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ABSTRACT

Model-based diagnosis of technical systems requires both

a simulation machinery and a logic calculus. The former

is responsible for the system’s behavior analysis, the latter

controls the actual diagnosis process. Especially when pur-

suing qualitative simulation, it makes sense to realize the

simulation machinery with a logic calculus as well. Say, a

qualitatively described hypothesis can directly be mapped

onto an instance of the well-known SAT problem. Like-

wise, an entire diagnosis process, i. e., a sequence of hy-

pothesis refinements, represents a set of SAT problems.

This paper reports on the operationalization of such

a SAT-based diagnosis approach. A specific characteristic

here is the idea to exploit an ordering of the logical formu-

las according to their likeliness of being satisfiable. This

idea is new in the context of qualitative reasoning, and it

leads to a considerable speed up of the diagnosis process.

Its applicability has been evaluated in the domain of hy-

draulic circuit diagnosis.

KEY WORDS

diagnosis, machine learning, model-based reasoning, qual-

itative reasoning, SAT problem

1 Model-Based Diagnosis,

Qualitative Modeling, and Satisfiability

This section introduces the idea of model-based diagnosis

and a special qualitative modeling approach for modular

technical systems. So far, our modeling approach has only

be used in the domain of fluidic engineering; however, it

is not tailored to a particular plant structure but allows for

the generation of behavior descriptions for a large class of

circuits.

The qualitative modeling happens within two steps: A

precise numerical behavior analysis, which in turn is used

to generate a compact qualitative behavior description. In

this way, the large analysis search space, which is a com-

mon problem when qualitatively simulating fluidic or elec-

trical systems whose behavior is grounded on flow and po-

tential constraints, is kept minimum.

The qualitative simulation process is coded as a satis-

fiability (SAT) problem within propositional logic. Recall

that in the course of diagnosing a system a lot of simula-

tion runs may take place. This corresponds to the problem

of identifying satisfiable formulas within a set Ψ of formu-

las, where each element ψ ∈ Ψ encodes a single diagnosis

hypothesis.

The paper in hand focuses onto this situation. It shows

that it is possible to learn an analysis order for diagnosis

environments Ψ such that significantly less formulas have

to be analyzed—say, SAT problems have to be solved—

to obtain a fixed number of satisfiable formulas ψ ∈ Ψ.

This paper will not engage into details with respect to qual-

itative modeling or model-based diagnosis but outline the

employed ideas. The activity diagram in Figure 1 gives an

overview.
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Figure 1. Activity diagram of the diagnosis approach.



Model-based diagnosis approaches employ a “deep

model” of the domain and the system under investigation.

By modeling functional dependencies in the form of phys-

ical cause-effect-relations, the behavior of the interesting

system is simulated at some level of accuracy. Typically,

the behavior of the entire system is a result of the interplay

of local behavior descriptions of the system’s components.

During the diagnosis process, the simulated behav-

ior of the model is compared to the observed behavior of

the faulty system. Objective is to explain, say, to match

both simulated and observed behavior. In this connec-

tion several approaches have been developed, such as the

GDE,1 GDE+, Sherlock, or Diagnosis from First Princi-

ples [8, 14, 5, 6, 18, 4, 17]. These approaches can be dis-

tinguished by their ability to model fault behavior,2 by the

integration of methods from the field of statistics or infor-

mation theory, or by the strategy a user is guided when

comparing the real system to the simulated model.

Common to all model-based diagnoses approaches is

the concept of a conflict, which defines a set of compo-

nents that cannot behave correctly at the same time—if the

observed behavior shall be explained by the interplay of all

components. Hence, at least one defect component must

be among each conflict. Given a misbehaving system S,
the determination of the minimum conflict sets is a central

and, perhaps, the most difficult job since it requires multi-

ple simulations of S.

1.1 A Qualitative Model

for Hydraulic Circuit Diagnosis

Hydraulic circuits consist of cylinders that transform hy-

draulic energy into mechanical energy, various forms of

valves, which control flow and pressure of the hydraulic

medium, and service components such as pumps, tanks,

and pipes, which provide and distribute the necessary pres-

sure p and flow Q. Figure 2 shows an example.

Figure 2. Example of a hydraulic circuit.

1GDE stands for “general diagnosis engine”.
2Fault behavior may be modeled explicitly, by means of fault models,

or implicitly, by the absence of the component’s intended O.K.-behavior.

Like other technical systems hydraulic circuits can

break down. Given this case typical symptoms are ob-

served at the cylinder, whose piston may extend too slowly

or may drift. The cause for such a misbehavior can lie in a

defect control valve, or in the cylinder load that is too high,

or in other things. Diagnosing a hydraulic circuit means to

identify the component or, as the case may be, the set of

components that are defect and that are responsible for the

observed misbehavior.

Usually, observed misbehavior is described qualita-

tively, since the impact of a defect component like a con-

gested valve or a leaking pipe can only be defined in a sim-

plified fashion. A simulation model of a hydraulic plant

should reflect that fact, hence using only a handful of flow,

pressure, and velocity values (very high, high, low,

slow, or ++, +, o, -, --, etc.).

A qualitative algebra, which typically is defined on a

small universe like above, is not powerful enough to form

the basis for a complex behavior simulation, if pressure

drop behavior3 and circuits with feedback structures are

to be simulated. Note that with respect to a qualitative

simulation of a single component a sufficiently powerful

algebra of qualitative derivatives and proportionalities can

be stated. However, when connecting components to even

small circuits, the ambiguity during qualitative simulation

will result in a search space that cannot not be treated effi-

ciently.

To overcome, or, at least, to noticeably alleviate the

typical problems of a qualitative simulation of a continuous

system, following concepts are pursued here:

1. For a circuit S an exact numerical simulation is per-

formed. The simulation is based on realistic differ-

ential-algebraic behavior descriptions and provides

information respecting flow directions and order of

magnitudes for all physical quantities.

2. Those physical quantities that are necessary for a cir-

cuit diagnosis are used to define qualitative algebras

for pressure, flow, and velocity.

3. Individual qualitative behavior laws are set up for

each component of the interesting circuit. These be-

havior laws usually will not suffice the no-function-

in-structure-principle, but work only for qualitatively

simulating S.

4. The diagnosis process is organized hierarchically.

Each series connection of valves and cylinders is re-

placed by a single substitute resistance followed by a

single load-element. If during the diagnosis process

one of the substitute components moves into the fo-

cus, the series connection is expanded and simulated

on its own.

3The pressure drop at a valve, ∆p, is proportional to the square of the

flow, Q, through the valve.



1.2 Formulating a Diagnosis

Hypothesis as an Instance of SAT

Based on the qualitative behavior laws that have been

“compiled” from the numerical simulation of a particular

circuit S, a propositional formulaψ can be set up. This for-

mula encodes, among others, a set of qualitative behavior

descriptions for S in the following way: If I is an interpre-

tation that fulfills ψ, then I defines uniquely the physically

correct behavior; i. e., it defines a reasonable quantity spec-

ification for S.
In the following the process of compiling the behavior

for a component is demonstrated at a small example. As-

sume that we are given a circuit as shown in Figure 3 and

that a propositional formula for the behavior of the marked

pipe (thick line) is to be derived.

a

b

Figure 3. Hydraulic subcircuit with two coupled cylinders.

1. A qualitative formulation of the pipe behavior in first

order logic is defined as follows:

pipe(x) →
[ok (x) →

pa(x) = pb(x) ∧ Qa(x) = Qb(x)],

where the equations define an equal potential and a

mass balance constraint respectively.

2. Furthermore, let us assume that pressure values be-

tween 0 and 10 Bar and flow values between 0 and

24 l/min have been computed within the course of a

numerical simulation. Since this pipe leads to a sink,

the simulated pressure values are rather low and can

be mapped onto the two qualitative values zero and

low. The flow values are mapped onto the qualitative

values zero, very low, and low.

Note that a qualitative pressure value of low may be

mapped to a higher numerical pressure value, when

describing the leftmost pipe in the above circuit.

3. Within a qualitative algebra, ⊕pipe, it is defined in

which way the confluence of two pipes has to be com-

puted. For instance, very low ⊕pipe low = low.

4. From the description in first order logic along with the

qualitative algebra a propositional behavior formula is

instantiated. Below, such formula is shown as a piece

of generated code in LISP syntax. The pipe is con-

nected to the nodes a and b in the circuit, the quali-

tative values zero, very low, and low have been

abbreviated with 0, 1, and 2 respectively. Note that

Pa=1, for instance, does not describe an assignment

operation but is merely a variable name.

(:OR (:NOT PIPE-a-b IS OK)

(:AND Pa=1 Pb=1 Qa=2 Qb=2) (:AND Pa=1 Pb=1 Qa=1 Qb=1)

(:AND Pa=1 Pb=1 Qa=0 Qb=0) (:AND Pa=0 Pb=0 Qa=2 Qb=2)

(:AND Pa=0 Pb=0 Qa=1 Qb=1) (:AND Pa=0 Pb=0 Qa=0 Qb=0))

The complete diagnosis hypothesis ψ of a circuit S
consists of the logical conjunction of the following ele-

ments:

• behavior descriptions for all components in S

• unification constraints according to the topology of S

• cardinality constraints for physical quantities

• assumptions for the component’s failure modes

• observations made at the real system

Depending on the pressure and flow resolution that

has been chosen, a diagnosis hypothesis ψ for the circuit in

Figure 3 contains between 1500 and 10000 variables.

2 Learning an Analysis Order for SAT

2.1 On Solving SAT

The solution of combinatorial problems by encoding them

as propositional formulas and testing these formulas for

satisfiability is a well-known approach in complexity the-

ory. Examples of such encodings are given in nearly all

textbooks; a more extensive collection can be found in

[16]. Also, the problem library TPTP contains application

problems formulated as logical formulas that can be used

for testing and evaluating automated theorem provers [19].

The authors in [7] describe how satisfiability is successfully

used to improve the detection of faults in combinational

circuits. All these approaches consider single formulas that

are processed one at a time. Thus, the complexity of the

formula is similar to the complexity of the problem itself.

In [12], the use of propositional satisfiability testing is

shown for model generation for first order formulas. Their

approach also leads to sets of propositional formulas that

need to be tested. However, the authors evaluate the formu-

las one after the other, guided by a fixed model generation

process.

In our application we are confrontedwith large sets Ψ
of propositional formulas each of which defining a partic-

ular diagnosis hypothesis. The formulas ψ ∈ Ψ describe

the same hydraulic system and differ only in partial truth

assignments, which encode fault assumptions and observa-

tions. Solving the satisfiability problem for each formula is



rather simple, but the task is to find a subset of satisfiable

formulas in these sets.

We apply the well-known linear transformations to

generate corresponding formulas in CNF (equivalent with

respect to satisfiability) and to analyze the CNF accord-

ing to the given partial truth assignment. Analyzing the

resulting formulas ψ for satisfiability can be done most ef-

fectively by Davis-Putnam-algorithms. Since the structure

of our formulas has similarities with the quasi group prob-

lems described in [12], the satisfiability tester SATO as well

as its descendants like BerkMin are an efficient decision

procedure as well [20, 9]. Interestingly, due to the sim-

ple structure of the formulas (despite of their size), some

famous algorithms perform bad, though they work well on

benchmark tests originating from the constant clause length

model.

2.2 The Regression Problem

In order to speed up the entire analysis process, we need a

method that sorts the formulas according to their likeliness

of being satisfiable. This would allow us to investigate the

most promising formulas first.

Formally, a function p : Ψ → R is required, where Ψ
denotes the set of formulas, and p(ψ) states for a formula

ψ ∈ Ψ the likeliness that ψ is satisfiable. This subsection

outlines how p can be learned from a set of already ana-

lyzed formulas.

For each formula ψ ∈ Ψ a set of features d(ψ) =
(d1, . . . , dp) is generated. Typical features for a formula

are the number of literals, the ratio between the number

of clauses and variables, or graph-based features; they are

listed in the next subsection. Features should indicate

whether a formula is satisfiable, while at the same time the

feature computation must be significantly easier than the

satisfiability analysis.

The function p can be approximated by a function p̂ :
Rp → R, mapping for each formula ψ from the feature

vector d(ψ) onto the likeliness of ψ being satisfiable.

Given a set of typical formulas, Ψlearn, whose sat-

isfiability is known, p̂ can be learned by standard regres-

sion techniques. Applying regression and learning p̂ forms

a preprocessing step, therefore runtime considerations are

less important here. For each formula ψ′ ∈ Ψlearn the

feature vector d(ψ′) and p̂(ψ′) is calculated. p̂(ψ′) is com-

puted as follows:

p̂(ψ′) =

{

1 if ψ′ is satisfiable,
0 else

For runtime reasons a neural network is used to ap-

proximate the solution to the regression problem. The

reader may refer to [2, 15, 13, 10] for further details about

neural networks and regression respectively. Since for each

formula ψ′ ∈ Ψlearn the input to the network, d(ψ′), and
the correct output, p̂(ψ′), is known, a supervised learn-

ing strategy can be applied. In our experiments a neural

network with two hidden layers and, as learning function,

standard back-propagation were used.

Note that though for all formulas ψ′ ∈ Ψlearn the

function p̂(ψ′) has only the values 0 or 1, p̂(ψ) can result

in values not equal to 0 or 1 for a formula ψ 6∈ Ψlearn.

2.3 Feature Generation

Crucial for the success of the learning process is the gener-

ation of features d(ψ) = (d1, . . . , dp) for a formulaψ. The
features used here fall into three different categories:

• Statistical Features. These features comprise formula

properties like number of variables, formula length,

number of literals, number of positive / negative lit-

erals, number of clauses, or average negative literal

occurrence per variable. For formulas with a constant

clause length it is known, that the ratio of number of

clauses and number of variables is important. This

feature is also used here, even though the clause length

is not constant.

• Logic Features. By applying resolution to the for-

mula, a deeper insight into its structure can be gained.

In particular, the number of non-tautological resol-

vents proved to be valuable.

• Graph Features. In order to analyze the structure of

a formula, the following graph is constructed: Each

literal and each clause is represented as a node. Literal

nodes are connected to a clause node if the literal is a

member of that clause. All clauses are connected by

an additional top node. Figure 4 shows the graph of

the formula α = (A ∨B ∨ ¬C) ∧ (¬C ∨D ∨ ¬E).

A

β1

¬ED¬CB

β2

α

Figure 4. A graph of a formula α that is in CNF.

The following graph properties are used as formula

features:

– maximum, minimum, and average distance be-

tween nodes

– maximum, minimum, and average node degree

– λ-value: This value measures the connectivity

within clusters in the graph; the clusters are de-

fined implicitly by the λ-value.

In order to find the most informative features, an eval-

uation of both the importance of a single feature and the de-

pendency between features is needed. Several algorithms



exist to rate feature importance, two are used here. Details

about feature selection can be found in [1, 3, 11].

By calculating the correlation between two features,

dependencies can be found. The correlation between a fea-

ture and the satisfiability is a hint for the feature’s impor-

tance. Drawbacks of this method are, that only dependen-

cies between two features are discovered and that not all

dependencies are identified.

A neural network also rates feature importance. In a

2- or 3-layer network even feature interactions are taken

into consideration. A key problem is the extraction of this

knowledge. If the neural network consists of a single per-

ceptron only, the feature rating problem becomes much

easier.

d1


d2


dp


...


p

∧


ω1

ωp

ω2

Figure 5. A single perceptron.

Figure 5 shows such a network. Each feature di is di-

rectly connected to the perceptron. A learning algorithm,

e. g. backpropagation, optimizes the weights ωi. ωi is a

hint for a feature’s importance: features with large val-

ues support the satisfiability of the formula, features with

negative weight contradict a possible satisfiability. While

features with weights close to 0 are rather unimportant,

a feature’s importance can not be concluded from a large

weight. Moreover, features that are only important in com-

bination with other features cannot be discovered this way.

α

A

β1

EDCB

β2 β4

HGF

β5β3

Figure 6. A clustered formula graph.

Nevertheless, by combining those two methods, hints

for the importance of features can be found. By leaving out

probable unimportant features, learning p̂ again and com-

paring the error rate with and without those features, a set

of important features can be identified.

Within our experiments, the exclusive use of the sta-

tistical features proved to be insufficient. Including the

logic features as well as the graph features helped to predict

the satisfiability. This can be illustrated exemplary with the

following formula α = (A∨B ∨C ∨D)∧ (B ∨C ∨D)∧
(D∨E∨F∨H)∧(E∨F∨G)∧(E∨G∨H). Figure 6 shows

the corresponding graph. The node degree depends mainly

on the size of the formula and on the frequency of literal

usage. The average distance in a graph is also a measure

for the degree of connectivity between literals.

Observe that with growing connectivity of the graph

the probability of satisfiability decreases. This makes sense

from a logic point of view, since contradicting clauses are

more probable when clauses havemany literals in common.

3 Results

Several small and medium-sized circuits have been diag-

nosed using our approach, a small example can be seen in

Figure 7.

Figure 7. Hydraulic circuit with two coupled cylinders.

An algorithmic description of the diagnosis process is

given in the following box.

Input. Formulas Ψ = {ψ1, . . . , ψn} of diagnosis

hypotheses.

Output. A diagnosis ψ ∈ Ψ

function diagnose (Ψ)

(1) if only one formula ψ ∈ Ψ is satisfiable,

then return ψ as the diagnosis,

(2) else ask user whether o can be observed.

(3) if o is true
then Ψ′ = {ψ ∧ o | ψ ∈ Ψ}
else Ψ′ = {ψ ∧ ¬o | ψ ∈ Ψ}

(4) diagnose(Ψ′)

Under the single-fault-assumption, the size of the set

of hypotheses, |Ψ|, corresponds to the number of compo-

nents in S.
The classification function p̂ is used as follows. In

Step (2) the objective is to choose an observation o that

discriminates most between the hypotheses ψ ∈ Ψ, say,

that leaves a minimum number of formulas satisfiable. Let

O = {o1, . . . , om} denote the set of all possible observa-

tions. Then the best observation o ∈ O can be character-

ized as the maximum of the function θ(o):

θ(o) = p(o) ·
∣

∣{ψ ∧ o is contradictory | ψ ∈ Ψ}
∣

∣,

where p(o) defines the probability for the occurrence of o.

To optimize the selection of the next measurement,

O(|Ψ| · |O|) formulas have to be analyzed. By using p̂ as



an estimator for the satisfiability test, this runtime behavior

can be significantly improved.

Note that the heuristic function p̂, when applied to

guide the search within Step (2), does not affect the cor-

rectness of a found diagnosis. However, when using p̂ as a
heuristic for the satisfiability test in Step (1), it cannot be

guaranteed that the correct diagnosis is found.

To learn p̂, observationswere generated randomly and

the resulting formulas were tested with respect to their sat-

isfiability. For the circuit shown in Figure 7, 500 formulas

formed the basis for learning. Afterward, p̂ was able to cor-
rectly classify 75% of the newly presented test formulas.

Our current research is threefold and focuses onto the

following points:

• refinement of the diagnosis model by differentiating

between a larger number of components

• identification and evaluation of new features by which

a diagnosis hypothesis ψ can be better characterized

• verification of the approach in other domains
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