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Abstract: This paper is on the aesthetic layoutrefiry trees with nodes ofariable size also
referred to as generalized box-drawing. For this layoublerm a few algorithms have been pro-
posed, which differ in their runtime performance and thaiattd aesthetic criteria.

We introduce a new approach to this layout problem, whiclntisresting because of both
its simplicity and elegance, and which employs the follayvjpiggy-back metaphor: The orig-
inal box-drawing problem/7, is topologically reformulated as a layout problem withiform
node sizeresulting in a new drawing probleid’, which then is handled by the best tree layout
algorithm for uniform node size developed so far. The refdation step can be done in linear
time in the number of nodes of the original tree, resultingnoverall linear time complexity.
Compared to the existing approaches our approach fulfilleraesthetic criteria; experiments
have also shown its efficiency in complex layout settings.
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1 Introduction

The drawing of rooted, ordered trees of unbounded degremsidered a solved prob-
lem in the field of graph drawing—as long as the nodes in thesstage restricted to uni-
form size. A generalization of this layout problem is thecsdled box-drawing, where
each node represents a rectangular box of predefined sittee helevant literature, in
particular in [Cruz and Tamassia 1988; DiBattista et al.4,9999], less attention is
paid to this layout problem though various applicationsettiat require a solution of
a certain instance of this drawing task:

— Presentation of linked information items and networks (ki et al. 2002].
Browsing and visualizing hierarchical relations of the \WdNide Web.
Visualization of hierarchies in object-oriented syste@glpa and Lanza 2004].
Drawing of structured flowcharts for diagram generationii@get al. 1992].
Drawing of proof trees for the analysis of logical formul&a[aj et al. 2003].

— VLSI layout, in particular the placement of modules [Lengali990].

Before we delve into details of the layout problem, Definitibwill recapitulate the
terminology used in the paper.

Definition 1 (Terminology). A rooted tree,7 = (V,E), is a connected,
acyclic graph with node séf and edge sef, having a designated nodec V,

called root. Each node has a unique path,(v) to the root; the path length,
|p-(v)], is called the level ob. Given an edgdv, w} € E, v is called parent



node ofw andw is called child node o if |p, (v)| < |pr(w)]. 5:V — NxN

is a mapping that assigns each nedebounding box of predefined width and
height.

A drawing is a mapping : V' — N x N that assigns each node position; a
boolean layout constraintis a two-valued mappind?’, 3,0) — (T, 3, 9) €
{0, 1}, indicating whether or not the constraint s fulfilled fjsee 1] A treeT
along with an assignment of boxek,and a set of layout constraints, forms

a generalized box-drawing problef. A drawingé is called a valid layout for
11 if all layout constraintsy € I" are fulfilled.

Given a generalized box-drawing probldi let bb,,,. be a bounding box whose
width (height) is the supremum of the widths (heights) obalinding boxeg. A com-
mon ad-hoc solution tdI is the application of a standard tree layout algorithm that
presumes uniform node size—either with or without scallmg winiform node size in
order to provide sufficient room fdib,,... Another technique is slicing, which orga-
nizes the bounding boxes in vertical or horizontal laneshSapproaches are easy to
implement but aesthetically unsatisfactorily, as Figushaws.

Maximum bounding box Vertical slicing
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Figure 1: Ad-hoc solutions té/. The use of standard tree layout algorithms for the geneeali
box-drawing problem yields unacceptable drawings in mases.

The complexity of an algorithm for drawing a tree dependshendesthetic criteria
to be fulfilled. In fact, the problem of computing a drawingadfinary tree on an integer
grid of minimum area becomes NP-hard under reasonable tapmstraints [Supowit
and Reingold 1983]. However, given a different set of ad&ttwiteria, anO(n+/n)
runtime algorithm for finding a minimum area drawing can lzted [Eades 1992]. The
famous algorithm of Reingold and Tilford runs in linear tinaad, though the result-
ing drawing does not give minimum compactness, the entwétye fulfilled layout
constraints results in an aesthetic drawing. These coradides show that there is con-
siderable room to develop new variants of algorithms forgéeeralized box-drawing
of trees, each fulfilling a different set of aesthetic caaistis or being bound by a dif-
ferent runtime complexity.

Both the development of a special purpose algorithm and dhleoa application
of a standard layout algorithm characterize extreme pointthis paper we propose a
third possibility: The reformulation of the original boxalving problem/T as a layout
problem of uniform node size, which then is handled by a steshtiee layout algorithm
for uniform node size. This possibility exploits the deyzgd algorithmic know-how as
well as the accepted practice of aesthetic criteria.

[1] Section 2 organizes the well-established boolean layauwgtcaints.



Approach Runtime Space Layout constraints

Uniform- Wetherell and Shannon 1979 O(n) 1,2,57

sized Reingold and Tilford 1981 O(n) 1,2,3,4,5,6,7,8

nodes Walker 1990 O(n2) 1,3,4,5,6,7,8,9,10
Buchheim et al. 2002 O(n) 1,3,4,5,6,7,8,9,10

Variable- Vaucher 1980 O(nh) O(n) 1,5,6,7,8

sized Bloesch 1993 O(nh) ©(h) 56,7,8,9,11,13, 14

boxes O(nh)  O(nh) 4,5,6,7,8,9,11,13, 14
Miyadera et al. 1998 O(n2) 6,7,11,13,15
Hasan et al. 2002 O(n) 6,7,11,13,15

Table 1: Well-known algorithms for tree layout along witleithruntime and the fulfilled layout
constraintsn designates the number of nodésjesignates the drawing height of the tree, which
is measured in unit bounding boxes for example (cf. Secfion 3

The paper is organized as follows: Section 2 provides a uh¥fiv on the existing
work for tree layout; Section 3 introduces our reformulatapproach, presents new
analysis results, and discusses implications.

2 Classification of Existing Work

The development of algorithms for the drawing of trees hasng kradition. In 1979
Wetherell and Shannon presented a linear time algorithntherdrawing of binary
trees of uniform-sized nodes. An improvement of this altponi was given by Rein-
gold and Tilford in 1981, whose algorithm draws isomorphibtsees identically up to
translation. 1990 Walker introduced an algorithm for thetlaetic layout of.-ary trees,

allegedly running in linear time. 2002 Buchheim et al. destmated a runtime com-
plexity of O(n?) for Walker’s algorithm, while improving it toward9(n) at the same
time. Other and little known approaches can be found in§Bemann-Klein and Wood
1989; Eades 1992; Eades et al. 1992; Gibbons 1996; Kenné&#y Radack 1988].

The generalized box-drawing problem has achieved lesstimite Vaucher gave
a relevant algorithm with a runtime complexity 6f(nh), whereh denotes the tree’s
drawing height. His work served as starting point for Bldeseho developed both
a variant with improved space requiremeri¥$} ), and a version that fulfilled all con-
straints claimed by Reingold and Tilford [Bloesch 1993; &aer 1980]. Miyadera et al.
presented am(n?)-runtime algorithm, and Hasan et al. presented the firsatitiene
algorithm for an acceptable number of layout constraints.

In the following we have organized the most important and rmamly referred
boolean layout constraints for the drawing of trees. Thepitation considers all of
the mentioned papers and shall serve as a “unification” ofahguage usage; more-
over, it classifies the constraints with respect to a layooblem class. Table 1 relates
the constraints to algorithms while Figure 2 illustratdested constraints.

Boolean layout constraints for binary trees with uniforized nodes:
(1) The vertical coordinate of a node corresponds to its leviiértregsee 2]
(2) Aleft child is positioned to the left of its parent and a righild to the right.

[2] W.l.o.g. it is assumed that the layout direction from roal@do leaf nodes is top down. The
constraints in [Hasan et al. 2002] presume a layout diredtimm left (root) to right (leafs).
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Figure 2: lllustration of selected layout constraints frauar compilation.

(3) A parent node is centered over its child nodes.

(4) Nodes at the same level have a minimum horizontal distance.

(5) Edges do not intersect.

(6) Isomorphic subtrees are layouted identically up to trdimsia

(7) The order of the children of a node is retained in the drawing.

(8) If for each node the order of its children is reversed, thgioél and the resulting
tree produce drawings that are reflections of each other.

Additional boolean layout constraints farary trees with uniform-sized nodes:

(9) A parent node is centered over the center of its leftmost eytdmost children.
(10) Horizontal distances between nodes at the same level havenomin variance while
obeying Constraints (8) and (9).
Additional boolean layout constraints farary trees with variable-sized boxes:

(11) The box of each node is separated vertically from its pargrat iminimum prede-
fined distance.

(12) A parent node is centered between the left border of its le$trohild and the right
border of its rightmost child.

(13) The top borders of the boxes corresponding to a parent@rehmilalign horizontally.

(14) Each edge connects the center of the bottom of some pareatwitidthe center
of the top of some child node.

(15) Edges and nodes do not intersect.

Remarks(a) The algorithm of Reingold and Tilford is for binary treasly. (b) Con-
straint (1) is not reasonable for the generalized box-drgwgroblem, and Con-
straint (11) will serve as an equivalent generalizatiop.Qonstraint (10) is an im-
provement introduced by Walker: it makes not sense for tharfitree layout prob-
lem and tightens Constraint (4), which states no restricliw the horizontal position
of inner subtrees. (d) Together Constraint (4) and (11) antae that no two boxes
overlap. (e) Constraint (9) implies Constraint (3), andXnstraint (15) implies Con-
straint (5).

3 A Meta Algorithm for the Generalized Box-Drawing Problem

Algorithms for the drawing of trees with uniform-sized ngdeve been constantly im-
proved, they are technically mature and efficient. Prewglenciple is to draw a tree
recursively in a bottom up sweep, where subtrees emanating & parent’s children
are drawn independently and then shifted to the right ofefteslibtree. Bloesch argues
that this principle requires to partition the drawing intarizontal slices, and, that it is
difficult to extend the principle toward trees with variaisized nodes [Bloesch 1993].
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Figure 3: The algorithm illustrated at a small graph and a rguadratic unit bounding bobb- .

However, things look different if the information about theunding boxes;, are en-
coded as subtree layout problems with uniform-sized noblesn, a standard drawing
algorithm can be applied directly.

LetII = (T,3,I') andII’ = (T’,I"") designate the original and the reformulated
drawing problem respectively; the transformatidn— I’ is accomplished with the
following meta algorithm (see Figure 3 for a pictorial iltcegion):

(1) Definition of Unit Bounding BoxThe nodes i are of uniform size, represented
by the unit bounding bokb, . Its actual size is subject to the content of the original
boxes and the proportion gfs extreme values. E. g., if the original bounding boxes
contain textpb; may not be smaller than the outline of a capital letter.

(2) Topology ReformulationFor each bounding bog(v) of a nodev in T a sub-
tree T, is constructedT),, hasw, + 3 - h, nodes to model the top border of
B(v), its left and right side as well as a centered bottom node.driiqular,
wy = [width(B(v))/width(bby)] + 1 andh, = [height(5(v))/height (bby)]. T”
follows the topology off": If a nodew in T" has childrervy, . . ., v, the root nodes
of the respective subtre&$, are unified with the bottom node @f,.

(3) Layout.Application of the fast Walker algorithm [Buchheim et alQ2)to 7.

(4) Topology Reverse Mappin8ubstitution of the bounding boxe$, for the subtrees
introduced in Step (2). The top of a bounding he), v in T, is centered and
aligned with respect to the root node’tf.

(5) RenderingRendering of the bounding boxes’ contents with a graphids AP

Remarks(a) Since both the topology reformulation step and the ssverapping step
require constant time for each node, the overall runtima (n). However, the size
of bb; defines the horizontal and the vertical resolution of theaeggh, this way deter-
mining a multiplicative constant in terms of the runtime gaexity. (b) Obviously all
layout constraints of Reingold and Tilford as well as of Vealkre fulfilled. Moreover,
due to construction also all additional layout constrafotsvariable-sized boxes are
fulfilled; this pertains in particular to the constraint®),1(12), and (15), which are not
fulfilled by the special purpose algorithms from Bloeschytlera et al., or Hasan et
al. (c) Note that the minimum enclosing bounding box of a wedit;, may be signifi-
cantly larger than the bounding bgXv) of the nodev it represents. This is caused by
the aesthetic optimization constraint (10) among othedsdwes neither compromise
the reverse mapping step nor the fulfillment of some layouostaint.
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Figure 4: Trade-off between layout compactness and runtDue to the nature of the layout
algorithm there is less optimization potential in the horital direction (solid curve on the left-
hand side) than in the vertical direction (solid curve on tight-hand side).

3.1 Qualitative and Quantitative Analysis Results

This subsection presents analysis results to demonskmteractical applicability of
our approach with respect to both layout quality and rungregormance. The deter-
minants of the analyzed graphs are given in Table 2; theynielgeproblem properties
from the applications mentioned at the outset.

number of nodes in the original grafih= (V, E) 1000 - 30,000

degree of anode € V 0-10, uniformly distributed

width of the bounding boxes(v),v € V' 1-100 units, uniformly distributed
height of the bounding boxg$(v),v € V' 1-100 units, uniformly distributed

Table 2: Parameters and their distribution of the constaettandom graphs.

The following questions shall be answered by the analysis:

(1) How is the resolution, say, the sizeldf, related to the compactness of the layout?

(2) What is the best trade-off between runtime effort and lagomtpactness?

(3) Does the nature of the algorithm (bottom up sweep, lefttragibtree positioning)
prefer horizontal compactness over vertical compactnegge versa?

Figure 4 compiles several results of our experiments. Tiheestaverage over dif-
ferent graphs and show tlmompactness improveme(golid line) against theb; -
resolution as well as theintime deceleratio(dashed line) against thé, -resolution.
Thebb,-resolution defines how many unit bounding boxes fit horiatintleft plot) or
vertically (right plot) into a tree’s maximum bounding bd@ake notice of the different
scales: The left scale measures the improvement of the taymupactness as [%]-
fraction of the saved place in relation to the ad-hoc sofytibe right scale measures
the runtime slowdown in multiples of the runtime of the adzBolution. Itis very inter-
esting to observe that in fact the layout algorithm of WallaerReingold and Tilford) is
biased: The horizontal compactness of the ad-hoc solwisighificantly closer to the
optimum than is the vertical compactness. The results shemthat for a substantial
compactness improvement the additional runtime effortéstp small. These insights,
which can exactly be quantified, provide valuable inforimatio estimate the size of
bby within Step (1) of the meta algorithm.

While Figure 4 is mainly concerned with trade-off analysesiay also be useful to
learn about absolute runtime figures. In this connectioratberithms from Reingold
and Tilford as well as from Walker (respectively Buchheinalk} are of major interest
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Figure 5: Snapshot of a layout generated with our implemona Input was a GraphML file
that defined a tree with about 100 nodes along with the nodegents.

to us. On a standard PC (2Ghz) the layout process of largertegeires approximately
100msec per 10,000 nodes with Reingold and Tilford; Buahtegial.’s version, which

additionally fulfills Constraint (10), is merely less tha®oIslower. Underlying is an

implementation in Java. As expected, the layout processtithe bottleneck in entire
drawing process, which additionally justifies the meta dngvapproach.

4  Summary

The paper discussed the generalized box-drawing problehir@imduced a scalable
solution whose key idea is a topology reformulation in teoha simplified problem:
the layout of trees of uniform-sized nodes. Moreover, wes@néed a classification of
existing tree layout algorithms along with their layout straints. Our approach fulfills
more constraints than the algorithms found in the litetand qualitative and quan-
titative analyses show its efficiency in complex layoutisg. The advantages of our
approach are threefold:

(1) ConformanceAll well-established layout constraints are fulfilled bytuie of the
respective standard algorithm. Moreover, with the topglegformulation power-
ful extensions of these constraints emerge that are refatdte generalized box-
drawing problem. Constraint (12) and (15) may serve as ele@sntheir validity
can be inferred from the constraints that are fulfilled bydtamdard algorithm.

(2) Performancdf the reformulation step is done in constant timf@r each node, the
layout step determines the overall runtime, which is lineane original number of
nodes. Our analysis shows that an almost optimum compacimeshieved with
pretty small values fot.

(3) Sustainability.The approach benefits from improvements in the layout stejit b
the fulfillment of additional layout constraints, or a bettentime performance.

The topology reformulation principle is also suited to mioglew kinds of layout
constraints. Examples include the enforcement of bourrdeémangle of edges between



parents and children, or bounding-box-dependent dissape®veen a node’s parent or
siblings. Various tasks require an efficient and high-duallution of the generalized
box-drawing problem. Our application domain is informatigsualization, and, in par-
ticular, the interactive navigation and browsing in largedment collections, where
performance is of paramount importance.
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