
Diagnosis in Automotive Applications
A Case Study with the Model Compilation Approach

Benno Stein1 and Oliver Niggemann2 and Heinrich Balzer3

Third Monet-Workshop on Model-Based Systems (MBS 06)
Wotawa (Ed.), ECAI Workshop Proceedings
pp. 34-40, c©University of Trento, Italy 2006.

Abstract. This paper addresses intricate diagnosis situations in
modern cars. It employs a rather new and little known diagnosis
paradigm, which is a mixture of model-based and heuristic diagnosis
and which is called model compilation [5, 25, 26]. The basic idea is
to simulate a model of the system under study in various fault modes
and over its typical input range to compile a simulation database C. A
simplified rule-based behavior model is constructed from C, in which
long cause-effect chains are replaced with much simpler associations
and which is optimized for heuristic classification of the fault being
studied.

The main contribution of the paper is the application of this idea
to the complex discrete event / continuous system models of modern
cars. Our experiments, which are based on the latest simulation mod-
els from the automotive industry, are encouraging and may indicate
a paradigm shift away from the diagnosis approaches used so far in
this field.

Keywords automotive diagnosis, model compilation, simulation,
data mining

1 INTRODUCTION AND DIAGNOSIS SETTING
Today’s cars are complex mechatronic systems. Their reliability has
improved despite their ever-increasing technological complexity. As
a consequence, the diagnosis process itself became highly involved:
Hardware systems and software systems together form a complex
setup; data from various sensors is used by a complex network of
distributed and inter-dependent software modules—modules that are
specified at different phases in the development process and that are
developed by different companies.

The present paper addresses this situation. It introduces a new
technology for the diagnosis of automotive systems, discusses its
pros and cons, and presents first application results. The paper is
organized as follows: The remainder of this section describes the
diagnosis setting and introduces the terminology and a taxonomy
of possible and addressed fault types. Section 2 discusses existing
model-based diagnosis approaches and, in particular, reviews devel-
opments in the field of automotive applications. Section 3 introduces
the model compilation approach as both a formal framework and a
concrete implementation, comprising an experimental setup, simula-
tion tasks, and classification results.

1 Bauhaus University Weimar, Germany
benno.stein@medien.uni-weimar.de

2 dSPACE GmbH, Paderborn, Germany
ONiggemann@dspace.de

3 University of Paderborn, Germany
hbalzer@upb.de

Safety

PowertrainBody

Chassis

Telematik

Bus

Sensor

reading

Actuator

setting

Infotainment

Application

Basic SW

Hardware

Electronics

Environment

ECU

Figure 1. System of connected ECUs and vehicle environment. In
today’s cars up to 70 ECUs are connected to mechanical devices as
well as to other ECUs and perform dedicated control tasks.

1.1 A Classification of Fault Types
Errors and faults might occur at different places within a vehicle.
As shown in Figure 1, the system “vehicle” can be divided into two
subsystems: electronics and environment. The electronics comprises
the electronic control units (ECUs), the buses connecting ECUs, and
the sensors and actuators which act as the ECU’s interface to the
environment.

The main purpose of ECUs is to control parts of the environment,
e. g., the engine or the gear. ECUs do so by executing application
software modules. In addition to the applications, ECUs contain the
basic software that is needed to execute applications and to connect
them to sensors, actuators, and buses. The environment comprises
the rest of the vehicle and includes the driver, the road, the weather,
and the following vehicle domains:
• Powertrain. Examples: engine, gear, drive shaft
• Chassis. Examples: brakes, damping, steering
• Body. Examples: light, wipers, climate control, key-less entry
• Safety. Examples: airbag, active safety belts
• Telematics/Infotainment. Examples: radio, navigation, telephone

A taxonomy of fault locations can be defined for this system; an
extract can be seen in Figure 2. In the environment subtree mainly
the already mentioned vehicle domains are differentiated. In the elec-
tronics subtree, faults can occur (i) in ECUs, (ii) in connection with
buses, (iii) in the context of the power supply, or (iv) in sensors, ac-
tuators, or their wiring. Note that both the hardware and software in
ECUs can fail. The latter is differentiated with respect to errors in
application software or in basic software.

Fault

location

Environment

Electronics

Body

Powertrain

...

ECUs

Buses

Sensors,

Actuators

Software

Hardware

Applications
Electric

Basic SW

Periphery

Processor

Power

Engine

Figure 2. A taxonomy of fault locations. The highlighted classes of
faults are addressed in this paper.

1.2 Diagnosis Based on Symptom Detection
The purpose of the diagnosis systems in a vehicle is to identify faults
and to initiate appropriate countermeasures. Fault identification suf-
fers from an inherent problem: Faults cannot be observed directly,
only their effects can be measured by the vehicle’s electronics. A
fault in the engine, for example, leads to unusual readings for sen-
sors such as engine temperature or revolution. So diagnosis can be
seen as a three step procedure:

1. Identification of unusual vehicle conditions by comparing the ex-
pected vehicle behavior with the observed behavior. Detected dis-
crepancies are called symptoms.

2. Abduction of faults. Based on the symptoms, possible underlying
faults are inferred.

3. Initiation of countermeasures, such as a warning to the driver.

Symptoms are detected in the software modules on the ECUs. Fig-
ure 3 shows a simplified ECU structure from a software point of
view: Sensor readings or bus signals are read by application soft-
ware modules via different hardware and software layers (upper half
of the diagram) and written to actuators or buses (lower half of the
diagram). Note that symptom detection may be implemented only by
driver software and application software modules; i. e., all symptoms
from all fault locations are detected by these software modules, mak-
ing it difficult to differentiate between faults. Symptoms fall into two
main categories:

• Local Symptoms. Such symptoms occur directly at the fault lo-
cation. An example is a short circuit in a cable connected to an
ECU. Faults causing such symptoms can be identified fairly eas-
ily. In the example, the corresponding I/O driver may detect the
wrong voltage level. Generally speaking, there are several estab-
lished methods for detecting such faults.

• Remote Symptoms. Other symptoms occur at a distance from the
fault location. Examples are (i) faults in the environment, e.g., en-
gine problems or (ii) bus errors that influence all the connected
ECUs. Clearly, the detection of faults causing symptoms like this
is significantly more challenging.

Remote symptoms have occurred much more often over the last
few years, leading to an increasing number of intricate diagnosis
scenarios. This is mainly due to the development towards more com-
plex applications, say, towards large and distributed software sys-
tems. Driver assistant functions such as active cruise control (ACC),
active front steering (AFS), and lane keeping support are examples.
These systems have in common that they are distributed over several
ECUs and that they often rely on other, existing software modules.
Faults occurring at one module of such a distributed software system

Input and micro

controller peripherals

Sensor

API

Actuator

API

Application

program 1

Hardware

Hardware

Software

Application

program n

Actuator

Drivers

...

CAN-Bus

Environment Output and micro

controller peripherals

ECU
Sensor

CAN-Bus

Environment

Figure 3. An ECU is organized as different hardware and software
layers. Faults may occur in any layer but are not observable until the
driver layer or the application layer.

may trigger further faults within other connected software modules.
This leads to the detection of a large number of symptoms on several
ECUs.

The model compilation methodology presented in this paper is es-
pecially suited to detecting these new fault types. Section 3 will out-
line the main reasons for this.

2 STATE OF THE ART
The diagnosis of technical systems as a research field is largely gov-
erned by modeling questions:

• Which modeling strategy is appropriate, a deep behavior model or
a shallow rule model?

• Is a distinction between a correct behavior model and a fault model
necessary?

• Is the diagnosis process controlled by heuristic expert knowledge,
and, if so, how should it be represented?

• How can diagnosis knowledge be maintained or kept up-to-date?
• Is a modeling able to integrate knowledge of unforeseen faults?

Approaches over the last few years have predominantly relied on
the model-based diagnosis paradigm [6, 20]. The basic idea is to have
a model running in parallel to the real system and to use the simu-
lation results to detect discrepancies between the expected and the
observed behavior. Such a model is called a behavior model here,
and denoted M; Subsection 3.1 provides a precise specification of
its elements.

In theory, possible faults causing symptoms can be found by ana-
lyzing the behavior model, M, in reverse direction, from symptoms
to faults. In practice, however, such an inverse simulation of M leads
to a complex analysis problem that is generally not tractable. Hence,
a specialized diagnosis model, MD, is often constructed by domain
experts, where fault deduction is treated in a forward reasoning man-
ner.

Model-based approaches employ various algorithms. A typical ap-
proach to fault detecting during operation is described in [27]: The
control software of autonomous robots is monitored by means of ob-
servers, which are a certain form of a behavior model running in
parallel. Here, M is modeled with propositional logic, and Reiter’s
hitting set algorithm is employed along with a theorem prover to infer
faults from symptoms [8, 20].

[1] introduces a so-called “timed failure propagation graph”,
which is in the role of M and which defines the way a fault prop-
agates through the system. Additionally, information about the time
range for fault propagation between the system components is ex-
ploited. Discrepancies between the expected behavior of a signal and
its observed behavior trigger diagnostic inference. The same graph is
used for this, say, M = MD.

[18] discusses diagnosis for systems that comprise hardware com-
ponents and software components. A probabilistic, hierarchical,
constraint-based automaton is used for both M and MD. The di-
agnosis task is formulated as a constraint satisfaction problem and is
solved by optimization techniques.

Since [4] showed that model-based diagnosis can be applied to
program debugging, many researchers started working in this area,
among others [9, 14, 17]. In [14], a technique similar to constraint
propagation is used in combination with model checking. In [9],
component-based software is monitored, and the behavior of the soft-
ware components is modeled with Petri nets.

There are also approaches to detecting faults in distributed systems
or multi-agent systems, and recent results can be found in [12, 15, 16,
22, 23, 31].

2.1 Diagnosis in Automotive Applications
In the automotive industry, model-based approaches are used quite
frequently. A main distinguishing feature is whether they are used
onboard, to diagnose faults during a vehicle’s operation, or offboard,
in a garage for instance. Note that legal requirements concerning gas
emission and safety regulations require more effective diagnosis sys-
tems for onboard diagnosis.

[19] employs a correct behavior model M and various fault mod-
els to identify sensor faults and leakages of the air-intake system of
an engine. The diagnosis system uses a framework of structured hy-
pothesis tests to decide which of the fault models can explain the
measured data.

Various model-based approaches rely on a qualitative model, such
as in [30], where consistency-based diagnosis is used for onboard di-
agnosis. Qualitative models, or more precisely, qualitative deviation
models for onboard diagnosis, are also used in [3], where diagnostic
situations are simulated. The outcome of the simulation is used to
build a decision tree for the diagnosis system.

Other model-based approaches are discussed in [13, 24], where
a specially constructed constraint network is used to model the be-
havior of combustion engines. Rules for the diagnosis, say, MD , are
automatically generated from M.

The approach applied in this paper is based on the model compila-
tion paradigm that was introduced in [11, 25]; the following section
applies the idea to real-world automotive diagnosis.

3 THE MODEL COMPILATION APPROACH
Model compilation is a diagnosis approach that combines the model-
based paradigm and the heuristic paradigm in the following four
steps [25]:

1. Simulation. A database, C, is compiled by simulating the system
under study in various fault modes and over its typical input range.

2. Symptom Computation. By comparing the faultless simulation to
simulation runs in fault modes a symptom database C∆ is built up.

3. Generalization. Using cluster analysis or vector quantization, the
numerical values in C∆ are abstracted towards intervals.

4. Learning. Data mining and machine learning are applied to learn a
mapping from symptoms onto the set of fault modes; the resulting
classifier can be seen as a “compiled diagnosis model”.

Since this process can be completely automated, the approach has
the potential to combine the advantages of the model-based philoso-
phy, such as behavior fidelity and generality, with the efficiency and
robustness of a heuristic diagnosis system. Especially in connection
with the diagnosis in automotive applications, the following advan-
tages shall be emphasized:

• The substantial number of existing libraries of behavior models,
along with the expertise to handle them, can be reused in Step (1).

• The behavior models are analyzed in their intended inference di-
rection, i. e., no special diagnosis model needs to be developed,
and no inverse simulation problem needs to be solved.

• The classifier learned in Steps (3) and (4) integrates seamlessly
with existing diagnosis approaches in the automotive domain,
such as fault trees.

• The compiled diagnosis model has a very small computational
footprint. Other state-of-the-art diagnosis approaches require the
execution and analysis of a behavior model at runtime.

3.1 Formal Framework
This subsection formally introduces the notion of a behavior model,
sometimes also called a plant or controller model. The definition will
help up us to define both the different diagnosis tasks and the compi-
lation principle in mathematical terms.

A car is a complex system that consists of several connected
(sub)systems, such as engine, drivetrain, engine control, etc. For sim-
ulation purposes, we regard each interesting subsystem as being ade-
quately represented by a behavior model M. Depending on the asso-
ciated subsystem and the simulation purpose, M may be input-free
or input-dependent, or memoryless or dynamic. The most important
distinction relates to the time base of dynamic models, which can be
continuous time, discrete time, or discrete event.

Definition 1 (Behavior Model [25]) A behavior model M is a tu-
ple 〈FU , FZ , FY , V, ∆, Λ〉. FU ∩ FZ = ∅, whose elements are
defined as follows.

• FU , FZ , and FY are sets of input variables, constraint variables,
and output variables.

• For each variable v ∈ FU , FZ , and FY there is an arbitrary, pos-
sibly infinite set Uv , Zv, and Yv respectively, called the domain
of v.
For each v ∈ FU there is an additional domain, UT

v , of partially
defined functions in the parameter time, UT

v := {u | u : T →
Uv, t 7→ u(t)}. Depending on the model’s time base, which may
be continuous time, discrete time, or discrete event, T may be an
interval from R+, an interval from N, or a linearly ordered finite
set.
V comprises the domains of all variables. As a matter of conve-
nience, the Cartesian products of the domains of the variables in
FU , FZ , FY are designated with U ,UT ,Z , and Y . E. g., Y :=
Yv1

× Yv2
× . . . × Yv|FY |

, vi ∈ FY .
• ∆ is a function, called the global state prescription function. ∆

declares a set of state variables, FX ⊆ FZ , and a state space, X ,
which is the projection of Z with respect to FX . Given a state
vector x ∈ X , a vector of input functions u(t) ∈ UT , and some
point in time t ∈ T , ∆ determines a constraint vector z ∈ Z
including a new state, say, ∆ : X × UT × T → Z .

• Λ is a function, called the output function. The output function
might be a function of constraint variables and input or only a
function of constraint variables. Given a constraint vector z ∈ Z
and an input vector u ∈ U , Λ determines an output vector y ∈ Y ,
say, Λ : Z × U → Y or Λ : Z → Y .

A model of even a small part of a car is likely to combine behavior
models of different types, say, different time bases; such a model is
called “hybrid”.

Let M = {M1, . . . ,Mk} be a possibly hybrid car model, then
Mi and Mj are coupled if they share output variables and input
variables, i. e., if FYi

∩ FUj
6= ∅, with FYi

∈ Mi, FUj
∈ Mj ,

i 6= j. For example, Mi may be a continuous time model of the
engine, and Mj may be a discrete time model of the engine control.
In the car this coupling is realized by a sensor whose signal is passed
to an ECU where the physical quantity is represented in the software
abstraction layer as an input variable of the engine control software.

The above definition can be regarded as a specification of a correct
behavior model of a system. For our diagnosis approach we also need
models of fault behavior in the sense of the GDE+ [7, 28, 29]. A fault
behavior model is an extension of the above definition: There is an
additional set of state variables, FD , along with respective domains
D, and a state prescription function ∆′. FD defines fault states of the
components, such as those mentioned in Section 1. Thus, the domain
of ∆′ is D ×X × UT × T .

Let σ(M,u(t)) and σ(M′
i,u(t)) designate simulation results

of the faultless model M and some fault model M
′
i for a given

vector of input functions u(t). By applying a model- and quantity-
specific difference operator, 	, between the simulated faultless val-
ues and the related faulty values a database C∆ with symptom vectors
can be compiled:

σ(M,u(t)) 	 σ(M′
i,u(t)) = C∆, i = 1, . . . , k (1)

In a second step, based on filtering, machine learning, and data
mining methods, a classifier can be constructed that maps from
symptoms onto faults:

C∆ −→ FD (2)

An alternative to the previous steps is to apply a learning approach
directly to the simulation results:

C −→ FD with (3)

C = (σ(M,u(t)) ∪ σ(M′
i,u(t))), i = 1, . . . , k

Note that this alternative burdens the learning approach with the
task of both discovering and implicitly computing the 	-operation,
and hence it is less powerful. On the other hand, it allows the learned
diagnostic associations to be used directly without having to simulate
M and apply the 	-operator.

3.2 Case Study
To demonstrate the applicability of the approach, a case study was
conducted by the authors: the diagnosis of wrong sensor readings
in an engine ECU. Simulating the behavior of the engine and its
ECU requires advanced models that define realistic physical behav-
ior. Moreover, the engine and its ECU do not operate autonomously,
but interact with several other components.

In this case study we were able to use the “Gasoline Engine Sim-
ulation Package” from dSPACE’s Automotive Simulation Models,

ASM.4 This is a complete model of a 6-cylinder 2.9l gasoline en-
gine and integrates models for the engine ECU, the drivetrain, ve-
hicle dynamics, and the environment. The vehicle dynamics model
takes external forces into account, such as air resistance and brak-
ing; the environment model considers road conditions and driver in-
teractions. The model is implemented in Matlab R©/Simulink R©, and
Figure 4 shows an abstracted graphical overview. All the models to-
gether form the hybrid car model M.

Figure 4. Overview of the hybrid car model, M, with the submod-
els for the ECU, the engine, the drivetrain, the vehicle dynamics, and
the environment.

3.2.1 Behavior Model

The engine model has an accelerator pedal sensor that relays the sig-
nal to the ECU, where the data is used to set actuators such as the
throttle position in the engine (cf. Figure 5). In the following de-
scription the engine model is denoted M1, the model for the engine
ECU is M2, and the model for the sensor and actuator software and
hardware is M3. Accordingly, the faulty variant of M3 is denoted
as M′

3.
M3 does nothing but relay the signals between M1 and M2. Its

faulty counterpart, M′
3, manipulates either (i) the sensor data so that

the engine control receives disturbed values or (ii) the actuator data
so that the engine receives disturbed values. Figure 6 shows the in-
terplay between these models.

4 See www.dspace.de/ww/en/pub/home/products/sw/automotive simulation
models.cfm for more detailed information.

Sensor,

ECU,

Actuator

Throttle

position

RevolutionAccelerator

pedal position

...
Sensor,

ECU,

Actuator
Motor

Figure 5. Signal flow in the case study; the starting point is the user
input for the accelerator pedal.

The elements of Definition 1 instantiate in our scenario as follows:

• FYM1
contains variables such as mean effective engine torque.

• FUM1
contains variables such as crank angle per cylinder and

throttle angle. Note that FUM1
= FYM2

.
• Examples of input variables of FUM2

are accelerator pedal posi-
tion, ignition signal, and engine speed.

• FUM3
and FYM3

do not contain any variables that are not used
in M1 and M2. Hence FUM3

= (FUM2
∪ FUM1

) = FYM3
.

This is because M3 is used only to manipulate input and output
variables of the engine control.

• FXM2
contains the throttle position among others.

• FXM1
contains variables for the manifold temperature and the air

flow through the throttle.
• ∆M1

and ∆M2
are formulated as differential equation systems

and define the relations between the derivatives of the state vari-
ables and the input variables. Since (the correctly working) M3

functions as a short circuit, ∆M3
is the identity function. ∆M′

3
,

however, manipulates one or more of the input values in order to
simulate offsets, interruptions, or white noise on the signal of the
accelerator pedal.

• Λ maps the values from Z to Y . Thus, ΛMi
, i ∈ {1, 2, 3}, is the

identity function.

3.2.2 Considered Fault Types

In this case study the following typical faults occurring in sensors
and actuators are modeled:

1. The signal is reduced to 90% of its correct value (-10% offset).
2. The signal is 110% of the correct value (+10% offset).
3. The signal is superimposed with noise.
4. The signal is dropped out.

3.2.3 Simulation of M and M′

M consists of M1, M2, M3, and the models for the drivetrain,
the vehicle dynamics, and the environment; it contains more than
100 states. M

′ = (M \M3)∪M′
3. The main input variables are

driver actions as observed by the respective sensors and include the
positions of the brake pedal, the clutch pedal, the accelerator pedal,
and the engaged gear.

For simulation purposes p different vectors of input functions
u1(t), ..., up(t) ∈ UT were defined. These vectors are called sce-
narios and represent a specific driving behavior for a defined time
period. Thus, M and M

′ can be executed in different driving situ-
ations. Since it is unrealistic for all faults to occur at the same time,
faults are inserted into the model at several random points in time.
Each simulation run is characterized by the scenario, by the fault
type (including the faultless scenario), by the faulty component (e. g.
the actuator for the throttle), and by the point in time the fault occurs.

Various scenarios were simulated using the fault types of the ac-
celerator pedal position sensor. The values of all the relevant signals,

Motor

control

Accelerator

pedal position

M2

Motor

Sensor Input and micro

controller peripherals

Output and micro

controller peripherals

API Drivers

Actuator

ECU

M1

M3 , M'3

Figure 6. Interplay of three models: M1 (engine), M2 (engine con-
trol), and M3 (connecting subsystems between user input, engine,
and engine control). In the faultless behavior situation, M3 func-
tions as a short circuit directly connecting both the user input with
M2 and M1 with M2; in a fault situation the fault model M′

3 in-
serts particular signal disturbances (see dark arrows).

i. e., the signals that may have been influenced by the faulty accelera-
tor pedal sensor, were logged for every simulation run and written to
a simulation database, C. Information on each fault type along with
the time when the fault occurred was also stored in the database.

Figure 7 and Figure 8 show an extract of the results of a faultless
and a faulty behavior simulation. Comparing the two figures reveals
that the fault in the accelerator pedal sensor influences other values,
such as the throttle position value and the number of revolutions.

3.2.4 Learning the Diagnosis Function

After the system is simulated in different scenarios with different
faults (including the faultless scenario), machine learning is applied
in order to learn the mapping specified in Equation 3. The basic idea
is to use the data from the faultless simulation and the data from
one fault simulation to detect discriminating features. The knowl-
edge gained can be used as a basis for constructing a classifier which
decides whether the accelerator pedal sensor was faulty or not. The
hope is obviously that this classifier will have a strong inductive bias,
say, that it can also be applied to new measured data from a real ve-
hicle. The task is therefore to find a machine learning approach that
will learn the classification function as well as possible but without
too much overfitting.

The case study investigated two learning algorithms:5

• Linear Regression. This common method employs least square es-
timation to determine parameters a1, ..., an, ai ∈ R, for the fol-
lowing diagnosis function template:

di = a1·v1 + ... + an·vn with

di =

{

0 if fault i occurs
1 else

v1, . . . , vn are the variables measured during the simulation. De-
tails can be found in [10, 32].

• Decision Trees. A decision tree uses a series of decisions to reach
a classification. Learning such a tree is done by recursive partition-
ing the input space using a given optimization criterion. Details
can be found in [2, 21].

5 The R programming environment was used (cf. http://www.r-project.org).

time 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

u(t)

y1(t)

y2(t)

Figure 7. Results of the simulation of the faultless model M. u1(t),
y1(t), and y2(t) designate the accelerator pedal position, the throttle
position, and the number of revolutions respectively.

Note that a diagnosis function learned for a specific fault type may
not adequately deal with data measured in a situation where another
fault type has occurred. To differentiate between fault types, the data
for learning a diagnosis function of a specific fault type was extended
by the data of the other three fault types. This new data was classi-
fied as faultless scenarios. The disadvantage of this procedure is that
the number of fault cases is no longer equivalent to the number of
faultless cases, making it more difficult to assess the learning result.

3.2.5 Experimental Results

Though only standard algorithms for the learning of the diagnosis
function were used and though no preprocessing steps were imple-
mented, the classification results are convincing. Table 1 shows the
error rates of the learned diagnosis functions for the four fault types
“-10% offset”, “+10% offset”, “noisy signal”, and “dropped out sig-
nal”. Five runs were done for each of the fault types; their average is
presented in the table.

The error rate is the percentage of cases diagnosed incorrectly by
the algorithm. The gray rows show the error rates that were achieved
by runs with the training data. The rows below show the error rates
that were achieved with input data the algorithm did not use to learn
the diagnosis function; they demonstrate the generalizability of the
classifiers.

-10% offset +10% offset noisy signal dropped out signal

Linear regression

15.04% 16.13% 3.84% 0.04%
14.85% 16.53% 3.55% 0.11%

Decision tree

0.88% 0.32% 0.33% 0.10%
1.13% 0.46% 0.31% 0.17%

Table 1. Error rates of the linear regression classifier and the decision tree
classifier for the four fault types.

Observe that the decision tree algorithm performs much better than
linear regression. Only when the signal is dropped out is linear re-
gression able to perform a little better than the decision tree. Also
note that there is nearly no difference between the results in the first
row and the results in the second row. If the diagnosis function is also
used to differentiate between fault types, classification performance
is not as good as before; nevertheless, the results still show that it is
possible to achieve satisfying results.

time 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

u(t)

y'1(t)

y'2(t)

Figure 8. Results of the simulation of the faulty model M
′ that

corresponds to the faultless simulation in Figure 7. The introduced
fault pretends noise on the pedal position signal.

4 CONCLUSION AND CURRENT WORK
The paper introduced the model compilation paradigm for diagnosis
on complex technical systems. Model compilation is fairly involved
and combines modern simulation technology with methods from data
mining and learning theory: The models M and M

′ of a system
under study are simulated with respect to expected inputs along with
possible faults, and a compiled diagnosis model is distilled from the
huge set of generated data. At heart, the compiled model is a classi-
fier, which is not only able to detect the simulated faults, but which
will also generalize with respect to unseen situations.

Model compilation is particularly attractive since the original sim-
ulation models M from the application domain can be utilized. In
fact, in the case study from the automotive domain that was pre-
sented, M comprises a vehicle’s plant and controller models; it is
hybrid and contains more than 100 states. The outlined diagnosis
situations address realistic signal faults that occur between the envi-
ronment and the vehicle electronics. Two learning approaches, lin-
ear regression and decision trees, were applied, leading to acceptable
(85%) and excellent (99%) fault detection rates. These results show
that this approach is worth pursuing further.

Our current and future work focuses on four aspects:

1. More complex and different fault scenarios, which also include
software faults in ECUs.

2. The analysis of multiple faults.
3. The application of stronger data filtering techniques during the

data mining step, such as vector quantization and cluster analysis.
4. Refined methods to differentiate between a large number of faults.

Note that the choice and the adaptation of the machine learn-
ing algorithms are keys to the success of the model compilation
paradigm, and that association rules or Bayesian networks have
the potential to outperform decision trees on large data sets.

References
[1] Sherif Abdelwahed, Gabor Karsai, and Gautam Biswas, ‘A

Consistency-based Robust Diagnosis Approach for Temporal Causal
Systems’, in 16th International Workshop on Principles of Diagnosis,
DX-05, pp. 73–79, Monterey, California, USA, (June 2005).

[2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees, Wadsworth, 1984.

[3] F. Cascio, L. Console, M. Guagliumi, M. Osella, A. Panati, S. Sottano,
and D. Dupre. On-board diagnosis of automotive systems: from
dynamic qualitative diagnosis to decision trees, 1999.

[4] Luca Console, Gerhard Friedrich, and Daniele Theseider Dupré,
‘Model-Based Diagnosis Meets Error Diagnosis in Logic Programs’,
in IJCAI, pp. 1494–1501, Chambery, France, (1993).

[5] Adnan Darwich, ‘On Compiling System Descriptions into Diagnostic
Rules’, in Proceedings of the 10th International Workshop on
Principles of Diagnosis, Scotland, (June 1999).

[6] Johan de Kleer and Brian C. Williams, ‘Diagnosing Multiple Faults’,
Artificial Intelligence, 32(1), 97–130, (1987).

[7] Johan de Kleer and Brian C. Williams, ‘Diagnosis with Behavioral
Modes’, in Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence (IJCAI 89), pp. 1324–1330, Detroit,
Michigan, (1989).

[8] Russell Greiner, Barbara A. Smith, and Ralph W. Wilkerson, ‘A
Correction to the Algorithm in Reiter’s Theory of Diagnosis’,
Artificial Intelligence, 41(1), 79–88, (1989).

[9] Irene Grosclaude, ‘Model-based monitoring of component-based
software systems’, in 15th International Workshop on Principles of
Diagnosis, DX-04, Carcassonne, France, (June 2004).

[10] Jens Hartung, Statistik, Oldenbourg, 1999.
[11] Uwe Husemeyer, Heuristische Diagnose mit Assoziationsregeln,

Dissertation, University of Paderborn, Department of Mathematics and
Computer Science, 2001.

[12] Meir Kalech and Gal A. Kaminka, ‘Towards Model-Based Diagnosis
of Coordination Failures’, in 16th International Workshop on
Principles of Diagnosis, DX-05, pp. 37–42, Monterey, California,
USA, (June 2005).

[13] Frank Kimmich, Anselm Schwarte, and Rolf Isermann, ‘Fault
detection for modern Diesel engines using signal- and process
model-based methods’, Control Engineering Practice, 13(2), 189–203,
(2005).

[14] Daniel Köb, Rong Chen, and Franz Wotawa, ‘Abstract model
refinement for model-based program debugging’, in 16th International
Workshop on Principles of Diagnosis, DX-05, pp. 7–12, Monterey,
California, USA, (June 2005).

[15] James Kurien, Xenofon Koutsoukos, and Feng Zhao, ‘Distributed
Diagnosis of Networked, Embedded Systems’, in 13th International
Workshop on Principles of Diagnosis, DX-02, pp. 179–188,
Semmering, Austria, (May 2002).

[16] Gianfranco Lamperti and Marina Zanella, Diagnosis of Active
Systems, Kluwer Academic Publishers, Hingham, MA, USA, 2003.

[17] Wolfgang Mayer and Markus Stumptner, ‘Approximate Modeling for
Debugging of Program Loops’, in 15th International Workshop on
Principles of Diagnosis, DX-04, pp. 87–92, Carcassonne, France,
(June 2004).

[18] Tsoline Mikaelian, Brian C. Williams, and Martin Sachenbacher,
‘Diagnosing Complex Systems with Software-Extended Behavior
using Constraint Optimization’, in 16th International Workshop on
Principles of Diagnosis, DX-05, pp. 19–24, Monterey, California,
USA, (June 2005).

[19] Mattias Nyberg, ‘Model-based diagnosis of an automotive engine
using several types of fault models’, IEEE Transaction on Control
Systems Technology, 10(5), 679–689, (September 2002).

[20] Raymond Reiter, ‘A Theory of Diagnosis from First Principles’,
Artificial Intelligence, 32(1), 57–95, (1987).

[21] Brian D. Ripley, Pattern Recognition and Neural Networks,
Cambridge University Press, 1996.

[22] Nico Roos, Annette ten Teije, and Cees Witteveen, ‘A Protocol for
Multi-Agent Diagnosis with spatially distributed Knowledge’, in
Autonomus Agents and Multi Agent Systems, AAMAS-2003, pp.
655–661, (July 2003).

[23] Indranil Roychoudhury, Gautam Biswas, Xenofon Koutsoukos, and
Sherif Abdelwahed, ‘Designing Distributed Diagnosers for Complex
Physical Systems’, in 16th International Workshop on Principles of
Diagnosis, DX-05, pp. 31–36, Monterey, California, USA, (June
2005).

[24] Werner Seibold and Bernhard Höfig, ‘Sichere Fehlerdiagnose in der
Automobilwartung mit RODON 3’, Automotive electronics, 70–75,
(2004).

[25] Benno Stein, Model Construction in Analysis and Synthesis Tasks,
Habilitation, Department of Computer Science, University of
Paderborn, Germany, June 2001.

[26] Benno Stein, ‘Model Compilation and Diagnosability of Technical
Systems’, in Proceedings of the 3rd IASTED International Conference
on Artificial Intelligence and Applications (AIA 03), Benalmdena,
Spain, ed., M. H. Hanza, pp. 191–197. ACTA Press, (September 2003).

[27] Gerald Steinbauer and Franz Wotawa, ‘Detecting and locating faults in
the control software of autonomous mobile robots’, in IJCAI, pp.

1742–1743, (2005).
[28] Peter Struss, ‘Model-Based Diagnosis—Progress and Problems’, in

Proceedings of the International GI-Convention, volume 3, pp.
320–331, (October 1989).

[29] Peter Struss and Oskar Dressler, ‘“Physical Negation”—Integrating
Fault Models into the General Diagnostic Engine’, in Proceedings of
the Fifteenth International Joint Conference on Artificial Intelligence
(IJCAI 89), volume 2, pp. 1318–1323, (1989).

[30] Peter Struss and Chris Price, ‘Model-based systems in the automotive
industry’, AI Magazine, 24(4), 17–34, (2004).

[31] R. Su, W. Wonham, J. Kurien, and X. Koutsoukos, ‘Distributed
Diagnosis for qualitative Systems’, in Proceedings of the 6th
International Workshop on Discrete Event Systems, WODES-02), eds.,
M. Silva, A. Giua, and J.M. Colom, pp. 169–174, Zaragoza, Spain,
(October 2002).

[32] T. Wonnacott and R. Wonnacott, Regression: A second course in
statistics, John Wiley & Sons, New York,
Chichester/Brisbane/Toronto, 1981.

