pitfalls. Depending on the input
functions u(t) € UT or a component’s fault type, phases may be dropped. Clearly,
the application of the ©-operation within the data abstraction step (see below) does
only make sense for vectors ¢ that stem from the same phase. Therefore, the system
DEJAVU, which operationalizes the diagnosis approach, contains heuristics for both
the detection of missing phases and the introduction of dummy phasesH

Data Abstraction Most probably, the highest importance in the presented diagno-
sis approach comes up to the skillful abstraction of the simulation data, which trans-
forms the raw data C towards the interval database C;. It is realized within three
steps.

o Difference Computation. Based on the operator “©”, for each fault-simulation
vector ¢(7,u,d) € C the difference of its constraint variables z to the faultless
simulation vector ¢(7, u) with same u in the same phase 7 is computed.

The measuring instruments in the real system S give information about effort
variables and flow variables. The former are undirected, and a difference be-
tween two values of this type is computed straightforwardly. The latter contain
directional information, and their difference computation needs a more thor-
ough analysis.

Let z) and z) be two values of flow variables. Then the operation “©” is
defined as follows.

z0 — 20 if 2

@), 2(¥) are unidirectional
“0/+" ifz®0 =0, z) >0
“0/-" ifzM =0, z¥ <0
We=5 =4 “+/0" ifz >0, z0) =0
“y) ifz® >0, z) <0
“ /0" ifz® <0, z0) =0
“/+” if z0 < 0, zW >0

5A more elaborate presentation of this system is given in (113) under the name ARGUS. The
employed fluid simulator is ARTDECO (257, 262).

B.2 FLATTENING DEEP MODELS FOR DIAGNOSIS PURPOSES 145

The strings such as “0/+” read as “zero instead of positive”, etc. Since “&”
does not define an injective operation, the difference computation is bound up
with a loss of information.

o Generalization. If z¥) and z(¥) are unidirectional flow values or if they are val-
ues of two effort variables, the ©-operation maps into R. We now generalize
these difference values from R towards intervals—acting on the maxim of the
previously introduced single-phase-monotonicity hypothesis.

If no event occurs, we expect that A, the restriction of the state prescription
function with respect to a single input variable u € F;, behaves monotonically
for significantly large variations of u. In particular, we expect that A, the state
prescription function in dependence on a single deviation coefficient ¢ at con-
stant input u, behaves monotonic within the standard deviation interval of ¢
(see again the left-hand side of Figure[B.9).

If the conditions are fulfilled for several constraint variables, the generaliza-
tion of the single simulation differences towards intervals is justifiable. In this
connection, we collect for each constraint variable z € F; and for each phase
7 its difference values 6, (short for 4, ,) and construct a one-to-one mapping
onto a set of intervals Z, (short for Z ;). Except for the direct neighbors of
zero, the difference values form the center of their associated intervals; more-
over, the intervals do not overlap each other, and they cover the entire do-
main of z. Let 5?) and 55“) be the interval centers of adjoining intervals and
si gn(&gi)) = si gn(égi“)), then the interval border between these intervals lies
in the middle, at (5% + 51 /2.

Figure exemplifies for some constraint variable z and some phase 7 eight
simulations that result from several inputs and fault variations. The letters
below the 5. specify the behavior model contaminations, say, the chosen com-
ponent faults; above the §,-axis the associated intervals in Z, are shown.

ZZ
A
T T » - R — » > 9
IR 3 0~0K. 3 A S 3
0]] 0 0 0 O]

]] []] [l [] [[

Figure B.10. Eight difference values 65) , which result from one faultless simulation and eight

fault simulations z(?) for some constraint variable z within a certain phase; the differences have
been generalized towards nine intervals (including the zero interval). The letters below encode
the fault contaminations in the behavior model B(F, M’) that led to the constraint variable
values z().

Note that the computation of adjoining interval borders according to the rule
(5&’) + 5§’H)) /2 implies a linearity assumption on A and A’: Variations 6, and

146

MODEL COMPILATION

. of the input vector and the deviation coefficient vector are independent of
the actual amount of the varied variables. Clearly, this linearity postulation
further tightens the assumptions of the single-phase-monotonicity hypothesis.

That the further tightening is admissible becomes clear if one takes a closer
look at the functions in A and A’. Many of the nonlinear connections are ana-
lytical functions of square characteristics, whereas each difference 5?) between
the faultless simulation and a sample z() of the fault simulations can be con-
sidered as an operating point. And, a linear approximation close to some op-
erating point corresponds to an approximation of the functions in A and A’
by the first term of a Taylor series, which is bound up with a small error for
polynomials of degree two (237).

Interval Reduction. Actually, we could stop at this point and use the phase-
specific intervals I € Z,, z € Fz, to learn rules of the following or similar form:

If 6, €, N&,€l, Nb,€l,, Then “Faultaisoccurred”

where the §,, are symptoms that have been observed at the real system S within
phase 7r. There are two important aspects that advised us to subtly reduce the
sets of intervals. Firstly, our intervals are not purposefully constructed but re-
sult from a large number of simulations; i.e., they may be too small or come
along with ill-formed interval boundaries when compared to human read-off
practices. Secondly, a large number of small intervals is opposed to the gen-
eralization thought; it may lead to highly specialized rules that never become
applied in practice. For instance, look at the difference values 5% and 52 in
Figure[B.I0t Their associated intervals can be unified without loosing discrim-
ination information.

In our diagnosis system DEJAV U this shortcoming is addressed as follows. De-
pending on the interesting physical quantity z € F7, the favorable number r,
of read-off intervals is acquired, assuming that commercial measuring devices
will be employed. Given some quantity z with interval set 7., a lower bound
p; for the interval width is determined by dividing the range (the sum of the
smallest negative and the largest positive value of the 9.) by r,. To guarantee
plain interval boundaries for the human sense of esthetics, p; is approximated
by the function p.:

|p. — p-(n)| — min where p.(n) =n- 100800 e {1, 2,5,10} (B.1)

The interval boundaries in Z, are moved to the closest integer multiple of the
solution of approximation ; thereafter, all adjoining intervals that contain
the same set of faults are unified. Figure illustrates the procedure at the
previous example.

Due to the abstraction step we leave the domain of real numbers, R, and continue

on a symbolic (propositional-logical) level with weak ordinal information: For each

B.2 FLATTENING DEEP MODELS FOR DIAGNOSIS PURPOSES 147

5 = . 05 EE 5

Figure B.11. The DEJAV U interval reduction applied to the example in Figure The interval
widths are multiples of a common basis T;; intervals with equal faults have been unified.

constraint variable z € F; and for each phase 7, a new domain I, (short for I,) is
introduced. I, is the union of the special symbol set {0/+, 0/-, +/0, +/-, -/0, -/+}
and a set of interval names, which map in a one-to-one manner onto the reduced
set of real-valued intervals I € Z;. In the sequel, the symbolic interval database that
emerges from C by data abstraction is denoted with C;. Note that the number of
simulation vectors has not been reduced, say, |C| = |Cz|.

Remarks. From its nature, the data abstraction step can be compared to discretization
methods that transform a cardinal domain to an ordinal domain in order to make a
classification or learning approach applicable (216, 56). According toDougherty et al!
such transformation methods can be distinguished with respect to locality, supervi-
sion, and interdependency. The presented method is global, since the interval for-
mation is applied to the entire range of a variable; it is supervised, since it exploits
classification knowledge (the faults within an interval); however, it does not con-
sider dependencies between variables. Anyway, note that we are not solving a true
discretization problem, since we are working on a sample database and not on con-
tinuous functions.

Focusing Based on the state prescription function A’ of the fault behavior model
B'(F, M), values for all constraint variables in F; are computed. In fact, restricted
to a handful of measuring devices, only a small subset O of Fz, |O| = k, can be
observed at the real system S. The objective of the focusing step is to determine
the most informative constraint variables in F;—or, speaking technically, to place a
set of k measuring devices such that as much faults as possible can be classified by
interpreting the k displayed values. In the sequel, the observed constraint variables
are also called observers.

Diagnosis Background. The deviations found when comparing the predicted behav-
ior of the simulated model B(F, M) to the observed behavior of the system S are
called symptoms. These symptoms have to be explained in terms of one or more
misbehaving components, so to speak, they have to be reproduced by a simulation of
some contaminated model B'(F, M’). A set of correctly modeled components whose
simulated behavior does not correspond to the observed behavior contains at least
one faulty component and is called a conflict. A faulty component that does not
contradict any of the observed symptoms is called a diagnosis candidate, or short, a
candidate. A candidate that is affirmed to be the cause of all symptoms is called a
diagnosis.

A model-based diagnosis approach such as the GDHi is organized as a cycle of the

®GDE stands for “General Diagnostic Engine” (51,[81). It is the most popular model-based di-

148 MODEL COMPILATION

following tasks: behavior simulation, conflict identification, candidate generation,
and candidate discrimination. Observations at the system S play a key role because
they are the driving force within the cycle.

At this point, the model compilation idea becomes apparent: Model compilation
breaks open the diagnosis cycle. All possible observations have already been made,
namely offline; they are stored in the simulation database C and C; respectivelyﬂ And,
the restated question from above is: Which of the quantities in F; can be used to form
meaningful diagnosis rules?

We will answer this question by analyzing for each phase 7 the sets I,z € F, of
symbolic intervals with respect to their correlations to the set D of (symbolic) compo-
nent faults. The analysis covers both dependency aspects and information-theoretical
considerations.

o Observer Dependency. Clearly, observers that depend on each other correlate in
their diagnosis information and must be excluded from further examination.
Because of good-natured domain properties and, in particular, the subsequent
multivariate rule generation step, the dependency analysis here is narrowed to
the bivariate case. Since the observers’ domains are nominally scaled for the
most part, the contingency coefficient of Pearson is used. It relies on the x?
contingency, which measures the association between two variables in a two-
way table. Table B.4shows the generic structure of such a two-way table (left)
and a concrete example (right).

TI€l, ... Tr, €l > Opy <20 6p, 220 ¥

uely, h(u,m) ... h(u,1,) h(y,o) 65, <15 (e 5

: : " : : 85, > 1.5 3

ty €y h(y,m) ... h(t,,T,) h(tr,0) s 4 4 8
5 h(o,t1) ... h(o,Tr,) n

Table B.4. Generic structure of a two-way table for the variables 01, 0, (left); 71 and r, define the
number of symbolic intervals, |I,, |, | I, |, in the domains of 01 and 0. The right table shows for
observed differences at pressure p3 and flow g7 the distribution of four component faults.

Given two observers, 01,0, € Fz and the set of all component faults, D, then
h(1, T) designates the phase-specific frequency of tuples (1, 7,d), 1€ I,, T € I,,
and d € D:

h(v,7)=[{(,T,d) | c€Cl AN c=(,7,d)}]

agnosis approach and has been varied, improved, and adapted within many projects. From
a logical viewpoint, the GDE implements diagnosis as a reasoning task grounded on O.K.
and not-O.K. assumptions for components.

"Diagnosis systems that follow this paradigm have everything of S already seen—a fact, which
advised us to name our system DEJAVU.

B.2 FLATTENING DEEP MODELS FOR DIAGNOSIS PURPOSES 149

where C; denotes the projection of the interval database C; regarding some
phase 7, two constraint variables, 01,05, and the component faults. Since one
is interested in the association between two variables related to different com-
ponent faults, the computation of h(t, T) disregards multiple occurrences of the
same variable instantiations (i, T) associated with the same fault.

Let 01, 0, € Fz be two observers with the symbolic interval domains I,, and I,
for a certain phase 7. Then, their x* contingency is defined as follows (188,
103).

X*(01,00) = Z ~————~———"— where E(L, T) = M
t€lo; T€lo, h(L, T) n

The observed frequencies h(t, T) are compared to the frequencies h(1,) that
one would expect if there were no association between the variables; n des-
ignates the number of considered tuples. Two observers are independent
from each other if x%(01,0,) = 0 holds. To obtain the unique range [0;1]
for x2-values of dependent variables we compute the contingency coefficient
C*(01,02) after Pearson.

. x2(01,07) r .
* = . he = o |, | Lo
C (01102) ”+X2(01,02) r—1 where 1 mln{‘11| |Iz‘}

Note that the number of intervals for some constraint variable z € F, is signif-
icantly smaller than 10, whereas the number of potential observers, |Fz|, de-
pends on the size of the system S, and it is in the magnitude of 10% for middle-
sized systems yet. Hence, the effort for the observer dependency analysis is
assessed with O(|Fz|?). Within our experiments we gave a limit of 0.6 for the
contingency coefficient C*, resulting in the exclusion of 40-50% of the blindly
positioned observers.

e Observer Information. Only very few observers O C F7 are actually installed in
areal system: |O| < |Fz|-107!. This fact underlines the importance that comes
up to an intelligent construction of O. At heart, all considerations presented
here are based on the idea of hypothetical measurements; the idea goes back
on the work of [Forbus and de Kleer who argue as follows.

“If every device quantity were observable and measurements were free,
then the best diagnostic strategy would be to measure everything.”

Forbus and de Kleet, 1993, pg. 631

Clearly, measurements are not free, and [Forbus and de Kleer try to estimate
the measuring cost hidden in a particular diagnosis situation. They stipulate

150

MODEL COMPILATION

on the following setting. (1) Every measurement can be made at equal cost.
(2) Amongst the set of possible diagnosis, only those of minimum cardinality
are of interest—a principle which is also known as Occam’s razor.

Reasoning by hypothetical measurements means to evaluate for all z € Fz, i.e.,
for all potential observer places, how an observed difference 5, would reduce
the set of possible diagnosis, D. For instance, assuming that D = {[,..., &}
and that we are given the simulation results shown in Table[B.4] a measurement
of g7 resulting in the symptom “6,, > 1.5” complies only with the component
faults [, [d, and . However, the measurement could also result in the symp-
tom “5,, < 1.5” where the component faults [4,...,[d come into question.

With respect to the database C; and a given phase 7, let k(z,t) C D designate
the set of diagnoses that comply with symptom “(z,t)”; i. e., diagnoses entail-
ing a difference 5, at quantity z € F;, which is characterized by the interval
t. Related to the example, k(gq7,“> 1.5”) = {[, [, [@}. If one presumes that
all diagnoses (component faults) in the set D occur equally likelyﬁ then the
likelihood that a particular symptom “(z,t)” will occur can be estimated by
|k(z,1)|/|D|, the fraction of diagnoses that comply with the symptom.

We are now in a position to state for every observer place z both (1) the like-
lihood that an observed difference 8. lies within some ¢ € I, and (2) the possi-
ble diagnoses «(z, t) one of which must have caused 6,. If we also knew the
measurement effort to discriminate amongst the remaining diagnoses «(z, t),
the most informative observer place in F; could be determined. For this pur-
pose, the simplifying assumption is made that the diagnoses D are equally dis-
tributed over the |I| = r intervals in I, z € F;. Henceforth, log, (z, t) defines
a lower bound for the number of measurements that are necessary to isolate
each of the faults in (z, t). Putting all together, we obtain formula (B.2), which
estimates the measuring (discrimination) effort to identify a component fault
from D using observer z when given the diagnosis situation described by the
interval database C;.

RN]

log,|k(z, =L B.2
<z, 7| log,|x(z,t)] where r=]|L] (B.2)

el ZTEIZ

Within the DEJAV U system, the minimization of formula (B.2) over all z € F7 is
used as a heuristic to determine the most informative observer places O C F.
Known a-priori probabilities P(d) for the component faults d in D can be easily
integrated by replacing the likelihood estimator in (B.2), yielding formula (B.3).

e(z) = Y (Suex(zo P(d)) - logi|k(z, 1)) (B.3)

el

Formula (B.2) is similar to that of[Forbus and de Kleer; it differs in the respect
that in the simulation situation of the GDE (or GDE+) each component fault
leads exactly to one symptom, and thus ¥ .., |k(z, T)| = |D]|.

8 A fact which is not explicitly stated in (81).

B.2 FLATTENING DEEP MODELS FOR DIAGNOSIS PURPOSES 151

Let O C Fz be the set of selected observers. Then, the database that emerges

from the interval database C; by eliminating all variables in F; \ O is called observer
database Cp; it is much smaller than C;. However, the number of elements is un-
changed, |C;| = |Co].
Remarks. The abstraction from the real-valued simulation database C towards the
symbolic database C; provides the ground for the application of the information-
theoretical considerations. In the next subsection, starting on Page the true
power of the model compilation idea related to the classical model-based diagno-
sis approaches becomes apparent: It results from the combination of behavior model
contaminations and the anticipation of simulation runs.

Rule Generation The observer database Cp emerges from the interval database C;
by focusing, which in turn emerges from the simulation database C by abstraction.
The vectors ¢ in the databases undergo the modifications shown in Table[BA

. Result

Operation

Phase Input Behavior Fault
Simulation = C (7, UL, WEy s 21 s Z|Ey) d, 1g)
Difference computation (7, U1, R, 81,18, s d)
Generalization (7, Li,.... I, d)
Interval reduction = C; (7, U, Yry)s d)
Elimination of dependencies (7, LGl d)
Selection of observers = Cp (7, Loys e v s logs d)

Table B.5. Modifications that the elements in the different databases undergo during the
abstraction operations and the focusing operations.

The aim of the rule generation step is to extract reliable diagnosis rules from the
observer database Cp. Clearly, the rules will have a propositional-logical semantics
and are of the form

oy Ao Ntg, —d with 1,,€l,, deD, and k<|O|,

1
where 0; € O; O C Fy is the set of the chosen observers; the symbols of a rule form a
subset of a single vector ¢ € Co. The left and right sides of the rule are called premise
and conclusion respectively.

The semantics of such a rule r is defined by means of two propositional-logical
truth assignment functions, « : Up ,cp, — {0,1} and 8 : D — {0,1}. For some
constraint variable z € F, let I € 7, be the real-valued interval associated with the
interval symbol t € I, and let §, be a symptom. Then « and 3 are defined as follows.

. 1, Ifs, el . 1, If component fault d is occurred.
() _{ 0, otherwise. p(d) = { 0, otherwise.

152 MODEL COMPILATION

A truth assignment function & matches a rule r if its premise, r~, becomes true
under «. If also the rule conclusion becomes true under a truth assignment function
B, then r is called positive.

Note that the inference direction of the above rules is reverse to the cause-effect
computations when simulating a behavior model B'(F, M'): We now ask for symp-
toms and deduce faults, and—as opposed to the simulation situation—this inference
process must not be unique. Perhaps there is a unique mapping from symptoms to
faults in the original simulation database C. However, it is very likely that the rig-
orously simplified observer database Cp encodes ambiguities. As a consequence, we
may get ambiguous rules, i. e., rules with the same premise (symbolic intervals) that
are associated with different faults.

To cope with this form of uncertain knowledge we forget about a strictly logical
interpretation and characterize each rule r by its confidence, ¢, and its support, s:

_)
|Col

o(r) = and s(r)

where h(r) denotes the frequency of r in Cp, while h(r~) denotes the frequency of the
rule’s premise in Co.

The rule generation can be realized straightforwardly and is a combinatorial
problem at heart. In the DEJAVU system, the rule generation step is realized with data
mining methods, and strategies are employed with respect to confidence-thresholds
and subsumption tests in order to avoid computational overhead (115)E Note that,
as in the abstraction and focusing steps before, rule generation happens separately
for each phase 7, and we obtain the rule database Cx with phase-specific rule.

The last aspect of the presented model compilation/simplification procedure
relates to the processing of the rules in Cx. We just introduced definitions for a
rule’s confidence and its support but provided no operational semantics. The clas-
sics amongst the rule-based systems that employs rules with confidences is MYCIN
(250, B5). However, MYCIN’s formula for the confidence computation of a diagno-
sis is not applied in DEJAVU: The computation scheme used in MYCIN is designed
for the accounting of a handful of rules—it fails in our setting where confidences of
10-100 rules predicting the same a diagnosis candidate 4 € D must be reckoned up.

Due to its successive confidence update the MYCIN formula quickly leads to con-
fidence values close to 1, even for lower confident rules. In our situation, we know
for every set of symptoms that is delivered from the observers O € Fz, which rules
in Cg match. Clearly, a confidence computation should exploit this global view, and
we developed the better suited formula (B.4). It computes for each fault d € D its
confidence in “B(d) = 11, when given a rule database Cr and a truth assignment
a. The formula consists of two terms: (1) A base term, where the impact of a positive

Rules of the described form are called “association rules” in the data mining jargon (€,[254).
19Under the single fault assumption this means (x) = 1 < x = d,x € D.

B.2 FLATTENING DEEP MODELS FOR DIAGNOSIS PURPOSES 153

rule with maximum confidence cannot be weakened and, (2) , an update term, where
the confidences of the positive rules are weighted with all matching rules.

c(“B(d) =17) = c(d) =c(r’) + (1 —c(r)) - |7% 2 <) (B.4)

reR

where R~ C Cr comprises the matching rules, R C Cr comprises the positive rules,
and r* denotes a positive rule of maximum confidence.

Remarks. The diagnosis results mentioned at the outset were achieved with automat-
ically constructed rule databases C that have not been manually revised. The source
models are medium-sized hydraulic systems consisting of 20-50 components.

How to Assess Observability and Diagnosability

This subsection continues the considerations related to the observer selection step
from Page[150] The next paragraph shows, how the selection heuristic (B2) based on
(81)) can be turned into an optimum placement strategy. Based on this consideration,
the next but one paragraph introduces a new concept for assessing the diagnosability
of a system S. The key idea is to relate the information gain of increasing sets of
observers, which are optimally placed in S, to the theoretical optimum. This relation
can be expressed in a concentration measure, which is called a systems discrimination
entropy.

Model Compilation Enlarges the Observability Horizon The equation (I50),
which estimates the effort to discriminate between several diagnoses in D when using
observer z € F,, has a look-ahead of 1: For each observable interval ¢, discrimination
must go further on, amongst the remaining set k(z,t) C D of diagnoses. A global
selection strategy would determine a set of observers O C F; such that the overall
discrimination effort is minimum.

Within the diagnosis setting of the GDE, a global selection strategy can only be
employed, if additional hypothetical simulation runs are performed: Let ¢ be the ob-
servation resulting from a hypothetical measurement at some observer z. Then ¢ is
interpreted as additional system input, and for each component M of the conflict set
(cf. Page [[47), a simulation is performed with the reduced state prescription function
A= A\ 51\/1 Since such a symptom-driven, hypothetical simulation concept is
computationally very expensive, [Forbus and de Kleer do not follow this idea. More-
over, the execution of symptom-driven simulations for diagnosis purposes in real-
valued behavior models is questionable.

Within our compiled model setting, C;, a large database with simulation scenarios
is to our disposal, which can be exploited for a global selection strategy. In this regard,

UThis construction of A’ reveals that the GDE is able to detect faults that were never antici-
pated.

154 MODEL COMPILATION

we introduce the conditional probability P.(t|D) which specifies the probability that
the symptom t can be observed at observer z € Fz under the condition that some fault
from D has been occurred. We use the frequency distribution of D in the database C;
to estimate the probabilities P,(t|D):

|[{d€k(z,1) | de D}

BUD) = S T ek(z 0 [de D]

where k(z, 1) is the multiset counterpart of k(z, t); i.e., k(z,t) is the set of diagnosis
that comply with symptom “(z,t)”, and multiple occurrences of the same interval-
fault combination are counted multiply. Related to the example in Table B4} k(g7,” <
1.5”) = {[d, @, @, &, @}, and P, (“< 1.5”|{, E}) = 3/4.

Now Equation (B.2) from Page[I50lcan be extended to exploit a-priori knowledge
about the diagnoses D amongst which the observer z € F; shall discriminate:

e(z,D) = z P.((D) -log:|D Nk(z,t)] where r=|L| (B.5)

el

The minimization of Equation (B.3) over F; yields the most informative observer
for a look-ahead of 1. By a recursive application of to the remaining sets of
diagnoses D N k(z,t), we can extend the observation horizon—until a unique fault
classification is achieved. Each recursion step corresponds to a new observation.

Given a number of observations allowed, k, we define the discrimination effort
for a system as the number of observations that must additionally be made to dis-
criminate between all diagnoses. Clearly, this makes sense only if the k observations
are optimum with respect to the expected information gain. The following defini-
tion affords the demanded; it provides a lower bound for the expected number of
additional observations.

Definition B.5 (Expected Discrimination Effort) Let S be a system that is character-
ized by an interval database C;. C; defines the set of diagnoses, D, the set of possible
observers, Fz, the conditional probabilities, P,, and the function . Then the expected
discrimination effort of S with respect to a maximum number of observations k > 0
is defined as

min (Z P.((D)-e(DNk(z,¢),k— 1)) , ifk>0and|D|>1
E(D,k) = €k (€T
log,(|D]), ifk=0or|D|=1

where I, comprises the intervals of an observer z,z € Fz, v = |L,|, and the function k
returns for an observer z and an interval 1 € I, the set of complying diagnoses.

B.2 FLATTENING DEEP MODELS FOR DIAGNOSIS PURPOSES 155

When setting k = 1 and employing the relative frequency instead of the condi-
tional probability, e(D, k) becomes the original formula of [Forbus and de Kleer (81).

Remarks. The definition of the expected discrimination effort implies several assump-
tions. (1) The set of diagnoses, D, is complete, (2) the diagnoses in D are equally
distributed, and (3) the available observers, Fz, are independent from each other. The
presented formula uses the same resolution r for all observers but can be easily ex-
tended to allow for observer-specific resolutions r-.

The formula for expected discrimination effort e(D, k) does not explicitly exclude
that an observer is used twice during the recursive descend. The following lemma
closes this gap; it shows under which conditions the observer assignment is unique.

Lemma B.1 (Unique Observer Assignment) Let [D| > 1,k > 0,and z € Fz. If D is
no subset of some k(z,1),t € I, then the observer z has not been used by now during
the determination of e(D, k).

Remarks. The condition of the Lemma precludes that x(z,¢) "D = D holds for some
interval . Given such a case, the related observer, z, cannot provide discrimination
information respecting D in the interval ¢, and the related discrimination effort is
P(¢D) -log,(|D|), if no further observer is chosen.

Proof of LemmalB1l For a given set of diagnoses, D, some k > 0, and a set of observers,
Fz,lete(D, k) designate the expected discrimination effort.

Assume that observer z has been chosen twice within the computation of e(D, k).
The first time z is chosen, the current set D is split into—not necessarily disjoint—

sets Dgl), el Dgl). For each of these sets the relation D; C k(z,) is fulfilled. If z is
chosen a second time, it has to discriminate amongst the diagnoses of a particular

D; e {Dgz), ., D,§2>}. In the course of observer selection the diagnosis sets either
become smaller or remain unchanged, so D; C k(z, Lj) still holds. This contradicts
the condition of the Lemma.

Quantifying a System’s Diagnosability There is the interesting question how to
assess the difficulty to diagnose a system. In the following we will present the neces-
sary considerations and develop such measure. Starting point is the formula for the
expected discrimination effort, e(D, k).

If k = 1 then e(D,k) = minser, (T cr. P(t|D) -log,(|«(z,1)])). The term 5 ;.
P(iD) - log,(|x(z,t)|) becomes minimum if the diagnoses are distributed equally
amongst the r intervals in I,. This, in turn, allows us to factor out the term
log,(|«(z,1)|), and e(D, 1) simplifies to log,(|k(z,1)|) - Y1, P(t|D) = log,(g).

r

Repeating the same assumptions for k = 2 yields:

156 MODEL COMPILATION

e(D,k) = min.cp, (Tier. P(D) - e(k(z,1), 1))
e(k(z,1),1)
= log, (&)

D]

= logr(,/_Z)

Note that the minimum number of observations totally required depends on both
the observers’ resolution, say, their number of intervals, r, and the number of diag-
noses |D|. The infimum number of observations necessary to discriminate between
each diagnosis is |log, |D|]. It is used to specify E*, the accumulated ideal discrimi-
nation effort of a system S as follows.

Definition B.6 (Accumulated Ideal Discrimination Effort) The accumulated ideal
discrimination effort of a system S with respect to a set of diagnoses D and an ob-
server resolution r is defined as

log, Il |
E*(D) := Z log,| |

1=1 7

The difference between the accumulated expected and the accumulated ideal dis-
crimination effort can be used as a measure for the difficulty to diagnose a system.
The larger this difference is the more does a faulty system behave agnostic. Note
that this measure gives an estimation that is independent of the number of possible
observers, thus providing a system-specific characteristic. At the best, the difference
between the expected and the ideal discrimination effort is zero. Figure [B12lillus-
trates the difference between the discrimination efforts pictorially; the accumulated
difference is called discrimination entropy here.

Discrimination Expected discrimination effort
effort

[Discrimination entropy

o » Number of
[Ideal discrimination effort 12 3 . observations

Figure B.12. Discrimination entropy: The difference between the accumulated expected and the
ideal discrimination effort.

Definition B.7 (Discrimination Entropy) The discrimination entropy E of a system
S with respect to a set of diagnoses, D, is defined as

E.— (fe(p,k)> _ E'(D)

B.2

FLATTENING DEEP MODELS FOR DIAGNOSIS PURPOSES 157

Synopsis

Problemclass Diagnosis of continuous technical systems.

Problem Solving Method Generation of a heuristic diagnosis model from first
principles.

Source Model Discrete event/continuous time model B(F, M) = (Fy, Fz, Fy, V, A,
A), defined over (F, M).

Fidelity Level F. Fluidic, mechanical, and electrical quantities.
Granularity Level M. Fluidic and electrical components.
Input Fy. Extrinsic cylinder forces and valve switching signals.

State Prescription Function A. Explicit local differential equations; implicit non-
linear algebraic equations.

Output Function A. Trajectories of all physical quantities.

Behavior Model Processing. Differential-algebraic system solving.

Compiled Model Compiled, heuristic simplification of B(F, M).

Fidelity Level F. Selected and coarsened physical quantities of the source model.
Granularity Level M. Monolithic global model.

Input Fy. Input quantities of the source model plus additional physical quanti-
ties that represent observed symptoms.

State Prescription Function A. Propositional-logical rules with confidence val-
ues.

Output Function A. None.

Behavior Model Processing. Rule processing with confidence computation.

Knowledge Source Systematic simulation of both correct and faulty source mod-
els. Generalization of the simulation data; elimination of quantities by information-
theoretical methods. Rule generation by data mining.

158 MODEL COMPILATION

Model Reformulation

We designate a model construction process as reformulation, if the model is trans-
formed from one representation into another—while leaving the model’s accuracy
and granularity unbiased. The reasons for a reformulation can be multifaceted: There
may be requirements related to processing (the model processor does not accept the
source model’s form), security (the source model’s internals are to be hidden), knowl-
edge transfer (the source model’s essence is needed within another application), pro-
cessing properties (the reformulated model can be easier processed), model handling
(the reformulated model can be easier maintained, understood, or communicated),
and other reasons. See Page 52, Section 2.4] for a comparison to other model con-
struction approaches.

Just as much as it can serve different purposes, the model reformulation process
can take different forms; the case studies of this chapter give an idea of this spectrum.
In Section [CT] model reformulation happens within a special electrical engineering
application, that is to say, the transfer of an electrical circuit from the voltage/current
domain into the wave domain. Driving force are processing advantages: The refor-
mulated model comes up with excellent numerical properties. In Section [C.2] model
reformulation means to make an expert’s problem-solving expertise, which is en-
coded in the form of an object classification, explicit in the form of a similarity mea-
sure. Here, the driving force is knowledge transfer: Similarity measures are used
within various knowledge-based analysis and synthesis tasks.

160 MODEL REFORMULATION

C.1 Constructing Wave Digital
Structures from Electrical Circuits

This section is subjected to wave digital structures, short: WDS. Wave digital struc-
tures have their origins in the field of filter design, where they are designated more
specifically as wave digital filters (72,/73). They can be considered as a particular class
of signal flow graphs whose signals are linear combinations of the electric current and
flow, so-called a/b-waves. The translation of an electrical circuit from the electrical
v/i-domain into the a/b-wave-domain establishes a paradigm shift with respect to
model processing; it is bound up with profound numerical advantages. However,
since neither the modeling accuracy nor its granularity is affected, the translation
into a wave digital structure establishes a model reformulation.

Model construction Model utilization

ap
: Fomm> [T 1T (" =
> —

H—] —]
Y1 Y3 + Va
4—

Electrical circuit model Wave digital model

Causal
simulation

Figure C.1. Reformulation of an electrical circuit model as wave digital structure for model pro-
cessing reasons.

When migrating from a voltage/current description of an electrical circuit S to-
wards a wave digital structure, the model is completely changed: The structure
model of S is interpreted as a series-parallel graph with closely connected compo-
nents and transformed into an adaptor structure (cf. Figure[CT). This reformulation
aims at the analysis, say, simulation of S, as illustrated at Gero’s design cycle in Fig-
ure[C2

Expected Synthesis Electrical Reformulation
behavior circuit model
EVQ/‘IQ ‘ Analysis
1/0,7 (simulation)
> Gero’s cycle Simulated &
-------- » Alternative analysis path behavior

Figure C.2. An extension of Gero’s widely-accepted model of the human design process (92); the
automatic construction of WDS aims the analysis step (shown gray).

Note however, that the construction of a wave digital structure constitutes a syn-

C.1 CONSTRUCTING WAVE DIGITAL STRUCTURES 161

thesis task at heart: The design of a sophisticated algorithmic model. Since this de-
sign task is not trivial and demands experience, its automation is a worthwhile un-
dertaking. In this place, the necessary concepts and algorithms for a WDS design
automation are prepared. In particular, we present the algorithm ADAPTORS which
computes for a given electrical circuit the optimum wave digital structure in linear
time. Note that this result cannot be further improved.

Underlying Models

Definition C.1 (Electrical Circuit Model) Let S be a passive electrical circuit and
let (F, M) be a model of S. An electrical circuit model over (F, M) is a dynamic,
continuous time model, B(F, M) = (Fy, Fz, Fy, V, A, \), whose elements are defined
as follows.

(1) F = F; UF;z is a set of functionalities, described below. The elements in M are
called one—port, elements, or components, where capacitances and inductiv-
ities are the only reactive elements.

(2) Fy is the set of input variables, specifying voltage and current signals; Fy is
the set of constraint variables for the electrical quantities. Fy C F; is the set of
output variables, i. e., quantities in F; that shall be observed.

(3) The sets Uy, U}, and Zy designate the domains of the variables f in F. Like-
wise, U, UT, Z, and Y designate the Cartesian products of the input variable
domains, the constraint variable domains, and the output variable domains.
The time base T is a subset of R*. V comprises the domains of all functionali-
ties.

(4) A declares a set of state variables, Fx C Fz, and a state space, X, which is the
projection of Z with respect to Fx. If S does not contain structural singularities,
there is a state variable for each reactive element. Given a state vector x € X, a
vector of functions u(t) €U7, and some t € T, A determines a constraint vector
z € Z including a new state, say, A : X xUTxT — Z.

(5) A is the identity mapping.

Definition C.2 (Corresponding Graph of an Electrical Circuit) Let S be an electri-
cal circuit and let (F, M) be a model of S. The corresponding (electrical) graph G(S)
of S is a structure model (V, E, o) over (F, M); it is defined as follows.

(1) V is the set of segments of the interconnecting network in S that form areas of
equal potential.

1We restrict ourselves to one-port elements here.

162 MODEL REFORMULATION

(2) E is a set of two-element sets {v,w} € P(V), |E| = M, whose elements corre-
spond in a one-to-one manner to the components in M. {v,w} is in E iff the
potential areas v and w are connected by the component in M that corresponds
to {v, w}.

(3) o is some labeling function.

Figure C.3. Drawing of an electrical circuit with its corresponding graph (right). The shaded
regions in the circuit indicate the areas of equal potential in the interconnecting network.

Remarks. Definition [C.2 enables us to disburden our considerations from electrical
circuits and use their graph equivalents instead.

Example. Given the drawing of an electrical circuit S depicted in Figure a cor-
responding graph G of S is defined on the set of points V = {1,2,3,4} and has the
edgeset E = {{1,2}, {1,4},{2,3}, {2,3}, {2,4}, {3,4}, {3,4} }.

Reformulating a Circuit as Wave Digital Structure

Targeted especially on readers with less background knowledge in classical network
theory or signal theory, this subsection introduces the underlying ideas of wave dig-
ital structures.

Overview Let B(F, M) be an electrical circuit model. Related to B(F, M), an algo-
rithmic model in the form of a wave digital structure can be created, which is a rather
complex reformulation where several constraints are to be met. The reformulation
involves the following principal steps.

(1) Topology reformulation of the Kirchhoff interconnecting network.
(2) Description of component behavior in the a/b-wave domain.

(3) Discretization by numerically approximating the differential equations.

C.1 CONSTRUCTING WAVE DIGITAL STRUCTURES 163

Remarks. The above reformulation steps divide into local operations (Step [and [3),
which act on the components of the electrical circuit in an isolated manner, and into
the global topology reformulation in Step[I] Note that Step Pland Step[Blare orthogo-
nal to each other; i. e., their order of application can be interchanged.

In a nutshell, a wave digital structure is a particular kind of signal flow graph. Its
topology is constructed by means of series and parallel connectors; the signals that
are processed when traveling along the signal flow graph are wave quantities. In the
remainder of the subsection, examples to each of the above reformulation steps will
be presented and the rationale will be discussed.

Topology Reformulation Let S be an electrical circuit and G its corresponding
graph. The reformulation of the Kirchhoff interconnecting network of S grounds on
the identification of subgraphs in G that are either connected in series or in parallel
to each other. Both series connections and parallel connections are specializations of
a concept called “port”, as much as each component with two terminals establishes a
(one-)port as well. A port fulfills the port condition, which claims that the currents at
terminal 1 and terminal 2, i; and i, fulfill the constraint i; = —i, at any point in time.

Objective of the topology reformulation is the replacement of series and parallel
subgraphs by special connectors. They guarantee that Kirchhoff’s laws are fulfilled
and permit a special network analysis approach.

Common network analysis approaches are based on mesh equations, node equa-
tions, or state equations (74,137,1286). Following a common approach means to set up
and transform matrices, in a way the mesh-incidence matrix, the branch-impedance
matrix, the node-incidence matrix, the branch-admittance matrix, or the state space
matrix. Computations on matrices are global computations in the sense that a system
of equations must be treated at the same time to find the equations’” solutions. By
contrast, a computation is local if a single equation at a time is sufficient to compute
a solution of that equation, and if this solution is coded explicitly in the equation.

If the topology of S is realized solely by means of series and parallel connec-
tions, model processing effort can decisively be decreased: Due to the special topol-
ogy, computational effort can be made up front—during model construction time—
resulting in a new behavior model whose equations can be processed locally. Note
that a behavior model where all equations can be processed in a local manner, e. g. by
local propagation, establishes a causal behavior model (cf. Definition Page B2).
Such a behavior model represents the most efficient algorithmic model possible.

Transfer to the a/b-Wave Domain and Discretization The electrical quantities
voltage, v, and current, i, can be expressed in terms of other quantities, e.g. by so-
called wave quantities, a, b, which are linear combinations of v and i. The transfor-
mation pursued here is defined as follows.

a=v+Ri b=v—Ri (C.1)

164 MODEL REFORMULATION

The wave quantities defined in the equations (CI) are called voltage waves,
where a4 and b represent the incident and reflected wave respectively. R is called port
resistance; R must be positive, but apart from that its value can be chosen arbitrarily
for each port Fettweis (73, pg. 273).

We outline now the transfer from the v/i-domain to the a/b-domain at a reac-
tive element, the capacitance. Starting point is the following differential relationship
between the current and the voltage at a capacitance, where v(t;_1) designates the
known voltage at t;_1.

t
o(ty) = v(tk-1) + % /k i(t)dt wherety : =ty +kT,kEN (C.2)
Jtgq

To translate equation into the discrete-time domain, we approximate the
integral by means of the trapezoid rule.

‘U(tk) Uk = U1 + % (lk + ik—l) (C.3)
where vi_1, ix, and ix_; denote the approximate values for the respective exact values
U(fk,l), i(fk), and l'(fk,l).

Equation (C3) can be translated to the a/b-wave domain, for instance by using
the identities (CI). Moreover, because of the special (and simple) form of the trape-
zoid rule, it can directly be expressed in terms of a and b:

T . T . . T
U — Elk =1+ fzk,l & bp=a, withR = °C (C4

Choosing R = 5= as port resistance for a capacitance obviously leads to the sim-
plest overall expression. Figure [C4) shows the capacitance in the v/i-time domain
and the related wave flow diagram.

Figure C.4. Capacitance and related wave flow diagram with R = %

Remarks. (1) Equation (C4) shows that a reformulation of the electrical quantities in
terms of wave quantities is bound up with the fact that an implicit integration in v
and i by means of the trapezoid method becomes explicit in a and b. (2) Note that
the other electrical elements can be transfered to 4/b-wave domain in a similar way
(72). Figurel[C.Hshows the wave flow diagrams for a resistance and a resistive voltage
source.

C.1 CONSTRUCTING WAVE DIGITAL STRUCTURES 165

:
X

C
=

Figure C.5. Resistance (left) and resistive voltage source (right) and their related wave flow dia-
grams with R = Ryg.

The Role of Adaptors If the topology reformulation of a circuit model happens
in the a/b-wave domain, the connectors that are used to model series and parallel
subgraphs get a special name—they are called series adaptor and parallel adaptor
respectively.

Adaptors come along with ports where the a/b-equivalents of electrical compo-
nents or other adaptors can be connected. An adaptor can be understood as a mathe-
matical building block that introduces constraints on the a/b-waves of its connected
elements such that in the original circuit Kirchhoff’s voltage and current law are ful-
filled. Clearly, these constraints depend on the elements, and they are considered in
the form of the elements’ port resistances that are used to compute the vector of adap-
tor coefficients y. Figure[C.f shows an electrical circuit and its related wave digital

structure containing one series adaptor.
i R2 i

L
G_«*

Figure C.6. Electrical circuit with two resistances and a capacity (left) and the related wave digi-
tal structure (right). The shaded areas in the circuit indicate the decomposition into three ports.

166 MODEL REFORMULATION

Automating the Topology Reformulation

For an electrical circuit model B(F, M), the a/b-equivalents of the electrical compo-
nents in M can be constructed straight away—a situation which does not hold for the
reformulation of the circuit’s interconnecting network. This subsection addresses the
problem and, consequently, makes the automatic reformulation of B(F, M) as a wave
digital structure possible: It introduces the theoretical underpinning to generate the
optimum adaptor structure for a given electrical circuit.

This adaptor structure is encoded as a special decomposition tree; the algorithm
for its generation is based on the graph-theoretical concepts of connectivity, indepen-
dent subnetworks, triconnected components, series-parallel graphs, and tree decom-
position. The presented considerations are not restricted to electrical systems but can
be transferred to mechanical, fluidic, and other—here called—effort-flow-systems.

Graph-Theoretical Concepts for Effort-Flow-Systems A coupling between two
subsystems of an effort-flow-system can be represented by a pair of variables whose
product is the instantaneous power being transmitted trough an energy port Well-
stead (297, pg. 12). For each port these system variables divide into one intensive
flow variable (current, fluid flow, velocity, etc.) and one extensive effort variable
(voltage, pressure, force, etc.). Figure[C.7 illustrates such a generic port.

©)
y

System 1 System 2

P R—
®

A

o

f

Figure C.7. Energy transmittal in effort-flow-systems is realized by means of ports each of which
being characterized by an effort variable, e, and a flow variable, f.

When joining together ports, connection constraints are introduced that relate to
the subsystems’ effort variables and flow variables. The constraints are called com-
patibility and continuity constraints and are of the following form:

e=e1+e f=hH=h (series connection of two ports)
e=e =6 f=H+1 (parallel connection of two ports)

Remarks. (1) For electrical systems, compatibility and continuity constraints are
known as Kirchhoff’s voltage and current law respectively. (2) Observe that both the
series and the parallel connection of two ports again yields a port. This fact, along
with the plain form of the connection constraints, enables one to easily combine the
characteristics of the ports to a total value. And, as already pointed out before, this
gives rise to an algorithm that computes the quantities for a given system S by means
of local propagation.

C.1 CONSTRUCTING WAVE DIGITAL STRUCTURES 167

Recall that a prerequisite for the design of a wave digital structure from the model
B(F, M) of a system S is the detection of the ports within G(S). Clearly, if S is con-
structed from bottom-up by applying only series and parallel connections, G(S) will
be isomorphic to a series-parallel graph, and all ports can be easily found. However,
typically this is not the case, and S contains “closely connected” subsystems.

A solution of this problem is described in (257)) as part of a network preprocessing
approach: The port concept is extended towards so-called independent subnetworks,
and the relation between independent subnetworks and triconnected components is
exploited to identify all ports within a flow network] We will follow the same avenue
here; the remainder of this paragraph presents the necessary definitions.

Definition C.3 (Two-Terminal Graph, Flow) A two-terminal labeled graph is a
triple (G,s,t), where G = (V, E) is a (multi)graph and s,t € V, s # t. s and t are
called source and sink of G respectively.

A mapping f : E — VxR, f({v,w}) — (u,x), u € {v,w}, on a two-terminal
labeled graph (G, s, t) is called flow on G if the conservation law holds for every
pointv,v # s,t in G:

x if f(e) = (v, x)

z y= 0 with y= { —x otherwise

ec€ky

E, C E comprises the edges incident to v. If the function f does also depend on
the parameter time, t, the conservation law must hold for any element in the domain
of t.

Remarks. Standard flow definitions refer to directed graphs and a positive flow func-
tion f. In the presented definition the flow function prescribes both flow direction
and flow value since we are dealing with undirected graphs. Of course, a non-
positive flow function can be made positive by partially redefining it: ({v, w}, (v, x))
is replaced with ({v, w}, (w, —x)) if x < 0.

Ports are characterized by the property that they possess two terminals where for
each point in time the related flow values are of equal amount and opposite direction.
In this sense, a terminal of a port corresponds to the graph-theoretical concept of an
edge. For our analysis of graphs it is necessary to extend the port concept towards
so-called independent subnetworks whose terminals correspond to nodes.

Definition C.4 (Independent Subnetwork (257)) Let G = (V, E) be a graph, and let
H be a subgraph of G induced by Vi C V with |Vy| > 2. A two-terminal labeled
graph (H, sy, ty) is called independent subnetwork of G, if the following condition
holds:
2There, the ports are identified to reformulate a global model of a fluidic network into a new
model that can be processed by local propagation. However, with respect to its runtime
O(|E| - |V]) the used detection algorithm for triconnected components is suboptimum.

168 MODEL REFORMULATION

(1) Every walk from a point in V \ Vy to a point in Vi contains either sy or ty.

An independent subnetwork H will be called minimum, if there exists no indepen-
dent subnetwork which is induced on a proper subset of V.

Let (H, sy, ty) be an independent subnetwork of a two-terminal labeled graph
(G, s, t). Observe that the topology of H guarantees that an energy exchange between
H and G can happen only via the nodes sy and ty. Moreover, Kirchhoff’s node rule
states the conservation of the electric current, which thus defines a flow in the sense
of Definition From this conservation property follows that for each current flow
on H the sum of all in-going currents at sy equals the sum of all outgoing currents at
ty Jungnickel (126, pg. 106). Together both aspects enable us to enclose independent
subnetworks with a hull, say, to investigate them in an isolated manner. An impor-
tant consequence is that the concepts “port” and “independent subnetwork” can be
used interchangeably (see Figure[C.8).

Independent
subnetwork

Figure C.8. Substituting an independent subnetwork (left) for a port (middle) does not violate
the conservation law.

Remarks. (1) The parts of a circuit model that correspond to independent subnetworks
of the circuit graph G(S) have to be simulated by a global numerical procedure (257).
Consequently, we are interested in a decomposition of G(S) into minimum indepen-
dent subnetworks. (2) Independent subnetworks are not multiports. The physical
concept of a multiport can be entirely reproduced by adding to the definition of G(S)
a decomposition C of the edge set E. Each set C € C stands for a subset of E and
defines a multiport in a definite way.

Definition C.5 (Series-Parallel Graph (26,31)) Let (G,s,t) be a two-terminal
labeled graph. G is called two-terminal series-parallel with source s and sink t if it
can be built by means of the following three rules:

(1) Base Graph. Any graph of the form G = ({s,t},{{s,t}}) is a two-terminal
series-parallel with source s and sink t.

Let G; = (V1, E1) be two-terminal series-parallel with source s; and sink t;, and
let Gy = (V, E3) be two-terminal series-parallel with source s, and sink t».

(2) Series Composition. The graph formed from G, and G, by unifying t; and s, is
two-terminal series-parallel, with source s; and sink t,.

C.1 CONSTRUCTING WAVE DIGITAL STRUCTURES 169

(8) Parallel Composition. The graph formed from G, and G, by unifying s; and s,
and unifying t; and t, is two-terminal series-parallel, with source s; = s, and
sink tl = tz.

Two-terminal series-parallel graphs can be represented by decomposition trees,
also called sp-trees, cf. (50), which generalize the series and the parallel composition
to more than two operands.

Definition C.6 (sp-Tree) An sp-tree Tgy of a two-terminal series-parallel graph
(G, s, t) is a rooted tree whose nodes are either of type s-node, p-node, or leaf-node.
FEach node is labeled by a pair (1,v), u,v € V; the children of an s-node are ordered;
the leafs of T s 1y are of type leaf-node and correspond one-to-one to the edges of G.
Every node of an sp-tree corresponds to a unique two-terminal series-parallel
graph (H,u,v), where H is a subgraph of G and (u,v) is the label of the node. The
root of Ty has label (s, t) and corresponds to the graph (G, s, t). The two-terminal
series-parallel graph defined by an s-node is the result of the series composition ap-
plied to its children in their given order. The two-terminal series-parallel graph de-
fined by a p-node is the result of the parallel composition applied to its children.

Figure|C.9lexemplifies the definition.

/8\ s-node
A p-node

O leaf-node

Figure C.9. Series-parallel graph (left) and its sp-tree representation (right).

The composition rules laid down in Definition [C.5 make apparent that a series-
parallel graph whose sp-tree has a root node label of series-node and parallel-node
type has a vertex connectivity of one and two respectively. Graphs of a higher vertex
connectivity are the result of either connecting more than three two-terminal graphs
at the same time or by connecting two-terminal graphs by a different rule. Formally,
the vertex connectivity of a graph is defined as follows.

Definition C.7 (Vertex Connectivity «(G)) «(G) is called vertex connectivity of G
and is defined as follows: k(G) = min{|T| | T C V and G\ T is not connected }.
G is called k-connected, if k(G) > k.

170 MODEL REFORMULATION

Remarks. A cut point (or articulation point) of a graph G is a point v € V for which
G[V \ {v}] has more connected components than GH A connected graph without cut
points is called biconnected; a connected graph with cut points is called separable;
the maximum inseparable induced subgraphs of a graph G are called biconnected
components. The separation of a graph G into its biconnected components is unique
(283). This fact, together with the fact that each biconnected component is analyzed
on its own, we can assume without loss of generality that the considered graphs are
biconnected.

The subsequent definition extends the cut point construct, it is derived from
Hopcroft and Tarjanl [1973].

Definition C.8 (Separation Pair) Let {a,b} be a pair of vertices in a biconnected
multigraph G, and let the edges of G be divided into equivalence classes E1,...,E,
such that two edges which lie on a common path not containing any vertex of {a, b}
except as an endpoint are in the same class.

The classes E; are called separation classes of G with respect to {a, b}. If there are
at least two separation classes, then {a,b} is a separation pair of G unless (1) there
are exactly two separation classes, and one class consists of a single edge, or (2) there
are exactly three classes, each consisting of a single edge.

If G is a biconnected multigraph such that no pair {a, b} is a separation pair of G,
then G is triconnected.

While the triconnectivity of a graph G follows canonically from Definition
or the characterization of a graph’s triconnected components is more involved.
The reason for this difficulty is that triconnected components possess no property
that permits their detection by a divide-and-conquer approach. Instead, it is neces-
sary to investigate the relation of H with respect to G if a subgraph H of G forms a
suspect triconnected component. Moreover, Hopcroft and Tarjan introduce different
types of triconnected components, and hence the relation between H and G must be
investigated relating different properties (111). Their definitions are given now.

Definition C.9 (Split Graph, Splitting, Split Component) Let G be a multigraph
with separation pair {a,b} and related separation classes Ei,...,E,. Moreover,
let E' = U\ E; and E” = ', Ei be such that |E'| > 2, |E"| > 2, and let
G = (V(E'),E'U{(a,b)}), and G, = (V(E"),E"U{(a,b)}). Then the graphs G;
and G; are called split graphs of G with respect to {a,b}. Replacing G by two split
graphs is called splitting G.

If the split graphs are further split, in a recursive manner, until no more splits are
possible, the remaining graphs are called split components of G.

Remarks. (1) The new edges {a,b} added to G, and G, are called virtual edges; they
can be labeled to identify the split. (2) If G is biconnected then any split graph of

3G[V] denotes the subgraph of G that is induced by V.

C.1 CONSTRUCTING WAVE DIGITAL STRUCTURES 171

G is also biconnected. (3) The split components of a multigraph are not necessarily
unique.

The split components of a multigraph are of three types: triangles of the form
({a,b,c}, {{a,b}, {a,c}, {b,c}}), triple bonds of the form ({a,b}, {{a,b}, {a,b},
{a,b}}), and triconnected graphs. To obtain unique triconnected components, the
split components must be partially reassembled.

Reassembling is accomplished by merging. Suppose that G; = (V1,E;) and G, =
(V2, E2) are two split components containing an equally labeled virtual edge {a, b}.
Then the result of a merging operation is a graph Gy, with node set V1., = V; UV,
and edge set E1.p = E1 \ {{a,b}} UE, \ {{a,b}}.

Definition C.10 (Triconnected Component) Let G be a multigraph whose split com-
ponents are a set of triangles Ss, a set of triple bonds Ps, and a set of triconnected
graphs C. If the triangles are merged as much as possible to give a set of polygons S,
and if the triple bonds are merged as much as possible to give a set of bonds P, then
the set of graphs S U P U C forms the set of triconnected components of G.

Remarks. (1) The triconnected components of a graph G are unique (see (284)).(2) The
triconnected components in S are not triconnected. They establish generic series
connections: Virtual edges designate the connection of a subgraph; the other edges
designate single elements in S. From the viewpoint of a Kirchhoff interconnecting
network the non-virtual incident edges can be replaced with a single edge of ap-
propriate impedance. This process is called series reduction. (3) The triconnected
components in P are defined on two points only. They establish generic parallel
connections: Virtual edges designate the connection of a subgraph; the other edges
designate single elements in S—from the viewpoint of a Kirchhoff interconnecting
network they can be replaced with a single edge of appropriate admittance. This
process is called parallel reduction. (4) The triconnected components in C establish
minimum independent subnetworks (see (257)).

O First separation pair

@ Second separation pair

Figure C.10. A graph and its split components. When the triangles (1,3,4) and (1,2,3) are
merged, the right hand side shows all triconnected components of the graph.

Figure shows a graph and its split components. Except the triangles (1, 3,4)

172 MODEL REFORMULATION

and (1,2, 3), the split components establish triconnected components; the set of tri-
connected components is complete if the triangles are merged.

The algorithm presented in (111 delivers the triconnected components as defined
above and runs in O(|E|). We will rely on it in the next subsection. The algorithm
originates from Auslander and Parter’s idea for an efficient planarity test (111, 14).
Root of its efficiency is the statement of necessary conditions for separation pairs
along with a clever computation of these conditions within several depth-first search
runs.

Hopcroft and Tarjan’s algorithm does not consider the semantics of independent
subnetworks. As a consequence, independent subnetworks can be torn, resulting
in inadmissible segmentations. Figure shows two isomorphic graphs with a
different s, t-labeling. A decomposition of this graph into its split components tears
the independent subnetwork with source s, and sink .

Figure C.11. Two isomorphic graphs with a different s, t-labeling (left) and the related split com-
ponents (right). The independent subnetwork with the labeling s1, t; is torn.

Obviously all triconnected components of a two-terminal labeled graph (G, s, t)
establish independent subnetworks if s and ¢ are nodes of the same triconnected com-
ponent. The following definition and Lemma[CT] formalize this assertion.

Definition C.11 (Elementary Contraction, s-t-Contractible) Let (G,s,t), G = (V,
E), be a connected two-terminal labeled graph (not necessarily series-parallel), let
v,weV,v # w, and let V,, C V comprise the nodes adjacent to w. Then the graph
G' = (V',E') is called an elementary contraction of G respecting v, if V' := V '\ {w},
and E' := E\ {{w,x} | x eV, } U{{v,x} | x € Vo, x # v}.

G is called s-t-contractible towards a graph G' = (V',E'), if G’ is the result of a
sequence of elementary contractions, and if {s, t} € E'.

The s-t-contractibility states that the flow conservation between s and f remains intact
for a two-terminal labeled graph (G,s, t). It can be ensured by simply adding the
edge {s,t} to G if s and ¢ are not adjacent. This modification of G does not restrict its
segmentation into independent subnetworks.

C.1 CONSTRUCTING WAVE DIGITAL STRUCTURES 173

Lemma C.1 (s-t-Contractibility) Let (G,s,t), G = (V,E), be a connected two-
terminal labeled graph (not necessarily biconnected) with source s and sink t, and
let {s,t} /EE. Moreover let G’ be (V,EU{{s,t}}), and let G}, ..., G), be the tricon-
nected components of G'. Then the following holds:

(1) 3G/ which is s-t-contractible,

(2) G' can be decomposed into the same independent subnetworks like G.

Proof. Point (1). Follows immediately from the fact that there must be some graph G;
that contains the edge {s, t}. Point (2). Observe that for an independent subnetwork
(G, a,b) that has s (or t) amongst its nodes one of the following equations must hold:
a = s orb = s. This follows from the independent subnetwork definition. If G’ cannot
be decomposed into the same independent subnetworks like G then this must be on
account of the edge {s,t}. It prohibits a segmentation of some G/ into the indepen-
dent subnetworks (G;, s, a) and (Gj, t,b), which could be formed when segmenting
the original graph G. Since (G, s,a) and (Gj, t,b) form independent subnetworks, a
and b must be articulation points of G, which in turn means that {s,a} and {s, b} es-
tablish separation pairs in G'. Hence, an independent subnetwork G, can be formed
that contains {s, t} as its only non-virtual edge. Conversely, the edge {s, t} does not
prohibit the formation of independent subnetworks that can be formed in G. o

As outlined in the remarks on Page[I7]] the three types of triconnected compo-
nents form the backbone for the segmentation of a circuit S: Based on the the sets S,
P, and C, a connector structure, or as the case may be, an adaptor structure is easily
constructed. In this connection it is useful and quite natural to extend the concept of
sp-trees (Definition[C.I2) towards spc-trees.

Definition C.12 (spc-Tree) An spc-tree T g s 1y of a two-terminal (multi)graph (G, s, t)
is a rooted tree whose nodes are either of type s-node, p-node, c-node, or leaf-node. A
c-node is labeled by the graph (Vy, Ey, u,v) it stands for; the other nodes are labeled
by a pair (u,v). The children of an s-node are ordered; the leafs of T s are of type
leaf-node and correspond one-to-one to the edges of G.

Every node of an spc-tree corresponds to a unique two-terminal graph (H, u,v);
the root of Tig s 1, corresponds to the graph (G, s, t). The two-terminal graph defined
by an s-node is the result of the series composition applied to its children in their
given order, and the two-terminal graph defined by a p-node is the result of the par-
allel composition applied to its children. The two-terminal graph defined by a c-node
is triconnected, has more than three nodes, and follows no construction rule.

The spc-tree Tig s, Tissy = (Vr,Er) is easily constructed. Vr = {1,...,n+
|Ec|} where n denotes the number of triconnected components and |E¢| denotes the
number of edges in G; the nodes in {1,...,n} correspond one-to-one to the tricon-
nected components and are labeled respecting the triconnected component’s type as

174 MODEL REFORMULATION

S-node, P-node, and C-node respectively. Er contains an edge {v, w} if and only if
one of the following conditions is fulfilled: (1) v and w correspond to triconnected
components and have a common virtual edge, (2) v corresponds to a triconnected
component and w is an edge in v.

Remarks. Since both the series adaptor and the parallel adaptor are realized as three-
port adaptors, the nodes of the spc-tree that are labeled as P-node or S-node may be
expanded again to account for their restricted number of ports. Moreover, observe
that the height of the decomposition tree defines the longest propagation path of the
adaptor structure. Consequently the root of the decomposition tree should be defined
as some node leading to a minimum tree height. The subsequent definition picks up
both aspects and introduces a normalized spc-tree.

Definition C.13 (Normalized spc-Tree) Let Ty = (Vr, Er) be an spc-tree. T o
is called normalized spc-tree if each node v € Vy labeled S or P has at most two
successors, and if the root v of T 1) represents a center of Tig s and has a degree
larger than 1.

Remarks. (1) Tigs is normalized by replacing each node v € Vr labeled S or P that
has more than two successors with the root of a balanced binary tree, T;,, whose leafs
are the successors of v; the inner nodes of T, get the same label as v. (2) The center of
atree T = (V, E) can be computed in O(|V]) (186).

The Algorithm ADAPTORS The previous paragraph provides the theoretical under-
pinning for the following adaptor synthesis algorithm.

ADAPTORS

Input. An electrical circuit model B(F, M) of a system S.

Output. A normalized spc-tree defining the optimum adaptor scheme and
adaptor types, the port resistances, and the adaptor coefficients.

(1) Generate the corresponding graph G of S.
(2) Partition G respecting its biconnected components G = {G;, ..., Gy }.
(8) VG'eGdo
(4) Check G’ for inadmissible segmentation.
(5) Detect triconnected components in G'.
(6) Construct an spc-tree for G'.
(7) end
(8) Construct an spc-tree T s 4y for the entire graph G.
(9) Normalize TG s 4.
(10) Compute the port resistances and adaptor coefficients.

Theorem C.1 Given an electrical circuit model B(F, M) containing |[M| = n el-
ements. Then ADAPTORS computes a normalized spc-tree defining the optimum
adaptor scheme and types, the port resistances, and the adaptor coefficients in O(n).

C.1 CONSTRUCTING WAVE DIGITAL STRUCTURES 175

Proof. The runtime bounds for the steps in line [[H3 follow from the considerations
and algorithms pointed out in the previous subsection. The connection of the forest
of the m spc-trees, m < n, Linel8 is linear. Finally, the adaptor computations, Line[I0l
involve only a constant number of operations for each of the n elements (see the
previous subsection and especially (72,173)).

In the sequel, steps of ADAPTORS are illustrated at the sample graph of Fig-
ure[CT7] which establishes the corresponding graph G of some electrical circuit S.

N,
S AYAVARR)(

Figure C.12. Corresponding graph G of some electrical circuit S.

Line[2] Partition G respecting its biconnected components, G, ..., G,. Label the
articulation points of the G; by s; or ¢;, such that each biconnected component contains
a source s; and a sink ¢#; (see Figure[CT3).

> o N
G2 \ % A\ Q
o————0
S t.
Sq tl 2 2 N 0O
S S \J
S3 t3

O Articulation point

Figure C.13. Decomposition of G respecting its biconnected components and relabeling of the
biconnected as two-terminal graphs.

Linel Check for inadmissible segmentations. In the sample graph an edge {s,, 1>} is

introduced. However, this step is superfluous for electrical circuit models if s and ¢
are incident to the signal source.

Cy

............ Pz
O O O 0] Ps
; Sy
© Node of separation pair e o o o

-------- Virtual edge

Figure C.14. Detection of the triconnected components in Gs.

176 MODEL REFORMULATION

Line[d] Detect in G5 the three sets of different triconnected components, S, P, and C.
Figure shows the result.

Lineld Construct an spc-tree Tig, o, 4,y for Gs; the Figure shows the result. At
this place the previously mentioned series reductions and parallel reductions are ide-
ally performed: Engineering knowledge on useful reductions can be formulated by
means of simple contraction rules, which may even investigate the context of an ele-
ment.

Ps3

© Adaptor

Figure C.15. An unnormalized spc-tree of G3; the leafs of the tree correspond to the edges in Gs.

Line[8] Construct an spc-tree Tig s for the entire graph G. This accomplished by
connecting the roots of the trees T(¢, s, ;,, with a new node that is labeled as an S-node.
Line[@d Normalize the decomposition tree T(¢ s the Figure shows the result.
Obviously, the ideal adaptor for having no reflection-free port is associated with the
root of the normalized the decomposition tree.

© Adaptor

Figure C.16. The normalized counterpart of the spc-tree from Figure[C.15]

Line[I0l Based on the component parameters in F, F € B(F, M), compute the port
resistances for the adaptors.

C.1 CONSTRUCTING WAVE DIGITAL STRUCTURES 177

Remarks. The algorithm ADAPTORS can be extended with respect to multiports. To
this end each subgraph that is induced by a multiport is completed such that it forms
a clique.

Design Generation by Graph Grammars The transformation of an spc-tree into
a corresponding adaptor structure can be specified by a design graph grammar that
operationalizes the following tasks: (1) Normalization of the spc-tree by splitting
s-nodes and p-nodes with more than three edges, (2) replacement of c-nodes with a
special two-port adaptor structure, (3) replacement or comprisal of particular element
combinations, and (4) generation of the layout and the domain-typic appearance.
Figure[C. 17 hints some of the transformation tasks.

s Series connection

p Parallel connection

Series adaptor

IE Parallel adaptor

Figure C.17. Transformation of an spc-tree into an adaptor structure.

The grammar G = (X, P) performs the transformation task (1) where £ = {p, s,
A,...,H} and P contains two splitting rules (for s-nodes shown below) of the form
T — (R, I):

(1) T= (Ve Er,or) = {{1,2,3,4,5), {{1,5},{2,5}, (3,5}, {4,5}},
{(1,4),(2,B), (3,C), (4,D), (5,5)})
R = <VR,ER,UR> ({6 7,8,9,10, 11} {{ ,10} {7 10} {8 11} {9 11}
{10,11}},{(6, 4), (7,B), (8,C), (9,D), (10,5), (11,5)})
1= ,((F.B), (), ((G,C),(G,C)),((H,D), (H,D))}
A

C

With respect to transformation task (2) we refer to a paper of Meerkotter and
Franken (178). They present a generic construction rule for adaptor structures if the
graph G(S) of an electrical system S contains closely connected subgraphs. Due to
the complexity of this transformation we abstain from a presentation of the respective
design graph grammar in this place. For the same reason the graph grammar rules in
the sequel, relating the transformation tasks (3) and (4) are only specified graphically.

178 MODEL REFORMULATION

Transformation task (3) contains design optimization potential. According to en-
gineering know-how and design experience, new elements can be substituted for
particular element combinations, or elements of the same type can be comprised—
examples:

e A r A e
(3a) Introduction of resistive sources. O_O_O => O_O

S rytry
]
'

r s r,
(38b) Comprisal of series resistances. O—O—O => O—O

p o U(rytry)

M p 2
(3c) Comprisal of parallel resistances. O—O—O =>

The figures below show some display rules that change the appearance of an spc-
tree into an adaptor structure. The interesting point in this connection is that such
rules fit seamlessly in|Brandenburg’s layout graph grammar approach.

(4a) Adaptor display rules.

(4b) Port display rules.

Because of the regular structure of wave digital filters, layout graph grammars
are an adequate means for the drawing task in hand. They perform a syntax-directed
translation of textual representations of graphs into graph drawings (30). A design
graph grammar becomes a layout graph grammar by attribution, where the attributes
describe geometric relations. Details and successful applications of this approach can
also be found in (98,129, 311).

C.1

CONSTRUCTING WAVE DIGITAL STRUCTURES 179

Synopsis

Problemclass Analysis; specifically simulation of passive, electrical continuous
time systems.

Problem Solving Method Integration of differential-algebraic equations.

Source Model Dynamic, continuous time model (Fy, Fz, Fy, V, A, A).

Fidelity Level F. Electrical quantities.
Granularity Level M. Electrical elements that form one-port elements.
Input Fy. Voltage and current signals.

State Prescription Function A. Implicit state space description in the form of
local, but non-causal differential-algebraic equations.

Output Function A. Courses of selected quantities in F.

Behavior Model Processing. Implicit integration method.

Reformulated Model Dynamic, continuous time model (Fy, Fz, Fy, V, A, A).

Fidelity Level F. Voltage-wave quantities.

Granularity Level M. a/b-equivalents of the electrical elements and adaptor
building blocks.

Input F;. Wave signals.
State Prescription Function A. Causal difference equations.
Output Function A. Courses of selected quantities in F.

Behavior Model Processing. Local propagation.

Knowledge Source Topological analysis of the source model’s Kirchhoff intercon-
necting network. Comprisal and replacement rules for elements in M.

180 MODEL REFORMULATION

C.2 Learning Similarity
Measures from Object Classifications

The section addresses a key aspect within various knowledge-based analysis and
synthesis tasks: The construction of a measure that adequately models the similarity
between two problem instances. This may be the similarity between two documents
within a document retrieval task, the similarity between two cases within a case-
based reasoning task, or a similarity assessment between two points in a graph when
working on a visualization task.

Given two problem instances, a domain expert is in a position to assess the simi-
larity between these instances with respect to a problem solving task in hand. It is a
question of high importance how this part of an expert’s problem-solving expertise
can be elicited and made explicit.

In its general form, a set of objects (the problem instances), O, is given, where each
object x € O is described by a vector of features or demands, d(x) = (f1,..., f). The
similarity between two objects x and y, x,y € O, is taken to assess the usability of a
solution of instance x as a solution for instance y—an idea that became popular under
the name of case-based reasoning, CBR (1, [L56). Usability can be stated a-posteriori
only while the similarity between two objects can be stated immediately (196). The
quantification of the concept “usability” by means of the similarity between two fea-
ture vectors shows the crucial importance that comes up to the computation of the
features.

In the following, the similarity between two objects x and y is designated by a
relation “sim” where sim(x, y) determines a value from the interval [0; 1]. The larger
is the value of sim the more similar are x and y to each other.

Developing “sim” is a Knowledge Acquisition Problem A recurring situation
in, for instance, case-based problem solving is that a set of cases is given, but no
similarity measure can ad-hoc be stated. A similarity measure establishes a particular
form of knowledge, which—using Al terminology—can be acquainted from some
source. An often applied concept to acquire similarity knowledge is the interview
of domain experts: “Are these two problem instances, x and y, similar?” “What are
the significant features that make x and y similar?” “To which extent are x and y
similar?”

The sample questions make problems of the concept “knowledge acquisition by
questioning” obvious. On the one hand, it is hard for the domain expert to give
quantifiable answers while, on the other hand, it is hard for the knowledge engineer
to access the quality of these answers. This is not surprising since knowledge about
object similarities establishes problem-solving expertise, which—in itself—is hard to
become operationalized, as already pointed out bylHayes-Roth et all:

C.2 LEARNING SIMILARITY MEASURES 181

“The transfer and the transformation of problem-solving expertise
from a knowledge-source to a program is the heart of the
expert-system development process.”

Hayes-Roth, Waterman, and Ienat,|1983, pg. 23

In this section we exploit the fact that a similarity measure can also be constructed
from other knowledge sources, for instance from the knowledge that is encoded
within an existing object classification (266). Obviously, each classification implies
knowledge about feature relevance and feature similarity with respect to the clas-
sified objects. Given such a knowledge source, methods from the field of machine
learning can be used to transform implicit knowledge on object similarities into an
explicit similarity measure (see Figure[C.18).

Model
utilization

based
" Case-|
f(x)ef(y) O ~sim(x,y)

Model construction

. —
(f(xl),f(yl), S|m(x1,y1))

(Fxp) f(y2), sim(x,.y,)) W Document
retrieval

Figure C.18. Instead of interviewing domain experts, a similarity measure is constructed from
an existing classification of the objects.

Acquire classification knowledge Similarity measure

We view this process as a kind of model reformulation (see Page B2) since there
is a paradigm shift in model processing: The features of a model are no longer used
for some (absolute) classification process; instead, two model instances are taken and
their relative distance in the model space is assessed. This reformulation happens,
ideally, without altering the model’s accuracy or its level of granularity. Also note
that the processing efficieny is not affected.

Remarks. The development of a similarity measure is highly domain-dependent, and
we fall back on the domain of fluidic engineering from which realistic models and
tasks are derived. In fact, the automatic generation of a similarity measure for fluidic
engineering tasks should be seen as a completion of our approach to the automation
of fluidic circuit design in Section There, the similarity measure was developed
in close collaboration with human designers.

182 MODEL REFORMULATION

Underlying Model and Tasks

Similarity measures can be used for those tasks in fluidic engineering that are not
treated at a deep, physical level of behavior but at the much more abstract level of
function. At this level, the complex physics of a fluidic circuit is reduced to a set of
features which characterizes the circuit’s usability to fulfill a desired function. The
following list outlines tasks that are solved at an abstract functional level.

o Functional Analysis. Check whether two fluidic systems are similar with respect
to their intended operation (288).

o Fluidic System Design. Construct a new fluidic system by coupling together
already designed units (fluidic axes) from different systems (25§, 110).

o Document Retrieval. Query a database for diagrams of fluidic systems that are
similar with respect to a given set of demands.

The model of fluidic function as specified in Definition establishes the
knowledge level at which the mentioned tasks are solved. The next subsection shows
in which way this functional model is encoded as a feature vector for fluidic circuit
objects.

Taken an engineer’s point of view, the gist of a model of fluidic function consists
of a set of state variables, Fx, along with the discrete state prescription function, A.
Each state variable in Fx represents the function of a fluidic axis; A characterizes
the behavior of the fluidic axes by means of the working phases of the output units,
which are cylinders in most cases.

Definition C.14 (Model of Fluidic Function) Let S be a fluidic system and let
(F, M) be a model of S. A model of fluidic function over (F, M) is a discrete event
model, B(F, M) = (Fy, Fz, V, A) whose elements are defined as follows.

(1) F = Fy U Fy is a set of functionalities, described below. The elements M € M
are called fluidic axes.

(2) Ey is the set of input variables, defining the extrinsic forces and events. F is
the set of constraint variables, defining the working phases of the axes and the
velocities of the cylinder pistons.

(3) The sets Uy, UJT, and Zy designate the domains of the variables f in Fy; and F.
Likewise, U, UT, and Z designate the Cartesian products of the input variable
domains and the constraint variable domains. The time base T is a subset of
R*. V comprises the domains of all functionalities.

(4) A declares a set of state variables, Fx C Fz, and a state space, X, which is the
projection of Z with respect to Fx. The state variables correspond one-to-one
to the fluidic axes in M; the number of states in X is finite. A specifies the

C.2 LEARNING SIMILARITY MEASURES

183

discrete phase transitions of a model of fluidic function and comprises both an

external and an internal state prescription function, say, A = A, U A;.

Given a vector of external events (triggered by an operator or a numerical con-
trol), A, prescribes the next state, depending on the current state and the vector
of input forces at the current point in time. In contrast, A; schedules the next
state change that is triggered by proximity switches or piston stops, so-called
internal events. A; depends on the current state, the vector of input force func-

tions, and the time elapsed since the last state change.

Remarks. For the purposes of this section it is not necessary to engage into state pre-
scription functions for discrete event models and their simulation. The interested

reader may refer to (310, 206), for instance.

Events | valve-parallel

valve-

piston-stop

crossed

piston-stop

Input force
FOFy (N)

Phases
P OFy

null

const-drive-out

hold—ﬁressure
|

const-drive-in

null

Velocity
v OF, (m/s)

Figure C.19. The diagrams on the left-hand side describes a possible functional model of the
circuit on the right.

Example. The example specifies the functional model of a fluidic system with a single
axis whose cylinder drives out, performs a press job, and drives in. Figureshows
for a constant extrinsic force, F, and the switch events triggered by a numerical con-
trol, E;, both the respective diagrams and the circuit. The state space X, constructed
over the single state variable P, consists of four states which are called (working)

phases.

(1,2) Model.

Fy={FE}, F; = {Pv}, Fx C F, = {P},

F = Fuupz, M = {{F,ES,P,ZJ}}

(3) Domains.

Ur = RT, Uf = Ur since F(t) is constant.

184 MODEL REFORMULATION

Ug, = {valve-parallel, valve-crossed),
Xp = {const-drive-in, const-drive-out, hold-pressure, null}, Z, = R

(4) State Prescription.
Ag : XVPXLI[:XLIES — Z,
A,‘ : XPXU}:XT — Z

The function A, prescribes the next phase, which is started immediately on
an external event. The function A; schedules the next phase; i.e., it prescribes
the next phase, which will be started not until the internal event piston-stop is
occurred. Table [CT]shows a simplified definition of A where the elapsed time
til the piston-stop events has been omitted.

Current phase Force Event Next phase Velocity
null 500N valve-parallel const-drive-out 0.5m/s
const-drive-out 500N piston-stop hold-pressure 0m/s
const-drive-out 500N valve-crossed const-drive-in —0.8m/s
hold-pressure 500N valve-crossed const-drive-in —0.8m/s
const-drive-in 500N piston-stop null 0m/s
const-drive-in 500N valve-parallel const-drive-out 0.5m/s

Table C.1. Definition of A for the example. The specification is simplified insofar that A does
not schedule the internal piston-stop events at definite points in time.

Remarks. The abstraction from a physical behavior model in continuous time towards
an event-based functional model can be done automatically. For this, the state pre-
scription function of the continuous time model is simulated and investigated with
respect to intervals of stationary flows or velocities (115). However, the development
of such an abstraction is not discussed in this place.

Similarity Measures

Our objective is the development of a similarity measure for models of fluidic func-
tion to solve the engineering tasks mentioned at the outset. Our approach is the
application of learning methods; they shall bridge the gap between implicit expert
knowledge about circuit similarities and explicit similarity functions. This subsec-
tion develops the necessary concepts.

C.2 LEARNING SIMILARITY MEASURES 185

On Similarity Measures in General Much work has been done in the last decades
on similarity measures; good overviews can be found in (224, 169, 123, 29§,219). A
common similarity measure is the simple weighted linear similarity function. Let
2, 5, (FY, . £), p € N, be two feature vectors of two objects x, y. Then
the simple weighted linear similarity measure between x and y is defined as follows.

sim(x,y) =wo+) w;- (fP e f¥, wy,w;eR

1<i<p

It is often claimed that sim is a symmetric function which maps onto [0; 1] and that
it provides the reflexivity property, say, sim(x,y) = 1 < x = y (see Definition [A3]
Page[99). The definition of the operator “&” depends on the features’ types:

o Cardinal. A feature is called cardinal if and only if all values of the feature are
real numbers. Values of cardinal features can be added, subtracted, multiplied,
and divided and the result is still a reasonable value for the feature. For cardi-
nal features, f (), f ¥, the following definition is often used:

() o f0) = _ [0 _)
frers f = FY]

o Nominal. Nominal values can only be compared with respect to equality. If a
nominal feature has only two possible values it is called a binary feature. For
nominal features, f*), f), the following definition is often used (301):

1. if f(X> = f(y)
g fly) = ’
fref { 0, otherwise
Remarks. Note that learning such functions means to find adequate values for the

parameters w;. More complex distance functions have been examined by the authors
in (266).

A Similarity Measure for Fluidic Systems Following Definition each hy-
draulic system S can be reduced to a functional model B(F, M). In accordance
with (269, 110, 1288), the similarity between two hydraulic systems, S, S, is defined
using the similarities between individual axes in the respective functional models
B(Fy, M,) and B(F,, M,):

sim(S,, Sy) = z max{simayes(Mx, M) | My € M, } (C.5)

MyeMy

where M, and M, denote the axes of S, and S, sim,y,s denotes a function measur-
ing the similarity between two axes, and |My| < | M, | holds.

186 MODEL REFORMULATION

Let an axis M, be described by a p-dimensional vector of cardinal features d(My),

say, d(M,) = (f7,..., f)) € RP. Then the similarity measure siryys(M,, M,) shall
be defined as a simple weighted linear similarity:

Sitares(M, My) =wo+ 3 wi- [f = £, wo,w;€R (C.6)

1<i<p

The feature vector of a fluidic axes, d(M), which is necessary to compute the
similarity between two fluidic circuits, Sy, S, is directly extracted from the functional
models B(F;, My) and B(F,, M,). Each axis is described by two types of features,
phase descriptions and phase orders, both of which are defined below.

(1) Phase Description. Phases are divided into the categories K = {constant-drive,

position-drive, hold-position, accelerate, fast-drive, hold-pressure, press}, |K| = 7.
Each category k € K is characterized by 5 features, which answer the following
questions.

a) Which maximum force (in Newton) is applied to the working element?
b) How many phases of the specific category exist in the respective axis?
c) How long (in seconds) is the duration of the phase ?

d) Which distance (in mm) is covered by the working element?

e) How precisely must the axis work? This is a value from [0; 1] that defines
the acceptable deviations from the duration, the distance, and the force.

(2) Phase Sequence. For each combination (k1, k), k1, k2 € K, K1 # K», a feature is de-
ployed that specifies the number of times a phase of category «; is immediately
followed by a phase of category k.

Together, the feature vector—so to speak, demand vector d(M) for an axis M is
organized as follows.

d(M) = ((phase description “constant-drive”), (phase description “position-drive”),
(phase description “hold-position”), (phase description “accelerate”),
(phase description “fast-drive”), (phase description “hold-pressure”),
(phase description “press”), (phase sequence))

Methods for Constructing Similarity Measures Existing methods for construct-
ing similarity measures can be divided into two main classes: (1) Methods that em-
ploy reinforcement-learning and (2) algorithms that rely on statistical analysis for the
main part.

Reinforcement-learning methods predict a similarity value and ask the user or a
different system to rate the prediction. Based on this rating the weights w; are ad-
justed. Statistical methods analyze given examples and deduce appropriate weights.

C.2 LEARNING SIMILARITY MEASURES 187

Name Type Remarks Literature
EACH reinforcement learning extra parameters needed (233)
RELIEF reinforcement learning binary weights (136)
CcCF statistical only binary features (45)
GM-CDW statistical (113)

Table C.2. Selected existing methods for the construction of similarity measures.

Table[C2 lists representatives of well known methods; more examples can be found
in (25,18,1255).

These methods have in common that the knowledge acquisition step (how to
obtain the necessary knowledge from an expert) and the learning step (finding ap-
propriate values for the weights w;) are not treated separately. Our approach, which
is described in the next section, differentiates between these two steps.

Combining the knowledge acquisition step and the learning step entails several
problems:

e Since the expert is integrated into such methods in a predefined manner, no
flexibility is granted in the way the knowledge is obtained. Hence additional
knowledge sources cannot be tapped.

e Although the methods mentioned in Table rely on standard learning
paradigms such as reinforcement learning, they do not apply standard learn-
ing algorithms such as regression or neural networks but employ proprietary
algorithms. While for standard learning algorithms advantages and disadvan-
tages have been examined, almost nothing is known about the proprietary al-
gorithms.

e Verifying a combined method is difficult since learning problems cannot be
distinguished from knowledge acquisition problems.

A Universal Strategy Take again a look at Figure[CI8l on Page[I8T] It hints the
two steps of the universal strategy that is employed here to construct a similarity
measure: A knowledge acquisition step and a reformulation (learning) step. This
separation allows for the usage of both tailored acquisition methods and tailored
learning methods to obtain the necessary information from an expert. The first step
always results in a database, C, of feature-vector pairs whose similarity is already
known:

C ={(d(x1),d(y1),sim(x1, 1)), (C7)
(d(x2),d(y2), sim(x2, y2)),
(d(x3),d(ys),sim(x3,Y3)),...}

The reformulation step uses the rated vector pairs and applies a supervised learn-
ing strategy to find values for the weights w;. For our applications both regression

188 MODEL REFORMULATION

and neural networks have been applied. Note that only a small but typical set of
objects, the learning set, is used for learning purposes.

Reformulation Strikes a New Path to Acquisition

The similarity between two hydraulic systems, S,, S,, has been reduced to a max-
imization of the cumulated similarities between fluidic axes, sif1,y.s, used in Equa-
tion (C.5) on Page[I85] The specification of values for this function poses a knowl-
edge acquisition problem, because domain experts have the necessary knowledge
only implicitly. To express their understanding about axes similarities explicitly, e. g.
as a mathematical function, means asking to much for most experts. The reformu-
lation of similarity knowledge that is encoded implicitly in a classification shows a
way outf

Knowledge Source 1: Partitioning the Set of Objects For this method the expert
has to partition a given set of axes. Two axes are similar if and only if they belong
to the same class. Let M = {My,..., M,} be the set of axes and let ¢ : M —
C be the classification function, where C comprises the set of possible classes. The
classification function c is specified by the domain expert. Then the similarity sim,y.s
is defined as follows.

1, ifc(My) = c(M,)

0, otherwise €8

Y My, My, EM : sithapes(My, M) = {

Reasonable classes, for example, are C = {manipulation, press, hold} or C = {high-
pressure, low-pressure, fast-drive}.

The main disadvantage bound up with this knowledge source is that a partition-
ing, say, a disjunctive classification, is sometimes difficult to be stated. The advan-
tages of this knowledge source are:

e 1 classifications define 5- similarities.

e Domain experts have few problems in classifying fluidic axes.

Although in the learning set only the similarity values 0 and 1 are given, learning
algorithms like regression result in similarity measures that can yield any similarity
value from the interval [0;1]. This is because the given data is abstracted by the
learning algorithms.

4This is in accordance with Richter’s argumentation: Knowledge (on similarity) is distributed
over the containers vocabulary, similarity measure, case base, and solution transformation,
where each container is able to contain all available knowledge (223).

C.2 LEARNING SIMILARITY MEASURES 189

Knowledge Source 2: Graphical Similarity Specification This method demands
a minimum of explicit knowledge. The expert is asked for an exemplary visualization
of his understanding of the similarity between objects. By means of a computer,
this visualization is abstracted towards a graph, from which a similarity measure is
computed. No additional knowledge is demanded from the expert.

Again let M = {M;, ..., M, } be the set of axes. The expert manually defines a
layout by specifying a function p : M — NxN, which defines a two-dimensional
position for each axis. The similarity of two axes M,, M, is defined by:

Simaxes(Mx/ My) = 7||Mx/ My||2 (C9)

where ||x, y||> denotes the Euclidean distance between the positions of x and y.
The following points distinguish this knowledge source from the previous one:

o The graphical definition of similarities is closer to the mental model of the user
than is the definition of a classification function c.

e By placing n objects, % similarities are defined.

A difficulty of the graphical similarity specification is that by placing one axis, the
distances to n — 1 other objects must be taken into account. To simplify this layout
problem, only object distances up to certain maximum distance are considered. For
this, the layout is clustered in a first step, say, groups of closely related objects are
identified.

Remarks. Observe the duality to clustering by multi-dimensional scaling, where the
similarity assessments between the objects form the starting point (16,(103). The ap-
proach of this section goes the other way round: Having a clustering in the form of
classes or a two-dimensional plot, one is able to construct a similarity measure.

Learning and Results Input for the learning step was a database of the form
with rated axes pairs (d(My), d(M,), sitfaxes(My, My)), which was used to find values
for the weights w; in the similarity function (C.6). Learning was done by applying
least-square regression and by means of neural networks. Details can be found in
(21,234,302, [112).

The described acquisition methods have been implemented and applied to the
learning of similarity measures for fluidic axes. As the subsequent results show, us-
able similarity measures could be constructed from both knowledge sources.

o Knowledge Source 1. 67 fluidic axes were classified into 9 classes by a domain ex-
pert; the similarity measure was constructed according to Equation (C8). The
error rate on the learning set was 12%, while the error rate on a test set was
16%f The error rate was defined as the percentage of axes that were misclassi-
fied when using the learned similarity measure as classificator.

5The learning set comprised the axes used for the learning process; the axes in the test set have
not been used for learning.

190 MODEL REFORMULATION

o Knowledge Source 2. A graphical arrangement of circuit documents, which has
been proposed by the domain expert, was analyzed and similarity measures
were constructed. To evaluate the quality of the learned measures the Mean
Square Error (MSE) was used:

Z (Slmaxeﬁ(Mle) Slmaxes(Mx’ My))z
My, My

where sim.,,. denotes the similarity as predicted by the learned similarity mea-
sure, while sim;,,, denotes the empirical similarity measure defined by
the manual layout. On a test set, an MSE of 0.22 has been achieved. Since
the similarity values are from the interval [0,1] the MSE defines an average
variation from the empirical similarity.

More on Learning A closer look to the regression method revealed that about
20 features played a predominant role; half of them represented phase orders. Impor-
tant phase descriptions were “precision”, “distance”, and “number of phases”; relevant
phase orders were “constant-drive after constant-drive” and “position-drive after hold-
position”. An F-Test stated a significance of 0.001 respecting the above regression,
thus precluding random influences.

The R?-value of the regression, which measures the amount of explained varia-
tion, was 0.2. Say, the regression explained the observation only partially. To improve
this result a more complex similarity function than Equation can be employed.
This makes sense since domain experts allege dependencies between the axes’ fea-
tures. The following similarity measure considers also a possible interactivity be-
tween axis features:

p
Sitaxes(My, My) = wo + Z wj - |f-(-

i
=1

i"u fi |‘f/ f ‘

HM'@.

where wy, w;, w;; € R, £ € d(M,), and f*’ € d(M,). The regression based on this
function improved the R? value to 0.49, stating that dependencies between features
have been captured.

C.2 LEARNING SIMILARITY MEASURES 191

Synopsis

Problemclass Acquisition of similarity knowledge for demanding analysis and
synthesis tasks in fluidic engineering.

Problem Solving Method Clustering; regression of weight vectors.

Source Model Collection B of discrete event models of the form B(F, M) = (Fy,
Fz, V, A) defined over (F, M) (models of fluidic function). The elements in M are
called fluidic axes; the set M comprises all fluidic axes in B; i.e., it is the set union
of the M in (F, M), (F, M) € B. A model of fluidic function in B is characterized as
follows.

o Fidelity Level F. Selected fluidic quantities.
o Granularity Level M. Fluidic axes; | M| is the number of axes.

o Input F. The input variables f € F;; prescribe extrinsic forces and events at the
fluidic axes.

e State Prescription Function A. The state variables f € Fx, |Fx| = | M|, define a
vector of phases; a phase is a symbolic description of a simple fluidic function
such as fast-drive or hold-pressure. The number of states in X’ is finite. A consists
of an external and an internal state prescription function and specifies the dis-
crete phase transitions. The dimension of A’s domain is bound by 3 - | M| +1,
resulting from | M| state variables, 2 - | M| inputs, and the time base.

o Behavior Model Processing. Discrete event simulation.

Reformulated Model 75 is unaltered.

o Similarity Measure. A function simgys : MxM — [0;1], which assigns two
fluidic axes a similarity value.

Knowledge Source Classification of fluidic axes by a domain expert; the classifi-
cation can be given as a partitioning of M or as two-dimensional arrangement of its
elements.

192 MODEL REFORMULATION

Model Envisioning

Model envisioning means information visualization or visual data mining respecting
models of technical systems; it can be considered as a new kind of problem solving
method. In particular, we summarize methods under this term that prepare structure
models in a graphical way in order to provide insights or to simplify the access when
dealing with large systems. See Page[53] Section[2.4], for a comparison to other model
construction approaches.

Model envisioning happens in several steps: structure model preparation, clus-
tering or identification, and graph drawing. Depending on the application, the im-
portance of these steps may vary. Typically, the result of an envisioning process yields
a platform for subsequent analysis, modification, maintenance, or acquisition tasks.

This chapter presents three applications where model envisioning has success-
fully been employed. Section[D.Tlshows how envisioning is used within the model
formulation of computer networks. In Section [D.Z] envisioning is employed to sim-
plify the understanding and maintenance of configuration knowledge bases, and
within Section[D.3] envisioning provides a strategy for the functional analysis of flu-
idic systems.

From the standpoint of the methods employed, the three sections emphasize
three different aspects. Section concentrates on graph clustering; in particular,
it introduces both a new measure for the evaluation of clusters and a new algorithm
for cluster detection. Section[D.2]uses clustering as well, but focuses on graph draw-
ing and classification. Section however, can be regarded as a domain-specific
graph matching problem, which is attacked by the combined application of design
graph grammars and shortest-path algorithms.

194 MODEL ENVISIONING

D.1 Supporting Model Formulation for LANs

The design and configuration of computer networks, such as local area networks
(LANSs), needs profound knowledge of the volume and the distribution of the net-
work’s traffic. While many tools support the recording and the statistical analysis of
inter-computer communication, e.g., the traffic can be measured on each data line
by so-called RMON-devices, there is no generic concept to form a global model from
this data. As a consequence, it is hard to formulate generic design or configuration
rules for such networks—although a lot of design decisions have to be met: Which
computers shall be bundled in a single virtual LAN? Where to place routers? Which
topology is preferable? Must the switching technology be upgraded?

In (265)/Stein and Niggemann suggest to tackle the mentioned model formulation
and analysis problems by purposefully rendering a network’s traffic graphs. The
idea is to use clustering techniques to envision the coherence between the measured
communication load and the underlying network structure (see Figure D).

Model envisioning Subsequent

tasks
%ﬁ

Computer network Traffic graph Clustered topology

Figure D.1. Model envisioning of a computer network is attained by creating and clustering the
network’s traffic graph.

The presented approach shall help to identify components that are bottlenecks
for the traffic, to detect critical network situations, or to identify shiftings in the com-
munication structure that may result from new users, new technologies, and new
tasks.

Note that the coherence between communication clusters and network clusters
can be expressed graphically, by using graph drawing methods to envision traffic bot-
tlenecks and critical network situations, as well as numerically. The latter is achieved
by comparing the routing effort within the original network structure and the struc-
ture proposed by the clustering.

D.1 SUPPORTING MODEL FORMULATION FOR LANS 195

Underlying Models

Definition D.1 (Structured Cabling Traffic Model) Let S be a network with struc-
tured cabling topology and let (F, M) be a model of S. A structured cabling traf-
fic model over (F, M) is a memoryless behavior model, B{F, M) = (Fy, Fz, V, A),
whose elements are defined as follows.

(1) F is the set of aggregated communication loads; M defines the nodes of the
network and corresponds to the network elements at the primary, secondary,
and tertiary level; |M; N M;| < 1 with M;, M; € M, i # j. In particular, let
M; C M correspond to the network elements at the tertiary level.

(2) For each M € M, there is an input variable in Fy, |Fy| = |M;|, that defines
the communication traffic generated by the user behavior at M; the set of
constraint variables, F;, defines the communication load between each pair
of adjacent nodes. No output variables are considered in this model, and
F = Fu (@] Fz.

(3) The sets Uy and Z designate the domains of the variables f in F. The domain
of each input variable is NIM:l, given a vector for the input variable of M;,
M; € M,, its j-th component defines the communication traffic in KByte/s from
M; to M;, M; € M;. The domain of each constraint variable is N, if M; N M; #
0, M;, M; € M, the constraint variable in M; N M; defines the communication
load in KByte/s between M; and M;.

U and Z designate the Cartesian products of the input variable domains and
the constraint variable domains. V comprises the domains of all functionalities.

(4) The set of state variables, Fx, is empty. The state prescription function A maps
an input vector u € U onto the global vector of communication loads, say, A :
Uu— =

(5) Based on Fy, a so-called traffic matrix A of dimension | M;|x|M,| can be de-
fined; A becomes an upper triangle matrix if communication directions are
neglected. Each element a;j, ;; in A defines the communication load between
two—not necessarily adjacent—nodes M; and M; in M,.

Example. Table [D1] specifies a model (F, M) of some network and the graph of
(F, M), which corresponds to the network topology. Here, the functionalities F are
{u1,u,u3,21,...,25} and the network elements M are {M, ..., Ms}.

The behavior model B(F, M) is defined as follows. The network elements M;,
M,, and Mj; form the tertiary level M;; the set of input functionalities, Fy, is
{u1,uz, u3}; the set of constraint functionalities, Fz, is {z1,...,25}. The domain U;
for a functionality u; € Fy is N?; the domain Z; for a functionality z; € Fz is N;
U .= U]XUZXU3, and Z := Z1>< ><Z5.

196 MODEL ENVISIONING

Objects in M
My = {uy,z1}
My = {uz, 22}
M3 = {u3, 23}
My = {z1,22,24}
Ms = {z3,25}
Mg = {z4,25}

Table D.1. Model (F, M) of a network with structured cabling topology (left-hand side) along
with the graph of (F, M) (right-hand side).

In this example, A(u) is defined as the cumulative load on (z1, . . ., z5) when rout-
ing the communication traffic of an input vector u € Uf along shortest paths, assuming
uniform edge lengths.

0 10 10
For instance, when given the input u = ((15) , (O) , (20)) , the value of
12 12 0

A(u) € Z is (47,57,54,54,54). Observe that A(u) defines the communication load
on the edges in the above graph of (F, M), generated at M;, My, and M.

The directed and the undirected traffic matrix representations of F; are given in
the tables below.

From: M; M, Ms; M, M, M;
To: M 0 10 10 M; O 25 22
M, 15 0 20 M, O 0o 32

M3 12 12 0 Ms; O 0 0

Definition D.2 (Peer-to-Peer Traffic Graph) Let B(F, M) = (Fy, Fz,V, A) be a struc-
tured cabling traffic model. The related peer-to-peer traffic graph of B(F, M) is an
undirected, weighted graph G = (V,E,w), w : E — N. V = {v1,...,0pm,}, E is
defined by means of the traffic matrix A:

{vi,0;} €E = w({v,v;}) =a;;+as, A a;+a;>0 = {v,0;} €E
Example. With respect to the above example, the peer-to-peer traffic graph G is de-

fined as follows. V = {v1,v2,v3}; E = {{v1, 02}, {v1, 03}, {02, 03} }; w({v1,v2}) = 25,
w({v1,v3}) = 22, w({va, v3}) = 32.

D.1 SUPPORTING MODEL FORMULATION FOR LANS 197

Envisioning the Model-Traffic-Coherence

Two new ideas are outlined in this subsection: (1) The clustering of traffic graphs
as a means to envision weak points in the design of computer networks, and (2) the
A-measure and its computation as a means for clustering weighted graphs

The rationale behind the former point is evident: Large edge weights (= high
communication loads) in a traffic graph G = (V, E, w) indicate a high degree of node
interaction. Clearly, the distance between such nodes in the network must be mini-
mum in order to minimize the routing effort, which in turn can be quantified by the
routing’s congestion and dilatation values (157).

A network topology should consider the communication behavior by placing
nodes with a high communication load close to each other.

@ StructureMinerl @ StructureMinerl

<11 3P Kl

Figure D.2. The left side shows the topology of a local area network; nodes at the tertiary level
that belong to the same switch are encircled. The right side shows a traffic graph of this network,
which results from a traffic recording; edges with a zero weight have been omitted.

Look at the local area network on the left-hand side of Figure[D.2l The encircled
nodes are sets of network elements at the tertiary level, and within each set the node
distances are minimum. In other words, the network topology defines equivalence
classes—say: clusters—within M, whereas the objective is to keep the inter-cluster
communication load as small as possible.

The right-hand side of Figure[D.2shows a traffic graph that has been constructed
from a traffic recording of the left network. The traffic graph contains the same nodes
like the network, but all edges belonging to the topology have been removed, while
edges indicating the communication loads between the nodes in M, have been intro-
duced.

Let us assume that the traffic graph could be clustered with respect to the mea-
sured traffic in such a way that the intra-cluster communication is maximized while

IThe section presents some results of the cooperative and pleasurable research with Oliver
Niggemann in the field of clustering and visualization.

198 MODEL ENVISIONING

the inter-cluster communication is minimized. Then the similarity between the clus-
tering of the network topology and the clustering of the traffic graph envisions the
adequacy of the chosen network topology. This similarity is called model-traffic-
coherence here.

@ StructureMinerl

Figure D.3. Clustering of the network topology from Figure[D.2(indicated by the node symbols
and by shaded areas on the left and right side respectively). Basis for the clustering is the
weighted traffic graph.

Figure[D.3 shows a traffic graph clustering according to the outlined philosophy;
for envisioning purposes the clustering is drawn within the network topology. Ob-
viously, there is a considerable incoherence between the traffic graph clustering and
the topological clustering; it gives rise to a reconfiguration of the network topology.

More information and other applications grounded on traffic visualization can be
found in (201). Observe that the most delicate question within the envisioning pro-
cedure was kept unanswered up to now: What are suited concepts and algorithms to
cluster weighted graphs in the desired way? This and related questions are addressed
now.

Clustering: The A-Measure Here as well as in the subsequent section, clustering is
used as a technique to identify structures within graphs. But what is structure? Our
common sense understanding of this term is reflected quite well by the following
definition.

“Structure defines the organization of parts as dominated by the
general character of the whole.”

Merriam-Webster Publishing Companyl, 199§

To quantify this descriptive definition for graphs, we have developed a new mea-
sure, called “weighted partial connectivity”, A, which has been presented in (265).
The weighted partial connectivity is defined for a decomposition—say, a clustering
of a graph G, and it is based on the graph-theoretical concept of edge connectivity.

D.1 SUPPORTING MODEL FORMULATION FOR LANS 199

Definition D.3 (Decomposition/Clustering, Cut, Edge Connectivity) Let G = (V,
E) be a graph with nodes V and edges EM

(1) C(G) = (Cy,...,Cy) is a decomposition (clustering) of G into n subgraphs
induced by the C;, if Ugec =V and C;NCjjz = (. The induced subgraphs
G(C;) are called clusters.

(2) cut(C) C E comprises the edges between the clusters.

CMf(C) = U {(Ui,v]') | (‘U,’,‘U]') EE,UiECi,U]'ECj}

C;,CjeC,i<]

(3) The edge connectivity A(G) of a graph G denotes the minimum number of
edges that must be removed to make G an unconnected graph: A(G) =
min{|E'|: E' C Eand G’ = (V, E\ E') is not connected|.

Definition D.4 (A) Let G be a graph, letC = (Cy,...,C,) be a decomposition of G,
and let A(C;) = A; designate the edge connectivity of G(C;). The weighted partial
connectivity of C, A(C), is defined as

1=1

Figure[D.4lshows a graph and three decompositions each of which is evaluated
with its weighted partial connectivity A. Obviously, a maximization of A(G) leads to
a clustering that resembles G’s structure—a fact which suggests the following defini-
tion.

Definition D.5 (A-Structure) Let G be a graph, and let C* be a decomposition of G
that maximizes A:

A(C*) = A" :==max{A(C) | C is a decomposition of G}

Then the contraction H = (C*(G), E¢+) is called A-Structure, or simply: structure
of G.

Remarks. (1) A key feature of the A-structure as a clustering criterion is its implicit
definition of a structure’s number of clusters. (2) The weighted partial connectivity,
A, can be made independent of the graph size by dividing it by the graph’s node

number |V|. The resulting normalized A value is designated by A = ﬁ “A.

2Concepts and definitions of graph theory are used in their standard way; they are adopted
from (158,1126).

200 MODEL ENVISIONING

A =2

A=A*=42+4.3=20

2R

AN=51+32=11

AN=32+21+32=14

Figure D.4. Three graph decompositions and their related A-values.

Operationalizing A-Maximization This paragraph presents a fast clustering algo-
rithm that optimizes the weighted partial connectivity A. The algorithm implements
a local heuristic and is suboptimal.

Initially, each node of a graph gets assigned its own cluster. Within the following
re-clustering steps, a node adopts the same cluster as the majority of its neighbors
belong to. If there exist several such clusters, one of them is chosen randomly. If
re-clustering comes to an end, the algorithm terminates.

=>
Figure D.5. A definite majority clustering situation (left) and an undecided majority clustering
situation (right).

The left-hand side of Figure[D.5]shows the definite case: most of the neighbors
of the central node belong to the left cluster, and the central node becomes a member
of that cluster. In the situation depicted on the right hand side, the central node has

D.1 SUPPORTING MODEL FORMULATION FOR LANS 201

the choice between the left and the right cluster. We now write down this algorithm
formally.

MAJORCLUST

Input. A graph G = (V,E).

Output. A function c : V — N, which assigns a cluster number to each node.
(1) n=0,t=false

(2) YveVdon=n+1,c(v) =nend
(3) while t = false do

4) t = true

(6) VYveVdo

(6) ¢t =iif [{u|{u,v} € EAc(u) =i}|is maximum
) if c(v) # c* then c(v) = c*, t = false

(8) end

(9) end

Remarks. (1) To avoid “chaining effects”, the choice point situations of the algorithm
must be treated randomly. This applies to Step Bl when selecting a node v € V, as
well as to Step [@, when several maximum clusters stand to reason to define a node’s
new cluster membership c*. (2) A re-clustering in Step[@is called a definite majority
decision, if and only if the maximum of |{u | {u,v} € EAc(u) = i}| is unique (cf.
the left-hand side of Figure[D.5).

Extension for Weighted Graphs. It is both useful and obvious to extend our structure
identification approach by introducing edge weights. The amount of the weight w(e)
models the importance of an edge e € E. The necessary prerequisite is a generalization
of A(C) by introducing the weighted edge connectivity A of a graph G = (V,E) as
follows.

A(G) = min{ > wle) | E C Eand G = (V,E\ E') is not connected }

ecE

In the same way the algorithm MAJORCLUST is altered: Every node v now adapts
the same cluster as the weighted majority of its neighbors, i. e., every neighbor counts
according to the weight—so to speak: the importance of the edge connecting it to v.
Graphs without edge weights can be understood as special cases of weighted graphs
with a constant weight function.

Theorem D.1 (Definite Decision Runtime of MAJORCLUST) The algorithm MA-
JORCLUST terminates after O(|E|) definite majority decisions.

Proof of Theorem. Let G = (V, E) be a graph, and let C(G) be a decomposition of G.
Moreover, k¢ : V — N defines the number of nodes adjacent to v that have a different
cluster membership, say, kc(v) = |{{v,w} | {o,w} € E,we V,c(v) # c(w)}|, and
Ke(G) = Soevke(v) defines the sum of all k¢-values for G. K¢(G) is connected to

202 MODEL ENVISIONING

the set of inter-cluster edges by the identity K;(G) = 2 - | cut(C(G))|, and obviously
holds the inequation K¢ (G) < 2 - |E| for every decomposition C'(G).

Let v € V be the node that will change its cluster membership in consequence of a def-
inite majority decision, and let {Cy, ..., Cx,} € C(G) designate the clusters adjacent
to v before the cluster change. Without loss of generality we assume the following
ordering of the adjacent clusters according to their sizes: |C1| > |Ca| > ... > |Cy,|.
If v is currently a member of cluster C; it follows that |C1| > |Cj|,j > 2, since v is
subject to a definite majority decision.

After v's move from cluster C; to Cy, K¢(G) is decreased by 2 - |Cy| and increased by
2-|Cj|, where 2 - (|Cy1| — |Cj|) > 0. Since initially K¢ (G) < 2-|E| holds, MAJORCLUST
must terminate after O(|E|) definite majority decisions. o

Recall that the above MAJORCLUST-algorithm permits “pathological” cases,
where the algorithm oscillates between two or more indefinite clustering situations.
Although such a situation is unlikely to happen, it does prohibit the specification of
a worst case runtime complexity. Corollary [D.I]circumvents this indeterminacy by
imposing an additional restriction.

Corollary D.1 (Runtime of MAJORCLUST) Assuming that MAJORCLUST termi-
nates if it comes to no definite majority decision for |V| steps, MAJORCLUST termi-
nates after O(|V| - |E|) steps.

Proof of Corollary. The proposition follows directly from Theorem [D.J1

Remarks. The restriction of the corollary poses no severe limitation for the transfer-
ability of the runtime considerations: Indefinite clustering situations can be averted
completely by adding a randomly distributed weight surcharge 5(e), e € E, to every
edge weight w(e). By constructing é sufficiently small with regard to the minimum
of the weight function w, the overall characteristic of the edge weight distribution
is not affected. This advisement and experimental results show the usability of the
algorithm for large graphs with several thousand nodes.

The algorithm’s greatest strength, its restriction to local decisions, is bound up
with its sub-optimality. In every step only a node’s neighbors are considered, re-
sulting in an excellent runtime behavior. On the other hand, by disregarding global
criteria like the connectivity, MAJORCLUST cannot always find the optimum solution.

Figure[D.6 exemplifies the behavior: The optimum solution for graph (a) is one
cluster, which is also the solution as found by MAJORCLUST. For graph (b), a split-
ting into the two clusters {v,} and V' \ {v1} is optimum. MAJORCLUST cannot find
this decomposition—working strictly locally, it behaves exactly as on graph (a) and
creates only one cluster.

D.1 SUPPORTING MODEL FORMULATION FOR LANS 203

(b)

N-value
(a) MAJORCLUST alve
resembles A-value 21 maximization
maximization e
=>
MAJORCLUST
clustering

Figure D.6. The local behavior of MAJORCLUST may lead to sub-optimum A-values.

Clustering: Comparison and Theoretical Considerations

This subsection outlines well-known clustering approaches (the interested reader
may delve in (122, 69), among others) and gives a performance comparison between
two representatives and MAJORCLUST. As well as that it presents an interesting the-
oretical contribution: By formulating the “strong splitting condition” a close relation
between Min-cut clustering and A-maximization is pointed out.

Existing clustering approaches can be qualified as working hierarchically or non-
hierarchically. Hierarchical algorithms create a tree of node subsets by successively
subdividing or merging the graph’s node sets. In order to obtain a unique clustering,
a second step is necessary that prunes this tree at adequate places.

Hierarchical algorithms can be further classified into agglomerative and divi-
sive approaches. The former start with each vertex being its own cluster and union
clusters iteratively. The latter start with the entire graph as a single cluster, which
is successively subdivided. Examples for divisive algorithms are Min-cut cluster-
ing or dissimilarity-based algorithms; typical agglomerative algorithms are k-nearest
neighbor or linkage methods. Non-Hierarchical algorithms subdivide the graph into
clusters within one step; examples are clustering techniques based on minimum
spanning trees (307), self-organizing Kohonen networks, or approaches which op-
timize a given goal criterion (18, 227,|231)).

A-maximization and MAJORCLUST can be qualified as non-hierarchical and ex-
clusive. MAJORCLUST quickly finds a—usually suboptimal—solution for the prob-
lem of A-maximization. Based on a set of randomly created graphs, Figure
contrasts MAJORCLUST’s runtime characteristic related to Min-cut clustering and
Kohonen clustering. More comprehensive analyses of MAJORCLUST are given in
(198, 1182).

204 MODEL ENVISIONING

Clustering Based on Nearest-Neighbor Strategies Nearest-neighbor clustering
operates by merging the two closest clusters; its widespread use results in several
variations (80,1252, 125, 69). The following qualitative comparison to MAJORCLUST
cannot take all existing variations into consideration.

(1) Nearest-Neighbor clustering, like all hierarchical algorithms, does not define
the (optimum) number of clusters. A-maximization implicitly defines both
cluster number and size.

(2) The greedy nature of nearest-neighbor methods (unlike as in MAJORCLUST,
nodes are never reassigned to another cluster) leads to so-called chaining ef-
fects (69).

(8) The transformation of the partitioning tree into a unique clustering results in
difficulties if clusters have strongly varying point densities or inter-cluster dis-
tances.

(4) Nearest-neighbor methods rely on distance information only and disregard
connectivity information. For weighted graphs this may lead to clusterings
which lack the human sense of esthetics, for unweighted graphs this may re-
sult in a failure to find any clusters.

Clustering Based on the Minimum Cut Min-cut clustering subdivides a weighted
graph recursively at its minimum cut (158, |304), which is the smallest set of edges
whose removal disaggregates the graph. Min-cut clustering can produce natural
clusterings but is bound up with several problems.

(1) It has to be predefined when a cluster should not be subdivided anymore.

(2) The computation of a graph’s minimum cut is expensive. Moreover, the mini-
mum cut is often not definite, resulting in a choice point situation when recur-
sively dividing the graph.

(8) Min-cut clustering tends to form clusters with a single point, thus lacking the
human sense of esthetics.

Kohonen Clustering This method defines a clustering of a weighted graph implic-
itly by centroid nodes (147, 21,(184): Each node belongs to its closest centroid node.
Initially, a number of centroid nodes is chosen randomly from the graph’s node set.
Then, by iteratively investigating all nodes, each centroid node moves into the cen-
ter of its cluster. The algorithm terminates when all centroid nodes possess stable
positions.

Aside from the difficulty of determining a useful number of centroid nodes, its
main restriction results from the behavior to create always centric cluster regions.

D.1 SUPPORTING MODEL FORMULATION FOR LANS 205

400 -

350 L

300 7

250 Vi

200 ve

sec

150 L

100

50 L

0 50 100 150 200 250 300 350 400 450 500
[El

= — - Min-cut Kohonen e MajorClust

Figure D.7. Experimentally determined runtime behavior between Min-cut clustering, Kohonen
clustering, and MAJORCLUST. The underlying graph data base contains about 1000 graphs
whose average degrees lie between 4 and 20.

Theoretical Considerations Different rules of decomposition, which are implied
by the A-structure clustering, are worth to be noted. They come into play if the
decomposition of C(G) of a (sub)graph G fulfills the property stated in the next defi-
nition.

Definition D.6 (Strong Splitting Condition (265)) Let G = (V, E) be a graph, and
let C(G) = (Cy,...,Cy) be a decomposition of G. C(G) fulfills the strong splitting
condition, if the following strict inequation holds:

A(G) < min{Ay,..., Ay}

Remarks. (1) Let A; designate the A-value of the trivial decomposition C;(G) of a
graph G, where C;(G) = (V). If for some C(G) the strong splitting condition is satis-
fied, the application of the proposed decomposition enlarges the A-value for G, i.e.,
A(C(G)) > Ajp. In this sense, the strong splitting condition can be designated as a
commensurate decomposition rule.

(2) Let G be a subgraph of some graph H, and let some decomposition C(G) of G
fulfill the strong splitting condition. Then the application of the C(G) raises the mean
of the clusters’ connectivity values A; in H.

(3) If for no decomposition C the strong splitting condition holds, G will be decom-
posed only, if for some C the condition |V|- A(G) < A(C) is fulfilled. This inequal-
ity establishes a necessary condition for decomposition—it is equivalent to the fol-
lowing special case of the structure definition: max{A({V}),A(C)} = A(C), since
AV = V] -AG).

206 MODEL ENVISIONING

Obviously does a graph decomposition according to the strong splitting condi-
tion follow the human sense when identifying clusters or structures in a graph, and
there is a relation to the Min-cut splitting approach, which is pointed out now.

Theorem D.2 (Strong Splitting Condition) Let G = (V,E) be a graph, and let
C(G) = (Cq,Cy) be a decomposition of G into two clusters. If C(G) fulfills the strong
splitting condition A(G) < min{A;, A,}, the application of C(G) results in a decom-
position at a minimum cut.

Proof of Theorem. Let C'(G) be a decomposition of G with |C'(G)| = 2 and C'(G) #
C(G), and let cut(C'(G)) be minimum. C’'(G) # C(G) entails that the decomposition
prescribed by C'(G) splits either C;, C,, or both. Since the respective edge connectivi-
ties A; and A, are strictly larger than A, every split of C; or C, must contain more than
A edges. Hence, cut(C'(G)) cannot be minimum. o

Remarks. If the strong splitting condition does not apply, an optimum decomposition
according to the structuring value need not be the same decomposition as found by
a minimum cut strategy. This is a consequence of the latter’s disregard for cluster
sizes. Figure demonstrates such an example. Here, C, refers to a clique with
x > 3 nodes. An optimum solution according to the weighted partial connectiv-
ity A, which is also closer to the human sense of esthetics, consists of one cluster
{v1,v2,v3,v4} and a second cluster C,. An algorithm that employs Min-cut splitting
does only separate v;.

Clustering according

Clustering according to A to the minimum cut

Figure D.8. Weighted partial connectivity (A-) maximization versus Min-cut clustering..

Observe that, as already pointed out, maximizing the weighted partial connectiv-
ity determines the optimum cluster number, while the minimum cut approach lacks
any criterion for the number of necessary division steps.

D.1 SUPPORTING MODEL FORMULATION FOR LANS 207

Synopsis

Problemclass Model formulation of computer networks.
Problem Solving Method No generic computer-automated method available.

Source Model Memoryless behavior model (Fy, Fz, V, A, A), defined over (F, M).

o Fidelity Level F. Aggregated communication loads, specified in KByte/s.

o Granularity Level M. Network elements, such as servers, clients, switches,
bridges, and hubs. M,; C M corresponds to the servers and clients at the
tertiary level.

o Input F; C F. Communication load caused by the user behavior at the network
elements in My; |Fy| = | M,].

e State Prescription Function A. Fx =) (memoryless). A maps an input vector
onto the global vector of communication loads.

o Order of Magnitude of the Application. Experiments have been performed with
| M| ranging from 100 to 2000.

Envisioned Model Clustering of a structure model S{F, M).
o Clustering. Definition of equivalence classes on the elements in M;.

o Model-Traffic-Coherence. Coherence between network topology and traffic clus-
tering. The coherence can be evaluated either graphically or numerically. The
latter is achieved by relating the congestion and dilatation values of the origi-
nal topology with those of the improved topology.

o Subsequent Tasks Enabled. Traffic analysis, identification of bottlenecks, network

administration, network reconfiguration.

Knowledge Source Based on A, construction of the weighted peer-to-peer traffic
graph G. Clustering of G by MAJORCLUST and A-maximization.

208 MODEL ENVISIONING

D.2 Maintaining Knowledge Bases

The maintenance and analysis of knowledge bases is of central importance when
tackling knowledge-intensive tasks. This section introduces envisioning concepts
that have been developed to simplify the access and the handling of knowledge bases
as they are used within resource-based configuration.

The resource-based configuration paradigm is a successful approach in the field
of automatic configuration of technical systems. It is based on the resource-based
component model, wherein the components of the interesting technical system are
described by simple property constraints (103). Section Bl of this work looks at
resource-based models from the compilation point of view and gives a detailed in-
troduction to this configuration approach.

Resource-based configuration obtained its popularity since it allows for the local
modeling of large systems: If a component description is modified or if a new com-
ponent is added to the knowledge base, it is not necessary to review the correctness
of all possible configurations. The constraint modeling paradigm guarantees that a
configuration that fulfills the resource constraints is technically sound.

However, with increasing complexity of the system to be configured, knowledge
acquisition and knowledge management, such as comparative analyses between sev-
eral knowledge bases, becomes a challenge. In this connection, the visualization of
configuration knowledge bases in the form of component graphs is an interesting
approach: By automatically identifying and rendering the modules and the assem-
bly of the system to be configured, the knowledge engineer can be supported within
reengineering and maintenance tasks. See Figure for an overview of the envi-
sioning process.

Model envisioning Subsequent
tasks
Resource- Preparation [—
based AT
X
model ".

Component graph Clustering Layout

Figure D.9. Model envisioning of a resource-based model is attained by creating, clustering, and
drawing the model’s component graph.

D.2 MAINTAINING KNOWLEDGE BASES 209

Underlying Models

Definition D.7 (Component-Resource Graph) Let (F, M) be a model. A component
resource graph over (F, M) is a directed, bipartite graph (V, E) whose elements are
defined as follows.

(1) V = Vo U Vg where Vo N Vg = 0 and |V| = |M|. The nodes in Vs and
Vi correspond to the objects and resources in M respectively (see Section[B.1]
Pagell24] for an introduction to the underlying ideas).

(2) The semantics of an edge (v,,v,) or (vr,0,), v, € Vo, v, € Vg is as follows.
Object O, corresponding to v,, supplies (demands) resource R corresponding
to vR.

Remarks. This definition is similar to Definition Page where component-
resource graphs were already introduced. In contrast to the former, this definition
does not rely on a behavior model.

Example. The component-resource graph (V, E) in Figure [D.10] belongs to a model
with four components and four resources. V = Vo U Vg, with Vo = {vo,, vo,, vo,,
vo,} and Vg = {vg,, Ur,, Ur,, Ur, }; the set of edges, E, may be read of the figure.

@—» IE' O supplies R @
@ <—|E| O demands R

Figure D.10. Component-resource graph of some model (F, M). O; € Vy, for instance, supplies
R; and R4 and demands nothing.

Definition D.8 (Component Graph) Let (F, M) be a model with the component-re-
source graph G = (Vo U Vg, E). G becomes a component graph G' = (V',E’, o) by
deleting from G the node set Vi and by introducing for each r € Vi short cut edges
between all nodes incident to r that are connected by a directed path in G:

V/
El

V\ Vg,
{(v,w) | (v,7),(r,w) EE,r € Vg}

The labeling function o : E' — X labels the edges in G’ according to the resources
ReR,RCM.

210 MODEL ENVISIONING

Remarks. Note that a component graph is closer to the structural set-up of a technical
system and thus is better suited for envisioning purposes than is the component-
resource graph. Also note that the directional information of the edges is preserved.
Figure[D.IT shows the component graph of the previous example.

/ Rz_——/
Oy presumes O Ry—

Figure D.11. The figure shows the component graph to the component-resource graph from Fig-
ure the latter is shown gray in the background.

Envisioning Resource-Based Models

The envisioning of resource-based models is done by generating, clustering, and
drawing of the respective component graph.

Generating the Component Graph The design graph grammar G = (I, P) be-
low transforms a component-resource graph into a component graph. Note that this
transformation must consider the multiple supply and demand of resources, which
can lead to the introduction of O(|Vp|?) new edges. £ = {0,s,d,A,B,C,D}, P con-
tains six rules, T — (R, I): two resource encoding rules, two gathering rules, and
two object combination rules; the first of each is specified formally while the graph-
ics shows both of them.

(1) T=(Vp,Eror) = ({1,2},{(L2)},{(1,0), (2, A)}
R = (Vi Ex,ox) = ({3,4,5), {{3,4}, {4,5}}, {(3,0), (4,5), (5, 4)})
I'={((B,0),(B,0)), (B, A), (B, A))}

o A o s A
~O0—=0~ = ~O0—0—0-
o A o d A

D.2 MAINTAINING KNOWLEDGE BASES 211

(Vr, Er,or) = {({1,2,3},{{1,3},{2,3}},{(1,5),(2,5), (3, A)})
(V,Er,0%) = ({4,5},{{4,5}},{(45), (5, 4)})
= {((B,s),(B,s)), ((B,A),(B,A))}

S

T =
R =
I

oo =
S e

(3) T=(VrEror)= ({1,234}, {{1,2},{2,3},{3,4}},
{(1,0),(2,5),(3,A),(4,d)})
R = (Vg,Egr,0r) = ({5,6,7,8,9},{{5,6},{7,8},{8,9}},
{(5,0),(6,d),(7,5),(8,A),(9,4), ({56}, A)})
I'={((B,0),(B,0)),((C,s),(C,s)), ((D,d), (D,d))}

The edge labels represent the resources that are shared between adjacent nodes,
say, components. It is plausible that different resources establish different connection
strengths between components, and that domain knowledge can be used to define an
order amongst the resources in ® C M.

Within the resource-based component models we divide the resources into the
four classes listed in Table[D.2) The connection strength (1 = weakly connected, 4 =

strongly connected), given in the third column, is used to define a weight function on
the edges of the component graph.

212 MODEL ENVISIONING

Connection Technical interpretation Strength
presume(01,07) 01 needs 0, without explicitly using a resource 1
simple(o1,07) 01 uses a resource of 0, 2
plug-in(o1,07) 01 uses a resource of 0, and is connected to 0, 3
slot(01,07) 01 uses both a resource and place within 0, 4

Table D.2. Connection types, their technical interpretation in the domain, and a number
indicating the characteristic connection strength.

Clustering To come straight to the point, the clustering of the component graph
is accomplished by A-maximization, which is approximated with MAJORCLUST (see
Section[D.] Page[199). The remainder of this paragraph explains the rationale behind
the clustering of structure models and underpins the adequacy of A-maximization.

The use of clustering methods to render the structure model of a technical system
relies on the following paradigms (cf.[265, pg. 124).

(1) Modular Character. The system can be decomposed into several modules or
functions such that each element of the system (say, each node of its component
graph) belongs to exactly one module.

(2) Connectivity. Modules are defined implicitly, merely exploiting the graph-
theoretical concept of connectivity: The connectivity between nodes assigned
to the same module is assumed to be higher than the connectivity between any
two nodes from two different modules.

Remarks. Point 1] reflects hierarchical or decentralization aspects of a system or an
organization. Point[2]is based on the observation that the elements within a module
are closely related; the modules themselves, however, are coupled by narrow inter-
faces only. A similar observation can be made respecting organizational or biological
structures. These structuring paradigms may not apply to all kinds of systems—but,
for a broad class of technical systems they form a useful set of assumptions.

The narrow-interface-property of PointRlsuggests the following definition for the
quality of a clustering C (see Page for the definition of a clustering and its cut).

Definition D.9 (Quality of a Clustering) Let G = (V, E) be a graph. The quality of

a clustering, q(C), is defined as the ratio of the cluster density, d(C), and the cluster

connectivity, ¢(C).
d(C)

q(C) = Q) where d(C) =

_ Jeut(C)]

[E| — | cut(C) _ |
]

and ¢(C)

14
Experiments have shown that A-maximization resembles a maximization of 4(C).

Because of the involved graph properties and numerical effects that cancel each other,

D.2 MAINTAINING KNOWLEDGE BASES 213

this behavior cannot be proved in its generality for arbitrary graphs. Even if a com-
parison of A-maximization and g-maximization is restricted to clusterings with a con-
stant number of clusters, no strict dominance can be observed.

Example. Figure [D.I2]shows for three similar graphs two clusterings C; (left) and C,
(right) with |C1| = |C,| = 2. While A(C;) < A(C,) holds within all cases, the g-
values develop irregularly: q(C1) < g(C) in Case 1, g(C1) = q(C,) in Case 2, and
g(C1) > q(C;) in Case 3.

()]

A=B\; +4\,=5+8=13 A=4N; +3),=12+6=18

Figure D.12. Top down: Each line shows a graph with two clustering alternatives (left and right)
and the respective A-values.

The reason for the divergent behavior is that the A-value considers a density
distribution by reckoning up individual cluster densities, while the g-value relies
on a single density mean. This shows the supremacy of A-maximization over g-
maximization. Note that clustering based on a graph’s minimum cut (see Page[204)
does also consider individual densities, but treats only two clusters at the same time.
A-maximization, on the other hand, is not restricted to a fix cluster number but de-
termines the cluster number implicitly—a fact that makes A-maximization superior
to Min-cut clustering as well.

Component Graph Drawing Drawing a clustered component graph happens
within two steps: Cluster arrangement and drawing subgraphs in the clusters. The
former step is accomplished by a simulated annealing optimization whose evaluation
method aims at a minimization of the entire layout area but penalizes the intersection
of cluster boundings. Details can be found in (200).

For the graph drawing step a circular layout algorithm proved to be first choice.

214 MODEL ENVISIONING

B StructureMiner1 10l =|
1 2
r]
. n
f J m
S 3
P
u n ;‘\“\~;\;
b :
jI/
v
L] -
1N H

Figure D.13. The component graph of the knowledge base for the configuration of telecommu-
nication systems.

This algorithm first constructs a minimum spanning tree and defines the center of
this tree as the new root (186). The nodes are placed in concentric circles around
the center node while each layer of the tree forms its own circle (55). The runtime
complexity O(|E| - log|E|) is bound by the minimum spanning tree computation.

The Figures[D.13 and [D.14] depict knowledge base envisioning examples: They
show component graphs of an original knowledge base that is used for the resource-
based configuration of telecommunication systems. The presented layouts have been
computed according to the mentioned principles. The snapshots were created with
the STRUCTUREMINER system, which has been developed by m (198) and
which contains the mentioned as well as several other layout algorithms. Note that
due to the lack of color, fading features, and interactive zooming the printed layouts
must stay behind their screen counterparts in the STRUCTUREMINER program.

Component Graph Classification Envisioning knowledge bases does not only re-
late to lucid graph layouts but is a collective term for various knowledge base man-

D.2 MAINTAINING KNOWLEDGE BASES 215

@ StructureMinerl @ StructureMinerl

- -

K1l v 4 K1l v

Figure D.14. The left snapshot shows the largest cluster of the above knowledge base. The
right snapshot renders the same cluster but shows only connections of the types “plug-in” and
“slot”.

agement methods. One such method is called “component graph classification” here.
The method is intended to support the comparative analysis when several knowl-
edgebases are given, which stem, for instance, from the same domain, from modeling
variants of the same technical system, or from different points of time in a knowledge
base’s life cycle. Among others, comparative analyses play a role within configura-
tion problems.

@ StructureMinerl

@ StructureMinerl

T
Analog
Dialing

T
Dialing
Extensions

T
Base
Module

-

I
K1l A Universal
Adapters

Figure D.15. The figure illustrates component graph classification: Between two configuration
knowledge-bases, which describe telecommunication system variants, the same technical mod-
ules are identified and rendered in a similar way.

Figure[D.I5 shows two component graphs, which originate from the configura-
tion knowledge bases of two similar technical systems. By component graph classi-
fication it becomes possible to contrast those parts of the system that represent the
same module, or that resemble each other with respect to their function.

The classification of a component graph G is a matter of similarity assessment

216 MODEL ENVISIONING

for the clusters found in G—each of which is represented by a subgraph H, of G, x €
{1,...,k}. The characterization of a subgraph H in turn is reduced to a p-dimensional
vector of graph features d(H) listed in Table[D.3] say, d(H) = (fi,..., f,) € R?. Ob-
serve that the features are independent of the domain.

Feature

number of nodes

number of edges

minimum/maximum/average node indegree
minimum/maximum/average node outdegree
minimum/maximum/average distance between nodes
diameter

number of biconnected components

edge connectivity

number of clusters found by MAJORCLUST

Table D.3. Graph features chosen for the cluster similarity assessment.

We used regression to construct for each cluster x € {1,...,k} a classification
function ¢, : R? — {1,...,k}, which maps a feature vector d(H) of an arbitrary
graph H onto [0;1]. A value of ¢,(d(H)) = 0 indicates that cluster x and the cluster
represented by H are not similar, while ¢,(d(H)) = 1 stands for a very high cluster
similarity. The function c, of a maximum similar cluster respecting a feature vector
d(H) fulfills the inequation c, (d(H)) > c,(d(H)),x = 1,..., k. Figure[D.I@lillustrates
the classificator.

Identified
cluster

@ Graph feature i

Linear combination for cluster x

Figure D.16. For each of the k clusters of a component graph a classification function c is con-
structed, which maps a graph feature vector (fi, ..., f,) onto [0;1].

For this kind of direct classification a linear model for the functions ¢, proved to

be sufficient (10):
Cx(flr---rfp):UJO"F z w;‘j'fj, x=1,...,k

1<j<p

The weights w;; are computed by means of k multiple linear regressions but could
be learned using a neural network approach as well (302, 21, 226). Input for the

D.2 MAINTAINING KNOWLEDGE BASES 217

regression of a function c, are vectors (d(H),v), where v = 1 if H represents the
cluster x and v = 0 otherwise.

In our knowledge base example (see Figure[D.I3land Figure[D.T5), regression was
performed on a training set with 42 clusters. The discrimination quality of the learned
functions was verified with 5 test sets containing between 16 and 22 clusters: The
classification error was less than 16%. In other words, in most of the given knowledge
bases (each describing a different system) it was possible to identify those modules
that play a similar technical role.

Graph Drawing: Other Methods

A variety of methods has been developed to draw graphs nicely; most of them pur-
sue a categorical approach: They try to arrange a graph according to a particular
scheme, paradigm, or philosophy, such as hierarchical leveling, attracting forces, or
recurring resemblances (280, 220, |60, [86, 128, 248, 281, 303). A categorical approach
can produce excellent layouts if a graph is biased towards some layout paradigm,
and if this property of the graph is actually detected.

Without implying a graph structure, the layout of a graph can be defined by a
quality measure, g, that captures a variety of esthetics criteria. Nevertheless, depend-
ing on g and the graph size, the maximization of g establishes an extremely difficult
optimization problem, which can rarely be solved efficiently.

Recent graph drawing developments arm up layout algorithms by the exploita-
tion of cluster information: A graph is divided into subgraphs, the so-called clusters,
which can be laid out rather independently from each other. Our graph drawing
approach of the previous subsection can be seen as a precursor of these develop-
ments (199).

= structureMiner1 = structureMiner1

Figure D.17. The left snapshot shows a random layout of the “base module”-cluster of Fig-
ure [D.T4} the right snapshot shows the same cluster layouted by means of a spring-embedder
algorithm.

218 MODEL ENVISIONING

Good overviews on graph drawing algorithms can be found in (282, 55). Their
pros and cons with respect to visual structure mining have been investigated by us
and are discussed amongst others in (198). A hierarchical leveling algorithm (280),
for instance, is suited well when component-resource graphs instead of component
graphs shall be envisioned (200).

Finally, we present in Figure [D.I7] (right-hand side) a layout of a part of the
knowledge base example, generated with the well-known spring embedder algo-
rithm (128). This algorithm belongs to the class of “force-directed” layout algorithms
that produce acceptable layouts for a wide range of graphs. Force-directed algo-
rithms model a graph as a set of rings (= nodes) connected by springs (= edges). The
nodes are placed in some initial state and the springs move the nodes toward a min-
imum energy state. This energy is reduced by solving a partial differential equation
for each vertex. Each vertex is repositioned in turn until the energy goes below some
threshold.

Synopsis

Problemclass Maintenance of Knowledge Bases.
Problem Solving Method No generic computer-automated method available.

Source Model Structure model S(F, M) of a resource-based model, defined over
(F, M) (cf. Section[B]], Page[136).
o Fidelity Level F. Aggregated physical properties.

o Granularity Level M. Definition of components, O C M, and resources, R C
M.ONR=0,0UR =M.

o Order of Magnitude of the Application. |O| ~ 100 and |R| &~ 200; the size of
a particular resource R € R varies from 1 (specialty) to |O| (ubiquity). On
average, resource size and component size are of the same order of magnitude
and smaller than 20.

Envisioned Model Graph layout of the clustered component graph of S(F, M).

o Clustering. Definition of equivalence classes on the elements in O, which cor-
respond to subsystems or modules.

o Layout. Clear arrangement of clusters and drawing of all components and con-
nections. Graphical emphasis of different component connections, which may
be faded in or out.

o Subsequent Tasks Enabled. Creation of new knowledge bases, comparative anal-
ysis of knowledge bases, maintenance of components, technical analysis, iden-
tification of delivery bottlenecks.

D.2 MAINTAINING KNOWLEDGE BASES 219

Knowledge Source Classification of resources respecting connection strengths.
Clustering of component graph by A-maximization due to MAJORCLUST; drawing
by a circular layout algorithm. Identification of equal clusters (modules) by a graph-
theoretical similarity assessment.

220 MODEL ENVISIONING

D.3 Analyzing the Structure of Fluidic Systems

The analysis and design of fluidic control systems is a complex and time-consuming
task that, at the moment, cannot be automated completely. Nevertheless, important
subtasks like simulation or control concept selection can be efficiently supported by
a computer. Prerequisite for a successful support is a well-founded analysis of a
fluidic system’s functional structure. The functional structure shows the fundamental
modes of action of a circuit by isolating the different tasks (functions) the plant has
to fulfill. It represents some kind of qualitative system description. Key elements
within the functional structure are (1) the so-called “fluidic axes”, defined below and
exemplified in Figure and (2) the couplings between several axes, which are
introduced later on.

Definition D.10 (Fluidic Axis) A fluidic axis both represents and fulfills a function D
of an entire fluidic plant. The axis defines the connections and the interplay among
the working, control, and supply elements that realize DA

= e

Figure D.18. The figure depicts drawings of five fluidic (hydraulic) axes for different functions
and of different complexity.

This section shows how the functional structure of a fluidic system can be ren-
dered automatically, that is to say, envisioned. The envisioning process relates to
graph theory in first place and is sketched out in Figure[D.19]

Model envisioning Subsequent

tasks

Fluidic circuit Fluidic graph Axes scheme

Figure D.19. Model envisioning of a fluidic circuit means to render the functional structure. It is
attained by identifying the circuit’s axes along with their couplings in the fluidic graph.

3The same definition is also given in Section which deals with the automated design of
fluidic systems.

D.3 ANALYZING THE STRUCTURE OF FLUIDIC SYSTEMS 221

In this place we do not engage into the benefits of a structural analysis; related
information can be found in (271}, 288). Also note that the examples used here are
taken from the hydraulic domain, but the envisioning methodology can be applied
to pneumatic systems as well.

Underlying Models and Coupling Types

Definition D.11 (Corresponding Graph of a Fluidic System) Let S be a fluidic sys-
tem and let (F, M) be a model of S. The corresponding (fluidic) graph G(S) of S is a
structure model (V, E, o) over (F, M); it is defined as follows.

(1) F is the set of variables decribing physical properties of S, such as pressures,
flows, velocities, forces, etc.

(2) M is the set of fluidic components used within S and can be partitioned into
foursets, W,C, S and A. W comprises the working elements such as cylinders
and motors, C comprises the control elements, i.e., the directional valves, S
comprises supply elements like pumps and tanks, and A comprises auxiliary
elements such as filters.

(3) 0:V — {w,c,s,a,i} is a labeling function. It assigns each node v € V a label
from {w,c, s, a}, indicating the membership of its related component M, € M.
If two components share a control functionality, the associated edge in E is
labeled i (information exchange). Note, since G(S) is a graph of the model
(F, M) there is a bijective mapping between M and V (cf. Definition [2]]
Pagel26).

Figure contrasts a hydraulic circuit with its corresponding graph.

Working element

.................. T m Control element

Auxiliary elements

Supply elements

Figure D.20. Hydraulic circuit (left) and its fluidic, say, hydraulic graph (right). Control lines are
shown dashed.

222 MODEL ENVISIONING

A Hierarchy of Coupling Types The recognition of the fluidic axes does not suf-
fice to fully analyze a system. Within the diagnosis context, for instance, knowl-
edge about the relationships between individual axes is essential for a precise state-
ment concerning a faulty component, since a defect within one axis may spread its
faulty behavior throughout the entire plant. Similar considerations apply to simu-
lation tasks, design problems, or the development of a control strategy for a crucial
working element. Thus, it is necessary to investigate the interdependences between
the axes within a functional circuit analysis. The following coupling types have been
worked out by|Stein and Vier (271)).

o Type 0 (No Coupling). Fluidic axes possess no coupling if there is neither a
power nor an informational connection between them.

o Type 1 (Informational Coupling). Fluidic axes which are connected only by con-
trol connections are called informationally coupled. Notice that control lines
can be realized by means of electrical, hydraulic, or pneumatic lines.

o Type 2 (Parallel Coupling). Fluidic axes which possess their own access to a
common power supply are coupled in parallel.

o Type 3 (Series Coupling). A series coupling connects fluidic axes whose power
supply or disposal is realized via the preceding or following axis.

o Type 4 (Sequential Coupling). A sequential coupling is given, if the performance
of a following axis depends on the state variables, e. g. the pressure or the po-
sition of the preceding one in order to work in a sequence.

In order to facilitate an automatic classification of the above coupling types, a
precise mathematical formulation must be developed. It is given in the following
definition and relies on the concept of fluidic graphs.

Definition D.12 (Coupling Types) Given is a model (F, M) of a fluidic system S
containing two subcircuits, A, B, that realize two different fluidic axes. Let G(S) :=
(V,E, o) be a fluidic graph of S, and let G(A) := (V4,E,) and G(B) := (V5, Eg) be
subgraphs of G(S) corresponding to the axes A and B.

e Type 0 (No Coupling). If G(S) is not connected, and if G(A) and G(B) are sub-
graphs of different connected components in G, then A and B are not coupled.

o Type 1 (Informational Coupling). Let E' = {e | o(e) = i} be a set of edges
associated with control lines in S. If G’ := (V, E \ E') is not connected, and if
G(A) and G(B) are subgraphs of different connected components in G', then
A and B are informationally coupled.

o Type 2 (Parallel Coupling). Letv, € V4 and v, € Vi, v, # vy, My, My, €C, i. €., 0,
and vy, are associated with control elements. Moreover, let v, € V be associated
with a supply element M, € S. Then A and B are coupled in parallel if for each
node vy, associated with a working element M,,, € W, a path P := {v;,...,v,}
exists such that the following conditions hold.

D.3 ANALYZING THE STRUCTURE OF FLUIDIC SYSTEMS 223

(1) Pn{vg,vp} ={va} = v €V,
2) Pn{v, o} ={p} = v, €V)

=

Figure D.21. Circuit with two axes coupled in parallel (left) and circuit containing hydraulic axes
coupled in series (right).

e Type 3 (Series Coupling). Letv, € V4 and v, € Vi, v, # vy, My,, My, €C, i.e., 1,
and v, are associated with control elements. Moreover, let v; € V be associated
with a supply element M,, € S. Then A and B are coupled in series if there
exists a node v, associated with a working element M,, € W, such that for
each path P := {v;, ..., v,} the following condition holds.

(1) v,€P = v, €P.

o Type 4 (Sequential Coupling). Let be V4 # V. A and B are sequentially coupled
if A and B have no coupling of type0, ..., 3.

=

S

Figure D.22. Circuit containing sequentially coupled hydraulic axes.

Remarks. The engineering point of view: Axes of type 0 don’t have any physical
connection and can be investigated independently. Axes coupled in parallel are con-
trolled by their own control elements; if axes are coupled in series, at least one axis
controls the flow of all other axes (cf. Figure [D.ZI).

224 MODEL ENVISIONING

Envisioning the Functional Structure

Due to their inherent structure, the recognition of fluidic axes and their coupling
types within a system S can be solved with path search algorithms on G(S): Each
axis needs a pump, representing a pressure source, some valves along with addi-
tional auxiliary components for control purposes, and cylinders and motors which
represent the working devices responsible for the output. However, fluidic axes typ-
ically contain substructures that hinder a straightforward detection, and a three-step
envisioning procedure has been developed, consisting of graph preprocessing, axes
identification, and coupling type determination. Details may be found in (267).

Graph Preprocessing To reduce the complexity of G(S)—but, in first place, to
make axes identification possible at all, G(S) is simplified by means of merging, dele-
tion, and contraction rules. Figureillustrates the application of such rules.

= = I
<
S Ay
=2

D
A E[L w

Figure D.23. Simplification of a circuit by expanding T-junctions, stripping off branches, and
deleting loops. The left-hand side shows places where contraction rules are applied, the right-
hand side shows the use of merging rules.

The following design graph grammar provides a means to accomplish the pre-
processing of G(S). Let G = (X, P) be a design graph grammar for the structural
simplification of fluidic circuits where = = {a,c,s, A, B, C}, P := Peontraction U Prerging
is the set of graph transformation rules, T — (R, I), and is specified in the following.

(1,2) Contraction of Sequences. Contractible sequences divide into dead branches and
into auxiliary components connected in series with working or control ele-
ments (cf. Figure[[D.23] Case 1 - 3 respectively).

T = (Vr,Er,or) = ({1,2%,3},{{1,2},{2,3}},{(1, A),(2,a),(3,B)})
R = (Vr, Eg,0r) = ({4,5}, {{4,5}},{(4,4),(5B)})
I={((¢, 4),(C,A)),((C B),(CB))}

D.3 ANALYZING THE STRUCTURE OF FLUIDIC SYSTEMS 225

T = (Vr, Er,or) = ({1*,2,3°}, {{1,2},{2,3}},{(1,5), (2, A), (3,5)})
R = (Vk, Eg,0r) = ({4,5}, {{4,5}},{(4,5), (5, A)})
I={((B,A),(B,A))}

S A S S A

(3) Contraction of Loops. A circuit may contain cyclic structures or components
connected in parallel. These structures are not necessary for detection purposes
if they neither contain nor control a working element (cf. Figure[D.23 Case 4).

T = (Vr, Er,or) = ({1, 2}, {{1,2},{1,2}}, {(1,4), (2,0)})
R = (Vr Eg,0r) = ({3}, {},{(3,4)})
I={((A,a),(A,a))}

a a a

D = O

(4) Merging with Control Elements. The merging of auxiliary elements with control
elements is applied to auxiliary nodes of degree 3 and shown as Case 5 on the
right-hand side of Figure[D.23

T = (Vr,Er,or) = ({1,2},{{1,2}},{(1,¢), (2,0)})
R = (V& Eg,or) = ({3}, {},{(3,¢0)})
I'=A{((A,c),(A0)), ((Aa),(Ac))}

~O—O = O

FigurelD.24Ishows a part of a hydraulic circuit, the corresponding graph, and the
application of the two sequence contraction rules.

c
HHIX s a_ .,
G(S)
> a a
s s
c
a c
@ s () a) c
—=> a => s =>
s S
s

Figure D.24. Application of the sequence contraction rules for the circuit of Figure[D.23]

226 MODEL ENVISIONING

Remarks. The runtime complexity in the preprocessing is dominated by the algorithm
for loop detection, which can be assessed with O(|E|) (177).

Axes ldentification Identifying a fluidic axis means to search for a set of nodes in
the fluidic graph G(S) whose counterpart in the circuit realizes a particular function.
Each such set must contain a node labeled s and one or more nodes labeled w. More-
over, all components that also belong to the axis must lie on some path between the
working and the supply element. This observation suggests to employ Dijkstra’s and
Floyd'’s algorithms (177, 168) to investigate in the preprocessed fluidic graph all short-
est paths between nodes corresponding to supply elements and nodes corresponding
to working elements.

Each shortest-path run labels the edges in the form of a directed tree, which en-
codes a successor relationship between the nodes. Nodes that lie on the same path in
the directed tree define the components that belong to the same axis. The time com-
plexity for this axes identification procedureis O(|V|? - |E|) and is discussed in (271).

w

As

ANV

D
{

Figure D.25. The preprocessed circuit (left), its corresponding graph (middle), which is used to
indentify axes and couplings in order to construct the axes coupling scheme (right).

Coupling Type Analysis The analysis of coupling types requires the comparison of
supply paths between the working elements of the axes. If a circuit contains exactly
two axes, the coupling type can be classified with a search effort of O(|E|). Given
a circuit with n axes, possible couplings between all axes pairs must be analyzed.
Using a naive approach, the above search effort is carried out () € O(n?) times. If,
on the other hand, a circuit contains a lot of axes of only one coupling type, a linear
number of comparisons is sufficient.

In this connection the transitivity property of coupling types can be exploited.
E.g., given three axes, A;, A,, and A; and information on the couplings (A1, A;)
and «(A1, As), k €{0,...,4}. Then for the third coupling holds that k(A;, A;) >
min{k(A1, A;),«(A1, As)}. Stated another way, a weaker coupling is not possible
since the axes A; and Aj; are coupled indirectly via A, (cf. Figure[D.26).

Remarks. The above determination procedure is simplified within some respects. It
neglects, for instance, that identical axes must be identified as such and comprised to

D.3 ANALYZING THE STRUCTURE OF FLUIDIC SYSTEMS 227

Figure D.26. The couplings between axes are not independent from each other.

one single axis. Identical axes are composed from the same components, they have
an equivalent structure, and they are controlled by a single control element.

Case Study

When working with hydraulic engineering experts it became clear that a definition
of the term “fluidic (hydraulic) axis” must stay imprecise up to a certain degree: The
informal description “A fluidic axis realizes a subfunction of a fluidic system” leaves
a scope of interpretation—e. g., regarding the components which actually must be
count to an axis and which not. Thus a precise definition of the hydraulic axes anal-
ysis problem cannot be stated.

The consequences are: (1) A human expert has the final say whether or not the
result of an analysis algorithm is correct. (2) The result of an analysis algorithm must
not be absolutely correct or wrong but correct up to a certain degree.

Az, Ag: Roughing mill Ajp: Strip feed drive A4, Ag: 1St Finishing mill Ag, A;: 2nd Finishing mill

0 e o e

Ajs: Forging press

% E AL
A1, A3 Strip leveling device l@
M A14: Clamping cylinder

Fllol el

Figure D.27. Hydraulic circuit diagram of a cold-rolling plant.

Hg_

»>

We overcame the problems that result from this fuzziness by acquiring and en-

228 MODEL ENVISIONING

coding analysis knowledge direct from domain experts. Moreover, a library was built
up to prove the quality of our algorithms, which contains 160 hydraulic circuits of dif-
ferent size and complexity from various engineering applications. In the circuits of
this library more than 95% of the hydraulic axes are identified correctly by the algo-
rithms. The solutions of the remaining cases is not entirely off the track but contain a
small number of incorrectly assigned components.

Finally, as a representative example with respect to complexity and dimension,
Figure[D.27]shows the circuit diagram of a cold-rolling plant (299, 61). Here, more
than 20 actuators work the coiled steel strips. Figure[D.Z8 depicts the functional view
in the form of the global coupling scheme.

Sequential
coupling

coupling

-
Informational
coupling

Figure D.28. The global coupling scheme of the above cold-rolling plant.

coupling

Synopsis

Problemclass Functional analysis of fluidic systems.
Problem Solving Method No generic computer-automated method available.

Source Model Structure model over a model (F, M) of a fluidic system S.

o Fidelity Level F. Variables decribing physical properties of S, such as pressures,
flows, velocities, or forces.

o Granularity Level M. Fluidic components used within S.

o Order of Magnitude of the Application. Medium-sized up to large circuits, | M| €
[20,...,500].

D.3 ANALYZING THE STRUCTURE OF FLUIDIC SYSTEMS 229

Envisioned Model Isolated fluidic functions within the structure model.

o Fluidic Axes. A set of numbers {1,...,k}, denoting the k axes found, and
a mappin% from the components in M onto P({1,...,k}), the power set of

(1,...,k}

o Coupling Scheme. A rooted tree with k leafs, defining the coupling hierarchy
between the k axes. The inner nodes are labeled with a coupling type number
from {0,...,4}.

o Subsequent Tasks Enabled. Demand formulation and interpretation, smart sim-
ulation, optimization, control concept selection and evaluation diagnosis, di-
dactics.

Knowledge Source Definition of fluidic axes and coupling types by domain ex-
perts. Representative circuit library for test purposes. Graph-theoretical analysis of
structure models of fluidic systems with respect to both the definitons and heuristic
classification knowledge.

4Recall that a component can belong to several axes.

230 MODEL ENVISIONING

References

[1] Agnar Aamodt and Enric Plaza. Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches. AICOM, pages 39-59, 1994.

[2] M. Abderrahim and A. Whittaker. Mechatronics '98. In J. Adolfsson and
J. Karlsen, editors, Interfacing Autolev to Matlab and Simulink, pages 897-901.
Pergamon, September 1998.

[3] Simaan M. Abourizk, Jingsheng Shi, Brenda McCabe, and Dany Hajjar. Au-
tomating the Process of Building Simulation Models. In Proceedings of the 1995
Winter Simulation Conference (WSC 95), Proceedings in Artificial Intelligence,
pages 1032-1038, Arlington, VA, December 1995.

[4] A. Abu-Hanna and Y. Gold. An integrated, deep-shallow expert system for
multi-level diagnosis of dynamic systems. In John S. Gero, editor, Artificial Intel-
ligence in Engineering: Diagnosis and Learning, pages 75-94. Elsevier, Amsterdam,
1988.

[5] Sanjaya Addanki, Roberto Cremonini, and J. Scott Penberthy. Reasoning about
Assumptions in Graphs of Models. In Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence (IJCAI 89), pages 1324-1330, Detroit,
Michigan, August 1989.

[6] R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between
Sets of Items in Large Databases. In Peter Buneman and Sushil Jajodia, editors,
Proceedings of the 1993 ACM SIGMOD International Conference on Management of
Data, Washington D. C., May 1993. ACM Press.

[7] David Aha. Case-Based Learning Algorithms. In Ray Bareiss, editor, Proceedings
of the Case-Based Reasoning Workshop 1991, pages 147-158. Morgan Kaufmann,
1991.

[8] David Aha. Tolerating Noisy, Irrelevant, and Novel Attributes in Instance-Based
Learning Algorithms. International Journal of Man-Machine Studies, 1992.

[9] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and
Algorithms. Addison-Wesley, Massachusetts, 1983.

[10] Leona S. Aiken and Stephen G. West. Multiple Regression. Sage, New York, 1991.

231

232 REFERENCES

[11] Martin Anantharaman, Bodo Fink, Martin Hiller, and Stefan Vogel. Integrated
Development Environment for Mechatronic Systems. In Proceedings of the Third
Conference on Mechatronics and Robotics, Paderborn, Germany, 1995.

[12] D. Angluin and C. H. Smith. Inductive Inference: Theory and Methods. Com-
putational Surveys, 15(3):237-269, September 1983.

[13] V. Arvind, R. Beigel, and A. Lozano. The Complexity of Modular Graph Au-
tomorphism. In Proceedings of the Fifteenth Annual Symposium on Theoretical As-
pects of Computer Science, volume 1373 of Lecture Notes in Computer Science, LNCS,
pages 172-182. Springer, 1998.

[14] L. Auslander and S. V. Parter. On Imbedding Graphs in the Plane. Journal of
Mathematics and Mechanics, 10(3):517-523, May 1961.

[15] W.Backé and H. Murrenhoff. Grundlagen der Olhydraulik, Vorlesung. IHP, RWTH
Aachen, 1994.

[16] Klaus Backhaus, Bernd Erichson, Wulff Plinke, and Rolf Weiber. Multivariate
Analysemethoden. Springer, Berlin Heidelberg New York, 1999.

[17] Daniela Bailer-Jones. How can Mental Models, as a Model of Cognitive Reason-
ing, be Applied to Scientific Models? In Proceedings of the Seventh Annual Meeting
of the European Society for Philosophy and Psychology, Lisbon, Portugal, September
1998.

[18] Thomas Bailey and John Cowles. Cluster Definition by the Optimization of
Simple Measures. IEEE Transactions on Pattern Analysis and Machine Intelligence,
September 1983.

[19] R. Barletta and D. Hennessy. Case Adaptation in Autoclave Layout Design. In
K. J. Hammond, editor, Proceedings of the Case-Based Reasoning Workshop, pages
203-207. Morgan Kaufmann, 1989.

[20] Martin Bauer, Benno Stein, and Jiirgen Weiner. Problemklassen in Expertensys-
temen. KI — Kiinstliche Intelligenz: Forschung, Entwicklung, Erfahrungen, 3:13-18,
September 1991.

[21] R.Beale and T. Jackson. Neural Computing. Institute of Physics, Bristol, Philadel-
phia, 1994.

[22] Peter Beater. Entwurf hydraulischer Maschinen. Springer, Berlin Heidelberg New
York, 1999.

[23] Daniel G. Bobrow, editor. Qualitative Reasoning about Physical Systems. North-
Hollamd, Amsterdam New York Oxford, 1984.

[24] Gert Bohme. Fuzzy-Logik. Springer, Berlin Heidelberg New York, 1993.

REFERENCES 233

[25] A. Bonzano, P. Cunningham, and B. Smyth. Using Introspective Learning to
Improve Retrieval in CBR: A case Study in Air Traffic Control. In Proceedings of
the Second ICCBR Conference, Berlin Heidelberg New York, 1997. Springer.

[26] Heather Booth and Robert E. Tarjan. Finding the Minimum-Cost Maximum
Flow in a Series—Parallel Network. Journal of Algorithms, 15:416-446, 1993.

[27] Elisabeth Bradley and Reinhard Stolle. Automatic Construction of Accurate
Models of Physical Systems. Annals of Mathematics and Artificial Intelligence, 17
(1-2):1-28, 1996.

[28] Franz]. Brandenburg. On the Complexity of the Membership Problem of Graph
Grammars. In Manfred Nagl and Jiirgen Perl, editors, Graphtheoretic Concepts in
Computer Science, pages 4049, Linz, 1983. Trauner.

[29] Franz]. Brandenburg. Layout Graph Grammars: The Placement Approach. In
Hartmut Ehrig, editor, Graph Grammars and Their Application to Computer Science,
number 532 in Lecture Notes in Computer Science, LNCS, pages 144-156, Berlin
Heidelberg New York, 1991. Springer.

[30] Franz].Brandenburg. Designing Graph Drawings by Layout Graph Grammars.
In Roberto Tamassia and Ioannis G. Tollis, editors, Proceedings of the DIMACS
International Workshop of Graph Drawing (GD 94), Princton, number 894 in Lecture
Notes in Computer Science, LNCS, pages 416427, Berlin Heidelberg New York,
1994. Springer.

[31] Andreas Brandstaedt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes—A
Survey. Society for Industrial and Applied Mathematics, New York, 1999.

[32] Joost Breuker. Model-Driven Knowledge Acquisition: Interpretation Models.
Technical Report Exprit Project 1098, Memo 87, Department of Social Science
Informatics, University of Amsterdam, 1987.

[33] Axel Brinkop, Norbert Laudwein, and Ridiger Maassen. Routine Design for
Mechanical Engineering. In Proceedings of the Sixth Annual Conference on Innova-
tive Applications of AI (IAAI 94), Seattle, August 1994.

[34] David C. Brown and B. Chandrasekaran. Design Problem Solving. Morgan
Kaufmann, 1989.

[35] B. G. Buchanan and E. H. Shortliffe. Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Mas-
sachusetts, 1984.

[36] J. G. Carbonell. Derivational Analogy: A Theory of Reconstructive Problem
Solving and Expertise Acquisition. In R. Michalski, J. Carbonnel, and T. Mitchell,
editors, Machine Learning: an Artificial Intelligence Approach, volume 2, pages 371-
392. Morgan Kaufmann, 1986.

234 REFERENCES

[37] Frangois E. Cellier. Continuous System Simulation. Springer, Berlin Heidelberg
New York, 1991.

[38] Frangois E. Cellier, Hilding Elmqvist, and Martin Otter. Modeling from Physical
Principles. In W.S. Levine, editor, The Control Handbook, pages 99-108. CRC
Press, Boca Raton, FL, 1995.

[39] B. Chandrasekaran and Rob Milne. Reasoning About Structure, Behavior, and
Function. SIGART Newsletter, Juli 85(93):4-59, 1985.

[40] B. Chandrasekaran, Michael C. Tanner, and John R. Josephson. Explanation:
The Role of Control Strategies and Deep Models. In James A. Hendler, editor,
Expert Systems: The User Interface, pages 219-247. Ablex Publishing Corporation,
1987.

[41] William J. Clancey. Heuristic Classification. Artificial Intelligence, 27:289-350,
1985.

[42] Daniel J. Clancy and Benjamin Kuipers. Model Decomposition and Simula-
tion. In Toyoaki Nishida, editor, Proceedings of the Eighth International Workshop
on Qualitative Reasoning about Physical Systems (QR 94), pages 45-54, Nara, Japan,
June 1994.

[43] Anthony G. Cohn. Qualitative Reasoning. In R. T. Nossum, editor, Proceedings
of the ACAI'87, pages 61-95, Nara, Japan, 1987.

[44] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-Rewriting Hypergraph
Grammars. Journal of Computer and System Sciences, 46:218-270, 1993.

[45] R. H. Creecy, B. M. Masand, S. J. Smith, and D. I. Waltz. Trading Mips and
Memory for Knowledge Engineering. Communications of the ACM, 35, 1992.

[46] R. Cunis, A. Giinter, I. Syska, H. Peters, and H. Bode. = PLAKON—AnN Ap-
proach to Domain-Independent Construction. Technical Report 21, Department
of Computer Science, University of Hamburg, Hamburg, Germany, March 1989.

[47] Daniel Curatolo. Wissensbasierte Methoden zur effizienten Simulation fluidtechnis-
cher Systeme. Dissertation, Department of Mathematics and Computer Science,
University of Paderborn, Germany, 1996.

[48] Jonny Carlos da Silva and David Dawson. The Development of an Expert Sys-
tem for Hydraulic Systems Design Focusing Concurrent Engineering Aspects. In
Proceedings of the International Conference on Enginieering Design (ICED 97), 1997.

[49] R.Davidson and D. Harel. Drawing Graphs Nicely Using Simulated Annealing.
Technical report, Department of Applied Mathematics and Computer Science,
The Weizmann Institute of Science, Revohot, 1989.

REFERENCES 235

[50] B. de Fluiter. Algorithms for Graphs of Small Treewidth. Dissertation, University
of Utrecht, Netherlands, 1997.

[51] Johan de Kleer and Brian C. Williams. Diagnosing Multiple Faults. Automated
Reasoning, pages 372-388, 1987.

[52] Rina Dechter and Judea Pearl. The Anatomy of Easy Problems: A Constraint
Satisfaction Formulation. In Proceedings of the Ninth International Joint Conference
on Artificial Intelligence (IJCAI 85), Los Angeles, California, 1985.

[63] Rina Dechter and Judea Pearl. The Cycle-Cutset Method for Improving Search
Performance in Al Applications. In Proceedings of the Third Conference on Artificial
Intelligence Applications, Orlando, Florida, 1987.

[54] Johan deKleer and Brian C. Williams. Diagnoses with Behavioral Models. In
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJ-
CAI 89), pages 1324-1330, Detroit, Michigan, August 1989.

[55] G. Di Battista, P. Eades, Roberto Tamassia, and 1. G. Tollis. Graph Drawing—
Algorithms for the Visualization of Graphs. Prentice-Hall, New York London Tokyo,
1999.

[56] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and Unsupervised Dis-
cretization of Continuous Features. In A. Prieditis and S. Russell, editors, Pro-
ceedings of the 12th International Conference on Machine Learning, pages 194-202,
Menlo Park, CA, July 1995. Morgan Kaufmann.

[567] Oskar Dressler and Peter Struss. The Consistency-based Approach to Auto-
mated Diagnosis of Technical Devices. In G. Brewka, editor, Principles of Knowl-
edge Representation, pages 267-311. CSLI, Stanford, 1996.

[58] Frank Drewes, Hans-Jorg Kreowski, and Annegret Habel. Hyperedge Replace-
ment Graph Grammars. In Grzegorz Rozenberg, editor, Handbook of Graph Gram-
mars and Computing by Graph Transformation, pages 95-162. World Scientific, Sin-
gapore, 1997.

[59] John Durkin. Expert Systems: Design and Development. MacMillan, 1998.

[60] P.Eades. A Heuristic for Graph-Drawing. Congressus Numerantium, 42:149-160,
1984.

[61] H. Ebertshiuser. Grundlagen der hydraulischen Schaltungstechnik. O+P Olhy-
draulik und Pneumatik, 38(10):604-607, 1994.

[62] Marko van Eekelen, Sjaak Smetsers, and Rinus Plasmeijer. Graph Rewriting
Systems for Functional Programming Languages. Technical report, Computing
Science Institute, University of Nijmegen, 1998.

236 REFERENCES

[63] Hartmut Ehrig, Gregor Engels, Hans-Jorg Kreowski, and Grzegorz Rozenberg,
editors. Handbook of Graph Grammars and Computing by Graph Transformation,
volume 2 Applications, Languages, and Tools. World Scientific, 1999.

[64] Hartmut Ehrig, Hans-Jorg Kreowski, Ugo Montanari, and Grzegorz Rozenberg,
editors. Handbook of Graph Grammars and Computing by Graph Transformation,
volume 3 Concurrency, Parallelism, and Distribution. World Scientific, 1999.

[65] Hilding Elmquist. Object-Oriented Modeling and Automated Formula Manip-
ulation in Dymola. In SIMS’93, Kongsberg, Norway, June 1993. Scandinavian
Simulation Society.

[66] Joost Engelfriet and Grzegorz Rozenberg. Node Replacement Graph Gram-
mars. In Grzegorz Rozenberg, editor, Handbook of Graph Grammars and Comput-
ing by Graph Transformation, pages 1-94. World Scientific, Singapore, 1997.

[67] Larry Eshelman. MoOLE: A Knowledge-Acquisition Tool for Cover-and-
Differentiate Systems. In Sandra Marcus, editor, Automating Knowledge Acquisi-
tion for Expert Systems, pages 37-80. Kluwer Academic, Norwell, Massachusetts,
1988.

[68] Shimon Even. Graph Algorithms. Pitman, London, 1979.
[69] B.S. Everitt. Cluster Analysis. Eward Arnolds, New York, Toronto, 1993.

[70] H. Faatz. Der Hydrauliktrainer. Mannesmann Rexroth GmbH, Lohr a. Main,
Lohr am Main, 1988.

[71] Brain Falkenhainer and Ken Forbus. Compositional Modeling: Finding the
Right Model for the Job. Artificial Intelligence, 51:95-143, 1991.

[72] Alfred Fettweis. Digital Filter Structures Related to Classical Filter Networks.
Archiv fiir Elektronik und Ubertragungstechnik, 25(2):79-89, 1971.

[73] Alfred Fettweis. Wave Digital Filters: Theory and Practice. Proceedings of the
IEEE, 74(2):270-327, February 1986.

[74] Alfred Fettweis and Gerald Hemetsberger. Grundlagen der Theorie elektrischer
Schaltungen. Brockmeyer, 1995.

[75] Richard Fikes, T. Gruber, Yumi Iwasaki, A. Levy, and P. Nayak. How Things
Work—Project Overview. Technical Report KSL-91-70, Knowledge Systems Lab-
oratory, Computer Science Department, Stanford University, November 1991.

[76] Donald P. Finn and Padraig Cunningham. Physical Model Generation in
Thermal Engineering Problems described by Partial Differential Equations. In
Toyoaki Nishida, editor, Proceedings of the Eighth International Workshop on Qual-
itative Reasoning about Physical Systems (QR 94), pages 90-97, Nara, Japan, June
1994.

REFERENCES 237

[77] Gerhard Fischer, Kumiyo Nakakoji, Jonathan Ostwald, and Gerry Stahl. Em-
bedding Critics in Design Environments. The Knowledge Engineering Review, 8
(4):285-307, December 1993.

[78] Paul A. Fishwick. The Role of Process Abstraction in Simulation. IEEE Transac-
tions on Systems, Man, and Cybernetics, 18:18-39, February 1988.

[79] Paul A. Fishwick. Extending Object-Oriented Design for Physical Modeling.
ACM Transaction on Modeling and Computer Simulation, Special Issue on Model
Specification and Representation, 1996.

[80] K. Florek, J. Lukaszewiez, J. Perkal, H. Steinhaus, and S. Zubrzchi. Sur la Liason
et la Division des Points d"un Ensemble Fini. Colloguium Methematicum, 2, 1951.

[81] Kenneth D. Forbus and Johan de Kleer. Building Problem Solvers. MIT Press,
Cambridge, Massachusetts, 1993.

[82] Kenneth D. Forbus, Dedre Genter, and Keith Law. MAC/FAC: A Model of
Similarity-Based Retrieval. Cognitive Science, 19:141-205, 1994.

[83] Charles L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem. Artificial Intelligence, 19:17-37, 1982.

[84] Frederick K. Frantz. A Taxonomy of Model Abstraction Techniques. In Proceed-
ings of the 1995 Winter Simulation Conference (WSC 95), Proceedings in Artificial
Intelligence, pages 1413-1420, Arlington, VA, December 1995.

[85] Eugene C. Freuder. A Sufficient Condition for Backtrack-Free Search. Journal of
the Association for Computing Machinery, 29(11):24-32, November 1982.

[86] T.Fruchterman and E. Reingold. Graph-Drawing by Force-Directed Placement.
Software-Practice and Experience, 21(11):1129-1164, 1991.

[87] Brian Gaines. General Systems Research: Quo Vadis. In General Systems Year-
book, volume 24, pages 1-9, 1994.

[88] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley, Mas-
sachusetts, 1994.

[89] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, New York, 1997.

[90] Patrice O. Gautier and Thomas R. Gruber. Generating Explanations of Device
Behavior Using Compositional Modeling and Causal Ordering. In Proceedings
of the Eleventh National Conference on Artificial Intelligence (AAAI 93). AAAI Press,
1993.

238 REFERENCES

[91] Derdre Gentner and Albert L. Stevens. Mental Models. Lawrence Erlbaum
Associates, Hillsdale, New Jersey, 1983.

[92] John S. Gero. Design Prototypes: A Knowledge Representation Scheme for
Design. Al Magazine, 11:26-36, 1990.

[93] John P. van Gigch. System Design Modeling and Metamodeling. Plenum Press,
New York, 1991.

[94] A. K. Goel, S. Bhatta, and E. Stroulia. KRITIK: An Early Case-Based Design
System. In M. L. Maher and P. Pu, editors, Issues and Applications of Case-Based
Reasoning in Design, pages 87-132, Hillsdale, New Jersey, 1997. Lawrence Erl-
baum Associates.

[95] A. K. Goel and B. Chandrasekaran. Use of Device Models in Adaption of De-
sign Cases. In K.]J. Hammond, editor, Proceedings of the Case-Based Reasoning
Workshop, pages 203—207. Morgan Kaufmann, 1989.

[96] A.K. Goel,]. L. Kolodner, M. Pearce, R. Billington, and C. Zimring. Towards a
Case-Based Tool for Aiding Conceptual Design Problem Solving. In Proceedings
of the DARPA Case-Based Reasoning Workshop, California, 1991. Morgan Kauf-
mann.

[97] Stefan Goldschmidt. Modellbildung am Beispiel von Starrkérpersystemen. Sys-
tematische Darstellung und Untersuchung von Software-Unterstiitzung. Study
work, Department of Mathematics and Computer Science, University of Pader-
born, Germany, November 1996.

[98] E.]. Golin and S. P. Reiss. The Specification of Visual Language Syntax. Visual
Languages, 1:141-157, 1990.

[99] Martin Charles Golumbic. Algorithmic Aspects of Intersection Graphs and Rep-
resentation Hypergraphs. Graphs and Combinatorics, 4:307-321, 1985.

[100] Martin Charles Golumbic. Interval Graphs and Related Topics. Discrete Math-
ematics, 55:113-243, 1985.

[101] Thomas R. Gruber. Model Formulation as a Problem Solving Task: Computer-
assisted Engineering Modeling. International Journal of Intelligent Systems, 8(1):
105-127, 1992.

[102] Hans-Werner Glisgen. CONSAT—A System for Constraint Satisfaction. Disserta-
tion, Gesellschaft fiir Mathematik und Datenverarbeitung mbH, Sankt Augustin,
November 1987.

[103] Joachim Hartung. Statistik. Oldenbourg, Miinchen, 1999.

[104] F. Hayes-Roth, D. Waterman, and D. Lenat. Building Expert Systems. Addison
Wesley Publishing Company, London, 1983.

REFERENCES 239

[105] M. Heinrich and E. W. Jiingst. A Resource-based Paradigm for the Configuring
of Technical Systems for Modular Components. In Proceedings of the CAIA’91,
pages 257264, 1991.

[106] D. Hennessy and D. Hinkle. Initial Results from Clavier: A Case-Based Au-
toclave Loading Assistent. In R. Bareiss, editor, Proceedings of the Case-Based
Reasoning Workshop, pages 225-232. Morgan Kaufmann, 1991.

[107] Thorsten Hesse and Benno Stein. Hybrid Diagnosis in the Fluidic Domain. In
E. Alpaydin and C. Fyfe, editors, International ICSC Symposium on Engineering of
Intelligent Systems (EIS 98), pages 893-899. ICSI Academic Press, February 1998.
ISBN 3-906454-11-8.

[108] Sture Hagglund. Introducing Expert Critiquing Systems. The Knowledge Engi-
neering Review, 8(4):281-284, December 1993.

[109] Thomas R. Hinrichs and Janet L. Kolodner. The Roles of Adaptation in Case-
Based Design. In Proceedings of the Eighth National Conference on Artificial Intelli-
gence (AAAI 91), Cambridge, Massachusetts, 1991. MIT Press.

[110] Marcus Hoffmann. Zur Automatisierung des Designprozesses fluidischer Systeme.
Dissertation, Department of Mathematics and Computer Science, University of
Paderborn, Germany, 1999.

[111] J. E. Hopcroft and R. E. Tarjan. Dividing a Graph into Triconnected Compo-
nents. SIAM Journal of Computing, 2(3):135-158, September 1973.

[112] D. W. Hosmer and S. Lemeshow. Applied Logistic Regression. John Wiley &
Sons, New York, 1989.

[113] N. Howe and C. Cardie. Examining Locally Varying Weights for Nearest
Neighbor Algorithms. In Proceedings of the Eleventh ICML. Morgan Kaufmann,
1997.

[114] Eyke Hiillermeier. Approximating Cost Functions in Resource-Based Config-
uration. Notes in Computer Science tr-rsfb-98-060, Department of Mathematics
and Computer Science, University of Paderborn, Germany, September 1998.

[115] Uwe Husemeyer. Heuristische Diagnose mit Assoziationsregeln. Dissertation,
University of Paderborn, Department of Mathematics and Computer Science,
2001.

[116] Edward Hyvonen. Constraint reasoning based on interval arithmetic: the tol-
erance propagation approach. Artificial Intelligence, 58:71-112, 1992.

[117] IEEE, March 1997.

240 REFERENCES

[118] Yumi Iwasaki and B. Chandrasekaran. Design Verification through Function
and Behavior-Oriented Representations: Bridging the Gap between Function
and Behavior. In Proceedings of the Second International Conference on Artificial
Intelligence in Design. Kluwer Academic, 1992.

[119] Yumi Iwasaki and Alon Y. Levy. Automated Model Selection for Simulation.
Knowledge Systems Laboratory (KSL), QS93, 1993.

[120] Yumi Iwasaki and Chee Meng Low. Model Generation and Simulation of De-
vice Behavior with Continuous and Discrete Changes. Technical Report KSL
91-69, Knowledge Systems Laboratory (KSL), Computer Science Department,
Stanford University, November 1991.

[121] Samuel L.S. Jacoby and Janusz S. Kowalik. Mathematical Modeling with Comput-
ers. Prentice-Hall, Englewood Cliffs, N.J., 1980.

[122] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-
Hall, New York London Tokyo, 1988.

[123] M. Jambu. Explorative Datenanalyse. Gustav Fischer, 1992.
[124] J. N.R. Jeffers. Modelling. Chapman and Hall, London New York, 1982.
[125] S. C.Johnson. Hierarchical Clustering Schemes. Psychometrika, 32, 1967.

[126] Dieter Jungnickel. Graphen, Netzwerke und Algorithmen. BI Wissenschaftsver-
lag, Wien, 1990.

[127] Gary Kahn. MORE: From Observing Knowledge Engineers to Automating
Knowledge Acquisition. In Sandra Marcus, editor, Automating Knowledge Acqui-
sition for Expert Systems, pages 7-35. Kluwer Academic, Norwell, Massachusetts,
1988.

[128] T. Kamada and S. Kawai. An algorithm for Drawing General Undirected
Graphs. Information Processing Letters, 31:7-15, 1989.

[129] Thomas A. Kane and David A. Levinson. Dynamics: Theory and Application.
McGraw-Hill, New York, 1985.

[130] Werner Karbach, X. Tong, and Angi Vo8. Closing the Knowledge Acquisition
Gap: From KADS Models of Expertise to ZDEST-2 Expert Systems. In J. H. Boose,
B. R. Gaines, and M. Linster, editors, Proceedings of the EKAW’88, number 43 in
GMD-Studie, pages 31/1-17, Sankt Augustin, 1988. GMD.

[131] Walter J. Karplus. The Spectrum of Mathematical Modeling and Systems Sim-
ulation. Mathematics and Computers in Simulation, XIX:3-10, 1977.

REFERENCES 241

[132] Manfred Kaul. Syntaxanalyse von Graphen bei Priizedenz-Graph-Grammatiken.
Dissertation, Department of Mathematics and Computer Science, University of
Passau, Passau, 1986.

[133] Manfred Kaul. Practical Applications of Precedence Graph Grammars. In
H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, Graph Grammars and
Their Application to Computer Science, number 291 in Lecture Notes in Computer
Science, LNCS, pages 326342, Berlin Heidelberg New York, 1987. Springer.

[134] B.W. Kernighan and S. Lin. Partitioning Graphs. Bell Laboratories Record, Jan-
uary 1970.

[135] Changwook Kim and Tae Eui Jeong. HRNCE Grammars—A Hypergraph Gen-
erating System with an eNCE Way of Rewriting. InJ. Cuny, H. Ehrig, G. Engels,
and G. Rozenberg, editors, Graph Grammars and Their Application to Computer Sci-
ence, number 1073 in Lecture Notes in Computer Science, LNCS, pages 383-396,
Berlin Heidelberg New York, 1996. Springer.

[136] K. Kira and L. A. Rendell. A Practical Approach to Feature Selection. In
Proceedings of the Ninth International Conference on Machine Learning, Aberdeen,
Scottland, 1992. Morgan Kaufmann.

[137] Yoshinobu Kitamura and Mitsuru Ikeda. Domain Ontology Design for Model-
based Reasoning and its Evaluation. Technical Report AI-TR-96-1, Institute of
Scientific and Indsutrial Research, Osaka University, Osaka, Japan, January 1996.

[138] Johan de Kleer. Problem Solving with the ATMS. Artificial Intelligence, 28:
197-224, 1986.

[139] Johan de Kleer and John Seely Brown. A Qualitative Physics Based on Conflu-
ences. Artificial Intelligence, 24:7-83, 1984.

[140] Hans Kleine Biining, Daniel Curatolo, and Benno Stein. Configuration Based
on Simplified Functional Models. Notes in Computer Science tr-ri-94-155, De-
partment of Mathematics and Computer Science, University of Paderborn, Ger-
many, November 1994.

[141] Hans Kleine Biining, Daniel Curatolo, and Benno Stein. Knowledge-Based
Support within Configuration and Design Tasks. In 2nd Biennial European Joint
Conference on Engineering Systems Design and Analysis (ESDA 94), Lecture Notes
in Artificial Intelligence, LNAI, pages 435—441, Berlin Heidelberg New York, July
1994. Springer.

[142] Renate Klempien-Hinrichs. Node Replacement in Hypergraphs: Simulation of
Hyperedge Replacement and Decidability of Confluence. InJ. Cuny, H. Ehrig,
G. Engels, and G. Rozenberg, editors, Graph Grammars and Their Application to
Computer Science, number 1073 in Lecture Notes in Computer Science, LNCS,
pages 397411, Berlin Heidelberg New York, 1996. Springer.

242 REFERENCES

[143] G.].Klir. Architecture of Systems Complexity. Sauders, New York, 1985.

[144] Achim Knoch and Michael Bottlinger. Expertensysteme in der Verfahrenstech-
nik — Konfiguration von Rithrapparaten. Chem.-Ing.-Tech., 65(7):802-809, 1993.

[145] Johannes Kobler, Uwe Schoning, and Jacobo Toran. The Graph Isomorphism
Problem: Its Structural Complexity. Birkhduser, 1993.

[146] Ina Koch. Enumerating All Connected Maximal Common Subgraphs in Two
Graphs. Theoretical Computer Science, 250(1-2):1-30, 2001.

[147] Teuvo Kohonen. Self-Organization and Associative Memory. Springer, Berlin
Heidelberg New York, 1990.

[148] Janet Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Mateo, Califor-
nia, 1993.

[149] Martin Korff. Application of Graph Grammars to Rule-Based Systems. In
Hartmut Ehrig, editor, Graph Grammars and Their Application to Computer Science,
number 532 in Lecture Notes in Computer Science, LNCS, pages 505-519, Berlin
Heidelberg New York, 1991. Springer.

[150] Granino A. Korn and John V. Wait. Digital Continuous-System Simulation.
Prentice-Hall, Englewood Cliffs, N.J., 1978.

[151] W. Kortuem. Trends in der Rechnersimulation im Hinblick auf die Systemdy-
namik Fahrzeug-Fahrweg. VDI Berichte, Nr. 1219, pages 169-203, 1995.

[152] Wolfgang Kowalk. System, Modell, Programm. Spektrum Akademischer Verlag,
Heidelberg Berlin, 1996.

[153] Benjamin Kuipers. De Kleer and Brown’s “Mental Models”—A Critique.
Technical report, Department of Mathematics, Tufts University, Medford, Mas-
sachusetts, 1981.

[154] H. S. Kumar and C. S. Krishnamoorthy. A Framework for Case-Based Reason-
ing in Engineering Design. Artificial Intelligence for Engineering Design, Analysis,
and Manufacturing, 9(3):161-182, 1995.

[155] T. Laufiermair and K. Starkmann. Konfigurierung basierend auf einem Bi-
lanzverfahren. In Sixth Workshop “Planen und Konfigurieren” (PUK 92), number
FR-1992-001 in FORWISS, Miinchen, Germany, 1992.

[156] David B. Leake. Case-Based Reasoning: Issues, Methods, and Technology. In
Proceedings of the First International Conference on Case-Based Reasoning, Sesimbra,
Portugal, 1995.

[157] Frank Thomas Leighton. Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, and Hypercubes. Morgan Kaufmann, San Mateo, 1992.

REFERENCES 243

[158] Thomas Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John
Wiley & Sons, New York, 1990.

[159] Theodor Lettman and Ulf Dunker. AQUA Benutzerhandbuch, March 1998.

[160] Klaus Ulrich Leweling and Benno Stein. Hybrid Constraints in Automated
Model Synthesis and Model Processing. In Susanne Heipcke and Mark Wallace,
editors, 5th International Conference on Principles and Practice of Constraint Program-
ming (CP 99), Workshop on Large Scale Combinatorial Optimisation and Constraints,
pages 45-56, Leamington Spa England, October 1999. Dash Associates.

[161] Ulrike Lichtblau. Flufigrapggrammatiken. PhD thesis, Universitit Oldenburg,
1990.

[162] Ulrike Lichtblau. Recognizing Rooted Context-Free Flowgraph Languages in
Polynomial Time. In Hartmut Ehrig, editor, Graph Grammars and Their Appli-
cation to Computer Science, number 532 in Lecture Notes in Computer Science,
LNCS, pages 538-548, Berlin Heidelberg New York, 1991. Springer.

[163] Zheng-Yang Liu and Arthur M. Farley. Shifting Ontological Perspectives in
Reasoing about Physical Systems. In Proceedings of the Eighth National Confer-
ence on Artificial Intelligence(AAAI 91), pages 395400, Anaheim, California, 1990.
AAAI Press.

[164] R.S. H. Mah. Chemical Process Structures and Information Flows. Butterworths,
1990.

[165] Mary Lou Maher. Process Models for Design Synthesis. Al Magazine, pages
49-58, 1990.

[166] Mary Lou Mabher, B. Balachandran, and D. M. Zhang. Case-Based Reasoning in
Design. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1995.

[167] Mary Lou Maher and Andres Gomez de Silva Garza. The Adaptation of Struc-
tural System Designs Using Genetic Algorithms. In Proceedings of the Interna-
tional Conference on Information Technology in Civil and Structural Engineering De-
sign: Taking Stock and Future Directions, Glasgow, Scotland, August 1996.

[168] Mary Lou Maher and Andres Gomez de Silva Garza. Case-Based Reasoning
in Design. IEEE Expert, 12(2), 1997.

[169] Mary Lou Maher and Pearl Pu, editors. Issues and Applications of Case-Based
Reasoning in Design. Lawrence Erlbaum Associates, Mahwah, New Jersey, 1997.

[170] Sandra Marcus. SALT: A Knowledge Acquisition Language for Propose-and-
Revise Systems. In Sandra Marcus, editor, Automating Knowledge Acquisition for
Expert Systems, pages 81-123. Kluwer Academic, Norwell, Massachusetts, 1988.

244 REFERENCES

[171] Sandra Marcus and John McDermott. SALT: A Knowledge Acquisition Lan-
guage for Propose-and-Revise Systems. Artificial Intelligence, 39:1-37, 1989.

[172] Sandra Marcus, Jeffrey Stout, and John McDermott. VT: An Expert Elevator
Designer that Uses Knowledge-based Backtracking. Al Magazine, pages 95-112,
1988.

[173] W. Marquardt. Trends in Computer-Aided Process Modeling. Computers Chem-
ical Engineering, 20(6/7):591-609, 1996.

[174] Hugh Martin. The Design of Hydraulic Components and Systems. Ellis Horwood,
1995.

[175] Hans Jiirgen Matthies. Einfithrung in die Olhydraulik. Teubner, Stuttgart, 1995.

[176] John McDermott. Preliminary Steps Towards an Taxonomy of Problem-Solving
Methods. In Sandra Marcus, editor, Automating Knowledge Acquisition for Expert
Systems, pages 225-266. Kluwer Academic, Norwell, Massachusetts, 1988.

[177] J. McHugh. Algorithmic Graph Theory. Prentice-Hall, New York London Tokyo,
1990.

[178] Klaus Meerkotter and Dietrich Franken. Digital Realization of Connection
Networks by Voltage-Wave Two-Port Adaptors. Archiv fiir Elektronik und Uber-
tragungstechnik, 50:362-367, November 1996.

[179] Kurt Mehlhorn. Data Structures and Algorithms, volume 2 Graph Algorithms
and NP-Completeness. Springer, Berlin Heidelberg New York, 1984.

[180] Merriam-Webster Publishing Company. Merriam-Webster’s Collegiate Dictio-
nary, 10th Edition. Merriam-Webster, Springfield, MA, 1998.

[181] B. T. Messmer and H. Bunke. Subgraph Isomorphism in Polynomial Time.
Technical Report AM-95-003, Research Group of Computer Vision and Artificial
Intelligence, University of Bern, 1995.

[182] Sven Meyer zu Eiflen. Natiirliche Graphpartitionierung am Beispiel von Auf-
gabenmodellen in Unternehmensnetzwerken. Diploma thesis, Department of
Mathematics and Computer Science, University of Paderborn, Germany, 2000.

[183] Marvin Minsky. Models, Minds, Machines. In Proceedings of the IFIP Congress,
pages 4549, 1965.

[184] Boris Mirkin. Mathematical Classification and Clustering. Kluwer Academic,
1996.

[185] E. E. L. Mitchell and J. S. Gauthier. Advanced Continuous Simulation Lan-
guage (ACSL). Simulation, 25:72-78, 1976.

REFERENCES 245

[186] S. Mitchell Hedetniemi, E. J. Cockayne, and S. T. Hedetniemi. Linear Algo-
rithms for Finding the Jordan Center and Path Center of a Tree. Transportation
Science, 15:98-114, 1981.

[187] S. Mittal and F. Frayman. Towards a Generic Model of Configuration Tasks.
In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence,
pages 1395-1401, San Mateo, California, 1989.

[188] David S. Moore and George P. McCabe. Introduction to the Practice of Statistics.
Freeman, New York, 1993.

[189] Jack Mostow. Toward Better Models of the Design Process. Al Magazine, 6:
44-56, 1985.

[190] D.]J. Murray-Smith. Continuous System Simulation. Chapman & Hall, London,
London New York Tokyo, 1995.

[191] Seshashayee S. Murthy and Sanjaya Addanki. Diagnoses with Behavioral
Models. In Proceedings of the Sixth National Conference on Artificial Intelligence
(AAAI 87), pages 631-636, Seattle, Washington, July 1987. AAAI Press.

[192] Oliver Najmann and Benno Stein. A Theoretical Framework of Configuration.
In Fevzi Belli, editor, Proceedings of the Fifth International Conference on Industrial
& Engineering Applications of Artificial Intelligence & Expert Systems (IEAAIE 92),
volume 604, pages 441-450, Berlin Heidelberg New York, June 1992. Springer.

[193] P. Panduring Nayak. Automated Model Selection. Phd thesis, Stanford Univer-
sity, 1992.

[194] P.Panduring Nayak. Causal Approximations. Artificial Intelligence, 70:277-334,
1994.

[195] P. Panduring Nayak. Automated Modelling of Physical Systems. Springer, Berlin
Heidelberg New York, 1995.

[196] Bernhard Nebel. Plan Modification versus Plan Generation. In Alexander
Horz, editor, Seventh Workshop “Planen und Konfigurieren” (PUK 93), number 723
in Arbeitspapiere der GMD, 1993.

[197] U. A. Nickel, J. Niere, and A. Ziindorf. Tool Demonstration: The FUJABA
Environment. In Proceedings of the 22nd International Conference on Software Engi-
neering, pages 742—-745. ACM Press, 2000.

[198] Oliver Niggemann. Visual Data Mining of Graph-Based Data. Dissertation,
Department of Mathematics and Computer Science, University of Paderborn,
Germany, 2001.

246 REFERENCES

[199] Oliver Niggemann and Benno Stein. A Meta Heuristic for Graph Drawing. In
Vito Di Gestl, Stefano Levialdi, and Laura Tarantino, editors, Working Conference
on Advanced Visual Interfaces (AVI 00), Palermo, Italy, pages 286-289, New York,
May 2000. Association of Computing Machinery, ACM. ISBN 1-58113-252-2.

[200] Oliver Niggemann, Benno Stein, and Michael Suermann. On Resource-based
Configuration: Rendering Component-Property Graphs. In Jiirgen Sauer and
Benno Stein, editors, Twelfth Workshop “Planen und Konfigurieren” (PUK 98), num-
ber tr-ri-98-193 in Notes in Computer Science, pages 65-72. Department of Math-
ematics and Computer Science, University of Paderborn, Germany, April 1998.

[201] Oliver Niggemann, Benno Stein, and Jens Tolle. Visualization of Traffic Struc-
tures. In To appear in the Proceedings of the IEEE International Conference on Com-
munications, Helsinki, Piscataway, NJ, June 2001. IEEE.

[202] N.J. Nilsson. Principles of Artificial Intelligence. Springer, Berlin Heidelberg
New York, 1982.

[203] N.J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, San
Francisco, California, 1998.

[204] V. Oh, P. Langdon, and J. Sharpe. SCHEMEBUILDER: An Integrated Computer
Environment for Product Design. In Computer Aided Conceptual Design, 1994.

[205] Martin Otter. Objektorientierte Modellierung mechatronischer Systeme am Beispiel
geregelter Roboter. PhD thesis, Institut fiir Robotik und Systemdynamik der DLR,
Oberpfaffenhofen, Diisseldorf, 1995.

[206] Bernd Page. Diskrete Simulation. Springer, Berlin Heidelberg New York, 1991.

[207] Gerhard Pahl and Wolfgang Beitz. Konstruktionslehre. Methoden und Anwen-
dung. Springer, Berlin Heidelberg New York, 1997.

[208] C. C. Pantelides. SPEEDUP—Recent Advances in Process Simulation. Comput-
ers Chemical Engineering, 12(7):745-755, 1988.

[209] Judea Pearl. Heuristics. Addison-Wesley, Massachusetts, 1984.

[210] Linda Petzold. Differential/ Algebraic Equations are not ODE’s. SIAM Journal
on Numerical Analysis, 3(3):277-385, September 1994.

[211] P. C. Piela, T. G. Epperly, K. M. Westerberg, and A. W. Westerberg. ASCEND:
An Object-Oriented Computer Environment for Modeling and Analysis: The
Modeling Language. Computers Chemical Engineering, 15(1):53-72, 1991.

[212] Anita Pos, Pim Borst, Jan Top, and Gans Akkermans. Reusability of Simulation
Models. Knowledge-Based Systems, 9:119-125, 1996.

REFERENCES 247

[213] Frank Puppe. Problemlosungsmethoden fiir Expertensysteme. Springer, Berlin
Heidelberg New York, 1990.

[214] Frank Puppe. Systematic Introduction to Expert Systems, Knowledge Representa-
tions and Problem-Solving Methods. Springer, Berlin Heidelberg New York, 1993.

[215] Lisa Purvis and Pearl Pu. An Approach to Case Combination. In Proceed-
ings of the Workshop on Adaptation in Case Based Reasoning, European Conference on
Artificial Intelligence (ECAI 96), Budapest, Hungary, 1996.

[216] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lishers, San Mateo, CA, 1993.

[217] Olivier Raiman. Order of Magnitude Reasoning. Artificial Intelligence, 51:11-38,
1991.

[218] B. Raphael and B. Kumar. Indexing and Retrieval of Cases in a Case-Based
Design System. Artificial Intelligence for Engineering Design, Analysis, and Manu-
facturing, 10:47-63, 1981.

[219] A. Reckmann. AhnlichkeitsmaBe und deren Parametrisierung fiir die fall-
basierte Diagnose am Beispiel einer medizinischen Anwendung. Diploma the-
sis, Department of Mathematics and Computer Science, University of Pader-
born, Germany, 1999.

[220] E. Reingold and J. Tilford. Tidier Drawing of Trees. IEEE Transactions on
Software Engineering, 7(2):223-228, 1981.

[221] Raymond Reiter. A Theory of Diagnosis from First Principles. Artificial Intelli-
gence, 32(1):57-95, April 1987.

[222] J. Rekers and A. Schiirr. A Graph Grammar Approach to Graphical Parsing.
Technical Report 95-15, Department of Computer Science, University of Leiden,
1995.

[223] Michael M. Richter. The Knowledge Contained in Similarity Measures, Oc-
tober 1995. Some remarks on the invited talk given at ICCBR’95 in Sesimbra,
Portugal.

[224] Michel M. Richter. Introduction to CBR. In Mario Lenz, Brigitte Bartsch-Sporl,
Hans-Dieter Burkhard, and Stefan Wef3, editors, Case-Based Reasoning Technology.
From Foundations to Applications, Lecture Notes in Artificial Intelligence, LNAI,
pages 1-15. Springer, Berlin Heidelberg New York, 1998.

[225] Jeff Rickel and Bruce Porter. Automated Modeling for Answering Prediction
Questions: Selecting the Time Scale and System Boundary. In Proceedings of the
Twelfth National Conference on Artificial Intelligence (AAAI 93), pages 1191-1198,
Cambridge, Massachusetts, 1994. AAAI Press.

248 REFERENCES

[226] Raul Rojas. Theorie der neuronalen Netze. Springer, Berlin Heidelberg New York,
1993.

[227] Tom Roxborough and Arunabha. Graph Clustering using Multiway Ratio Cut.
In Stephen North, editor, Graph Drawing, Lecture Notes in Computer Science,
LNCS, Berlin Heidelberg New York, 1996. Springer.

[228] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, volume 1 Foundations. World Scientific, Singapore, 1997.

[229] Grzegorz Rozenberg and E. Welzl. Boundary NLC Graph Grammars—Basic
Definitions, Normal Forms, and Complexity. Information and Control, 69:136-167,
1986.

[230] Stuart J. Russel and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, N.J., 1995.

[231] Reinhard Sablowski and Arne Frick. Automatic Graph Clustering. In Stephan
North, editor, Graph Drawing, Lecture Notes in Computer Science, LNCS, Berlin
Heidelberg New York, 1996. Springer.

[232] Elisha Sacks. Piecewise Linear Reasoning. In Proceedings of the Sixth National
Conference on Artificial Intelligence (AAAI 87), pages 655-659, Seattle, Washington,
July 1987. AAAI Press.

[233] S. L. Salzberg. A Nearest Hyperrectangle Learning Method. Machine Learning,
6, 1991.

[234] Warren S. Sarle. Neural Networks and Statistical Models. In Proceedings of
the Nineteenth Annual SAS Users Group International Conference, pages 1538-1550,
Cary, NC, 1994. SAS Institute Inc.

[235] Munehiko Sasajima, Yoshinobu Kitamura, Mitsuru Ikeda, and Shinji Yoshika-
wa. An Investigation on Domain Ontology to Represent Functional Models. In
Toyoaki Nishida, editor, Proceedings of Eighth International Workshop on Qualitative
Reasoning about Physical Systems (QR 94), pages 224-233, Nara, Japan, June 1994.

[236] D. B. Schaechter, D. A. Levinson, and T. R. Kane. AUTOLEV User’s Manual,
1991.

[237] Herbert Schlitt. Regelungstechnik. Vogel, Wiirzburg, 1993.

[238] Thomas Schlotmann. Formulierung und Verarbeitung von Ingenieurwissen
zur Verbesserung hydraulischer Systeme. Diploma thesis, Department of Math-
ematics and Computer Science, University of Paderborn, Germany, 1998.

[239] Sabine Schmitgen. Rdiumliche Fragestellungen bei der Konfigurierung. Disserta-
tion, Department of Mathematics and Computer Science, University of Pader-
born, Germany, December 1993.

REFERENCES 249

[240] André Schulz. On the Automatic Design of Technical Systems. Dissertation,
Department of Mathematics and Computer Science, University of Paderborn,
Germany, 2001.

[241] André Schulz and Benno Stein. On Automated Design of Technical Systems.
Notes in Computer Science tr-ri-00-218, Department of Mathematics and Com-
puter Science, University of Paderborn, Germany, December 2000.

[242] André Schulz, Benno Stein, and Annett Kurzok. On Automated Design in
Chemical Engineering. In R.]J. Howlett and L. C. Jain, editors, Proceedings of the
Fourth International Conference on Knowledge-Based Intelligent Engineering Systems
& Allied Technologies, pages 261-266, Piscataway, NJ, September 2000. IEEE.

[243] A.Schiirr, A. Winter, and A. Ziindorf. Visual Programming with Graph Rewrit-
ing Systems. In Proceedings of the Eleventh International IEEE Symposium on Visual
Languages. IEEE Computer Society Press, 1995.

[244] Andy Schiirr. Introduction to PROGRES, an Attribute-Graph-Grammar-Based
Specification Language. In M. Nagl, editor, Proceedings of the Fifteenth Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science, volume 411 of
Lecture Notes in Computer Science, LNCS, pages 151-165, Berlin Heidelberg New
York, 1989. Springer.

[245] Andy Schiirr. PROGRES: A VHL-Language Based on Graph Grammars. In
H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proceedings of the Fourth In-
ternational Workshop on Graph Grammars and Their Application to Computer Science,
volume 532 of Lecture Notes in Computer Science, LNCS, pages 641-659, Berlin
Heidelberg New York, 1991. Springer.

[246] Andy Schiirr. Developing Graphical (Software Engineering) Tools with PRO-
GRES. In Proceedings of the ICSE, pages 618-619. IEEE Computer Society Press,
1997.

[247] Andy Schiirr. Programmed Graph Replacement Systems. In Grzegorz Rozen-
berg, editor, Handbook of Graph Grammars and Computing by Graph Transformation,
pages 479-546. World Scientific, Singapore, 1997.

[248] K. Seisenberger. Komprimierte Darstellung von planaren Graphen. Disserta-
tion, University of Passau, 1991.

[249] Bart Selman and Henry Kautz. Knowledge Compilation Using Horn Approx-
imations. In Proceedings of the Ninth National Conference on Artificial Intelligence
(AAAI 91), pages 904-909, Anaheim, California, 1991. AAAI Press.

[250] E. H. Shortliffe. Computer Based Medical Consultations: MYCIN. Elsevier, New
York, 1976.

250 REFERENCES

[251] A. O. Slisenko. Context-Free Grammars as a Tool for Describing Polynomial-
Time Subclasses of Hard Problems. Inf. Proc. Letters, 14:52-56, 1982.

[252] P. H. A. Sneath. The Application of Computers to Taxonomy. Journal Gen.
Microbiology, 17, 1957.

[253] Torsten Soderstrom and Petre Stoica. System Identification. Prentice-Hall, New
York London Tokyo, 1989.

[254] R. Srikant and R. Agrawal. Mining Quantitative Association Rules in Large
Relational Tables. In H. V. Jagadish and I. S. Mumick, editors, Proceedings of the
1996 ACM SIGMOD International Conference on Management of Data, pages 1-12,
Montreal, Canada, June 1996. ACM Press.

[255] C. Stanfill and D. Waltz. Toward memory-based learning. Communications of
the ACM, 29:1213-1228, 1986.

[256] Mark Stefik. Introduction to Knowledge Systems. Morgan Kaufmann, 1995.

[257] Benno Stein. Functional Models in Configuration Systems. Dissertation, Depart-
ment of Mathematics and Computer Science, University of Paderborn, Germany,
June 1995.

[258] Benno Stein. Optimized Design of Fluidic Drives: Objectives and Concepts.
Notes in Computer Science tr-ri-97-189, Department of Mathematics and Com-
puter Science, University of Paderborn, Germany, August 1996.

[259] Benno Stein. Supporting Hydraulic Circuit Design by Efficiently Solving the
Model Synthesis Problem. In International ICSC Symposium on Engineering of
Intelligent Systems (EIS 98), pages 1274-1280, Canada, February 1998. ICSI Aca-
demic Press. ISBN 3-906454-11-8.

[260] Benno Stein and Daniel Curatolo. Model Formulation and Configuration of
Technical Systems. In Jiirgen Sauer, Andreas Giinter, and Joachim Hertzberg,
editors, Tenth Workshop “Planen und Konfigurieren” (PUK 96), volume 3 of Pro-
ceedings in Artificial Intelligence, pages 56-70, Bonn, Germany, April 1996. Infix.
ISBN 3-92037-97-1.

[261] Benno Stein and Daniel Curatolo. Selection of Numerical Methods in Specific
Simulation Applications. In José Mira, Angel Pasqual del Pobil, and Moonis Ali,
editors, Proceedings of the Eleventh International Conference on Industrial & Engi-
neering Applications of Artificial Intelligence & Expert Systems (IEAAIE 98), volume
1416 of Lecture Notes in Artificial Intelligence, LNAI, pages 918-927, Berlin Heidel-
berg New York, June 1998. Springer. ISBN 3-540-64574-8.

[262] Benno Stein, Daniel Curatolo, and Marcus Hoffmann. Simulation in FLUIDSIM.
In Helena Szczerbicka, editor, Workshop on Simulation in Knowledge-Based Systems
(SIWIS 98), number 61 in ASIM Notes, Bremen, Germany, April 1998. Technical
committee 4.5 ASIM of the GI.

REFERENCES 251

[263] Benno Stein, Daniel Curatolo, and Hans Kleine Biining. Speeding up the Sim-
ulation of Fluidic Systems by a Knowledge-Based Selection of Numerical Meth-
ods. In Euromech Colloquium 370 Synthesis of Mechatronic Systems. University of
Duisburg, Germany, September 1997.

[264] Benno Stein and Marcus Hoffmann. On Adaptation in Case-Based Design. In
R. Parenti and F. Masulli, editors, Third International ICSC Symposia on Intelligent
Indsutrial Automation (IIA 99) and Soft Computing (SOCO 99), Canada, June 1999.
ICSI Academic Press. ISBN 3-906454-17-7.

[265] Benno Stein and Oliver Niggemann. On the Nature of Structure and its Iden-
tification. In Peter Widmayer, Gabriele Neyer, and Stefan Eidenbenz, editors,
Graph-Theoretic Concepts in Computer Science, volume 1665 of Lecture Notes in
Computer Science, LNCS, pages 122-134, Berlin Heidelberg New York, June 1999.
Springer. ISBN 3-540-66731-8.

[266] Benno Stein, Oliver Niggemann, and Uwe Husemeyer. Learning Complex
Similarity Measures. In Reinhold Decker and Wolfgang Gaul, editors, Classifica-
tion and Information Processing at the Turn of the Millenium (selected Papers from the
23th Annual Conference of the German Classification Society (GfKl), Bielefeld, March
1999), pages 254-263, Berlin Heidelberg New York, 2000. Springer. ISBN 3-540-
67589-2.

[267] Benno Stein and André Schulz. Topological Analysis of Hydraulic Systems.
Notes in Computer Science tr-ri-98-197, Department of Mathematics and Com-
puter Science, University of Paderborn, Germany, July 1998.

[268] Benno Stein and André Schulz. Modeling Design Knowledge on Structure. In
Gregor Engels, Andreas Oberweis, and Albert Ziindorf, editors, Proceedings of
the Workshop “Modellierung 2001”, volume P-1 of Lecture Notes in Informatics, LNI,
pages 3848, Bonn, March 2001. Gesellschaft fiir Informatik. ISBN 3-88579-330-
X.

[269] Benno Stein and Elmar Vier. Computer-Aided Control Systems Design for Hy-
draulic Drives. In Luc Boullart, Mia Loccufier, and Sven Erik Mattsson, editors,
Proceedings of the Seventh IFAC Symposium on Computer-Aided Control Systems De-
sign (CACSD 97), Gent, Belgium, April 1997. University of Gent and the Belgian
Institute for Automatic Control (BIRA).

[270] Benno Stein and Elmar Vier. An Approach to Formulate and to Process Design
Knowledge in Fluidics. In Nikos E. Mastorakis, editor, Recent Advances in Infor-
mation Science and Technology, pages 237-242, London WC2H 9HE, October 1998.
World Scientific Publishing Co. Pte. Ltd. ISBN 981-02-3644-1.

[271] Benno Stein and Elmar Vier. Structural Analysis in Control Systems Design of
Hydraulic Drives. Engineering Applications of Artificial Intelligence, EAAI 13(6):
741-750, December 2000.

252 REFERENCES

[272] Benno Stein and Jiigen Weiner. MOKON - Eine modellbasierte Entwick-
lungsplattform zur Konfiguration technischer Anlagen. Notes in Computer
Science SM-DU-178, University of Duisburg, Germany, September 1990.

[273] Benno Stein and Jiirgen Weiner. Model-Based Configuration. In Gerhard
Friedrich and Franz Lackinger, editors, Proceedings of the Seventh Conference of
the Austrian Society for Artificial Intelligence (OEGAI 91), Workshop for Model-Based
Reasoning, pages 63-73, Vienna, Austria, 1991. Christian Doppler Laboratory for
Expert Systems.

[274] G. Stephanopoulos, G. Henning, and H. Leone. MODEL.LA. A Modeling Lan-
guage for Process Engineering—I. The Formal Framework. Computers Chemical
Engineering, 14(1):813-846, 1990.

[275] Peter Strufs. Model-Based Diagnosis—Progress and Problems. In Proceedings
of the International GI-Convention, volume 3, pages 320-331, October 1989.

[276] Peter Struss. Multiple Models for Diagnosis. SPQR-Workshop on Multiple
Models, FRG Karlsruhe, March 1991.

[277] Peter Strufl and Oskar Dressler. “Physical Negation”—Integrating Fault Mod-
els into the General Diagnostic Engine. In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence (IJCAI 89), pages 1318-1323, 1989.

[278] Martin Sueper. Effiziente Losungsstrategien fiir ressourcenorientierte Konfigurier-
ungsprobleme. Diploma thesis, Department of Mathematics and Computer Sci-
ence, University of Paderborn, Germany, 1994.

[279] Michael Suermann. Wissensbasierte Modellbildung und Simulation von hy-
draulischen Schaltkreisen. Diploma thesis, Department of Mathematics and
Computer Science, University of Paderborn, Germany, 1994.

[280] K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual Understanding of
Hierarchical System Structures. IEEE Transactions on Systems, Man, and Cybernec-
tics, 11(2), 1981.

[281] Roberto Tamassia. On Embedding a Graph in the Grid with the minimum
Number of Bends. SIAM Journal of Computing, 16(3):421-444, 1987.

[282] Roberto Tamassia. Advances in the Theory and Practice of Graph Drawing.
Technical report, Department of Computer Science, Brown University, Provi-
dence, Providence, Rhode Island, 1996.

[283] Robert E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM
Journal of Computing, 1(2):146-160, June 1972.

[284] Robert E. Tarjan and J. Hopcroft. Finding the Triconnected Components of a
Graph. Technical Report 140, Department of Computer Science, Cornell Univer-
sity, Ithaca, New York, 1972.

REFERENCES 253

[285] Juha-Pekka Tolvanen. Incremental Method Engineering with Modeling Tools: The-
oretical Principles and Empirical Evidence. Jyvéskyla Studies in Computer Science,
Economics and Statistics, 1998.

[286] Rolf Unbehauen. Grundlagen der Elektrotechnik 1. Springer, Berlin New York,
1994.

[287] Marcos Vescovi, Yumi Iwasaki, Richard Fikes, and B. Chandrasekaran. CFRL:
A Language for Specifying the Causal Functionality of Engineering Devices. In
Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI 93),
pages 626-633. AAAI Press, 1993.

[288] Elmar Vier. Automatisierter Entwurf geregelter Hydrostatischer Systeme, volume
795 of Fortschritt-Berichte VDI, Reihe 8. VDI, Diisseldorf, 1999.

[289] Elmar Vier and Benno Stein. Knowledge-based Control Systems Design for
Fluid Power Systems. In Nikos E. Mastorakis, editor, Recent Advances in Infor-
mation Science and Technology, pages 231-236, London WC2H 9HE, October 1998.
World Scientific Publishing Co. Pte. Ltd. ISBN 981-02-3644-1.

[290] Elmar Vier and Benno Stein. Modeling of Design Strategies for Hydraulic
Control Systems. In M. H. Hamza, editor, Proceedings of the Seventeenth IASTED
International Conference on Modelling, Identification and Control (MIC 98), pages
213-216. ACTA Press, February 1998. ISBN 0-88986-248-6.

[291] Elmar Vier, Benno Stein, and Marcus Hoffmann. Strukturelle Formulierung
von Anforderungen an hydrostatische Antriebe. Technical Report MSRT 8/97,
Gerhard Mercator University of Duisburg, FB 7 MSRT, November 1997.

[292] Angi Vofs and Werner Karbach. MODEL-K: KADS Grows Legs. In G. Schreiber,
B. Wielinga, and]. Breuker, editors, KADS: Knowledge Acquisition and Design
Structuring. Academic Press, 1992.

[293]]. Wallaschek. Modellierung und Simulation als Beitrag zur Verkiirzung der
Entwicklungszeiten mechatronischer Produkte. VDI Berichte, Nr. 1215, pages
35-50, 1995.

[294] Jurgen Weiner. Aspekte der Konfigurierung technischer Anlagen. Dissertation,
University of Duisburg, Germany, 1991.

[295] Daniel S. Weld. The Use of Aggregation in Causal Simulation. Artificial Intelli-
gence, 30:1-34, 1986.

[296] Daniel S. Weld and Johan deKleer. Multiple Ontologies and Automated Mod-
eling. In Daniel S. Weld, editor, Readings in Qualitative Reasoning about Physical
Systems, pages 481-483. Morgan Kaufmann, 1990.

254 MODEL ENVISIONING

[297] P. E. Wellstead. Physical System Modelling. Academic Press Inc., London New
York, 1979.

[298] Stefan Wess. Fallbasiertes Problemlosen in wissensbasierten Systemen zur Entschei-
dungsunterstiitzung und Diagnostik: Grundlagen, Systeme und Entscheidungen. Dis-
sertation, University of Kaiserslautern, 1995.

[299] B. Wessling. Modern Design of Cold Rolling Mills for Stainless Steel. In
Technologies for the Enhancement of Rolling Mills and Processing Lines, pages 71-78.
Mannesmann Demag AG, Ratingen, 1995.

[300] B.]J. Wielinga and J. A. Breuker. Models of Expertise. Advances in Artificial
Intelligence, pages 497-509, 1987.

[301] D. Randall Wilson and Tony R. Martinez. Improved Heterogeneous Distance
Functions. Journal of Artificial Intelligence Research, 6:1-34, 1997.

[302] T. Wonnacott and R. Wonnacott. Regression: A Second Course in Statistics. John
Wiley & Sons, New York, 1981.

[303] D. R. Woods. Drawing Planar Graphs. Technical Report STAN-CS-82-943,
Computer Science Department, Stanford University, 1981.

[304] Zhenyu Wu and Richard Leahy. An Optimal Graph Theoretic Approach to
Data Clustering: Theory and its Application to Image Segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, November 1993.

[305] A. Wayne Wymore. Systems Engineering for Interdisciplinary Teams. John Wiley
& Sons, New York, 1976.

[306] Kenneth Man-kam Yip. Model Simplification by Asymptotic Order of Magni-
tude Reasoning. Artificial Intelligence, 80:309-348, 1996.

[307] C. T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt
Clusters. IEEE Transactions on Computers, C-20(1), 1971.

[308] Bernard P. Zeigler. Towards a Formal Theory of Modeling and Simulation:
Structure Preserving Morphisms. Association for Computing Machinery, 19(4):
742-764, October 1972.

[309] Bernard P. Zeigler. Multifaceted Modeling and Discrete Event Simulation. Aca-
demic Press, New York, 1984.

[310] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of Modeling
and Simulation. Academic Press, New York, 2000.

[311] G. Zinfimeister. DLayout of Trees with Attribute Graph Grammars. In Proceed-
ings of the International Workshop of Graph Drawing (GD 93), pages 99-102, 1993.

[312] BlaZz Zupan. Optimization of Rule-Based Systems Using State Space Graphs.
IEEE Transactions on Knowledge and Data Engineering, 10(2):238-253, March 1998.

	Title
	Contents
	Preface
	I Framework
	1 Models and More
	1.1 Motivation and Disambiguation
	1.2 Model Construction (I)
	1.3 Synthesis Tasks
	1.4 The AI Point of View

	2 A Framework for Model Construction
	2.1 A Unified Modeling Perspective
	2.2 Behavior Model Types
	2.3 Behavior Model Processing
	2.4 Model Construction (II)

	3 Design Graph Grammars
	3.1 Design Tasks and Transformation Rules
	3.2 Design Graph Grammars
	3.3 Relation to Classical Graph Grammars
	3.4 Structure Analysis and Design Evaluation

	II Case Studies
	A Model Simplification
	A.1 Case-Based Design in Fluidics
	A.2 Structure Synthesis in Chemical Engineering

	B Model Compilation
	B.1 Generating Control Knowledge
	B.2 Flattening Deep Models for Diagnosis Purposes

	C Model Reformulation
	C.1 Constructing Wave Digital Structures
	C.2 Learning Similarity Measures

	D Model Envisioning
	D.1 Supporting Model Formulation for LANs
	D.2 Maintaining Knowledge Bases
	D.3 Analyzing the Structure of Fluidic Systems

	References

