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Abstract: This paper is on the aesthetic layout ofn-ary trees with nodes ofvariable size, also
referred to as generalized box-drawing. For this layout problem a few algorithms have been pro-
posed, which differ in their runtime performance and the attained aesthetic criteria.

We introduce a new approach to this layout problem, which is interesting because of both
its simplicity and elegance, and which employs the following piggy-back metaphor: The orig-
inal box-drawing problem,Π , is topologically reformulated as a layout problem withuniform
node size, resulting in a new drawing problemΠ ′, which then is handled by the best tree layout
algorithm for uniform node size developed so far. The reformulation step can be done in linear
time in the number of nodes of the original tree, resulting inan overall linear time complexity.
Compared to the existing approaches our approach fulfills more aesthetic criteria; experiments
have also shown its efficiency in complex layout settings.
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1 Introduction

The drawing of rooted, ordered trees of unbounded degree is considered a solved prob-
lem in the field of graph drawing—as long as the nodes in the trees are restricted to uni-
form size. A generalization of this layout problem is the so-called box-drawing, where
each node represents a rectangular box of predefined size. Inthe relevant literature, in
particular in [Cruz and Tamassia 1988; DiBattista et al. 1994, 1999], less attention is
paid to this layout problem though various applications exist that require a solution of
a certain instance of this drawing task:

– Presentation of linked information items and networks [Eklund et al. 2002].
– Browsing and visualizing hierarchical relations of the World Wide Web.
– Visualization of hierarchies in object-oriented systems [Girba and Lanza 2004].
– Drawing of structured flowcharts for diagram generation [Ogura et al. 1992].
– Drawing of proof trees for the analysis of logical formulas [Bajaj et al. 2003].
– VLSI layout, in particular the placement of modules [Lengauer 1990].

Before we delve into details of the layout problem, Definition 1 will recapitulate the
terminology used in the paper.

Definition 1 (Terminology). A rooted tree,T = 〈V, E〉, is a connected,
acyclic graph with node setV and edge setE, having a designated noder ∈ V ,
called root. Each nodev has a unique pathpr(v) to the root; the path length,
|pr(v)|, is called the level ofv. Given an edge{v, w} ∈ E, v is called parent



node ofw andw is called child node ofv if |pr(v)| < |pr(w)|. β : V → N×N

is a mapping that assigns each nodev a bounding box of predefined width and
height.
A drawing is a mappingδ : V → N×N that assigns each nodev a position; a
boolean layout constraintγ is a two-valued mapping,(T, β, δ) 7→ γ(T, β, δ) ∈
{0, 1}, indicating whether or not the constraint is fulfilled forδ [see 1]. A treeT
along with an assignment of boxes,β, and a set of layout constraints,Γ , forms
a generalized box-drawing problemΠ . A drawingδ is called a valid layout for
Π if all layout constraintsγ ∈ Γ are fulfilled.

Given a generalized box-drawing problemΠ , let bbmax be a bounding box whose
width (height) is the supremum of the widths (heights) of allbounding boxesβ. A com-
mon ad-hoc solution toΠ is the application of a standard tree layout algorithm that
presumes uniform node size—either with or without scaling the uniform node size in
order to provide sufficient room forbbmax. Another technique is slicing, which orga-
nizes the bounding boxes in vertical or horizontal lanes. Such approaches are easy to
implement but aesthetically unsatisfactorily, as Figure 1shows.
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bounding box:�yFigure 1: Ad-hoc solutions toΠ . The use of standard tree layout algorithms for the generalized
box-drawing problem yields unacceptable drawings in most cases.

The complexity of an algorithm for drawing a tree depends on the aesthetic criteria
to be fulfilled. In fact, the problem of computing a drawing ofa binary tree on an integer
grid of minimum area becomes NP-hard under reasonable layout constraints [Supowit
and Reingold 1983]. However, given a different set of aesthetic criteria, anO(n

√
n)

runtime algorithm for finding a minimum area drawing can be stated [Eades 1992]. The
famous algorithm of Reingold and Tilford runs in linear time, and, though the result-
ing drawing does not give minimum compactness, the entiretyof the fulfilled layout
constraints results in an aesthetic drawing. These considerations show that there is con-
siderable room to develop new variants of algorithms for thegeneralized box-drawing
of trees, each fulfilling a different set of aesthetic constraints or being bound by a dif-
ferent runtime complexity.

Both the development of a special purpose algorithm and the ad-hoc application
of a standard layout algorithm characterize extreme points. In this paper we propose a
third possibility: The reformulation of the original box-drawing problemΠ as a layout
problem of uniform node size, which then is handled by a standard tree layout algorithm
for uniform node size. This possibility exploits the developed algorithmic know-how as
well as the accepted practice of aesthetic criteria.

[1] Section 2 organizes the well-established boolean layout constraints.



Approach Runtime Space Layout constraints

Uniform- Wetherell and Shannon 1979 O(n) 1, 2, 5, 7
sized Reingold and Tilford 1981 O(n) 1, 2, 3, 4, 5, 6, 7, 8
nodes Walker 1990 O(n2) 1, 3, 4, 5, 6, 7, 8, 9, 10

Buchheim et al. 2002 O(n) 1, 3, 4, 5, 6, 7, 8, 9, 10

Variable- Vaucher 1980 O(nh) O(n) 1, 5, 6, 7, 8
sized Bloesch 1993 O(nh) Θ(h) 3, 5, 6, 7, 8, 9, 11, 13, 14
boxes O(nh) O(nh) 3, 4, 5, 6, 7, 8, 9, 11, 13, 14

Miyadera et al. 1998 O(n2) 5, 6, 7, 11, 13, 15
Hasan et al. 2002 O(n) 5, 6, 7, 11, 13, 15

Table 1: Well-known algorithms for tree layout along with their runtime and the fulfilled layout
constraints.n designates the number of nodes;h designates the drawing height of the tree, which
is measured in unit bounding boxes for example (cf. Section 3).

The paper is organized as follows: Section 2 provides a unified view on the existing
work for tree layout; Section 3 introduces our reformulation approach, presents new
analysis results, and discusses implications.

2 Classification of Existing Work

The development of algorithms for the drawing of trees has a long tradition. In 1979
Wetherell and Shannon presented a linear time algorithm forthe drawing of binary
trees of uniform-sized nodes. An improvement of this algorithm was given by Rein-
gold and Tilford in 1981, whose algorithm draws isomorphic subtrees identically up to
translation. 1990 Walker introduced an algorithm for the aesthetic layout ofn-ary trees,
allegedly running in linear time. 2002 Buchheim et al. demonstrated a runtime com-
plexity of O(n2) for Walker’s algorithm, while improving it towardsO(n) at the same
time. Other and little known approaches can be found in [Brüggemann-Klein and Wood
1989; Eades 1992; Eades et al. 1992; Gibbons 1996; Kennedy 1996; Radack 1988].

The generalized box-drawing problem has achieved less attention. Vaucher gave
a relevant algorithm with a runtime complexity ofO(nh), whereh denotes the tree’s
drawing height. His work served as starting point for Bloesch, who developed both
a variant with improved space requirements,O(h), and a version that fulfilled all con-
straints claimed by Reingold and Tilford [Bloesch 1993; Vaucher 1980]. Miyadera et al.
presented anO(n2)-runtime algorithm, and Hasan et al. presented the first linear-time
algorithm for an acceptable number of layout constraints.

In the following we have organized the most important and commonly referred
boolean layout constraints for the drawing of trees. The compilation considers all of
the mentioned papers and shall serve as a “unification” of thelanguage usage; more-
over, it classifies the constraints with respect to a layout problem class. Table 1 relates
the constraints to algorithms while Figure 2 illustrates selected constraints.

Boolean layout constraints for binary trees with uniform-sized nodes:

(1) The vertical coordinate of a node corresponds to its level inthe tree[see 2].
(2) A left child is positioned to the left of its parent and a rightchild to the right.

[2] W.l.o.g. it is assumed that the layout direction from root node to leaf nodes is top down. The
constraints in [Hasan et al. 2002] presume a layout direction from left (root) to right (leafs).



Constraint 9 fulfilled Constraint 12 fulfilled Constraint 10 unfulfilled Constraint 15 unfulfilled

Figure 2: Illustration of selected layout constraints fromour compilation.

(3) A parent node is centered over its child nodes.
(4) Nodes at the same level have a minimum horizontal distance.
(5) Edges do not intersect.
(6) Isomorphic subtrees are layouted identically up to translation.
(7) The order of the children of a node is retained in the drawing.
(8) If for each node the order of its children is reversed, the original and the resulting

tree produce drawings that are reflections of each other.

Additional boolean layout constraints forn-ary trees with uniform-sized nodes:

(9) A parent node is centered over the center of its leftmost and rightmost children.
(10) Horizontal distances between nodes at the same level have minimum variance while

obeying Constraints (8) and (9).

Additional boolean layout constraints forn-ary trees with variable-sized boxes:

(11) The box of each node is separated vertically from its parent by a minimum prede-
fined distance.

(12) A parent node is centered between the left border of its leftmost child and the right
border of its rightmost child.

(13) The top borders of the boxes corresponding to a parent’s children align horizontally.
(14) Each edge connects the center of the bottom of some parent node with the center

of the top of some child node.
(15) Edges and nodes do not intersect.

Remarks.(a) The algorithm of Reingold and Tilford is for binary treesonly. (b) Con-
straint (1) is not reasonable for the generalized box-drawing-problem, and Con-
straint (11) will serve as an equivalent generalization. (c) Constraint (10) is an im-
provement introduced by Walker: it makes not sense for the binary tree layout prob-
lem and tightens Constraint (4), which states no restriction for the horizontal position
of inner subtrees. (d) Together Constraint (4) and (11) guarantee that no two boxes
overlap. (e) Constraint (9) implies Constraint (3), and (f)Constraint (15) implies Con-
straint (5).

3 A Meta Algorithm for the Generalized Box-Drawing Problem

Algorithms for the drawing of trees with uniform-sized nodes have been constantly im-
proved, they are technically mature and efficient. Prevalent principle is to draw a tree
recursively in a bottom up sweep, where subtrees emanating from a parent’s children
are drawn independently and then shifted to the right of the left subtree. Bloesch argues
that this principle requires to partition the drawing into horizontal slices, and, that it is
difficult to extend the principle toward trees with variable-sized nodes [Bloesch 1993].
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Figure 3: The algorithm illustrated at a small graph and a non-quadratic unit bounding boxbb1.

However, things look different if the information about thebounding boxes,β, are en-
coded as subtree layout problems with uniform-sized nodes.Then, a standard drawing
algorithm can be applied directly.

Let Π = 〈T, β, Γ 〉 andΠ ′ = 〈T ′, Γ ′〉 designate the original and the reformulated
drawing problem respectively; the transformationΠ −→ Π ′ is accomplished with the
following meta algorithm (see Figure 3 for a pictorial illustration):

(1) Definition of Unit Bounding Box.The nodes inT ′ are of uniform size, represented
by the unit bounding boxbb1. Its actual size is subject to the content of the original
boxes and the proportion ofβ’s extreme values. E. g., if the original bounding boxes
contain text,bb1 may not be smaller than the outline of a capital letter.

(2) Topology Reformulation.For each bounding boxβ(v) of a nodev in T a sub-
tree Tv is constructed.Tv haswv + 3 · hv nodes to model the top border of
β(v), its left and right side as well as a centered bottom node. In particular,
wv = ⌈width(β(v))/width(bb1)⌉ + 1 andhv = ⌈height(β(v))/height (bb1)⌉. T ′

follows the topology ofT : If a nodev in T has childrenv1, . . . , vk, the root nodes
of the respective subtreesTvi

are unified with the bottom node ofTv.
(3) Layout.Application of the fast Walker algorithm [Buchheim et al. 2002] toT ′.
(4) Topology Reverse Mapping.Substitution of the bounding boxes,β, for the subtrees

introduced in Step (2). The top of a bounding boxβ(v), v in T , is centered and
aligned with respect to the root node ofTv.

(5) Rendering.Rendering of the bounding boxes’ contents with a graphics API.

Remarks.(a) Since both the topology reformulation step and the reverse mapping step
require constant time for each node, the overall runtime is in O(n). However, the size
of bb1 defines the horizontal and the vertical resolution of the approach, this way deter-
mining a multiplicative constant in terms of the runtime complexity. (b) Obviously all
layout constraints of Reingold and Tilford as well as of Walker are fulfilled. Moreover,
due to construction also all additional layout constraintsfor variable-sized boxes are
fulfilled; this pertains in particular to the constraints (10), (12), and (15), which are not
fulfilled by the special purpose algorithms from Bloesch, Miyadera et al., or Hasan et
al. (c) Note that the minimum enclosing bounding box of a subtreeTv may be signifi-
cantly larger than the bounding boxβ(v) of the nodev it represents. This is caused by
the aesthetic optimization constraint (10) among others and does neither compromise
the reverse mapping step nor the fulfillment of some layout constraint.
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Figure 4: Trade-off between layout compactness and runtime. Due to the nature of the layout
algorithm there is less optimization potential in the horizontal direction (solid curve on the left-
hand side) than in the vertical direction (solid curve on theright-hand side).

3.1 Qualitative and Quantitative Analysis Results

This subsection presents analysis results to demonstrate the practical applicability of
our approach with respect to both layout quality and runtimeperformance. The deter-
minants of the analyzed graphs are given in Table 2; they resemble problem properties
from the applications mentioned at the outset.

number of nodes in the original graphT = 〈V, E〉 1000 - 30,000
degree of a nodev ∈ V 0-10, uniformly distributed
width of the bounding boxesβ(v), v ∈ V 1-100 units, uniformly distributed
height of the bounding boxesβ(v), v ∈ V 1-100 units, uniformly distributed

Table 2: Parameters and their distribution of the constructed random graphs.

The following questions shall be answered by the analysis:

(1) How is the resolution, say, the size ofbb1, related to the compactness of the layout?
(2) What is the best trade-off between runtime effort and layoutcompactness?
(3) Does the nature of the algorithm (bottom up sweep, left-right subtree positioning)

prefer horizontal compactness over vertical compactness or vice versa?

Figure 4 compiles several results of our experiments. The curves average over dif-
ferent graphs and show thecompactness improvement(solid line) against thebb1-
resolution as well as theruntime deceleration(dashed line) against thebb1-resolution.
Thebb1-resolution defines how many unit bounding boxes fit horizontally (left plot) or
vertically (right plot) into a tree’s maximum bounding box.Take notice of the different
scales: The left scale measures the improvement of the layout compactness as [%]-
fraction of the saved place in relation to the ad-hoc solution; the right scale measures
the runtime slowdown in multiples of the runtime of the ad-hoc solution. It is very inter-
esting to observe that in fact the layout algorithm of Walker(or Reingold and Tilford) is
biased: The horizontal compactness of the ad-hoc solution is significantly closer to the
optimum than is the vertical compactness. The results show also that for a substantial
compactness improvement the additional runtime effort is pretty small. These insights,
which can exactly be quantified, provide valuable information to estimate the size of
bb1 within Step (1) of the meta algorithm.

While Figure 4 is mainly concerned with trade-off analyses,it may also be useful to
learn about absolute runtime figures. In this connection thealgorithms from Reingold
and Tilford as well as from Walker (respectively Buchheim etal.) are of major interest



Figure 5: Snapshot of a layout generated with our implementation. Input was a GraphML file
that defined a tree with about 100 nodes along with the nodes’ contents.

to us. On a standard PC (2Ghz) the layout process of large trees requires approximately
100msec per 10,000 nodes with Reingold and Tilford; Buchheim et al.’s version, which
additionally fulfills Constraint (10), is merely less than 1% slower. Underlying is an
implementation in Java. As expected, the layout process is not the bottleneck in entire
drawing process, which additionally justifies the meta drawing approach.

4 Summary

The paper discussed the generalized box-drawing problem and introduced a scalable
solution whose key idea is a topology reformulation in termsof a simplified problem:
the layout of trees of uniform-sized nodes. Moreover, we presented a classification of
existing tree layout algorithms along with their layout constraints. Our approach fulfills
more constraints than the algorithms found in the literature, and qualitative and quan-
titative analyses show its efficiency in complex layout settings. The advantages of our
approach are threefold:
(1) Conformance.All well-established layout constraints are fulfilled by virtue of the

respective standard algorithm. Moreover, with the topology reformulation power-
ful extensions of these constraints emerge that are relatedto the generalized box-
drawing problem. Constraint (12) and (15) may serve as examples; their validity
can be inferred from the constraints that are fulfilled by thestandard algorithm.

(2) Performance.If the reformulation step is done in constant timec for each node, the
layout step determines the overall runtime, which is linearin the original number of
nodes. Our analysis shows that an almost optimum compactness is achieved with
pretty small values forc.

(3) Sustainability.The approach benefits from improvements in the layout step, be it
the fulfillment of additional layout constraints, or a better runtime performance.

The topology reformulation principle is also suited to model new kinds of layout
constraints. Examples include the enforcement of bounds for the angle of edges between



parents and children, or bounding-box-dependent distances between a node’s parent or
siblings. Various tasks require an efficient and high-quality solution of the generalized
box-drawing problem. Our application domain is information visualization, and, in par-
ticular, the interactive navigation and browsing in large document collections, where
performance is of paramount importance.
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