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Abstract

In the field of information retrieval, clustering algorithms

are used to analyze large collections of documents with the

objective to form groups of similar documents. Clustering

a document collection is an ambiguous task: A clustering,

i. e. a set of document groups, depends on the chosen clus-

tering algorithm as well as on the algorithm’s parameter

settings. To find the best among several clusterings, it is

common practice to evaluate their internal structures with

a cluster validity measure.

A clustering is considered to be useful to a user if par-

ticular structural properties are well developed. Neverthe-

less, the presence of certain structural properties may not

guarantee usefulness from an information retrieval stand-

point, say, whether or not the found document groups re-

semble the classification of a human editor. The paper in

hand investigates this point: Based on already classified

document collections we generate clusterings and compare

the predicted quality to their real quality.

Our analysis includes the classical cluster validity

measures from Dunn and Davies-Bouldin as well as the

new graph-based measures Λ (weighted edge connectivity)

and ρ (expected edge density). The experiments show in-

teresting results: The classical measures behave in a con-

sistent manner insofar as mediocre and poor clusterings are

identified as such. On real-world document clustering data,

however, they are definitely outperformed by the expected

edge density ρ. This superiority of the graph-based mea-

sures can be explained by their independence of cluster

forms and distances.
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1 Cluster Validity versus Cluster Usability

Clustering is a useful method to analyze large collections of

documents. It has the potential to identify unknown clas-

sification schemes that highlight relations and differences

between documents. There is a large number of cluster-

ing algorithms that can be used for this task. But different

clustering algorithms tend to produce different results and

even a single clustering algorithm creates various results

depending on its initial parameter settings. Therefore an

evaluation of the results is necessary to assess their quality.

In clustering tasks the procedure of evaluating the results is

known under the term cluster validity [1].

Most cluster validity measures assess certain struc-

tural properties of a clustering result. If the structural prop-

erties of the outcome are well developed, then the result

is considered to be of interest to the user. If the struc-

tural properties are not well developed, then the result is

considered to be of no interest. Because the focus is on

the structural properties of a data set, these measures are

also called objective measures [2]. Many objective mea-

sures have been developed so far; their attractiveness stems

from their domain independence. Every clustering result,

regardless which algorithm produced it, can be evaluated

whether it has certain structural properties or not.

High scores on an objective measure make a cluster-

ing result valid with regard to its structural properties—

however, the presence of such structural properties does not

guarantee the interestingness of the result for the user: Ob-

jective measures lack the linkage to the user’s information

need. Recall that in the field of pattern recognition, mea-

sures that consider a user’s information need are referred to

as subjective measures [2]. To find a corresponding term

in the field of clustering result evaluation, one could speak

of cluster usability. Research on subjective measures has

not been as intensive as on objective measures, and there

are not many texts that discuss subjective measures in the

context of document clustering [3].

The goal of our research is to identify subjective mea-

sures for document clustering tasks. This is not only of aca-

demic concern to us: We have developed the meta search

engine AISEARCH [4], and we want to improve the classi-

fication of the delivered search results.

In this paper we embark on the following strategy: We

investigate up to what extent certain cluster validity mea-

sures can be employed to predict cluster usability. Note

that for a carefully classified document collectionD the us-

ability of a clustering C of D can be quantified easily, e. g.

by means of the F -Measure, which evaluates the quality of

the best match between the original classes and the found

clusters. In particular, we want to answer the following

question:

Which of the investigated cluster validity

measures qualifies a user’s information need,

say, captures structural properties that correlate

with the F -Measure?
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We answer this question by performing various clus-

tering experiments based on the new Reuters Text Cor-

pus Volume 1 (RCV1) [5]. In this connection we em-

ploy the following clustering algorithms: k-Means (iter-

ative), Group-Average-Link (hierarchical agglomerative),

and MAJORCLUST (density-based) [6, 7, 8, 9, 10]. Note

that the generation of the clusterings as well as the cluster

algorithms are not discussed here. The remainder of this

paper is organized as follows. Section 2 introduces the in-

vestigated cluster validity measures, and Section 3 presents

the analysis results.

2 Cluster Validity Measures

Definition 1 (Clustering) Let D be a set of objects. A

clustering C = {C | C ⊆ D} of D is a division of D into

sets for which the following conditions hold:
⋃

Ci∈C Ci =
D, and ∀Ci, Cj ∈ C : Ci ∩ Cj 6=i = ∅. The sets Ci are

called clusters.

Here, the set of objects,D, corresponds to a document

collection. Moreover, it is useful to consider the elements

in D as nodes of a weighted graph G. G is completely

connected, and the weight of the edge that connects two

documents, di, dj , corresponds to their similarity.

A cluster validity measure maps a clustering on a real

number. The number indicates to what degree certain struc-

tural properties are developed in the clustering. There are

two types of measures: external measures and internal mea-

sures. The external measures use a human reference classi-

fication to evaluate the clustering. Note that external mea-

sures are not applicable in real world situations since ref-

erence classifications are usually not available. In contrast,

internal measures base their calculations solely on the clus-

tering that has to be evaluated. In the follwing, five clus-

ter validity measures are described. One of them, the F -

Measure, is an external measure and was used in our exper-

iments to evaluate the other measures. The remaining four

measures are internal: Dunn and Davies-Bouldin, which

are widely accepted classical measures, andΛ and ρ, which
were developed at our Institute [10].

2.1 The F -Measure

The F -Measure combines the precision and recall mea-

sures from information retrieval [11].

Definition 2 (Precision, Recall, F -Measure) Let D rep-

resent the set of documents and let C = {C1, . . . , Ck} be a
clustering of D. Moreover, let C∗ = {C∗

1 , . . . , C∗
l } desig-

nate the human reference classification.

Then the recall of cluster j with respect to class i,
rec(i, j), is defined as |Cj ∩ C∗

i |/|C
∗
i |. The precision of

cluster j with respect to class i, prec(i, j), is defined as

|Cj ∩ C∗
i |/|Cj |. The F -Measure combines both values as

follows:

Fi,j =
2

1
prec(i,j) + 1

rec(i,j)

Based on this formula, the overall F -Measure of a cluster-

ing is:

F =

l
∑

i=1

|C∗
i |

|D|
· max

j=1,...,k
{Fi,j}

Note that a perfect fit between clustering and human

reference classification leads to a F -Measure score of 1,

which is the maximal possible value of the measure.

2.2 The Dunn Index Family

Definition 3 (Dunn Measure) Let C = {C1, . . . , Ck} be

a clustering of a set of objects D, δ : C × C → R be a

cluster to cluster distance measure, and ∆ : C → R be a

cluster diameter measure. Then all measures I of the form

I(C) =
mini6=j{δ(Ci, Cj)}

max1≤l≤k{∆(Cl)}

are called Dunn indices.

Originally, Dunn used

δ(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y) and

∆(Ci) = max
x,y∈Ci

d(x, y)

where d : D × D → R is a function that measures the dis-

tance between objects of D. With these settings the mea-

sure yields high values for clusterings with compact and

very well separated clusters. The upper part of Figure 1

gives an example. The maximum diameter is very low and

the minimum distance between two clusters is relatively

large. As a consequence, the clustering is ranked high by

the Dunn index. However, Bezdek recognized that the in-

dex is very noise sensitive (see Figure 1 bottom): Even

though the clustering in the example is good, the large di-

ameter of C1 along with the small distance between C3 and

C4 leads to a low value of the Dunn index. Bezdek experi-

enced that the combination of

δ(Ci, Cj) =
1

|Ci||Cj |

∑

x∈Ci,y∈Cj

d(x, y) and

∆(Ci) = 2

(

∑

x∈Ci
d(x, ci)

|Ci|

)

gave reliable results for several data sets from different do-

mains [12]. Here, ci denotes the centroid of cluster Ci.

Note that a maximization of I is desired.

217



1


1

1


1

1


1

1


1

1

1


3


3

3


3

3


3

2


3

3

3


2


2
2

2


2


2

2


∆(C2)


C3


C1


C2


δ(C1, C2)


δ(C3, C2)


1

1


1

1


3


3

3


3

3


3

3


3

3

3


5


5

5


5

5


5

5


5

5

5


4


4

4


4

4


4


4

4


4


2


2

2


2

2


2

2


2

2

2


∆(C1)

δ(C3, C4)


Figure 1. The upper part shows a clustering with compact and
well separated clusters. The maximum diameter is low and the
distance of the two closest clusters is large, and the original Dunn
index returns a high score for the clustering. The clustering in
the lower part contains some noise. The large diameter of the left
cluster and the closeness of the two right clusters are considered to
be typical for the clustering. As a consequence, the index returns
a low value even though the clustering fits the strucure well.

2.3 The Davies-Bouldin Index

Davies and Bouldin proposed the following index that is

known as Davies-Bouldin measure [13]. It is a function of

the ratio of the sum of within-cluster scatter to between-

cluster separation.

Definition 4 (Davies-Bouldin Index) Let C = {C1, . . . ,
Ck} be a clustering of a set D of objects.

DB =
1

k
·

k
∑

i=1

Ri, with

Ri = max
j=1,...,n,

i6=j

Rij and Rij =
(s(Ci) + s(Cj))

δ(Ci, Cj)
,

where s : C → R measures the scatter within a cluster, and

δ : C × C → R is a cluster to cluster distance measure.

Given the centroids ci of the clusters Ci, a typical scatter

measure is s(Ci) = 1
|Ci|

∑

x∈Ci
||x − ci||, and a typical

cluster to cluster distance measure is the distance between

the centroids, ||ci − cj ||. Because a low scatter and a high

distance between clusters lead to low values of Rij , a min-

imization of DB is desired.

Remarks. The Dunn index and the Davies-Bouldin index

are related in that they have a geometric (typically cen-

troidic) view on the clustering. The measures work well

if the underlying data contains clusters of spherical form,

but they are susceptible to data where this condition does

not hold. Λ as well as ρ interpret a data set as a weighted

similarity graph; they analyze the graph’s edge density dis-

tribution to judge the quality of a clustering. Both measures

are introduced in the following.

2.4 The Λ-Measure

A document collection can be considered as a weighted

graph G = 〈V, E, w〉 with node set V , edge set E, and

weight function w : E → [0, 1] where V represents the

documents, and w defines the similarities between two ad-

jacent documents. The Λ measure computes the weighted

partial connectivity of G = 〈V, E, w〉, which is defined

below. Observe that higher values of Λ indicate a better

clustering.

Definition 5 (weighted partial connectivity Λ) Let C =
{C1, . . . , Ck} be a clustering of the nodes V of a weighted

graph G = 〈V, E, w〉.

Λ(C) :=

k
∑

i=1

|Ci| · λi,

where λi designates the weighted edge connectivity of

G(Ci). The weighted edge connectivity, λ, of a graph

G = 〈V, E, w〉 is defined as min
∑

{u,v}∈E′ w(u, v) where

E′ ⊂ E and G′ = 〈V, E \ E′〉 is not connected. λ is also

designated as the capacity of a minimum cut of G.

2.5 A Measure of Expected Density: ρ

A graph G = 〈V, E, w〉 is called sparse if |E| = O(|V |);
it is called dense if |E| = O(|V |2). Put another way, we

can compute the density θ of a graph from the equation

|E| = |V |θ. With w(G) := |V |+
∑

e∈E w(e), this relation
extends naturally to weighted graphs:1

w(G) = |V |θ ⇔ θ =
ln

(

w(G)
)

ln
(

|V |
)

Obviously, θ can be used to compare the density of

each induced subgraph G′ = 〈V ′, E′, w′〉 of G to the den-

sity of G: G′ is sparse (dense) compared to G if the quo-

tient w(G′)/(|V ′|θ) is smaller (larger) than 1. This consid-

eration is the key idea behind the following definition of a

clustering’s expected density ρ.

Definition 6 (expected density ρ) Let C = {C1, . . . , Ck}
be a clustering of a weighted graph G = 〈V, E, w〉, and
let Gi = 〈Vi, Ei, wi〉 be the induced subgraph of G with

respect to cluster Ci. Then the expected density of a clus-

tering C is defined as follows.

ρ(C) =
k

∑

i=1

|Vi|

|V |
·
w(Gi)

|Vi|θ
, where |V |θ = w(G)

Since the edge weights resemble the similarity of the

objects which are represented by V , a higher value of ρ
indicates a better clustering.

1w(G) denotes the total edge weight of G plus the number of nodes,

|V |, which serves as adjustment term for small graphs.
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Figure 2. Part of the RVC1 category structure. There are four top-level categories. Every node under the top-level categories

represent a specialization of its parent.

3 Test Environment and Test Settings

The experiments have been conducted with samples of

RCV1, short hand for “Reuters Corpus Volume 1” [5].

RCV1 is a document collection that was published by the

Reuters Corporation for research purposes. It contains over

800,000 documents each of which consisting of a few hun-

dred up to several thousands words. The documents are

enriched by meta information like category (also called

topic), geographic region, or industry sector. There are 103

different categories, which are arranged within a hierar-

chy of the four top level categories “Corporate/Industrial”,

“Economics”, “Government/Social”, and “Markets”. Each

of the top level categories defines the root of a tree of sub-

categories, where every child node fine grains the informa-

tion given by its parent (cf. Figure 2). Note that a document

d can be assigned to several categories c1, . . . , cp, and that

all ancestor categories of a category ci are assigned to d as

well.

For our experiments, we considered two documents

d1, d2 as belonging to the same category cs if they share

both the same top level category ct and the same most spe-

cific category cs. Moreover, we constructed the test sets in

such a way that there is no document d1 whose most spe-

cific category cs is an ancestor of the most specific category

of some other document d2.

The number of categories in our test data varies from

three to six. For each category, between 100 and 300 docu-

ments were drawn randomly from the entire category. The

data sets had different sizes and class numbers; we inves-

tigated uniformly as well as non-uniformly distributed cat-

egory sizes. Table 1 gives an overview of the constructed

data sets.

The preprocessing of the documents included parsing

of text body and title, stop word removal according to stan-

dard stop word lists, the application of Porter’s stemming

algorithm [14], and indexing according to term frequency.

We used the standard cosine similarity measure to capture

the similarities between documents.

Three analyses were conducted on each test data set

to evaluate the performance of the aforementioned indices.

The three analyses along with their results are described in

the next three subsections.

DS1 DS2 DS3 DS4 DS5 DS6 DS7

# categories 3 3 4 3 5 5 6

# documents 300 600 400 450 500 800 900

unif. distributed yes yes yes yes yes no no

Table 1. Overview of the constructed data sets.

3.1 Consistence Analysis

Since we know the reference categorization C∗ which was

provided by a human editor, we can use it to generate arti-

ficial clusterings C1, . . . , Cn that are to a greater or lesser

extent modifications of C∗. The F -Measure values for

C1, . . . , Cn will measure the degree of congruence for the

modified sets with respect to C∗. Assuming that the mod-

ified categorizations represent erroneous clusterings, the

value of a validation index for C1, . . . , Cn should be worse

than for C∗. Even more can be expected: For C1, . . . , Cn,

the values of a subjective validation index should relate to

the values of the F -Measure monotonically.

To derive an artificial clustering Ci of C∗, we repeat-

edly chose two distinct clusters of C∗ and interchanged ran-

domly chosen subsets of documents pairwise between the

clusters. Note that the size of the interchanged subsets con-

trols the degree of congruence between Ci and C∗. We var-

ied the sizes of the subsets between 1 document and 50%

of the documents within a cluster.

The Figures 3, 4 and 5 show the resulting scatter

plots for the artificial clusterings that we derived from the

reference categorization of DS6 and evaluated with the

data set DS6. We measured the F -Measure value (y-axis)
and the validity index value (x-axis) for each clustering.

For the sake of better readability, we changed the sign of

the Davies-Bouldin Index, which is the only one to be

minimized—this way, the plots are directly comparable.

Assuming that a greater index value constitutes a better

clustering, an ideal index would show points on a curve

that starts in the lower left corner and grows monotonically

up to the upper right corner. Observe that all of the indices

perform well on this test on all data sets.
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Figure 3. Correlation of the F -Measure and the Dunn Index for
the artificial clusterings.
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Figure 4. Correlation of the F -Measure and the Davies-Bouldin
Index for the artificial clusterings.

3.2 Analysis with Genuine Clusterings

We are normally faced with clusterings which are not arti-

ficially constructed but stem from a document categoriza-

tion system that uses different clustering algorithms. For

the experiments reported below we employed hierarchical,

iterative, and density-based algorithms. Moreover, for each

of these algorithms different thresholds, agglomeration lev-

els, cluster numbers, etc. were tried. We measured the F -

Measure values and corresponding validity index value for

each clustering, and, in particular, for the reference catego-

rization C∗ that can be identified by its F -Measure value

of 1.

The Figures 6, 7, and 8 show representative scatter

plots for the investigated validity indices for the same data

set that was used for the consistency analysis (DS6). Again,

we changed the sign of the Davies-Bouldin Index.

Note that the best Dunn Index values do not corre-

late with the best F -Measure values. Also note that the

Davies-Bouldin Index, which works well for the synthetic

data sets, gets misleaded by the genuine clusterings gener-

ated by our clustering algorithms: Many clusterings with

low F -Measure values untruly obtain a high index value.
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Figure 5. Correlation of the F -Measure and the ρ-Measure for
the artificial clusterings.
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Figure 6. Correlation of the F -Measure and the Dunn Index for
genuine clusterings.

3.3 Prediction Quality

One might argue that a validity index only has to find the

best clustering among several candidates—a single outlier

which is characterized by a top index value but a poor clus-

tering can completely ruin the applicability of the index.

Therefore we measured the F -Measure value that corre-

sponds to the maximum index value for each validity index

and each data set. Table 2 comprises the results.

DS1 DS2 DS3 DS4 DS5 DS6 DS7 average

Dunn 0.69 0.68 0.75 0.75 0.75 0.76 0.61 0.71

D.-B. 0.50 0.50 0.50 0.40 0.33 0.39 0.35 0.42

Λ 1.00 0.78 0.67 0.40 0.66 0.90 0.85 0.75

ρ 0.87 0.78 0.98 0.97 0.69 1.00 0.77 0.87

Table 2. The table shows for each index the F -Measure val-
ues that belong to its top-rated clusterings. Since the reference
categorization C

∗ was among the evaluated clusterings, a perfect
prediction corresponds to the F -Measure value of 1.
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Figure 7. Correlation of the F -Measure and the Davies-Bouldin
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Figure 8. Correlation of the F -Measure and the ρ-Measure for
genuine clusterings.

Summary

Clustering algorithms are considered as a technology that

has the potential to automatically analyze large collections

of documents. Different clustering algorithms produce dif-

ferent clusterings, and cluster validity measures must be

applied to identify among a set of clusterings the most

valuable one. Cluster validity measures assess structural

properties of a clustering—they hence are in the role of ob-

jective measures. The key question in this connection is

whether or not an objective measure can be used to capture

a user’s information need.

In the field of automatic document categorization the

information need corresponds to the categorization qual-

ity of a clustering C. Given a reference categorization C∗

the categorization quality of C can be quantified with the

achieved precision and recall values. I. e., in the field of

document categorization an answer to the above question

can be given by analyzing the correlation of cluster validity

measures with the F -Measure.

The paper in hand presents the related experiments.

It investigates the classical cluster validity measures from

Dunn and Davies-Bouldin and presents the new graph-

based measures Λ and ρ. As reported in the experiment

section, the new ρ-Measure performed convincingly on

both artificial and genuine clusterings of different docu-

ment sets, and it outperformed the classical measures in

this domain. The Dunn Index performed robust but of-

ten missed to discover the real interesting clusterings. The

Davies-Bouldin index performed well on artificial data

sets—however, it was not able to correctly select the best

clustering among clusterings that stemmed from a genuine

document cluster application.
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