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Abstract. Stemming algorithms find canonical forms for inflected words, e.g. for
declined nouns or conjugated verbs. Since such a unification of words with respect
to gender, number, time, and case is a language-specific issue, stemming algorithms
operationalize a set of linguistically motivated rules for the language in question.
The most well-known rule-based algorithm for the English language is from Porter
[14].

The paper presents a statistical stemming approach which is based on the anal-
ysis of the distribution of word prefixes in a document collection, and which thus is
widely language-independent. In particular, our approach addresses the problem of
index construction for multi-lingual documents. Related work for statistical stem-
ming focuses either on stemming quality [2,3] or on runtime performance [11], but
neither provides a reasonable tradeoff between both. For selected retrieval tasks un-
der vector-based document models we report on new results related to stemming
quality and collection size dependency.

Interestingly, successor variety stemming has neither been investigated under
similarity concerns for index construction nor is it applied as a technology in current
retrieval applications. As our results will show, this disregard is not justified.

1 Introduction

Most of the words in a text document have various morphological variants.
Since the variants have a similar semantics they can be considered as equiva-
lent for the purpose of many retrieval tasks. Consider for example the words
“connecting” and “connect”: they are not recognized being equivalent without
having them reduced to their stem. A stem is the portion of a word that is
common to a set of inflected forms; it is not further analyzable into meaningful
elements and carries the principle portion of meaning of the words in which
it functions. Stemming is the process of reducing a word to its stem, and a
stemmer or a stemming algorithm is a computer program that automates the
task of stemming. As illustrated in Figure 1 stemming happens at an early
stage in the text processing chain.
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Fig. 1. The role of stemming in the text processing chain.

1.1 On Stemming

Since natural languages are irregular, stemming algorithms have a heuristic
component and hence are subject to generating incorrect stems. One refers
to overstemming, if too much of a word is removed, and to understemming,
if words could be conflated to the same stem but may remain distinct after
stemming. An example for overstemming is “relati-ve” / “relati 7 an
example for understemming is “sensib-le” / “sensibili-ty”. In the literature on
the subject stemming algorithms are often judged by counting the number
of stemming mistakes produced. However, we believe that it is reasonable to
measure the power of a stemming approach by its impact on the performance
of dedicated information retrieval tasks.

The different stemming strategies developed in the past can be classified
according to the following scheme (cf. Figure 2):

e Table Lookup. Stores to each stem all flections in a hash table. Problems
with this approach include the handling of non-standard words and storage
requirements.

e Truncate Stemming. Retains the first k& letters of a word, where k is a
suitable integer; a word with less than k letters is simply returned.

e Rule-based Affix Elimination. Removes the match related to a precondition
of a rule and possibly repairs the resulting stem. An important variant is
iterative longest match stemming, which forms the base of several well-
known stemming algorithms [14,13,10,9]. Note that these approaches are
tailored to the English language; a recent development is the Snowball
initiative, which employs language-specific rules [15].

Successor variety analysis is a special form of truncate stemming that
applies a variable, say, word-specific £ computed from the underlying collec-
tion. Compared to rule-based affix elimination a successor variety analysis is a
purely syntactic approach and hence it should be inferior to a knowledge-based

Table lookup

Stemming Truncate stemming <1—|

strategy

Successor variety
Proportion-based

Iterative longest match
Rule-based affix elimination <1—|: lterative h g, . tch
erative heuristic matc

Fig. 2. Taxonomy of stemming strategies.
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stemmer. At closer inspection the situation looks differently: (i) Successor va-
riety analysis is adaptive and conservative by nature since it identifies and
applies collection-specific stemming rules. (i) A rule-based approach is prob-
lematic if, for instance, the document language is unknown, if no language-
specific stemming rules are at hand, or if a document combines passages from
several languages. Successor variety analysis is unaffected by this.

1.2 Contributions

Despite its advantages successor variety analysis is not applied as a technology
for index refinement in current retrieval applications. In addition, only few and
rather outdated analyses have considered this approach in their evaluations.
The paper in hand addresses this gap. We have developed an implementation
for successor variety stemming along with new pruning heuristics, which is
compared to well-known rule-based stemming implementations. In particular,
the following questions are investigated:

1. How far is successor variety stemming behind rule-based stemming for the
languages English and German?

2. What is the quantitative connection between the quality of successor va-
riety stemming and corpus size?!

To answer these questions we have set up a large number of text categoriza-
tion experiments with different clustering algorithms. Since these algorithms
are susceptible to various side effects, we will also present results that rely on
an objective similarity assessment statistic: the measure of expected density,
P [17].

The remainder of the paper is organized as follows. Section 2 introduces
and discusses successor variety stemming, and Section 3 reports on selected
classification experiments and similarity analyses.

2 Successor Variety Stemming

Given a set of a word’s morphological variants, a potential stem can be derived
heuristically, by a skillful analysis of prefix frequency and prefix length among
the variants. E.g., the longest common prefix of the words “connection”,
“connect”, “connectivity”, “connecting” is “connect”, which is also the stem.
This principle applies to other languages like German as well: “verbinden”,
“Verbindung”, “verbinde”, “verbindend” all share the same stem “verbind”.
Of course there are exceptions in the German language which fall not into
this scheme, such as the past principle “verbunden” in the example.?

! This question addresses also the issue of a “break-even point”, above which one
gets a pay-off from one or the other strategy.

2 This idea can be extended to the identification of compound word concepts in a
document. If continuous sequences of n words occur significantly often, then it



370 Stein, Potthast

Fig. 3. A suffix tree at the character level for the words “connect”, “connected”,
“connecting”, “connects”, and “contact”. The inner nodes hold the frequency infor-
mation, the $-sign denotes the end of string.

To identify significant prefixes we have developed an analysis method based
on the suffix tree data structure [18,7], into which each word w of each doc-
ument d of a collection D is inserted. The construction of a suffix tree is
straightforward: A word w is inserted by testing whether some edge emanat-
ing from the root node is labeled with w’s first character c¢;. If so, this edge
is traversed and the procedure is repeated by testing whether some edge of
the successor node is labeled with co. If, at some depth k, a node n without
a matching edge is reached a new node is created and connected to n with
an edge labeled cy41. Frequency information is updated during suffix tree in-
sertion. Figure 3 shows a suffix tree for morphological variants of the word
“connect”; inner nodes with an outdegree of 1 are omitted. Note that suffix
trees are used here because of their small memory footprint; with respect to
runtime they may be outperformed by the Patricia data structure [12].

It remains to be answered how reasonable stems can be identified using a
suffix tree. Obviously, a possible stem lies on a path that starts at the root,
and, inner nodes that have a high outdegree—compared to their immediate
predecessors—may be good stemming candidates. Strategies to operationalize
this observation can be found in [6]:

e Cutoff Method. Take all subsequences of w as candidates that start at the
root and end in a node with more successors than a given threshold. It
remains unclear how the threshold has to be chosen; particularly it will
depend on w’s length.

e Peak and Plateau Method. Choose subsequences of w that end in a node
that has more successors than its predecessor.

is likely that these words form a concept. Stemming and concept identification
are essentially the same—the level of granularity makes the difference: Stemming
means frequency analysis at the level of characters; likewise, the identification of
concepts means frequency analysis at the level of words.
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e Complete Word Method. Define as stem of a word w the shortest substring
w’ of w, which also occurs as a word in a document.

e FEntropy Method. Choose subsequences w’ of w whose entropy is signifi-
cantly higher than the entropy of its immediate predecessor.

The strategy that has been applied in this paper is an enhancement of the
peak and plateau method with respect to different subsequence lengths. To
accept the substring of a word up to the k-th letter as suitable stem, the suc-
cessor variety values vi_1, vk, and vg41 must fulfill the following inequalities:

E > z-m with € (0;1) (1)
ELENES Yy with y >0 (2)
Vk—1
L . with 2z >0 (3)
Vg Vk—1

The first inequality ensures a minimum length for a stem. The second
inequality is a refinement of the peak and plateau method that simply claims
the constraint y = 1. In the form presented here especially the case 0 <
y < 1, where the successor variety vy is significantly high but not larger
than vi_1, can be recognized. The third inequality ensures that a word is not
overstemmed given the case that a succeeding character provides a reasonable
clipping position as well. Note that all computations within the analysis can
be done during a single depth-first traversal of the suffix-tree, which leads to
an overall time complexity comparable to Porter’s algorithm.

Table 4 shows stems obtained by our successor variety analysis, the re-
spective stems returned by Porter’s algorithm, and the optimum stems.

Successor variety Porter Optimum
Stem(s)  Affix(es) Stem(s)  Affix(es)
minist - ers, erial, er, minist - ers, er minist
- 1y, ries ministri - $, es
oper oper - $, ators, ational, oper
operat - ors, or, es, e - ator, ates, ations, operat
operati - onal, ons, ng, on - ating, ation, ate
exten - sion, d, ds, ding, extend - $, s, ing, ed exten
- t, ded, sive extens - ion, ive
extent

Fig. 4. The table contrasts stems obtained by our successor variety analysis and by
Porter’s algorithm with optimum stems. The $-symbol denotes the empty string.
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3 Quantitative Analysis of Stemming Approaches

Only few experiments related to stemming were made in the past; in par-
ticular, existing research investigates neither the quality of successor variety
stemming nor its language independence® [5,8,6,4,1]. In this connection the
purpose of our stemming analyses is twofold. (i) We want to analyze the poten-
tial of successor variety stemming compared to rule-based stemming. (i) Since
successor variety stemming is expected to be collection-size-dependent by na-
ture, the trade-off between stemming quality and collection size shall be re-
vealed. The employed document model is the vector space model; stopwords
are omitted and term weighting is done according to the tf - idf-scheme.

The analyses illustrate the impact of a stemming strategy in two ways:
Indirectly, by comparing the classification performance within a categorization
task, expressed by the F-Measure, and directly, by comparing the intrinsic
similarity relations captured within a document model, expressed by p: Let
C ={C1,...,C} be an exclusive categorization of D, and let G = (V| E, )
be the underlying similarity graph of D. Based on the global edge density 6
of G, p averages the class-specific density improvement within the subgraphs
G; = (V;, E;, ¢) induced by the categories C;:

_ LW Yeer, ele)
”<C>:Z||v||' =

., where 6 computes from |V|® = Z o(e)
eelE

If for a collection of documents the p-value under document model My is
larger than the p-value under document model M;, then M5 captures more
of the intrinsic similarity structure of the collection [17].

The experiments rely on RCV1, a short hand for “Reuters Corpus Vol-
ume 1”7 [16], as well as on a corpus of German newsgroup postings. RCV1 was
published by the Reuters Corporation for research purposes; it contains about
800,000 documents each of which consisting of a few hundred up to several
thousands words. The documents are tagged with meta information like cat-
egory (also called topic), geographic region, or industry sector. The German
newsgroup corpus has been compiled in our working group and comprises
26,000 postings taken from 20 different newsgroups. From these corpora the
samples were formed as follows: For the analysis of the categorization tasks the
sample sizes were 1000 documents, chosen from 10 categories. For the analysis
of the intrinsic similarity relations the sample sizes were ranging from 200 to
1000 documents, chosen from 5 categories.

Figure 5 shows selected analysis results for the two languages English (left-
hand side) and German (right-hand side). The tables comprise the effects of
the different document models within the categorization task, expressed as
improvements in the F-Measure-value for different cluster algorithms. The

3 Language independence, however, applies primarily to languages whose flections
base on suffixes, prefixes or circumfixes.
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Stemming F-min F-max F-av. Stemming F-min F-max F-av.
strategy (sample size 1000, 10 categories) strategy (sample size 1000, 10 categories)
Porter -11% 14% 6% Snowball -8% 26% 10%
successor successor
variety -15% 14% 4% variety -9% 23% 6%

15 - - 15 - -

5 categories Stemming: without —— 5 categories Stemming: without ——
Porter ----- Snowball - .

14 successor variety - 14 successor variety -
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Fig. 5. The effect of no stemming, rule-based stemming, and successor variety stem-
ming on the vector space model, given an English collection (left) and a German
collection (right). The tables (top) comprise the effects within the categorization
task; the graphs below show the relation between the collection size and the simi-
larity relations captured within the document model.

graphs show that—independent of the stemming strategy—the collection size
is positively correlated with the expected density p. This means that addi-
tional documents add similarity information rather than noise. Altogether,
rule-based stemming performs slightly better than successor variety stem-
ming, which shows a reasonable performance though.*

4 Discussion

This paper reported on a comparison between rule-based stemming and suc-
cessor variety stemming by evaluating the retrieval performance of the respec-
tive vector space models. Our approach to successor variety stemming is based
on a suffix tree data structure, and controlled by new pruning heuristics that
skillfully analyze the successor variety of the inner tree nodes.

For the performance evaluation both an indirect method and a direct
method has been applied. The former relies on the application of clustering al-
gorithms in a text categorization task; the latter relies on the similarity graph
of a document collection and quantifies improvements between the inter-class
and the intra-class variance of the edge weights. The following analysis results
shall be emphasized:

4 To make our analysis results reproducible for other researchers, meta information
files that describe the compiled test collections have been recorded; they are
available upon request.
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1.

2.

The effect of stemming with respect to the vector space model is less than
commonly expected.

Compared to rule-based stemming, the retrieval performance of our op-
timized successor variety stemming is only slightly worse. Note that for
the German language this performance can be further improved by ap-
plying the same strategy to identify prefixes and by adjusting the pruning
heuristics to identify compound words.

Two salient advantages of successor variety stemming are its language

independence, and its robustness with respect to multi-lingual documents.
An obvious disadvantage may be the necessary statistical mass: Successor
variety stemming cannot work if only few, very small document snippets are
involved. This effect could directly be observed in our experiments.
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