
Model Compilation and Diagnosability of Technical Systems
Benno Stein

Paderborn University
Department of Computer Science

email: stein@upb.de

3rd Int. Conference on Artificial Intelligence and Applications (AIA 03).
Benalmádena, Spain, September 2003. Edited by M. H. Hanza.
pp. 191-197, ISBN 0-88986-390-3, ACTA Press, 2003.

Abstract

This paper is on the automated construction of diagnosis
models for complex, continuous-valued systems. Given
is the following diagnosis scenario of first principles:
(a) The global behavior model of the system in question
can be composed from single component models, where
(b) context-free models of both the normal and the faulty
component behavior are known.

This situation enables one to simulate the system with
respect to expected inputs along with faults, and to distill a
compiled diagnosis model from the huge set of generated
data with mining techniques. As well as that, this situation
enables us also to define the most informativemeasurement
points for fault isolation purposes.

The contributions of this paper are threefold: (1) It
outlines the compilation approach and its realization in
the domain of hydraulic engineering, (2) it extends the
GDE measurement heuristics towards an optimum strategy
with respect to an arbitrary observation horizon, and (3) it
presents a measure to quantify the diagnosis effort for sys-
tems whose behavior can be captured by a compiled model.
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1 Introduction

We present a diagnosis approach that combines the model-
based paradigm with the associative (heuristic) paradigm
as follows: By simulating the interesting system in various
fault modes and over its typical input range a simulation
database is built up. From this database a simplified rule-
based behavior model is compiled where long cause-effect
chains are replaced with weighted associations and which
is optimized for a heuristic classification of the interesting
faults. Since this process can be completely automated, the
approach has the potential to combine the advantages of
the model-based philosophy, such as behavior fidelity and
generality, with the efficiency and robustness of a heuristic
diagnosis system.

Of course, the approach must not be seen as a univer-
sal diagnosis recipe; it comes along with tight applicability
conditions: All faults must be component failures, the re-
lated fault models must be known, and, typical system in-
puts must be given. However, there exist many situations

where these conditions are fulfilled—one is presented in
this paper: The automatic generation of diagnosis systems
that detect abrupt component faults in hydraulic systems.
Abrupt component faults cause significant deviations from
steady state operations [1].

1.1 Model Compilation and its Impacts

The diagnosis of complex systems is a challenge: Fol-
lowing the heuristic paradigm means to capture diagnosis
rules from domain experts—a road which is insecure and
fault-prone, and which presupposes that expertise is avail-
able [2]. Following the model-based paradigm may be pre-
cluded for limited computational resources. Even when ex-
cellent simulation conditions are given, model-based diag-
nosis is still problematic: The long interaction paths be-
tween variables result in large conflict sets. Moreover,
many technical systems have a feedback structure—i. e.,
cause-effect chains, which are the basis for an assumption-
based reasoning process, cannot be easily stated.

In this connection, the compilation of a heuristic
model from a model of first principles is promising strat-
egy. Compiled models have a small computational foot-
print. As well as that, model compilation breaks feedback
structures, and, under the assumption that all observations
have already been made, an optimum measurement strat-
egy can be developed.1

Based on the last consideration, we can also propose
a new concept for assessing the diagnosability of a system.
The key idea is to relate the information gain of increasing
sets of observers to the theoretical optimum. This relation
can be expressed as a concentrationmeasure, which we call
a system’s discrimination entropy.

1.2 Relation to Existing Work

The fault detection performance of a diagnosis system de-
pends on the adequateness of the underlying model. Model
compilation is one paradigm for constructing adequate
models. The model-based diagnosis paradigm, either with
or without fault models, provides another possibility [3, 4].
Under the latter paradigm, the cycle of simulation and can-
didate discrimination is executed at runtime, while under

1A fact, which advised us to name our model compilation program
DÉJÀVU.
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the compilation paradigm it is anticipated in a preprocess-
ing phase.

Processing a compiled diagnosis model is similar to
associative diagnosis. Note, however, that the underlying
model in an associative system is the result of substantial
model formation considerations. By contrast, model com-
pilation pursues a data mining strategy and aims at an au-
tomatic detection of associative knowledge [5]. The idea to
derive associative knowledge from deep models was pro-
posed amongst others in [6].

With respect to fault detection and isolation (FDI),
measurement selection, and diagnosability, a lot of research
has been done. A large part of this work concentrates on
dynamic behavior effects, which are not covered in this pa-
per [7, 8]. Nevertheless, since our compilation concept fo-
cuses on search space and knowledge identification aspects
it can be adapted to existing FDI approaches as well.

There is also some research related to model compi-
lation for diagnosis tasks: The work of Console et al. deals
with the generation of decision trees [9]; Darwich discusses
how rules can be generated for platforms where computa-
tional resources are limited [10].

2 Model Compilation
in Hydraulic Engineering

Hydrostatic drives provide advantageous dynamic proper-
ties and represent a major driving concept for industrial ap-
plications. They consist of several types of hydraulic build-
ing blocks: Cylinders, which transform hydraulic energy
into mechanical energy, various forms of valves, which
control flow and pressure of the hydraulicmedium, and ser-
vice components such as pumps, tanks, and pipes, which
provide and distribute the necessary pressure p and flow Q.
Figure 1 shows two medium-sized examples of circuits we
are dealing with.

Figure 1. Two hydraulic circuit examples.

2.1 Component Faults and Fault Models

A prerequisite for applying model compilation for diagno-
sis purposes is that components are defined with respect to

both their normal and their faulty behavior. In the follow-
ing, such a fault model is stated exemplary for the check
valve.

Typical check valve faults include jamming, leaking,
or a broken spring. These faults affect the resistance char-
acteristic of the valve in first place. Let p1 and p2 be the
pressure values at the two valve connections, let q be the
flow through the valve, and let R be its hydraulic resis-
tance. Then, the pressure drop at a turbulent flow is

∆p = R · q2, where ∆p := p1 − p2.

The resistance law is given in Table 1 for both the
normal and the faulty behavior. If the valve is operating
in its range of control, the fractions are well defined and
∆p > p0.

Normal behavior Faulty resistance behavior

R =
m2

· ∆p

(∆p − p0)2
R =

m2
· ∆p

(∆p − p0 · (1 + εvalve))2

Table 1. Resistance law of a working and a faulty check valve
operating in its control range. The deviation coefficient εvalve is a
state quantity, which is modeled as a continuous random variable.

Other fault models relate to slipping cylinders due to
interior or exterior leaking, incorrect clearance or sticking
throttle valves, directional valves with defect solenoid and
contaminated lands, and pumps showing a decrease in per-
formance.

For all fault models, a deviation coefficient ε is mod-
eled as a continuous random variable which defines the dis-
tribution of the fault seriousness.

2.2 Construction of a Compiled Model

We construct a compiled model in five steps. Within the
first step a simulation data base C is built, which then is suc-
cessively abstracted towards a real-valued symptom data
base C∆, a symbolic interval data base CI , an observer data
base CO, and, finally, a rule data base CR, which represents
the heuristic diagnosis model.

2.3 Simulation

Behavior models of hydraulic systems are hybrid discrete-
event/continuous-time models [11]. I. e., the trajectories of
the state variables can be considered as piecewise continu-
ous segments, which are called phases. The discrete state
variables such as valve positions, relays, and switches are
constant within a phase, and in between the phases one or
more of them changes its value, leading to another mode
of the system. The continuous variables such as pres-
sures, flows, velocities, positions, which are the target of
our learning process, follow continuous curves. In the fol-
lowing the set of continuous variables is denoted by Z .

The quasi-stationary values of the continuous state
variables are in the role of symptoms, since abrupt faults
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may cause their significant change. Our working hypothe-
sis is that between the continuous input variables and sev-
eral of the continuous state variables a monotonic charac-
teristic can be assumed—as long as a single phase is con-
sidered. The sampling procedure reflects this hypothesis as
follows.

Let an initial state vector x0, a vector of input func-
tions u(t), and some point in time t be given by the user.
Then, during simulation, samples of the vector of state tra-
jectories are drawn at those points in time τ , τ ≤ t, where a
discrete event is imminent. With respect to the compilation
process each sample is completed by a number π desig-
nating its phase, the input function values at time τ , and
the currently enabled component faults d. E. g., under the
single-fault assumption a fault simulation vector c is of the
following form:

c(π,u,d) := (π, u1, . . . , um, x1, . . . , x|Z|, d, εd)

The entirety of normal and fault simulation vectors
forms the simulation data base C.

2.4 Symptom Identification

For each fault simulation vector c(π,u,d) ∈ C the devia-
tions of its state variables to the faultless simulation vector
c(π,u) with same u in the same phase π is computed.

The computation is based on a special operator “⊖”,
which distinguishes between effort variables and flow vari-
ables. The former are undirected, and a difference between
two values of this type is computed straightforwardly. The
latter contain directional information, and their difference
computation distinguishes between seven cases.

Result of this step is the symptom data base of ⊖-
deviations, C∆, which contains symptom vectors of the
form (π, u, δ1, . . . , δ|Z|, d).

2.5 Interval Formation

The symptom vectors in C∆ are generalized by mapping the
deviations δ

(1)
z , . . . , δ

(|C|)
z , δ

(i)
z ∈R, z∈Z , onto p intervals

I
(1)
z , . . . , I

(p)
z , I

(j)
z ⊂ R, with

⋃

j I
(j)
z = R. This is an

optimization task where, on the one hand, the loss of dis-
crimination information shall be kept minimum (the larger
p the better), while on the other hand, constraints of mea-
suring devices and human operators must be obeyed (the
smaller p the better).

This interval formation can be compared to a dis-
cretization method that maps a cardinal domain onto an
ordinal domain in order to make a classification approach
applicable [12, 13]. Such methods are distinguished with
respect to locality, supervision, and interdependency. We
realized a method that is global, since the interval forma-
tion is applied to the entire range of a variable; it is super-
vised, since it exploits classification knowledge (the faults
within an interval); however, it does not consider depen-
dencies between variables.

With this abstraction step the domain of real num-
bers is replaced by a symbolic, say, propositional-logical
representation: For each state variable z ∈ Z a new do-
main Iz is introduced. Iz is the union of interval names
ιz , which map in a one-to-one manner onto the real-valued
intervals Iz ⊂ R. The symbolic interval database that de-
velops from C∆ by interval formation is denoted with CI

and contains symbolic symptom vectors of the form (π,
u, ι1, . . . , ι|Z|, d). Note that the number of simulation vec-
tors has not been reduced, say, |CI | = |C|.

2.6 Measurement Selection

By means of simulation, values are computed for all vari-
ables in Z . In fact, restricted to a handful of measuring
devices or sensors, only a small subset O of Z can be ob-
served at the system. Measurement selection means to de-
termine the most informative variables in Z—or, speaking
technically, to place a set of |O| = k observers such that as
much faults as possible can be classified. In the sequel, the
variables in O are called observers.

O is determined by analyzing for each phase π and for
each variable z ∈ Z the correlations between the symbolic
intervals Iz and the set of component faults D. The analy-
sis combines considerations from statistics and information
theory [14, 15].

• Observer Dependency. Observers that depend on each
other correlate in their diagnosis information and must
be excluded from further examination.

Because of the multivariate rule generation approach,
the dependency analysis here can be restricted to the
bivariate case. Since the observers’ domains are nom-
inally scaled, the contingency coefficient of Pearson is
used. It relies on the χ2 contingency which measures
the association between two variables in a two-way
table. Table 2 shows an example.

δpx < 20 δpx ≥ 20
∑

δqy < 1.5 a b c a d 5

δqy ≥ 1.5 d b c 3
∑

4 4 8

Table 2. The table shows for observed deviations at pressure px

and flow qy the distribution of four component faults a , b , c , d .
Note that each variable is associated with two symbolic intervals.

• Observer Information. At heart, the considerations
presented here generalize the idea of hypothetical
measurements; the idea goes back on the work of For-
bus and de Kleer who try to estimate the measuring
cost hidden in a particular diagnosis situation.

Reasoning by hypothetical measurements means to
evaluate for all z ∈ Z how an observed deviation δz would
reduce the set of possible diagnosis D. For instance, as-
suming that D = { a , . . . , h } and that we are given the
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simulation results shown in Table 2, a measurement of qy

resulting in the symptom “δqy
≥ 1.5” complies only with

the component faults b , c , and d . However, the measure-
ment could also result in the symptom “δqy

< 1.5” where
the component faults a ,. . . , d come into question.

With respect to the database CI and a given phase π,
let κ(z, ι) ⊆ D designate the set of diagnoses that com-
ply with symptom (z, ι). Related to the example, κ(qy ,“≥
1.5”) = { b , c , d }. If one presumes that all diagnoses
(component faults) in the set D occur equally likely, then
the probability that a particular symptom (z, ι) will occur
can be estimated by |κ(z, ι)|/

∑

τ∈Iz
|κ(z, τ)|, the fraction

of diagnoses that comply with the symptom.
If we also knew the measurement effort to discrimi-

nate amongst the remaining diagnoses κ(z, ι), the most in-
formative observer in Z could be determined. Here, the
simplifying assumption is made that the diagnoses D are
equally distributed over the |Iz | = r intervals in Iz , z ∈ Z .
Henceforth, logr κ(z, ι) defines a lower bound for the num-
ber of measurements that are necessary to isolate each of
the faults in κ(z, ι).

The considerations are comprised in Equation (1),
which estimates the discrimination effort to identify a com-
ponent fault from D using observer z, when given the di-
agnosis situation described by the interval database CI .

e(z) =
∑

ι∈Iz

|κ(z, ι)|
∑

τ∈Iz
|κ(z, τ)|

· logr|κ(z, ι)|, (1)

where r = |Iz |. The minimization of Equation (1) over all
z ∈ Z is used as a heuristic to determine the most infor-
mative observers O ⊂ Z . If a-priori probabilities P (d) for
the faults d ∈ D are known, they can be integrated in the
likelihood estimator of Equation (1).

Equation (1) resembles the formula of Forbus
and de Kleer; it differs with respect to the identity
∑

τ∈Iz
|κ(z, τ)| = |D|, which does not hold in our compi-

lation situation.
Let O ⊂ Z be the set of selected observers. The

database that emerges from the symbolic interval database
CI by eliminating all variables in Z \ O is called observer
database CO; it is much smaller than CI . However, its num-
ber of elements is unchanged, i. e., |CO| = |C|.

2.7 Rule Generation

Within the rule generation step reliable diagnosis rules are
extracted from the observer database CO. The rules have a
propositional-logical semantics and are of the form

r = ιo1
∧ . . . ∧ ιok

→ d,

where ιoi
∈ Ioi

, oi ∈ O, d ∈ D, and k ≤ |O|. O ⊂ Z is
the set of the chosen observers; the symbols of a rule form
a subset of a single vector c ∈ CO . The left and right sides
of the rule are called premise and conclusion respectively.

The semantics of such a rule r is defined by means
of two propositional-logical truth assignment functions,

α :
⋃

z∈Z Iz → {0, 1} and β : D → {0, 1}. For some
constraint variable z ∈ Z , let I be the real-valued interval
associated with the interval symbol ι, and let δz be a symp-
tom. Then α and β are defined as follows.

α(ι) =

{

1 ⇔ δz ∈ I

0 otherwise.
β(d) =

{

1 ⇔ fault is d.
0 otherwise.

A truth assignment function α matches a rule r if its
premise, r−, becomes true under α. If also the rule conclu-
sion becomes true under β, then r is called positive.

Note that the inference direction of the above rules is
reverse to the cause-effect computations when simulating
a behavior model: We now ask for symptoms and deduce
faults, and—as opposed to the simulation situation—this
inference process must not be definite. Perhaps there is a
definite mapping from symptoms to faults in the original
simulation database C. Even so, it is very likely that the
rigorously simplified observer database CO encodes ambi-
guities. I. e., rules with the same premise (symbolic inter-
vals) that are associated with different faults.

To cope with this form of uncertain knowledge we
forget about a strictly logical interpretation and character-
ize each rule r by its confidence, c, and its support, s:

c(r) =
h(r)

h(r−)
and s(r) =

h(r)

|CO|
,

where h(r) denotes the frequency of r in CO, while h(r−)
denotes the frequency of the rule’s premise in CO.

Rule generation is realized with data mining methods
and yields the rule database CR. In particular, we employ
strategies with respect to confidence-thresholds and sub-
sumption handling to avoid computational overhead. Nev-
ertheless, rule generation still is a combinatorial problem.
Note that in the data mining jargon, rules of the described
form are called “association rules” [17].

2.8 DÉJÀVU: Model Application and Results

Model application means to process the rules in CR in the
context of observed symptoms. It requires an operational
semantics for the rules’ confidence and support values.
The classics amongst the rule-based systems that employs
rules with confidences is MYCIN [18]. MYCIN’s under-
lying computation scheme is designed for the accounting
of a handful of rules—it fails in our setting where confi-
dences of 10-100 rules predicting the same diagnosis can-
didate d ∈ D must be accounted.

We developed the better suited formula below, which
computes for each fault d∈D its confidence in “β(d) = 1”
given a rule database CR and a truth assignment α. The for-
mula consists of two parts: (1) A base term, where the im-
pact of a positive rule with maximum confidence cannot be
weakened and, (2) an update term, where the confidences
of the positive rules are weighted with all matching rules.

c(“β(d) = 1”) = c(r∗) +
(

1 − c(r∗)
)

·
1

|R−|

∑

r∈R

c(r),
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where R− ⊂ CR comprises the matching rules, R ⊂ CR

comprises the positive rules, and r
∗ denotes a positive rule

of maximum confidence.

Number of

observers

1 2 3

80%

20%

40%

100%

60%

4 5 6

Unique fault proposal

Proposal of component set (< 3) including fault

Figure 2. Classified faults depending on the number of ob-
servers. Dark bars indicate a unique proposal of the faulty compo-
nent, light bars a multiple prediction (≤ 3 components including
fault).

The outlined model construction process as well as
the rule inference have been realized within the diagnosis
program DÉJÀVU [19]. For simulation purposes, DÉJÀVU

employs the FLUIDSIM simulation engine [20]. Note that
the automatic simulation and recording of a large number
of operating scenarios implies demanding problems on its
own, which cannot be discussed in this place.

Rule confidence > 0.5

Rule confidence = 1

Number of

observers

1 2 3

800

400

4 5 6

1200

1600

Figure 3. Number of generated rules depending on the number of
observers. Dark bars indicate rules with a confidence value of 1,
light bars stand for confidence values > 0.5.

Using DÉJÀVU and FLUIDSIM the approach has been
applied to several medium-sized hydraulic circuits (about
20-40 components) with very promising results. Figure 2
shows diagnosis hit rates depending on the number of ob-
servers; basis were more than 2000 variations of |D| ≈ 15
different component faults, the circuits’ driving processes
were clearly defined. The results were achieved with auto-
matically constructed rule databases CR that have not been
manually revised. Figure 3 shows average values of the
rule data base sizes.

3 Model Compilation
Enlarges the Observability Horizon

The abstraction from the real-valued simulation database
C towards the symbolic interval database CI provides the
ground for applying information-theoretical considerations
to the measurement selection. This section shows the true
power of model compilation: The selection heuristic, Equa-
tion (1), can be turned into an optimummeasurement strat-
egy.

Equation (1), which estimates the effort to discrimi-
nate between several diagnoses in D when using observer
z∈Z , has a look-ahead of 1: For each observable interval ι,
the discrimination must be continued amongst the remain-
ing set of diagnoses κ(z, ι). A global selection strategy
would determine a set of observers O ⊂ Z such that the
overall discrimination effort is minimum.

Within the diagnosis setting of the GDE, a globally

optimum selection strategy can only be employed, if addi-
tional hypothetical simulation runs are performed. Hypo-
thetical simulations are initiated by hypothetical measure-
ments. In this connection let ι be a possible outcome from a
hypotheticalmeasurement at some observer z∈Z . Then ι is
interpreted as additional system input, and for each compo-
nent in the conflict set a simulation is carried out having its
state transition function disabled. Since such a symptom-
driven, hypothetical simulation concept is computationally
very expensive, Forbus and de Kleer do not follow this idea.
Moreover, the execution of symptom-driven simulations in
connection with real-valued behavior models is question-
able because of the infinite hypotheses space.

Within our compiled model setting, which is encoded
by CI , the situation is different. A large database with sim-
ulation scenarios is at our disposal that can be exploited
for a global selection strategy. In this regard, we intro-
duce the conditional probability Pz(ι|D) which specifies
the probability that the symptom ι can be observed at ob-
server z ∈ Z under the condition that some fault from D
has been occurred. We use the frequency distribution of D
in the database CI to estimate the probabilities Pz(ι|D):

Pz(ι|D) =

∣

∣{d ∈ k(z, ι) | d ∈ D}
∣

∣

∑

ι∈Iz

∣

∣{d ∈ k(z, ι) | d ∈ D}
∣

∣

,

where k(z, ι) is the multiset counterpart of κ(z, ι). I. e.,
k(z, ι) is the set of diagnosis that comply with symptom
“(z, ι)”, and multiple occurrences of the same interval-fault
combination are counted multiply. Related to the example
in Table 2, k(q7,“< 1.5”) = { a , a , b , c , d }, andPq7

(“<
1.5”|{ a , b }) = 3/4.

Now Equation (1) can be extended to exploit a-priori
knowledge about the diagnoses D amongst which the ob-
server z ∈ Z shall discriminate:

e(z, D) =
∑

ι∈Iz

Pz(ι|D) · logr|D ∩ κ(z, ι)|, (2)
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where r = |Iz |. The minimization of Equation (2) over Z
yields the most informative observer for a look-ahead of 1.
By a recursive application of Equation (2) to the remaining
sets of diagnoses D ∩ κ(z, ι), we can enlarge the observa-
tion horizon—until a unique fault classification is achieved.
Each recursion step corresponds to a new observation.

Given a number of observations allowed, k, we define
the discrimination effort for a system as the number of ob-
servations that must additionally be made to discriminate
between all diagnoses. Clearly, this makes sense only if the
k observations are optimum with respect to the expected
information gain. The following definition fulfills the de-
manded; it provides a lower bound for the expected number
of additional observations.

Definition 1 (Expected Discrimination Effort) Let S be
a system that is characterized by an interval database CI .
CI defines the set of diagnoses D, the set of possible ob-
servers Z , the conditional probabilities Pz , and the func-
tion κ. Then, the expected discrimination effort of S with
respect to a maximum number of observations k > 0 is
defined as

ê(D, k) =































min
z∈Z

(

∑

ι∈Iz

Pz(ι|D) · ê(D ∩ κ(z, ι), k − 1)

)

,

if k > 0 and |D| > 1

logr(|D|), if k = 0 or |D| = 1

where Iz comprises the intervals of an observer z, z ∈ Z ,
r = |Iz |, and the function κ returns for an observer z and
an interval ι ∈ Iz the set of complying diagnoses.

When setting k = 1 and employing the relative fre-
quency instead of the conditional probability, ê(D, k) be-
comes the original formula of Forbus and de Kleer [16].
Remarks. The definition of the expected discrimination ef-
fort implies several assumptions. (1) The set of diagnoses,
D, is complete, (2) the diagnoses in D are equally dis-
tributed, and (3) the available observers, Z , are indepen-
dent from each other. The presented formula uses the same
resolution r for all observers but can easily be extended to
allow for observer-specific resolutions rz .

4 Quantifying a System’s Diagnosability

There is the interesting question of how to assess the diffi-
culty to diagnose a system. In the following we will present
the necessary considerations and develop such measure.
Starting point is the formula for the expected discrimina-
tion effort, ê(D, k).

If k = 1 then ê(D, k) = minz∈Z

(
∑

ι∈Iz
P (ι|D) ·

logr(|κ(z, ι)|)
)

. The term
∑

ι∈Iz
P (ι|D) · logr(|κ(z, ι)|)

becomes minimum if the diagnoses are distributed equally
amongst the r intervals in Iz . This, in turn, allows us to
factor out the term logr(|κ(z, ι)|), and ê(D, 1) simplifies
to logr(|κ(z, ι)|) ·

∑

ι∈Iz
P (ι|D) = logr(

|D|
r

).

Repeating the same assumptions for k = 2 yields:

ê(D, k) = minz∈Z

(
∑

ι∈Iz
P (ι|D) · ê(κ(z, ι), 1)

)

= ê(κ(z, ι), 1)

= logr(
|κ(z,ι)|

r
)

= logr(
|D|
r2 )

Note that the minimum number of observations to-
tally required depends on both the observers’ resolution,
say, their number of intervals, r, and the number of diag-
noses |D|. The infimum number of observations necessary
to discriminate between each diagnosis is ⌊logr |D|⌋. It is
used to specify E∗, the accumulated ideal discrimination
effort of a system as follows.

Definition 2 (Accumulated Ideal Discrimination Effort)
The accumulated ideal discrimination effort of a system
S with respect to a set of diagnoses D and an observer
resolution r is defined as

E∗(D) :=

⌊logr |D|⌋
∑

i=1

logr

|D|

ri

The difference between the accumulated expected and
the accumulated ideal discrimination effort can be used as a
measure for the difficulty to diagnose a system. The larger
this difference is the more does a faulty system behave ag-
nostic. Note that this measure gives an estimation that is
independent of the number of possible observers, thus pro-
viding a system-specific characteristic. At the best, the dif-
ference between the expected and the ideal discrimination
effort is zero. Figure 4 illustrates the difference between
the discrimination efforts pictorially; the accumulated dif-
ference is called discrimination entropy here.

Discrimination entropy

Ideal discrimination effort

Number of

observations

Discrimination

effort

Expected discrimination effort

1 2 3 ...

Figure 4. Discrimination entropy: The difference between the
accumulated expected and the ideal discrimination effort.

Definition 3 (Discrimination Entropy) The discrimina-
tion entropy E of a system S with respect to a set of diag-
noses, D, is defined as

E :=

(

∞
∑

k=1

ê(D, k)

)

− E∗(D)
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5 Conclusions

Our work shows that the model compilation paradigm can
be applied to generate working diagnosis models for com-
plex systems such as hydraulic plants. However, the con-
struction process is fairly involved and employs methods
from learning theory, statistics, information theory, and
data mining.

Perhaps more interesting are the presented “by-
products” of model compilation: A globally optimummea-
surement strategy and a diagnosability measure, called dis-
crimination entropy. Given a database with simulation
records of some—possibly unknown—system, the concept
of discrimination entropy allows us to quantify the diagno-
sis effort that can be expected.

Especially with respect to the design of a system both
considerations may be important: A perfect measurement
strategy provides guidance to place sensor devices opti-
mally; the concept of discrimination entropy can be used
to construct systems with respect to their maintenance ef-
fort.
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