Applying Hash-based Indexing
in Text-based Information Retrieval

Benno Stein and Martin Potthast

Faculty of Media, Media Systems
Bauhaus University Weimar, 99421 Weimar, Germany,
{benno.stein | martin.potthast}@medien.uni-weimar.de

ABSTRACT

Hash-based indexing is a powerful technology for similarity search
in large document collections [13]. Central idea is the interpre-
tation of hash collisions as similarity indication, provided that an
appropriate hash function is given. In this paper we identify basic
retrieval tasks which can benefit from this new technology, we re-
late them to well-known applications and discuss how hash-based
indexing is applied. Moreover, we present two recently developed
hash-based indexing approaches and compare the achieved perfor-
mance improvements in real-world retrieval settings. This analy-
sis, which has not been conducted in this or a similar form by now,
shows the potential of tailored hash-based indexing methods.

Keywords

hash-based indexing, similarity hashing, efficient search,
performance evaluation

1. INTRODUCTORY BACKGROUND

Text-based information retrieval in general deals with the search
in a large document collection D. In this connection we distinguish
between a “real” document d € D, in the form of a paper, a book,
or a Web site, and its computer representation d, in the form of a
term vector, a suffix tree, or a signature file. Likewise, D denotes
the set of computer representations of the real documents in D.

Typically, a document representation d is an m-dimensional fea-
ture vector, which means that the objects in D can be considered
as points in the m-dimensional vector space. The similarity be-
tween two documents, d, dg, shall be inversely proportional to the
distance of their feature vectors d,d, € D. The similarity is mea-
sured by a function ¢(d, d4) which maps onto [0; 1], with 0 and 1
indicating no and a maximum similarity respectively; ¢ may rely
on the /;-norm, the />-norm, or on the angle between the feature
vectors. Obviously the most similar document d* € D respecting
a query document dq maximizes ¢(d, dy).

We refer to the task of finding d* as similarity search, which can
be done by a linear scan of D—in fact this task cannot be done
better than in O(|D)) if the dimensionality, m, of the feature space

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission from the author.

DIR 2007, March 28-29, Leuven, Belgium

Copyright 2007 Stein / Potthast.

is around 10 or higher [15]. Also the use of an inverted file index
cannot improve the runtime complexity since the postlist lengths
are in O(|D|). Here the idea of hash-based indexing comes into
play: Testing whether or not d is a member of D can be done
in virtually constant time by means of hashing. This concept can
be extended toward similarity search if we are given some kind of
similarity hash function, h, : D — U, which maps the set D of
document representations to a universe U of keys from the natural
numbers, U C N, and which fulfills the following property [13]:

ho(d) = ho(dg) = »(d,dg) > 1—c¢, (H

withd,dg € Dand 0 < e < 1.

That is, a hash collision between two elements from D indicates
a high similarity between them, which essentially relates to the con-
cept of precision prec,:

e, MA €Dy 1p(d) > 1}
‘ D] ’

withDy = {d € D : hy(d) = hy(dg)}-

Though the applicability of hash-based indexing to text-based
information retrieval has been demonstrated, there has been no dis-
cussion which retrieval tasks can benefit from it; moreover, none
of the hash-based indexing approaches have been compared in this
connection. Our research aims at closing this gap.

Section 2 discusses retrieval tasks along with applications where
hash-based indexing can be applied to improve retrieval perfor-
mance and result quality. Section 3 introduces two hash-based in-
dexing methods that can be utilized in the field of text-based infor-
mation retrieval. Section 4 presents results from a comparison of
these methods for important text-retrieval tasks.

2. RETRIEVAL TASKS IN TEXT-BASED
INFORMATION RETRIEVAL

Let T" denote the set of terms that are used within the document
representations d € D. The most important data structure for
searching D is the inverted file [16, 2], which maps aterm ¢t € T'
onto a so-called postlist that encodes for each occurrence of ¢ the
respective documents d;, ¢ = 1,..., 0, along with its position in
d;. In the following it is assumed that we are given a (possibly
very large) document collection D which can be accessed with an
inverted file index, p;,

pi: T —D
as well as with a hash index, pup,
pn D — D

D denotes the power set of D. The inverted file index p; is used to
answer term queries; the hash index pu, is ideally suited to answer

Retrieval tasks

Categorization
Grouping <]—|:
Near-duplicate detection

Partial document similarity
Similarity search <1—|:
Complete document similarity

Index-based
retrieval

Classification

Applications

focused search, efficient search
(cluster hypothesis)

plagiarism analysis,
result cleaning
plagiarism analysis
query by example

directory maintenance

Figure 1: Text-based information retrieval tasks (left) and exemplified applications (right) where hash-based indexing can be applied.

document queries, say, to map a document onto a set of similar
documents. Section 3 shows how such a hash index along with a
hash function h, is constructed.

We have identified three fundamental text retrieval tasks where
hash-based indexing can be applied: (i) grouping, which further
divides into categorization and near-duplicate detection, (ii) simi-
larity search, which further divides into partial and complete docu-
ment comparison, and (iii) classification. Figure 1 organizes these
tasks and gives examples for respective applications; the following
subsections provide a more in-depth characterization of them.

2.1 Retrieval Task: Grouping

Grouping plays an important role in connection with user inter-
action and search interfaces: Many retrieval tasks return a large
result set that needs to be refined, visually prepared, or cleaned
from duplicates. Refinement and visual preparation require the
identification of categories, which is an unsupervised classifica-
tion task since reasonable categories are a-priori unknown. Cat-
egorizing search engines like Vivisimo and Alsearch address this
problem with a cluster analysis [17, 11]; they are well-known ex-
amples where such a kind of result set preparation is applied. Du-
plicate elimination helps in cleaning result sets that are cluttered
with many, nearly identical documents [4]. The latter situation is

fom] %

Inverted Hash
file index index
term 1 doc 2,doc 3, ... 112568 doc1,doc7, ...

term2 doc 5, doc 8 256749 doc 9

o— —————o

—— @
Identified

o categories

Figure 2: Illustration of a grouping retrieval task. Starting
point is an information need formulated as term query, which
is satisfied with an inverted file index, yielding a result set

(Step @). The subsequent categorization is realized with a hash
index in linear time of the result set size (Step ©).

typical for nearly all kinds of product searches and commercial ap-
plications on the Web: for the same product various suppliers can
be found; likewise, mirror sites can pretend the existence of appar-
ently different documents.

Remarks on Runtime. With hash-based indexing the performance
of such kinds of retrieval tasks can be significantly improved: A
user formulates his/her information need as a term query for which,
in a first step, a result set D, C D is compiled by means of an in-
verted file index p;. In a second step the hash index py, is applied
for the grouping operation, which may be categorization or dupli-
cate elimination. Figure 2 illustrates the strategy. Recall that pp,
helps us to accomplish the grouping operation in linear time in the
result set size |Dgq|. By contrast, if for grouping a vector-based
document model is employed we obtain a runtime of O(|Dg|?),
since duplicate elimination or category formation requires a pair-
wise similarity computation between the elements in D,,.

2.2 Retrieval Task: Similarity Search

The most common retrieval task is a similarity search where a
user’s information need is formulated as (boolean) term query. If
the user is in fact interested in documents that match exactly, say,
that contain the query terms literally, the optimum index struc-
ture respecting search performance is the inverted file index, ;.
The major search engine companies like Google, Yahoo, or Al-
taVista are specialized in satisfying these kinds of information

document %
query

Hash
index

112568 doc 1,doc 7, ...
256749 doc 9

Document L
collection

Y
Result
set

Figure 3: Illustration of a similarity search retrieval task.
Starting point is an information need formulated as document
query, which is satisfied with a hash index in constant time of
the document collection size. Alternatively, keywords may be
extracted from the document query to formulate several term
queries.

needs. However, if a user specifies his/her information need in
the form of a document query, say, in a “more like this” manner,
a hash-based index, pn, could be employed as index structure. The
question is whether a similarity hash function h,, that fulfills Prop-
erty (1) can be constructed at all, which in turn depends on the
admissible e-interval demanded by the information need.

Remarks on Runtime. The utilization of a hash-based index, pn,
can be orders of magnitude faster compared to a classical inverted
file index p;: To identify similar documents with p;, appropriate
keywords must be extracted from the document query, a number
k of term queries must be formed from these keywords, and the
respective result sets Dy, , ..., Dg, must be compared to the doc-
ument query. Figure 3 illustrates both this alternative strategy and
the utilization of pj. If we assume an effort of O(1) for both in-
verted file index access and hash index access, the construction of
the result set requires O(|Dg, | + ... + |Dg, |) with z;, and only
O(1) with pp,. Note that the actual runtime difference depends on
the quality of the extracted keywords and the finesse when forming
the term queries from them; it can assume dramatic proportions.
This situation is aggravated if an application like plagiarism anal-
ysis requires the segmentation of the query document in order to
realize a similarity search for one paragraph at a time [14].

2.3 Retrieval Task: Classification

Classification plays an important role in various text retrieval
tasks: genre analysis, spam filtering, category assignment, or au-
thor identification, to mention only a few. Text classification is the
supervised counterpart of text categorization and, for a small num-
ber of classes, it can be successfully addressed with Bayes, dis-
criminant analysis, support vector machines, or neural networks.
However, with an increasing number of classes the construction of
a classifier with assured statistical properties is rendered nearly im-
possible.

With hash-based indexing an efficient and robust classifier can be
constructed, even if the number of classes, C'1, . . ., C), is high and
if only a small or irregularly distributed number of training docu-
ments is given. The classification approach follows the k-nearest
neighbor principle and presumes that all documents of the classes
C; are stored in a hash-index p. Given a document d, to be clas-
sified, its hash value is computed and the documents D, that are
assigned to the same hash bucket are investigated with respect to
their distribution in C1,...,Cp. dg gets assigned that class Cj
where the majority of the documents of D, belongs to:

C; = argmax |C; N Dy
i=1,...,p

3. REALIZATION OF
HASH-BASED INDEXING

Given a similarity hash function h, : D — U, a hash-based
index pp, can be directly constructed by means of a hash table 7°
along with a standard hash function h : U — {1,...,|7|}; h maps
the universe of keys, U, onto the |7 | storage positions. Indexing
a set D of document representations means to compute for each
d € D its hash key h(d) and to insert in 7 at position h(h,(d))
a pointer to d. This way 7 maintains for each value of ., a bucket
D, C D that fulfills the following condition:

di,d2 € Dg = hy(d1) = hy(d2),

where di,d2 denote the computer representations of the docu-
ments dq, d2. Based on 7 and h,, a document query corresponds to
a single hash table lookup. In particular, if h, fulfills Property (1)
the bucket returned for d, defines a set D, whose elements are in

the e-neighborhood of d; with respect to ¢:
deD, = ¢(d,dg)>1-¢

The crucial part is the choice and the parameterization of a suit-
able similarity hash function h,, for text documents. To our knowl-
edge two approaches have been recently proposed, namely fuzzy-
fingerprinting and locality-sensitive hashing. Both approaches can
be directly applied to the vector space representation d of a docu-
ment and are introduced now.

3.1 Fuzzy-Fingerprinting

Fuzzy-fingerprinting is a hashing approach specifically designed
for but not limited to text-based information retrieval [13]. It is
based on the definition of a small number of k, k € [10, 100], pre-
fix equivalence classes. A prefix class, for short, contains all terms
starting with the same prefix. The computation of h,(d) happens
in the following steps: (i) Computation of pf, a k-dimensional vec-
tor that quantifies the distribution of the index terms in d with re-
spect to the prefix classes. (ii) Normalization of pf using a corpus
that provides a representative cross-section of the source language,
and computation of Ape = (d1,...,dx)7, the vector of deviations
to the expected distribution.! (iii) Fuzzification of Ap¢ by project-
ing the exact deviations according to diverse fuzzification schemes.
Figure 4 illustrates the construction process.

Typically, three fuzzification schemes (= linguistic variables) are
used whereas each scheme differentiates between one and three de-
viation intervals. For a fuzzification scheme p with r deviation in-
tervals Equation 2 shows how a document’s normalized deviation
vector Apr is encoded:

k—1

RE(d) =D 6",

=0

with 67 € {0,...,r =1} (2

52(‘) Jisa document-specific value and represents the fuzzified devi-
ation of §; € Ape when applying fuzzification scheme p.

A prefix class is not necessarily limited to exactly one prefix. Itis
also possible to define a combined prefix class as the union of two
or more others. There are 26° possible prefix classes for the Latin
alphabet, where ¢ denotes the prefix length. Using a bin packing
heuristic the combined prefix classes can be constructed such that
each class has the same expected frequency.

Document representations based on prefix classes can be re-
garded as abstractions of the vector space model. On the one hand
they have a weaker performance when directly applied to a retrieval
task such as grouping, similarity search, or classification. On the
other hand they are orders of magnitude smaller and do not suffer
from sparsity.

3.2 Locality-Sensitive Hashing

Locality-sensitive hashing (LSH) is a generic framework for the
randomized construction of hash functions [9]. Based on a family
H,, of simple hash functions h, h : D — U, a locality-sensitive
hash function h, is a combination of k£ functions h € H, ob-
tained by an independent and identically distributed random choice.
When using summation as combination rule the construction of
he(d) is defined as follows:

k
he(d) = " hi(d), with {h1,...,hx} Crana Ho
i=1

'In this paper the British National Corpus is used as reference,
which is a 100 million word collection of written and spoken lan-
guage from a wide range of sources, designed to represent a wide
cross-section of current British English [1].

A priori probabilities of
prefix classes in BNC

Distribution of prefix
classes in sample

I
w | F - Normalization and
difference computation
4
e Y N Fuzzification
4

{213235632, 157234594} Fingerprint
Figure 4: The basic steps of the hash key computation for
fuzzy-fingerprinting.

Several hash families H, that are applicable for text-based in-
formation retrieval have been proposed [5, 6, 3]; our focus lies on
the approach of Datar et al. [6]. The idea of this hash family is to
map a document representation d to a real number by computing
the dot product a’ - d, where a is a random vector whose vector
components are chosen independently from a particular probabil-
ity distribution. The real number line is divided into equidistant
intervals of width r each of which having assigned a unique natu-
ral number, and the result of the dot product is identified with the
number of its enclosing interval. Under this approach the construc-
tion of h,, for a given set p of random vectors au, . .., ay reads as
follows:

k T
a; d+C
hfop)(d) = Z \‘TJ)

i=1

where ¢ € [0, r] is chosen randomly to allow any possible segmen-
tation of the real number line. Figure 5 illustrates the construction
process.

Note that with locality-sensitive hashing a lower bound for the
retrieval quality can be stated: If the average distance of a document
to its nearest neighbor is known in advance, the computation of k.,
can be adjusted such that the retrieval probability for the nearest
neighbor is above a certain threshold [7]. This fact follows from
the locality-sensitivity of a hash family H,, which claims that for
any h € H, the probability of a collision of the hash keys of two
documents raises with their similarity.

3.3 Retrieval Properties of Hash Functions

The most salient property of hash-based indexing is the simpli-
fication of a fine-grained similarity quantification, operationalized
as similarity function ¢, toward the binary concept “similar or not
similar’”: Two document representations are considered as similar if
their hash keys are equal; otherwise they are considered as not sim-
ilar. This implication, formalized at the outset as Property (1), is
related to the statistical concept of precision. The reverse, namely
that two hash keys are equal if the similarity of the respective doc-

’In order to guarantee a hash family being locality-sensitive the
distribution must be a-stable. An example for such a distribution
is the Gaussian distribution. For further theoretical background we
refer to [8, 12].

a
d
ay Vector space with
3 sample document
and random vectors
d
a?- d Dot product computation

d

1 1 {— L Real number line
J

{213235632} Fingerprint

Figure 5: The basic steps of the hash key computation for
locality-sensitive hashing.

ument representations is above a certain threshold 1 — ¢, is related
to the statistical concept of recall.

Note that the latter property cannot hold in general for a sin-
gle hash function h,. One hash function computes one key for
one document at a time, and, as a consequence, it defines an abso-
lute partitioning of the space of document representations.” Hence,
the averaged recall of any document query must be smaller than 1.
Figure 6 illustrates this connection: Despite their high similarity
(= low distance) a hash function h, will map some of the docu-
ment representations onto different hash keys. If a second hash
function h{, defining a slightly different partitioning is employed, a
document query can be answered by the logical disjunction of both
functions. Technically this corresponds to the construction of two
hash indexes, fn, 117, and forming the union of the returned buck-
ets as result set. In reality one can observe a monotonic relationship
between the number of hash functions and the achieved recall—but
there is no free lunch though: the improved recall is bought with a
decrease in precision.

It is interesting to compare the different concepts by which vari-
ation is introduced within the hash key computation: fuzzy-finger-
printing employs several fuzzification schemes p; while locality-
sensitive hashing employs several sets of random vectors p;. In

By contrast, a complete similarity graph underlying a set D of
document representations defines for each element its specific par-
titioning.

Figure 6: A set of documents projected in the two-dimensional
space. A hash function h, partitions the space into regions that
are characterized by different hash keys. Even if two docu-
ments (colored red) are very similar to each other they may be
mapped onto different hash keys (left). This threshold-behavior
can be alleviated by employing several functions h, and h{,
(right).

both cases a hash index (fingerprint) of a document representation

d is a set, comprising a small number [of keys, {hfppi)(d) | ¢ =
1,...,1}

4. FUZZY-FINGERPRINTING VERSUS
LOCALITY-SENSITIVE HASHING

This section presents results from large-scale experiments for
two retrieval tasks: (i) near-duplicate detection, and (if) a similarity
search where the case of complete document similarity is analyzed.
The experiments were conducted on the basis of two purposefully
chosen test collections each of which resembling a realistic retrieval
situation for either retrieval task.*

Both similarity hashing approaches were employed in order to
demonstrate the applicability of this technology in terms of retrieval
accuracy and, secondly, to analyze which of both approaches is
better suited for the specified tasks and text-based information re-
trieval in general. Also their runtime performance was evaluated.
As a baseline for comparison a linear search in the test collection
was used, which is the best exact retrieval approach for the tasks in
question.

To measure the retrieval accuracy of the hash functions we set
up hash indexes for each test collection using both fuzzy-finger-
printing and locality-sensitive hashing. The values for precision
and recall were determined for each document (e. g. by using it as a
query) with respect to the similarity thresholds 0.1-4, i = 0,..., 10,
averaging the results. The reference values for precision and recall
were computed under the vector space model, employing the term
weighting scheme tf-idf along with the cosine similarity measure.
Note that for the investigated retrieval tasks this document model is
sufficiently competitive compared to a human assessment.

To render the retrieval results comparable the hash functions
were parameterized in such a way that, on average, small and
equally-sized document sets were returned for a query. As de-
scribed in Section 3.3, this relates to adjusting the recall of the hash
functions, which is done with the number of fuzzification schemes
and random vector sets respectively: two or three different fuzzi-
fication schemes were employed for fuzzy-fingerprinting; between
10 and 20 different random vector sets were employed for locality-
sensitive hashing.

The precision of fuzzy-fingerprinting is controlled by the num-
ber k of prefix classes and the number r of deviation intervals per
fuzzification scheme. To improve the precision performance either
of them or both can be raised. Typical values for k£ are between
26 and 50; typical values for r range from 1 to 3. The precision
of locality-sensitive hashing is controlled by the number k of com-
bined hash functions. For instance, when using the hash family
proposed by Datar et al., k corresponds to the number of random
vectors per hash function; typical values for k range from 20 to
100.

4.1 Retrieval Task: Near-Duplicate Detection

The experiments in the retrieval task “near-duplicate detection”
were conducted using a custom-built plagiarism corpus, compiled
from 3, 000 artificially generated documents for the purpose of sim-
ulating different kinds of text plagiarism. The corpus relies on
selected scientific documents from the ACM Digital Library and
employs an algorithm to synthesize plagiarized instances by ex-
tracting and recombining paragraphs from the original documents.
This collection is used to resemble document collections containing

“Meta files describing the collections, the experiments, and their
results have been compiled and are available to other researchers
upon request.

many documents with a high pairwise similarity, which is desirable
for the analysis of near-duplicate detection algorithms.

Figure 7 contrasts the performance of the two hashing ap-
proaches. The left and middle plot show the recall and the pre-
cision performance. In both cases fuzzy-fingerprinting outper-
forms locality-sensitive hashing significantly. The right plot shows
the runtime performance for different sample sizes; both hashing
approaches perform significantly better than the linear approach,
yet locality-sensitive hashing performs slightly better than fuzzy-
fingerprinting. Observe that the runtime of either approach in-
creases linearly if the collection size is raised. This means that
the average result set size, | D[, for a document query is linearly
correlated with the collection size, |D]|, if the kind of documents
and their distribution does not change significantly.

4.2 Retrieval Task: Similarity Search

The experiments in the retrieval task “similarity search” were
conducted using a collection of 100, 000 documents compiled with
the aid of the Web search engines Yahoo, Google, and AltaVista
by performing a focused search on a specific topic. As first step
in constructing the collection 15 seed documents about this topic
were chosen and 100 keywords were extracted from them with a
co-occurrence analysis [10]. This methodology ensures an unbi-
ased choice of keywords representing the topic. Within a second
step, search engine queries were generated by randomly choosing
up to five of the keywords. The highest ranked search results of
each query were downloaded and their text content extracted. This
collection is used to resemble the analysis of result sets with respect
to a Web retrieval system.

Figure 8 contrasts the performance of the two hashing ap-
proaches. Again, the left plot shows the recall performance. Ob-
serve that either hashing approach is excellent at high similarity
thresholds (> 0.8) compared to the recall performance of a linear
search which achieves optimal recall for each individual threshold.
However, high recall values at low similarity thresholds are achiev-
able by chance only—a fact which can be explained with the high
number of documents with low pairwise similarity in the test col-
lection. Fuzzy-fingerprinting and locality-sensitive hashing behave
similar, the former slightly better.

The middle plot shows the precision performance. Obviously
the precision of fuzzy-fingerprinting is significantly higher than the
precision of locality-sensitive hashing. I.e., a result set, D, re-
turned by fuzzy-fingerprinting is more accurate than a result set
returned by locality-sensitive hashing, which directly affects the
runtime performance.

The right plot shows the runtime performance for different sam-
ple sizes; both hashing approaches perform orders of magnitude
faster than the standard linear search.

4.3 Discussion

The results of our experiments provide a comprehensive view
of the behavior of hash-based indexes for the retrieval tasks “near-
duplicate detection” and “similarity search”.

For the detection of near-duplicates the fuzzy-fingerprinting
technology outperforms locality-sensitive hashing with respect to
both precision and recall, which renders this technology as method
of choice for this task. The difference in retrieval accuracy also
explains the slight difference in runtime performance between the
hashing approaches: lesser retrieval accuracy yields fewer hash col-
lisions which means that, on average, smaller document groups
have to be evaluated.

In terms of recall fuzzy-fingerprinting and locality-sensitive
hashing achieve the same quality for a similarity search; a slight

80

FF FF
LSH —— LSH ——
08 o} Linear --=--
c —
0.6 % o)
3 3 af £
o o o
0.4 & §
FF 20r §
0.2 J LSH —— €.
0 / I I I I I I 1 0 -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 300 1500 3000
Similarity Similarity Sample size

Figure 7: Retrieval task: near-duplicate detection. Application: plagiarism analysis. Collection: plagiarism corpus. The left plot
shows recall-at-similarity values, the middle plot precision-at-similarity values, and the right plot runtime-at-sample-size values,

using fuzzy-fingerprinting (FF) and locality-sensitive hashing (LSH).

advantage of fuzzy-fingerprinting can be stated yet. In terms of
precision fuzzy-fingerprinting outperforms locality-sensitive hash-
ing significantly. However, since the result set size of a document
query is typically orders of magnitude smaller compared to the size
of the document collection, the precision performance may be neg-
ligible and thus locality-sensitive hashing may be applied just as
well.

5. SUMMARY

Hash-based indexing is a promising new technology for text-
based information retrieval; it provides an efficient and reliable
means to tackle different retrieval tasks. We identified three major
classes of tasks in which hash-based indexes are applicable, that
is, grouping, similarity search, and classification. The paper intro-
duced two quite different construction principles for hash-based in-
dexes, originating from fuzzy-fingerprinting and locality-sensitive
hashing respectively. An analysis of both hashing approaches was
conducted to demonstrate their applicability for the near-duplicate
detection task and the similarity search task and to compare them in
terms of precision and recall. The results of our experiments reveal
that fuzzy-fingerprinting outperforms locality-sensitive hashing in
the task of near-duplicate detection regarding both precision and re-
call. Within the similarity search task fuzzy-fingerprinting achieves
a clearly higher precision compared to locality-sensitive hashing,
while only a slight advantage in terms of recall was observed.

Despite our restriction to the domain of text-based information
retrieval we emphasize that the presented ideas and algorithms are
applicable to retrieval problems for a variety of other domains.

Actually, locality-sensitive hashing was designed to handle vari-
ous kinds of high-dimensional vector-based object representations.
Also the principles of fuzzy-fingerprinting can be applied to other
domains of interest—provided that the objects of this domain can
be characterized with a small set of discriminative features.

Our current research aims at the theoretical analysis of similar-
ity hash functions and the utilization of the gained insights within
practical applications. We want to quantify the relation between
the determinants of fuzzy-fingerprinting and the achieved retrieval
performance in order to construct optimized hash indexes for spe-
cial purpose retrieval tasks. Finally, we apply fuzzy-fingerprinting
as key technology in our tools for text-based plagiarism analysis.

6. REFERENCES

[1] Guy Aston and Lou Burnard. The BNC Handbook.
http://wuw.natcorp.ox.ac.uk, 1998.

[2] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern

Information Retrieval. Addison Wesley, 1999.

Mayank Bawa, Tyson Condie, and Prasanna Ganesan. LSH

Forest: Self-Tuning Indexes for Similarity Search. In WWW

'05: Proceedings of the 14th international conference on

World Wide Web, pages 651-660, New York, NY, USA,

2005. ACM Press.

Andrei Z. Broder. Identifying and filtering near-duplicate

documents. In COM’00: Proceedings of the 11th Annual

Symposium on Combinatorial Pattern Matching, pages 1-10,

London, UK, 2000. Springer-Verlag.

(3]

(4]

1 1.2
FF FF
08 LSH —— LSH ——
’ 1 Linear --=--
0.8
0.6 —_
c 2,
= o
= ° o
0.4 § 2 E
[o 0.4 §
0.2 o I
FF -
LSH —— .
0 L . . . 0 k=
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 104 5104 108
Similarity Similarity Sample size

Figure 8: Retrieval task: similarity search. Application: query by example. Collection: Web results. The left plot shows recall-
at-similarity values, the middle plot precision-at-similarity values, and the right plot runtime-at-sample-size values, using fuzzy-

fingerprinting (FF) and locality-sensitive hashing (LSH).

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

Moses S. Charikar. Similarity Estimation Techniques from
Rounding Algorithms. In STOC ’02: Proceedings of the
thirty-fourth annual ACM symposium on Theory of
computing, pages 380-388, New York, NY, USA, 2002.
ACM Press.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S.
Mirrokni. Locality-Sensitive Hashing Scheme Based on
p-Stable Distributions. In SCG '04: Proceedings of the
twentieth annual symposium on Computational geometry,
pages 253-262, New York, NY, USA, 2004. ACM Press.
Aristides Gionis, Piotr Indyk, and Rajeev Motwani.
Similarity Search in High Dimensions via Hashing. In
Proceedings of the 25th VLDB Conference Edinburgh,
Scotland, pages 518-529, 1999.

P. Indyk. Stable distributions, pseudorandom generators,
embeddings and data stream computation. In FOCS "00:
Proceedings of the 41st Annual Symposium on Foundations
of Computer Science, page 189, Washington, DC, USA,
2000. IEEE Computer Society.

Piotr Indyk and Rajeev Motwani. Approximate Nearest
Neighbor—Towards Removing the Curse of Dimensionality.
In Proceedings of the 30th Symposium on Theory of
Computing, pages 604-613, 1998.

Y. Matsuo and M. Ishizuka. Keyword Extraction from a
Single Document using Word Co-ocurrence Statistical
Information. International Journal on Artificial Intelligence
Tools, 13(1):157-169, 2004.

Sven Meyer zu Eiflen and Benno Stein. The AISEARCH
Meta Search Engine Prototype. In Amit Basu and Soumitra
Dutta, editors, Proceedings of the 12th Workshop on
Information Technology and Systems (WITS 02), Barcelona.
Technical University of Barcelona, December 2002.

John P. Nolan. Stable Distributions—Models for Heavy
Tailed Data.
http://academic2.american.edu/~jpnolan/stable/stable.html,
2005.

Benno Stein. Fuzzy-Fingerprints for Text-Based Information
Retrieval. In Klaus Tochtermann and Hermann Maurer,
editors, Proceedings of the 5th International Conference on
Knowledge Management (I-KNOW 05), Graz, Journal of
Universal Computer Science, pages 572-579. Know-Center,
July 2005.

Benno Stein and Sven Meyer zu Eilen. Near Similarity
Search and Plagiarism Analysis. In M. Spiliopoulou,

R. Kruse, C. Borgelt, A. Niirnberger, and W. Gaul, editors,
From Data and Information Analysis to Knowledge
Engineering, pages 430—437. Springer, 2006.

Roger Weber, Hans-J. Schek, and Stephen Blott. A
Quantitative Analysis and Performance Study for
Similarity-Search Methods in High-Dimensional Spaces. In
Proceedings of the 24th VLDB Conference New York, USA,
pages 194-205, 1998.

Ian H. Witten, Alistair Moffat, and Timothy C. Bell.
Managing gigabytes (2nd ed.): compressing and indexing
documents and images. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1999.

Oren Zamir and Oren Etzioni. Web Document Clustering: A
Feasibility Demonstration. In SIGIR’98: Proceedings of the
21st annual international ACM SIGIR conference on
Research and development in information retrieval, pages
46-54, University of Washington, Seattle, USA, 1998.

