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Abstract Clustering a document collection is the current approach to automati-
cally derive underlying document categories. The categorization performance of
a document clustering algorithm can be captured by the F -Measure, which quan-
tifies how close a human-defined categorization has been resembled.
However, a bad F -Measure value tells us nothing about the reason why a clus-
tering algorithm performs poorly. Among several possible explanations the most
interesting question is the following: Are the implicit assumptions of the cluster-
ing algorithm admissible with respect to a document categorization task?

Though the use of clustering algorithms for document categorization is widely ac-
cepted, no foundation or rationale has been stated for this admissibility question.
The paper in hand is devoted to this gap. It presents considerations and a measure
to quantify the sensibility of a clustering process with regard to geometric distor-
tions of the data space. Along with the method of multidimensional scaling, this
measure provides an instrument for accessing a clustering algorithm’s adequacy.
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1 Introduction

Clustering is a key concept in automatic document categorization and means grouping
together texts with similar topics [5, 42]. It can serve several purposes:

1. Enhance the retrieval performance in terms of query relevance [13].
2. Enhance the retrieval performance in terms of response time [13].
3. Improve the user interface by facilitating navigation, inspection, and organization

of document collections.
4. Automate text generation by providing the basis for a further processing like sum-

marization.

Document clustering is a collective term for a complex data processing procedure
that includes several model formation tasks: elimination of stop words, application of
stemming algorithms, syntactic indexing based on term frequencies, semantic index-
ing based on term document correlations, or computation of similarity matrices [28].
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For each of these tasks exist different approaches and several parameters, and different
clustering algorithms behave differently sensitive to a concrete document representation
model.

The various number of published experiments give an idea of what clustering al-
gorithms can afford with respect to document categorization—but a justification, or a
clear intuition why an algorithm performs well or poorly in a particular setting is hardly
presented. This is in the nature of things: Aside from their computational complexity,
clustering algorithms are primarily assessed by geometrical properties of the data space
they are working on.

The categorization performance of a clustering algorithm can be quantified, for in-
stance by the F -Measure. In a successful situation, say, for a high F -Measure value, one
can argue that the chosen algorithm is adequate; with a bad F -Measure value, however,
the following questions come up:

– Are the geometrical assumptions of the clustering algorithm admissible for the data
at hand?

– Does noisy data disguise the underlying category structure?
– Is there an underlying structure at all?

These and similar questions can be answered easily by visual inspection.

1.1 Contributions of the Paper

The contributions of this paper are based on the hypothesis that a visual analysis of the
data space is indispensable to understand the behavior of a clustering algorithm.

Note that visualizing a document collection is bound up with the question of di-
mensionality: The interesting data are documents which are abstracted towards feature
vectors of several thousand dimensions. To become interpretable for a human beholder
the objects must be embedded in a two or three-dimensional space. I. e., the document
similarity, whose computation is based on all features in the original term space, has
to be resembled by the geometrical object distance in the Euclidean embedding space.
Although the singular value decomposition of large term document matrices shows that
this reduction in degrees of freedom appears more drastic than it really is, the embed-
ding implies a noticeable distortion of document similarities.

Stress measures are used to judge this distortion in the embedding space. Neverthe-
less, they tell us only little about the impact of the distortion with respect to a clustering
algorithm. This is where the paper sets in. It contrasts an algorithm’s clustering behav-
ior in the high-dimensional term space and the low-dimensional Euclidean space and
quantifies the degree of clustering coherence by a so-called “relative F -Measure”. This
measure can be regarded as a stress measure from the clustering algorithm perspective.
In particular the paper shows

1. that a high embedding stress may or may not affect the performance of a clustering
algorithm, and

2. how the relative F -Measure is used as a tool to interpret visualizations of the data
space.

Moreover, the relative F -Measure can be used to compare clustering algorithms
with respect to their robustness against geometric distortion.
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2 Related Work and Background

Document clustering is a popular subject of research, and there are many publica-
tions on this topic dealing with performance experiments. E. g., Yang and Pedersen
present a comparative study of feature selection methods [41], Salton presents a com-
parative study of term weighting models [33], and Aggarwal investigates the correla-
tion between dimension reduction and Nearest Neighbor search [1]. The majority of
the investigations employ a standard document representation method and analyze the
categorization performance with respect to different clustering algorithms (strategies)
[12, 42, 11, 37, 4].

Some of the recent results are quoted in the next subsection, while the subsections
2.2 and 2.3 are devoted to approaches for document space visualization.

2.1 Document Clustering

Let D be a set of objects each of which representing a document. An element d ∈ D
comprises a parsimonious but significant vector of term-number-pairs that characterize
the document associated with d. Often, the terms in d are counted according to the
approved tf · idf -scheme, and the similarity computation between each two elements
in D follows the cosine-measure. The construction of D from a document collection is
called indexing and is not treated in this place; details can be found in [33].

An exclusive clustering of a set of documents D is a collection C of disjoint sets with⋃
Ci∈C Ci = D. Most clustering algorithms can be assigned to one of the following

classes.

– Iterative algorithms, which strive for a successive improvement of an existing clus-
tering, such as k-Means, k-Medoid, Kohonen, or Fuzzy-k-Means [25, 19, 20, 40].

– Hierarchical algorithms, which create a tree of node subsets by successively merg-
ing or subdividing the objects, such as k-Nearest-neighbor, linkage, Ward, or Min-
cut methods [10, 34, 16, 24, 39].

– Density-based algorithms, which separate a similarity graph into subgraphs of high
connectivity values, such as DBSCAN, MAJORCLUST, or CHAMELEON [36, 8, 18].

– Meta-search algorithms, which treat clustering as a generic optimization task where
a given goal criterion is to be minimized [3, 30, 31, 30].

The runtime of iterative algorithms is O(nkl), where n, k and l designate the num-
ber of documents, clusters, and necessary iterations to achieve convergence. Hierarchi-
cal algorithms construct a complete similarity graph, which results in O(n 2) runtime.
When applied to non-geometrical data, the runtime of density-based algorithms is in
the magnitude of hierarchical algorithms or higher.

The different clustering algorithms are differently sensitive with respect to noisy
data, outliers, cluster dilations, non-convex cluster shapes, etc., and different statements
can be found in the literature on this subject. Altogether, a trade-off can be observed
between an algorithm’s runtime complexity and its capability to detect clusters of com-
plex shape. k-Means [25], for example, provides a simple mechanism for minimizing
the sum of squared errors with k clusters. Moreover, aside from its efficiency, it pro-
vides a robust behavior, say, it rarely fails completely with respect to the quality of the
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Table 1. Characterization of selected clustering algorithms with respect to geometrical and
geometry-related properties [2, 18, 19].

Agglomeration characteristic

dilative (cluster number over size) Complete Link
contractive (cluster size over number) Single Link
conservative (balanced behavior) Group Average Link, k-Means, variance-based methods

(Ward)

Type of detected clusters (+) good in (o) to some extent (–) unqualified

spherical clusters k-Means (+), k-Medoid (+), Group Average Link (o),
arbitrarily shaped Single Link (+), k-Means (–), k-Medoid (–),

DBSCAN (+)
small clusters Group Average Link (o)
equally sized Ward (+), Complete Link (+)
different density CHAMELEON (+), MAJORCLUST (+)

clusters found. On the other hand, k-Means is not able to identify clusters that deviate
much from a spherical shape. Table 1 lists typical geometrical properties of prominent
clustering algorithms.

2.2 Document Space Visualization

Document space visualization is a collective term for approaches that prepare relations
within a document collection D in order to make D amenable for human visual in-
spection. The result of such a preparation may be a thematic landscape, an informa-
tion terrain, a rendered text surface, a hyperbolic graph layout, or an interaction graph
[6, 7, 9, 17, 21, 26, 27, 29, 32, 35, 38].

Since documents are represented by high-dimensional term vectors, many visual-
ization approaches employ a dimension reduction like multidimensional scaling (MDS)
along with a cluster analysis as essential preprocessing steps when rendering D. To the
interplay of these document abstraction steps, however, only less attention is payed.

A clustering in the reduced two- or three-dimensional embedding space may de-
viate significantly from a clustering in the original n-dimensional document space,
n ∈ [1000..5000]. The developers of the WebRat visualization system “solve” this
problem by performing the cluster analysis in the embedding space: “Our algorithm
returns labels for the clusters the user sees.” [32]. This strategy obviously entails the
risk of pretending clusters that may not exist in the original data; Figure 3 in Section 4
gives an example for such a situation (which is easily uncovered by computing the
relative F -measure).

Navarro also reports on the sensitivity of the MDS with respect to the quality (=
separability) of a document collection [27]: “. . . MDS produces very good visualizations
for higher quality data, but very poor visualizations of lower quality data.”

Other visualization approaches rate cluster quality over layout quality. I.e., the clus-
ter analysis is performed in the original space, while the visualization capabilities are
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limited to an approximate, say locally reasonable cluster placement. The systems Bib-
lioMapper, Blobby-Texts, and AISEARCH follow this paradigm [35, 29, 26].

Note that the impact of an MDS on the clustering performance in the embedding
space can hardly be judged by a classical MDS stress value: The typical size of the
visualized collection D, |D| ∈ [100..1000], along with the drastic dimension reduction
results in stress values that exceed the worst case of Kruskal’s application-independent
rules of thumb in the very most cases [22].

2.3 Multidimensional Scaling

Multidimensional scaling (MDS) is a class of techniques for the analysis of dissimilarity
data. MDS is used to find representations in Rk of objects for which only pairwise
dissimilarities are given. The dissimilarities need not to be correct in the sense of a
metric—they may be biased or estimated by humans. MDS techniques aim to reflect
the inter-object dissimilarities through the distances of their representatives in R k as
good as possible. For k = 2 or k = 3 the representation can serve to visualize the
objects. In general, the k real values per object can be considered as abstract features
that can be used for further analysis.

Stress functions are used to measure how good a set of representatives x 1, . . . , xn ∈
Rk approximates the dissimilarities δi,j of the embedded objects. A candidate stress
function is the residual sum of squares

S(x1, . . . , xn) =


∑

i<j

(δi,j − di,j)
2




1/2

where di,j = ||xi − xj || is the distance between xi and xj measured by a norm which
is induced by an arbitrary metric on Rk: High stress values are interpreted as a high
degree of misfit of the representation.

Note that this stress function has several drawbacks. First, the stress value of an
arbitrary representation is not normalized and hence is not comparable to stress values
of other representations. Second, the relation between δ i,j and di,j is absolute; for the
underlying model it might be useful or even necessary to relate the dissimilarities to the
distances by a function. As a consequence, transformed dissimilarities, called disparities
δ̂i,j = f(δi,j) are used, where the function f is derived from the underlying model.
Note that f can be used to map ordinal data onto real values. In this case we speak
of ordinal or non-metric MDS. To eliminate the mentioned drawbacks, stress measures
called Stress-1 and Stress-2 are used [22], which are given by

S1(x1, . . . , xn) =




∑
i<j

(
δ̂i,j − di,j

)2

∑
i<j d2

i,j




1/2

and

S2(x1, . . . , xn) =




∑
i<j

(
δ̂i,j − di,j

)2

∑
i<j(di,j − d̄)2




1/2
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where d̄ is the average value of all distances di,j . Aside from measuring the goodness
of fit, stress functions are employed as optimization criterion for MDS algorithms. A
question which remains open is up to which stress value a representation can be judged
valid with respect to the disparities. Kruskal provided rules of thumb for Stress-1 values,
which are listed in Table 2.

Table 2. Kruskal’s rules of thumb for the goodness of fit with respect to a stress value.

Stress Goodness of fit

0 perfect
0.025 excellent
0.05 good
0.1 fair
0.2 poor

3 Interpreting Clustering Performance

The categorization performance of a clustering algorithm can be analyzed with external,
internal, or relative measures [15]. External measures use statistical tests in order to
quantify how well a clustering matches the underlying structure of the data. In absence
of an external judgment, internal clustering quality measures must be used to quantify
the validity of a clustering. Relative measures can be derived from internal measures by
evaluating different clusterings and comparing their scores [19].

In our context, the underlying structure is the known categorization of a document
collection as provided by a human editor, and external measures can be used.

3.1 The F-Measure

The F -Measure quantifies how well a clustering matches a reference partitioning of the
same data; it hence is an external validity measure. The F -Measure combines the pre-
cision and recall ideas from information retrieval [23] and constitutes a well-accepted
and commonly used quality measure for automatically generated document clusterings.

Let D represent the set of documents and let C = {C1, . . . , Ck} be a clustering
of D. Moreover, let C∗ = {C∗

1 , . . . , C∗
l } designate the reference partitioning. Then the

recall of cluster j with respect to partition i, rec(i, j), is defined as |Cj ∩C∗
i |/|C∗

i |. The
precision of cluster j with respect to partition i, prec(i, j), is defined as |Cj ∩C∗

i |/|Cj |.
The F -Measure combines both values as follows:

Fi,j =
2

1
prec(i,j) + 1

rec(i,j)
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Based on this formula, the overall F -Measure of a clustering C is:

F =
l∑

i=1

|C∗
i |

|D| · max
j=1,...,k

{Fi,j}

A perfect clustering matches the given partitioning exactly and leads to an F -Measure
value of 1. In Figure 1 (left hand side) a cluster with a high precision and a low recall
value is shown. Note that although the precision value is close to the maximum value
of 1, the F -Measure value is rather low at 0.4. A high F -Measure value can only be
achieved if both precision and recall are high, as exemplary shown in Figure 1 on the
right hand side.

Recall     /   = 0.26 Precision     /(     ∪     ) = 0.94 F-Measure = 0.40

In cluster:
Target:
Classes:

Recall     /   = 0.92 Precision     /(     ∪     ) = 0.99 F-Measure = 0.95

In cluster:
Target:
Classes:

Figure 1. A cluster with high precision and low recall values (left), and a cluster with both high
precision and high recall values (right).

3.2 The Relative F-Measure

Let A1, . . . ,AtA be the sequence of clusterings generated by a clustering algorithm in
the original space, and let B1, . . . ,BtB be the sequence of clusterings generated by the
same clustering algorithm in the embedding space. To measure the effect of the MDS
distortion on the clustering process we compare the clusterings A i to the corresponding
clusterings Bj , where A1 corresponds to B1, AtA corresponds to BtB and an equidistant
mapping is applied in between.

For each pair of clusterings Ai, Bj , the clustering Ai defines the reference classi-
fication to which the clustering Bj is compared using the F -Measure. We denote the
resulting value as the relative F -Measure value. If a clustering algorithm behaves iden-
tically in both the original space and the embedding space, the relative F -Measure value
will always be 1. Typically, the comparison delivers a curve that starts with 1 and that
oscillates between 1/k and 1, depending on the MDS distortion and the sensitivity of the
clustering algorithm.1 Note that if the relative F -Measure is high at the end of the clus-
tering process, the algorithm found a clustering in the embedding space that is similar

1 If k defines an upper bound for the number of clusters, 1/k defines a lower bound of possible
F -Measure values.
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to the clustering found in the original space. I. e., the distortion error of the embedding
is without impact on the clustering algorithm, and we can use the MDS projection for
visual inspection.

4 Illustration

This section illustrates the presented ideas with a collection D based on 800 objects.
With respect to feature number (dimension), feature distribution, and object similarity
each element in D resembles a document which falls into one of two classes. 2

Figure 1, presented already in the previous section, shows the MDS projection of
D in the two-dimensional space. This embedding has an error (stress value) of 31%,
which is typical for embeddings of mid-sized document collections D, and which is not
acceptable according to Kruskal’s rules of thumb.

To get an idea of how the MDS distortion influences the performance of k-Means,
MAJORCLUST, Single Link, and Group Average Link, we clustered the points in the
original space as well as in the embedding space and computed the relative F -Measure
in each clustering step. For convenience, the figures depict also the F -Measure curves
for both the original and the embedded data in each clustering step.

4.1 k-Means Clustering

Figure 2 (top) shows the development of the relative F -Measure during the k-Means
clustering process. The first part of the curve shows that cluster assignments differ no-
ticeably for the original and the embedding space. This is a consequence of the MDS
projection error—however, at the end of the clustering process the relative F -Measure
value is high (0.9).

I. e., the MDS projected data in the embedding space appears to k-Means like the
data in the original space, and, consequently, one can accept the found clusters: k-Means
performs poorly here because the data contains entwined clusters.

4.2 Linkage-based Clustering

The behavior of Group Average Link (cf. Figure 3, top) differs substantially from k-
Means. In the original space, a high F -Measure value is achieved (0.9), while the per-
formance in the two-dimensional embedding space is poor. Consequently, the relative
F -Measure at the end of the agglomeration process is also low (0.6).

Figure 3 (bottom left) shows the found cluster in the embedding space, but it cannot
serve as a basis for an analysis of the performance of Group Average Link in the original
space, since the relative F -Measure is low at the end of the clustering process, indicating
that the algorithm gets misleaded by the MDS projection. To get an idea of the cluster
quality in the original space, Figure 3 (bottom right) shows this cluster in the embedding
space.

2 Various experiments have been conducted with the new Reuters Corpus Volume 1, English
Language http://about.reuters.com/researchandstandards/corpus/. This corpus
contains about 34.000 single topic documents that fall into more than hundred classes. For
illustration purposes only figures of the binary classification situation are shown in this section.
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Figure 2. The development of the relative F -Measure during the k-Means clustering process
(top), a cluster found by k-Means in the embedding space (bottom left), and the cluster found
in the original space (bottom right). The x-axis and y-axis of the top figure displays the number
iterations of k-Means and the F -Measure values respectively.

4.3 MajorClust Clustering

MAJORCLUST shows a good and robust F -Measure development during the cluster-
ing process (cf. Figure 4). Since the final relative F -Measure values are fairly high,
the MDS projection can be used to analyze the performance of MAJORCLUST in the
original space. The cluster which is found was already shown in Figure 1.

The reason why MAJORCLUST’s F -Measure values in both of the spaces are not
higher is that the algorithm assigns the remaining points to three clusters (cf. Figure 1),
which lead to high precision but lower recall values and consequently to an overall
F -Measure value of approximately 0.8.
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Recall     /   = 1.0 Precision     /(     ∪     ) = 0.82 F-Measure = 0.90

In cluster:
Target:
Classes:

Figure 3. The development of the relative F -Measure during the Group Average Link clustering
process (top), a cluster found by Group Average Link in the embedding space (bottom left), and
the cluster found in the original space (bottom right). The x-axis and y-axis of the top figure
displays the agglomeration level of Group Average Link and the F -Measure values respectively.

Discussion

As already pointed out by other authors, clustering algorithms often contain implicit
assumptions about the clusters’ shapes, sizes, or density distributions [14, cf. page 268].
While humans perform competitively with clustering algorithms in two dimensions, it
is difficult to obtain an intuitive interpretation of data in high-dimensional spaces.

Documents are represented in the high-dimensional vector space model, and an
embedding of the data for visual interpretation purposes is usually performed by multi-
dimensional scaling. The stress values involved with an MDS are typically significantly
above Kruskal’s suggestions [22], which raises the question of interpretability of the
resulting scatter plots.

The key idea of the paper in hand is the following: If a cluster algorithm behaves
similar in both the original data space and the embedding space, then the latter is
amenable to geometrical interpretation. For this purpose we have introduced the rela-
tive F -Measure which quantifies the coherence of two clusterings during the clustering
process.
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Figure 4. The F -Measure development during the MAJORCLUST clustering process. The x-axis
and y-axis displays the number of iterations (node reassignments) of MAJORCLUST and the F -
Measure values respectively.

We conducted several experiments in the field of automatic document categoriza-
tion. It becomes clear that Kruskal’s commonly accepted leveling rule for the inter-
pretation of MDS stress values cannot be applied to detect an inadmissible distortion
in the low-dimensional space. The relative F -Measure, however, provides a means to
distinguish between admissible and inadmissible embeddings.

There is the question whether certain clustering algorithms behave more sensitive
than others with respect to geometric distortion. Although our experiments included
algorithms from each class mentioned in Subsection 2.1, they allow no final statement
respecting distortion sensitivity or even a sensitivity-runtime tradeoff. This issue is sub-
ject of current research.
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