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Abstract. This paper is on the automation of knowledge-intensive tasks in en-
gineering domains; here, the term “task” relates to analysis and synthesis tasks,
such as diagnosis and design problems.

In the field of Artificial Intelligence there is a long tradition in automated problem
solving of knowledge-intensive tasks, and, especially in the early stages, the search
paradigm dictated many approaches. Later, in the modern period, the hopelessness
in view of intractable search spaces along with a better problem understanding led
to the development of more adequate problem solving techniques.

However, search still constitutes an indispensable part in computer-based diag-
nosis and design problem solving—albeit human problem solvers often gets by
without: “Engineers don“t search” is my hardly ever exaggerated observation from
various relevant projects, and I tried to learn lessons from this observation. This
paper presents two case studies.

1. Diagnosis problem solving by model compilation. It follows the motto:
“Spend search in model construction rather than in model processing.”

2. Design problem solving by functional abstraction. It follows the motto:
“Construct a poor solution with little search, which then must be repaired.”

On second sight it becomes apparent that the success of both mottos is a
consequence of untwining logic-oriented reasoning (in the form of search and
deduction) and approximation-oriented reasoning (in the form of simulation).
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1 Automating Knowledge-Intensive Tasks

“How can knowledge-intensive tasks such as the diagnosis or the design of complex
technical systems be solved using a computer?”

A commonly accepted answer to this question is: “By operationalizing expert knowl-
edge!” And in this sense, the next subsection is a hymn to the simple but powerful, as-
sociative models in automated problem solving. Engineers don’t searchf] and computer
programs that operationalize engineer (expert) knowledge have been proven successful
in various complex problem solving tasks.

! Which also means: “Experts don’t search”, or “need less search” (during problem solving).

W. Lenski (Ed.): Logic versus Approximation, LNCS 3075, pp. 120137, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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A second, also commonly accepted answer to the above posed question is: “By means
of search!” This answer reflects the way of thinking of the modern Al pragmatist, who
believes in deep models and the coupling of search and simulation. Deep models, or,
models that rely on “first principles” have been considered the worthy successor of the
simple associative models [6,/9]; they opened the age of the so-called Second Generation
Expert Systems [, 137]. In this sense, Subsection[I.2] formulates diagnosis and design
problems as instances of particular search-plus-simulation problems.

Though the search-plus-simulation paradigm can be identified behind state-of-the-
art problem solving methodologies [2, [14], many systems deployed in the real world are
realized according to simpler associative paradigms (cf. [4, 15,124, 2§,132,134], to mention
only a few). As a source for this discrepancy we discover the following connection: The
coupling of search and simulation is willingly used to make up for missing problem
solving knowledge but, as a “side effect”, often leads to intractable problems.

Drawing the conclusion “knowledge over search” is obvious on the one hand, but
too simple on the other: Among others, the question remains what can be done if the
resource “knowledge” is not available or cannot be elicited, or is too expensive, or must
tediously be experienced? Clearly, expert knowledge cannot be cooked up—but we
learn from human problem solvers where to spend search effort deliberately in order to
gain the maximum impact for automated problem solving. The paper in hand gives two
such examples: In Subsection [[.3] we introduce the principles of “model compilation”
and “functional abstraction” to address behavior-based diagnosis and design problems.
These principles are fairly different and specialized when compared to each other; inter-
estingly, common to both is that they develop from the search-plus-simulation paradigm
by untwining the roles of search and simulation. In this way they form a synthesis of the
aforementioned paradigms.

The Sections Pland [ of this paper outline two case studies from the field of fluidic
engineering, which illustrate how the proposed principles are put to work.

1.1 Thesis: Knowledge Is Powerl]

Human problem solving expertise is highly effective but of heuristic nature; moreover, it
is hard to elicit but rather easy to process [21]. E. g., a simple but approved formalization
of diagnosis knowledge are associative connections:

obs1 A ... N\ obsy — d,

where the 0bs; and d denote certain observations and a diagnosis respectively. Likewise,
successful implementations of design algorithms don’t search in a gigantic space of
behavior models but operate in a well defined structure space instead, which is spanned
by compositional (left) and taxonomic relations (right):

c—ciN...\Ncg c—c1 V...V,

where the c; denote components, i. e., the associations describe a decomposition hier-
archy in the form of an And-Or-graph. Another class of design algorithms employ the

2 This famous phrase is often attributed to Edward A. Feigenbaum, though he did not originate
the saying.
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Fig. 1. A generic scheme of model-based diagnosis: Given is the interesting system .S, which
defines a space S of faulty systems, and a set of observations OBS. On a computer, S is represented
as a model space, M, wherein a model M ™ is searched whose simulation complies with OBS.

case-based reasoning paradigm retrieve-and-adapt, an advancement of the classical Al
paradigm generate-and-test [22, (30, [31]]:

SIM (D1, Ds) — USABILITY (My, Dy),

which states that the known solution M; for a demand set D can be used (adapted) to
satisfy a demand set D, if D; and D5 are similar.

1.2 Antithesis: Search Does All the Job

Preliminaries. Let S be a system. In accordance with Minsky we call M a model of
S, if M can be used to answer questions about S [25]. M may establish a structural, a
functional, an associative, or a behavioral model. In this paper the focus is on behavioral
models, which give us answers to questions about a system’s behavior.

A search problem is characterized by a search space consisting of states and operators.
The states are possible complete or partial solutions to the search problem, the operators
define the transformation from one state into another. Here, in connection with behavior-
based diagnosis and design problems, the search space actually is a model space. It is
denoted by M. The model space is only defined implicitly; it comprises all models that
could be visited during search.

Diagnosis Problem Solving. Starting point of a diagnosis problem is a system S along
with as set of observations OBS. The observations are called symptoms if they do
not coincide with the expected behavior of S. Performing diagnosis means to explain
symptoms in terms of misbehaving components, that is, to identify a system S* in a space
S of faulty systems that will exhibit OBS. A model-based diagnosis algorithm performs
this search in a model space M, which contains—at the desired level of granularity—
models that correspond to faulty systems in S. The objective is to identify a model
M* € M whose simulation produces a behavior that complies with OBS. Figure [l
illustrates the connections.
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Fig.2. An generic scheme of design problem solving: Given is a space S of possible design
solutions and a set of demands D. On a computer, S is represented as a model space, M, wherein
amodel M™* is searched whose behavior fulfills D.

Several model-based diagnosis approaches, such as the GDE, GDE+, or Sherlock
base on such a simulation cycle. Their search in M is highly informed since they exploit
the underlying device topology for hypotheses generationﬁ Adopting the notation of
Reiter, model-based diagnosis can be formalized as follows [29]:

apn=8DANOBSAN{AB(c)|ce A} N{—AB(c) | c € COMPS \ A},

where SD is a logic-based formulation of M, COMPS denotes a set of symbols that
represent the components of the system S, A C COMPS denotes the broken compo-
nents, and A B is a special predicate that indicates whether or not a component is working
abnormally. Stipulating Occam’s razor, a diagnosis algorithm determines a diagnosis A
as the solution of the following optimization problem:

A = argmin, (]A] =i A o is satisfiable)

Design Problem Solving. Starting point of a design problem is a space S of possible
design solutions along with a set D of demands. Solving a design problem means to
determine a system S* € S that fulfills D. Typically, S* is not found by experimenting
in the real world but by operationalizing a virtual search process after having mapped the
system space, S, onto a model space, M. It is the job of a design algorithm to efficiently
find a model M* € M whose simulation produces a behavior that complies with D and
which optimizes a possible goal criterion. Figure Plillustrates the connections.

Compared to the previous diagnosis scheme, the model space of a design problem is
usually orders of magnitude bigger. This is also reflected by the following formalization:

acpr = SD AND AN COMPS N PARAM N TOP

configuration .
+ parameterization

+ structure finding

3 Model-based diagnosis approaches can be further characterized in the way simulation is con-
trolled, fault models are employed, dependencies are recorded, measurement points are chosen,
or failure probabilities are utilized [17, [11},112, 42].
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where SD is alogic-based formulation of the behavior of all components in M, COMPS
denotes the actually selected components, PARAMS their parameterization, and TOP
defines the topology, i.e., how the selected components are connected to each other.
The complexity of a design problem depends on the degrees of freedom in the search
process: Within a configuration problem merely COMPS is to be determined, whereas
in a behavior-based design problem the components need to be parameterized and yet
the system structure is to be found such that a.cp 7 is satisfiable.

The outlined diagnosis and design schemes are inviting: Giving a mapping from sys-
tems S to models M—which can be stated straightforwardly in engineering domains—
the related analysis or synthesis problem can be solved by the search-plus-simulation
paradigm. As already mentioned at the outset, many successful implementations of
diagnosis and design systems do not follow this paradigm. They contain an explicit rep-
resentation of an engineer’s problem solving knowledge instead, say, his or her model
of expertise. A problem solver that has such knowledge-based models at its disposal
spends little effort in search—a fact which makes these models appearing superior to the
deep models used in the search-plus-simulation paradigm. On the other hand, several
arguments speak for the latter; a compelling one has to do with knowledge acquisi-
tion: In many situations it is not feasible for technical or economical reasons to acquire
the necessary problem solving knowledge to operationalize tailored models of exper-
tise[] Remarkably, de Kleer actually concludes: “ Knowledge isn’t power. Knowledge is
evil.” [l10].

1.3 A Synthesis: Untwine Search and Simulation

The purpose of this subsection is twofold: It annotates problems of the search-plus-
simulation paradigm, and it introduces two advancements of this principle: model com-
pilation and functional abstraction. Here, the former is applied to diagnosis problem
solving, while the latter is used to tackle a design problemﬁ Within both principles
search as well as simulation still play central roles. However, compared to the search-
plus-simulation paradigm, the simulation step is no longer integral part of the search
cycle, say, search (logic-oriented reasoning) and simulation (approximation-oriented
reasoning) are untwined.

Model Compilation. The search-plus-simulation paradigm in model-based diagnosis
enables one to analyze a system for which no diagnosis experience is available or which
is operated under new conditions [[17]. On the other hand, for complex technical systems
model-based diagnosis needs excellent simulation capabilities, because the goal driven
reasoning process requires inverse simulation runs (from observations back to causes)
to efficiently cover all symptoms [14, [11]. Still more problematic are the following
limitations:

4 Other advantages bound up with this paradigm are: the possibility to explain, to verify, or to
document a reasoning process, the possibility to reuse the same models in different contexts,
the extendibility to new device topologies, or the independence of human experts.

5 This correspondence is not obligatory; in [39] a configuration tool of a large telecommunication
manufacturer is described, wherein model compilation provides a key technology.
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Fig. 3. Model compilation untwines logic-oriented and approximation-oriented reasoning: Simu-
lating the model of a system in various fault modes yields a simulation data base C from which a
rule-based model Cr is constructed.

1. In domains with continuous quantities the classification of values as symptoms is
ambiguous [23].

2. Long interaction paths between variables result in large conflict sets.

3. Many technical systems have a feedback structure; i. e., cause-effect chains, which
are the basis for an assumption-based reasoning process, cannot be easily stated.

A promising strategy in this situation is the compilation of an associative model
from the given model of first principles, which is achieved as follows: By simulating
the model of first principles in various fault modes and over its typical input range a
simulation database C is built up. Within a subsequent search step, a rule-based model
Cr is constructed from C, where long cause-effect chains are replaced with weighted
associations and which is optimized for a classification of the fault modes. In this way the
simulation and the search step form a preprocessing phase, which is separated from the
phase of model application, i. e., the diagnosis phase. FigureQlillustrates the principle.

Compiled models have a small computational footprint. As well as that, model com-
pilation breaks feedback structures, and, under the assumption that all observations have
already been made, an optimum fault isolation strategy can be developed [41]. Section[2]
outlines a model compilation application in the fluidic engineering domain.

Functional Abstraction. The search-plus-simulation paradigm has also been suggested
as a fundamental problem solving strategy for design tasks[9 While the role of simulation
is like in the diagnosis task above, namely, analyzing a model’s behavior, does the
reasoning situation raise another difficulty: Applying just search-plus-simulation renders
real-world design tasks intractable, because of the mere size of the related model space
M. As already indicated, the lack of problem solving knowledge (here in the form of
design rules) forces one to resort to the search-plus-simulation paradigm. Again, model
compilation could be applied to identify underlying design rules, but, this is tractable
only for medium-sized configuration problems [39]. Moreover, the complexity problem,
which is caused by the size of M, is not eased but only shifted to a preprocessing phase.

If search cannot be avoided, one should at least ensure that search effort is spent
deliberately. In this situation we learn from the problem solving behavior of engineers:

6 Gerd, for example, proposes a cycle that consists of the steps synthesis, analysis, and eval-
uation. ISinha et all present a framework to implement simulation-based design processes for
mechatronic systems [277,135].
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Fig. 4. The paradigm of functional abstraction applied to design problem solving. Observe that
logic-oriented reasoning (search) has been decoupled from approximation-oriented reasoning
(simulation + repair): The former is used to find a structure model M s, the latter is used to repair
a suboptimum raw design.

1. Engineers solve a design problem rather at the level of function than at the level of
behavior, accepting to miss the optimum.

2. Engineers rather adapt a suboptimum solution than trying to develop a solution from
scratch, accepting to miss the optimum.

3. Engineers can formulate repair and adaptation knowledge easier than a synthesis
theory.

Putting together these observations one obtains the paradigm “Design by Functional
Abstraction”, which is illustrated in Figure @l Put it overstated, the paradigm says: At
first, we construct a poor solution of a design problem, which then must be repaired.

Key idea of design by functional abstraction is to construct candidate solutions
within a very simplified design space, which typically is some structure model space.
A candidate solution, Mg, is transformed into a preliminary raw design, M’, by locally
attaching behavior model parts to M. The hope is that M’ can be repaired with reason-
able effort, yielding an acceptable design M *. Design by functional abstraction makes
heuristic simplifications at two places: The original demand set, D, is simplified toward
a functional specification F' (Step 1), and, My is transformed locally into M’ (Step 3).
Section 3] presents an application of this paradigm.

2 Case Study I. Diagnosis Problem Solving by Model
Compilation

The fault detection performance of a diagnosis system depends on the adequateness of
the underlying model. Model compilation is one paradigm for constructing adequate
models; the model-based diagnosis paradigm, either with or without fault models, pro-
vides another. Under the latter, the cycle of simulation and candidate discrimination is
executed at runtime, while under the compilation paradigm it is anticipated in a prepro-
cessing phase (see Figures[Iland[3)). Reasoning with compiled diagnosis models is similar

7 The first three steps of this method resemble syntax and semantics (the horseshoe principle) of

the problem solving method “Heuristic Classification”, which became popular as the diagnosis
approach underlying MyciIN [7].
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to associative diagnosis; however, the underlying model in an associative system is the
result of a substantial model formation process. By contrast, model compilation pursues
iaéata mining strategy and aims at an automatic acquisition of associative knowledge

1.

The idea to derive associative knowledge from deep models has been proposed
among others in ﬂﬂ]. Moreover, with respect to fault detection and isolation (FDI),
measurement selection, and diagnosability a lot of research has been done. A large part of
this work concentrates on dynamic behavior effects, which are not covered here ,@]
Nevertheless, since the compilation concept focuses on search space and knowledge
identification aspects it can be adapted to existing FDI approaches as well.

i i MM;}
= 5

Fig. 5. Diagrams of two medium-sized hydraulic circuits and a photo of the hydraulically operated
Smart Tower.

2.1 Hydraulic Systems and Their Components

In this section, as well as in Section [3 the field of hydraulic engineering serves us as
application domain. Hydrostatic drives provide advantageous dynamic properties and
represent a major driving concept for industrial applications. They consist of several
types of hydraulic building blocks: Cylinders, which transform hydraulic energy into
mechanical energy, various forms of valves, which control flow and pressure of the
hydraulic medium, and service components such as pumps, tanks, and pipes, which
provide and distribute the necessary pressure p and flow Q. Figure [ (Ieft-hand side)
shows two medium-sized examples of circuits we are dealing with.

Component Faults and Fault Models. A prerequisite for applying model compilation
for diagnosis purposes is that components are defined with respect to both their normal
and their faulty behavior. Below, such a fault model is stated exemplary for the check
valve. Typical check valve faults include jamming, leaking, or a broken spring. These
faults affect the resistance characteristic of the valve in first place (cf. Table[]).

Other fault models relate to slipping cylinders due to interior or exterior leaking,
incorrect clearance or sticking throttle valves, directional valves with defect solenoid or
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Table 1. Resistance law of a working and a faulty check valve operating in its control range where
Ap > po. The deviation coefficient evaive 1S a state quantity, which is modeled as a continuous
random variable.

Normal resistance behavior Faulty resistance behavior
_ m? - Ap R m? - Ap
(Ap_p0)2 (Ap_po : (1 +Evalvc))2

contaminated lands, and pumps showing a decrease in performance. For all fault models,
a deviation coefficient ¢ is modeled as a continuous random variable which defines the
distribution of the fault seriousness.

2.2 Construction of a Compiled Model

We construct a compiled model for a system S in five steps. Within the first step a
simulation data base C is built, which is then successively abstracted towards a real-
valued symptom data base C, a symbolic interval data base Cr, an observer data base
Co, and, finally, a rule set Cr, which represents the heuristic diagnosis model f§

Simulation. Behavior models of hydraulic systems are hybrid discrete-event/continuous-
time models [3]. The trajectories of the state variables can be considered as piecewise
continuous segments, called phases. The discrete state variables such as valve positions,
relays, and switches are constant within a phase, and in between the phases one or more of
them changes its value, leading to another mode of the system. The continuous variables
z; such as pressures, flows, velocities, or positions are the target of our learning process;
they form the set Z. The phase-specific, quasi-stationary values of the variables in Z are
in the role of symptoms, since abrupt faults can cause their significant change.

Let S be a system, let D be a set denoting the interesting component faults in S, and
let M be the related space of models. I.e., M includes the interesting faulty models
with respect to D as well as the correct model of S. The result of the simulation step is a
data base C, which contains samples of the vector of state trajectories drawn during the
simulation of the models in M.

Symptom Identification. For each fault simulation vector in C the deviations of its state
variables to the related faultless simulation vector is computed. The computation is based
on a special operator “S”, which distinguishes between effort variables and flow vari-
ables. The former are undirected, and a difference between two values of this type is
computed straightforwardly. The latter contain directional information, and their differ-
ence computation distinguishes several cases. Result of this step is the symptom data
base of ©-deviations, Cx.

Interval Formation. The symptom vectors in C are generalized by mapping for each
z € Z the deviations sV 60D 5% ¢ R ontopintervals IV, ... I, 1Y) c R,
with | I Igj ) = R. This is an optimization task where, on the one hand, the loss of

8 A detailed description of the compilation procedure can be found in [40].
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discrimination information is to be kept minimum (the larger p the better), while on
the other hand, constraints of measuring devices are to be obeyed (the smaller p the
better). Observe that in this abstraction step the domain of real numbers is replaced by
a propositional-logical representation: For each state variable z € Z a new domain I,
of interval names is introduced, which map in a one-to-one manner onto the real-valued
intervals. The symbolic interval database that develops from C by interval formation
is denoted by Cj.

Measurement Selection. By means of simulation, values are computed for all variables
in Z. In fact, restricted to a handful of measuring devices or sensors, only a small subset
O C Z can be observed at the system. Measurement selection means to determine the
most informative variables in Z—or, speaking technically, to place a set of |O| observers
such that as many faults as possible can be classified. O is determined by analyzing for
each phase and for each variable z € Z the correlations between the symbolic intervals
I, and the set of component faults D. Our analysis generalizes the idea of hypothetical
measurements, which goes back on the work of [Forbus and de Kleer. Let O C Z be the
set of selected observers according to this analysis; the database that emerges from the
symbolic interval database C; by eliminating all variables in Z \ O is called observer

database Cp; it is much smaller than C;. However, its number of elements is unchanged,
i.e., |Col =|C|.

Rule Generation. Within the rule generation step reliable diagnosis rules are extracted
from Cp. The rules have a propositional-logical semantics and are of the form

r= 1y AN...N —d,

where the ¢; denote interval names and d denotes a diagnosis. The semantics of r is
defined by means of two truth assignment functions, o : |JI, — {0,1} and 5 : D —
{0,1}. If T is the real-valued interval associated with the interval name ¢ and if ¢ is a
symptom observed at S, then « and (3 are defined as follows:

(W) = 1l del B(d) = 1 & the faultin S is d.
=9 0 otherwise. 1 0 otherwise.

Note that the inference direction of these rules is reverse to the cause-effect com-
putations when simulating a behavior model: We now ask for symptoms and deduce
faults, and—as opposed to the simulation situation—this inference process must not be
definite. To cope with this form of uncertainty each rule r is characterized by (1) its
confidence c¢(r), which rates the logical quality of the implication, and (2) its relative
frequency, called “support” in the association rule jargon [1]. The rule generation step
is realized with data mining methods and yields the desired rule model Cp.

2.3 Experimental Analysis: Diagnosis with DEJAVU

Diagnosing the system S means to process the rule model Cr subject to the observed
symptoms. For the operational semantics of the rules’ confidence and support values
we employ the formula below, which computes for each fault d € D its confidence in
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“6(d) = 17, given a rule model Cg and a truth assignment «.. The formula combines the
highest achieved confidence with the average confidence of all matching rules:

() = 17) = ™) + (1= er) - == 3 (),

where R C Cp denotes the matching rules with conclusion d, and r* € R denotes a
rule of maximum confidence.

The outlined model construction process as well as the rule inference have been
operationalized within the diagnosis program DEJAVU [20]. For simulation purposes,
DEJAVU employs the FLUIDSIM simulation engine. The approach has been applied to
several medium-sized hydraulic circuits (about 20-40 components) with promising re-
sults. The table in Figure[d shows the diagnosis performance depending on the number
of observers |O|; basis were more than 2000 variations of |D| ~ 15 different compo-
nent faults. The results were achieved with automatically constructed rule models Cr
that have not been manually revised. The right-hand side of Figure [6lshows the average
number of rules in Cg as a function of |O].

Number of observers |O)|

Diagnosis 1004 -
accuracy 1 2 3 4 5 6 sod B ’J_‘—' )

“exact”  0.40 0.55 0.53 0.52 0.52 0.53 400 - — - - H—T’H“—’ -

“lin3” 0.51 0.72 0.81 0.88 0.92 0.96 '_LTl rLﬂ > |0

[ Rule confidence > 0.5
[ Rule confidence = 1

Fig. 6. The table shows the fraction of classified faults depending on the observer number |O;
“exact” stands for a unique fault prediction, “1 in 3” indicates a multiple prediction of two or three
components including the faulty one. The bar graph on the right shows the number of generated
rules, |Cr|, as a function of |O|. Dark bars indicate rules with a confidence value of 1, light bars
stand for confidence values greater than 0.5.

3 Case Study II. Design Problem Solving by Functional
Abstraction

Even for an experienced engineer, the design of a fluidic system is a complex and time-
consuming task, that, at the moment, cannot be automated completely. The effort for
acquiring the necessary design knowledge exceeds by far the expected payback, and,
moreover, the synthesis search space is extremely large and hardly to control—despite
the use of knowledge-based techniques.

Two possibilities to counter this situations are “competence partitioning” and “expert
critiquing”. The idea of competence partitioning is to separate the creative parts of a
design process from the routine jobs, and to provide a high level of automation regarding
the latter [38]. Expert critiquing, on the other hand, employs expert system technology to
assist the human expert rather than to automate a design problem in its entirety [18, [13]].
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In this respect, design by functional abstraction can be regarded as a particular expert
critiquing representative.
Axis 1 Axis 2

Hold pressure xi(t) [_F xe(t), F(t) [_T

Ft) I_;'

Xo(t)

P

N
|

2
x1(t) | K

T
1

[Ny AU

Demands D

Fig.7. Hydraulic design means to translate a demand description (left) to a circuit model.

3.1 Design in Fluidic Engineering

Taken the view of configuration, the designer of a fluidic system selects, parameterizes,
and connects components like pumps, valves, and cylinders such that the demands D
are fulfilled by the emerging circuit] Solving a fluidic design problem at the component
level is pretty hopeless. The idea is to perform a configuration process at the level of
functions instead, which in turn requires that fluidic functions possess constructional
equivalents that can be treated in a building-block-manner. In the fluidic engineering
domain this requirement is fairly good fulfilled; the respective building blocks are called
“fluidic axes”.

Figure [7 shows a demand description D (left) and a design solution M* in the
form of a circuit diagram that fulfills D. The circuit consists of two hydraulic axes that
are coupled by a sequential coupling. To automate this design process, so to speak, to
automate the mapping D — M *, we apply the paradigm of functional abstraction (cf.
Figure 8l and recall Figure H):

1. The demand specification, D, is abstracted towards a functional specification, F'.

2. Atthis functional level a structure model Mg according to the coupling of the fluidic
functions in F' is generated.

3. Mg iscompleted towards a tentative behavior model M’ by plugging together locally
optimized fluidic axes; here, this step is realized by case-based reasoning.

4. The tentative behavior model M’ is repaired, adapted, and optimized globally.

The following subsection describes the basic elements of this design approach, i. e.,
Step 2, 3, and 4.

® The concepts presented in section have been verified in the hydraulic domain in first place;
however, they can be applied to the pneumatic domain in a similar way, suggesting us to use
preferably the more generic word “fluidic”. Again, a detailed description of the approach can
be found in [40].
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Fig. 8. The functional abstraction paradigm applied to fluidic circuit design.

Remarks. A human designer is capable of working at the component level, implicitly
creating and combining fluidic axes towards an entire system. His ability to automatically
derive function from structure—and vice versa: structure for function—allows him to
construct a fluidic system without the idea of high-level building blocks.

3.2 Elements of the Design Procedure

Design by functional abstraction rigorously simplifies the underlying domain theory.
Here, the tacit assumptions are as follows: (a) Each set of demands, D, can be translated
into a set of fluidic functions, F', (b) each function f € F' can be mapped one to one onto
a fluidic axis A that operationalizes f, (¢c) D can be realized by coupling the respective
axes for the functions in F', whereas the necessary coupling information can be derived
from D.

While the first point goes in accordance with reality, the Points (b) and (c) imply that
a function f is neither realized by a combination of several axes nor by constructional
side effects. This assumption establishes a significant simplification.

Topology Generation. If the synthesis of fluidic systems is performed at the level of
function, the size of the synthesis space is drastically reduced. To be specific, we allow
only structure models that can be realized by a recursive application of the three coupling
rules shown in Figure @ The search within this synthesis space is operationalized by
means of a design graph grammar [40], which generates reasonable topologies with
respect to the functional specification F'. The result of this step is a structure model Mg;
Mg defines a graph whose nodes correspond to fluidic functions and coupling types.

Case-Based Design of Axes. A structure model Mg is completed towards a behavior
model by individually mapping its nodes onto appropriate subcircuits that represent
fluidic axes or coupling networks. Figure[I0 shows five subcircuits each of which repre-
senting a certain fluidic axis. It turned out that the mapping of a fluidic function f onto
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Fig. 9. The three allowed coupling types to realize a circuit’s topology.

)

Fig. 10. Five fluidic (hydraulic) axes for different functions and of different complexity.

an axis can be accomplished ideally with case-based reasoning: Domain expert were
able to compile a case base C of about seventy axes that can be used to cover a wide
spectrum of fluidic functions.

Speaking technically, an axis is characterized by the unit tasks it can carry out, such
as “hold pressure”, “fast drive”, “hold position”, etc. In order to valuate the similarity of
fluidic axes and functions, a measure ¢ was constructed that compares two sequences
of unit tasks respecting their types, order, distances, forces, and precision. Moreover,
since the axes that are retrieved from C must be adapted to fulfill a desired f, we also
developed a case adaptation scheme that operationalizes engineering know-how in the
form of scaling rules. The result of this step, i. e., the composition of adapted fluidic axes
according to Mg, yields a preliminary design solution, the raw design M.

A Design Language for Repair. There is a good chance that a raw design M’ has the
potential to fulfill D, say, that a sequence of repair steps can be found to transform M’
into a behavior model M *. An example for such a repair measure is the following piece
of design knowledge:
“An insufficient damping can be improved by installing a by-pass throttle.”

The measure encodes a lot of implicit engineering know-how, among others: (a) A by-
pass throttle is connected in parallel, (b) the component to which it is connected is a
cylinder, (c) a by-pass throttle is a valve. What is more, the above repair measure can
be applied to different contexts in a variety of circuits. To operationalize such kind of
knowledge, we developed a prototypic scripting language for fluidic circuit design In
this place we will not delve into language details but refer to [33].

19 The research was part of the OFT-project, which was supported by DFG grants KL 529/7-1,2,3
and SCHW 120/56-1,2,3.
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3.3 Experimental Analysis: Design Automation with ARTDECO-CBD

The outlined concepts have been embedded within the design assistant ARTDECO-CBD,
which is linked to a drawing and simulation environment for fluidic systems [[19]. The
design assistant enables a user to formulate his design requirements as a set of fluidic
functions F'. For an f € F a sequence of unit tasks can be defined, where several
characteristic parameters such as duration, precision, or maximum values can be stated
for each unit task.

Clearly, the crucial question is “How good are the designs of ARTDECO-CBD?” A
direct evaluation of the generated models is restricted: an absolute measure that captures
the design quality does not exist, and the number of properties that characterizes a design
is large and hardly to quantify. On the other hand, the quality of a generated design can
be rated indirectly, by measuring its “distance” to a design solution created by a human
expert. In this connection, the term distance stands for the real modification effort that is
necessary to transform the computer solution into the human solution. The experimental
results presented in Table[2] report on such a competition.

Table 2. Runtime and quality results of automatically generated designs. The column “O.K.”
shows the portion of designs whose simulation fulfills D; only solutions with high similarity
values (¢ > 0.9) were considered. The column “Quality” shows the expert evaluation: (+), (0),
and (-) indicate a small, an acceptable, and a large modification effort to transform the machine
solution into a solution accepted by the human expert.

Number Time for  Time for

of axes retrieval reuse OK. (aty > 0.9) Quality
1 < 1s 0.10s 80% 60% (+)  35% (o) 5% (-)
2 < 1s 0.63s 75% 50% (+) 45% (o) 5% (-)
3 <L 1s 0.91s 70% 40% (+) 50% (o) 10% (-)
4 < 1s 1.43s 60% 20% (+) 65% (0) 15% (-)
5 < 1s 2.00s 20% 5% (+) 80% (0) 15% (-)
Conclusion

The success of a diagnosis or design approach depends on the underlying model space—
say, its size, and the way it is explored. A tractable model space is in first place the result
of adequate models, which in turn are the result of a skillful selection, combination, and
customization of existing construction principles. Engineers don’t search because they
use adequate models. The challenge is to operationalize such models on a computer.

Especially when expert knowledge is not at hand, the combination of deep models,
simulation, and search is inviting because it promises high fidelity. On the other hand,
applying a search-plus-simulation paradigm entails the risk to fail completely because
of various reasons. This is not inevitable: The principles of model compilation and
functional abstraction exemplify how search and simulation can be combined to realize
problem solving strategies for complex diagnosis and design problems.

' Test environment was a Pentium III system at 450 MHz with 128 MB main memory.
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