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Abstract: In similarity search we are given a query documentdq and a document collectionD, and the task is to retrieve
from D the most similar documents with respect todq. For this task the vector space model, which represents
a documentd as a vectord, is a common starting point. Due to the high dimensionality of d the similarity
search cannot be accelerated with space- or data-partitioning indexes; de facto, they are outperformed by a
simple linear scan of the entire collection (Weber et al., 1998).
In this paper we investigate the construction of compact, low-dimensional retrieval models and present them
in a unified framework. Compact retrieval models can take twofundamentally different forms: (1) Asn-gram
vectors, comparable to vector space models having a small feature set. They accelerate the linear scan of a
collection while maintaining the retrieval quality as far as possible. (2) As so-called document fingerprints.
Fingerprinting opens the door for sub-linear retrieval time, but comes at the price of reduced precision and
incomplete recall.
We uncover the two—diametrically opposed—paradigms for the construction of compact retrieval models and
explain their rationale. The presented framework is comprehensive in that it integrates all well-known con-
struction approaches for compact retrieval models developed so far. It is unifying since it identifies, quantifies,
and discusses the commonalities among these approaches. Finally, based on a large-scale study, we provide
for the first time a “compact retrieval model landscape”, which shows the applicability of the different kinds
of compact retrieval models in terms of the rank correlationof the achieved retrieval results.
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1 MOTIVATION

A retrieval model captures retrieval-specific aspects
of a real-world document such that an information
need or a retrieval task at hand can be efficiently
addressed. The terminology is not used in a con-
sistent way; in the literature also the terms “docu-
ment model” and “retrieval strategy” are used (Baeza-
Yates and Ribeiro-Neto, 1999; Grossman and Frieder,
2004). Note that, throughout the paper, we distinguish
between the real-world documentd and its vector rep-
resentationd.

Definition 1 (Retrieval Model) Let D be a set of
documents, and letQ be a set of information needs
or queries. A retrieval modelR for D andQ is a tuple
〈D,Q,ρR 〉, whose elements are defined as follows:
1. D is the set of representations of the documents

D. d ∈ D may capture layout aspects, the logi-
cal structure, or semantic aspects of a document
d ∈ D.

2. Q is the set of query representations or formalized
information needs.

3. ρR is the retrieval function. It quantifies, as a real
number, the relevance of a document representa-
tion d ∈ D with respect to a query representation
q ∈ Q:

ρR : Q×D→ R

We use the term “compact retrieval model” in a
rather informal way, and typically in comparison to
the standard vector space model, VSM. Compact re-
trieval models imply a much smaller representation
and an improved runtime performance to address a
retrieval task.



For a given queryq ∈ Q most retrieval models
provide a ranking among the set of result documents
Dq, Dq ⊂ D, that could satisfy the information need.
This applies to the class of compact retrieval models
whose representation is vector-based as well. Since
the representationd′ of a compact retrieval model is
smaller than the standard VSM representationd, a
retrieval speed-up by the constant factor|d|/|d′| is
achieved. Under theO-calculus the computational ef-
fort remains linear in the collection size, say,O(|D|).

However, when putting the size constraints to its
extremes, the hash-based search or fingerprinting ap-
proaches come into play. They simplify a continuous
similarity relation to the binary concept “similar or
not similar”: By means of a multi-valued similarity
hash-functionhϕ, a vector-based representationd is
mapped onto a small set of hash codeshϕ(d). Two
possibly high-dimensional vectors,d1,d2, are con-
sidered as similar if their fingerprint representations
share some hash code:

(

hϕ(d1)∩hϕ(d2)
)

6= /0 ⇒ ϕ(d1,d2) ≥ 1− ε

With fingerprinting a sub-linear retrieval time can
be achieved; in fact, the retrieval time is inO(|Dq|).
Because of the exponential similarity distribution in a
collectionD, the result setDq for a queryq increases
logarithmically in the collection size|D|, if hϕ is prop-
erly designed. In practical applications|Dq| can hence
be assessed with a constant.

1.1 Use Cases

The main reason for the use of compact retrieval mod-
els is retrieval speed up; a second reason may be the
small memory footprint. Since there is no free lunch
one pays for these benefits, whereas the price depends
on the use case. Table 1 lists the use cases where
compact retrieval models have proven to be effec-
tive. Note that the table distinguishes between vector
representations and fingerprint representations. The
shown assessments (– / inappropriate, o / acceptable,
+ / appropriate, ++ / ideal) take the particular precision
and recall requirements of the use cases into account.

High similarity search is also known as near-
duplicate detection, where the task is to find in a col-
lectionD all documents whose pairwise similarity is
close to 1. The use case “similarity search” pertains
to standard retrieval tasks where a queryq or a query
documentdq is given, and one is interested in a re-
sult setDq ⊂ D of relevant documents with respect
to the query. Plagiarism analysis compares to a high
similarity search that is done at the paragraph level:
given a candidate documentd the task is to find all
documents inD that contain nearly identical passages

Suitability of compact retrieval model

Use case Vector Fingerprint

High similarity search + ++
Similarity search + o
Plagiarism analysis o +
Post retrieval clustering + o

Table 1: Use cases where compact retrieval models are suc-
cessfully applied. Under the viewpoint of retrieval quality
the vector representation is superior to the fingerprint repre-
sentation, under the viewpoint of retrieval runtime it is vice
versa.

from d. Finally, post retrieval clustering is a special
form of result set preparation. It plays an important
role in connection with user interaction and search in-
terfaces, if a large result setDq needs to be abstracted,
categorized, or visually prepared.

1.2 Contributions

The contributions of our work are twofold, compris-
ing conceptual and empirical results.

1. First, we organize existing research concerned
with compact retrieval models and point out un-
derlying rationales. These insights may help the
developer of information retrieval solutions to se-
lect among existing technology as well as to de-
velop new retrieval models.

2. Second, based on a large scale analysis, we an-
alyze the practical retrieval performance of well-
known representatives of compact retrieval mod-
els. The results provide a guideline for practical
applications; in essence, they reflect the theoreti-
cal considerations.

2 CONSTRUCTION OF
COMPACT
RETRIEVAL MODELS

This section introduces both a unifying framework
and the underlying principles for a wide range of com-
pact retrieval models. We start with a comparison of
the orders of magnitude that are typical for the use
cases listed in Table 1. Subsection 2.1, which may
be the most insightful contribution of this section, ex-
plains the two fundamental construction paradigms
and discusses their implications. Subsection 2.2 sur-
veys construction approaches developed so far. For
overview purposes Figure 1 shows the complete con-
struction process as UML activity diagram: starting
point is a token sequence generated from a docu-
mentd, followed by a chunking step that generates
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Figure 1: The construction of a compact retrieval model starts with a token sequence generated from a documentd. After the
dimension reduction step we are given a document representation d′ with a small number of features, which can be used in
the standard sequential retrieval process. If one is interested in binary retrieval a fingerprint can be computed fromd′.

a set ofn-grams (= sequence ofn contiguous words),
which form the high-dimensional document represen-
tationd.

The challenges that must be met when construct-
ing compact retrieval models arise from the dimen-
sionality of the document space. Technically speak-
ing, the document space is an inner product space.1

The dimensionm of the document space depends on
the chunking step which defines the underlying dic-
tionary,T . T is the union set of all descriptors (terms
or 1-grams, 2-grams,n-grams) that occur in at least
one document representationd. Note thatd may be

1This is not a basic necessity but common practice in
information retrieval. Exceptions include cluster-basedre-
trieval systems, suffix-tree-based document representations,
and the like.

understood as anm-dimensional vector whose com-
ponents represent descriptors from which only a frac-
tion has a non-zero weight. On the other hand,d may
be understood as a list of(descriptor,weight)-tuples,
comprising only those dimensions having a non-zero
weight. Under the former view the similarity between
two document representationsd1 andd2 can be com-
puted with the scalar product; under the latter view a
set-based measure like the Jacquard coefficient can be
applied. In essence both representations are of equal
power and complexity. In Figure 2, which contrasts
the dimensions of different document spaces with the
respective sizes of the document representationsd, a
set-based representation ofd is assumed.

Table 2 lists the exact values of different dictionar-
ies of Wikipedia, using the the entire English collec-
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Figure 2: The diagram contrasts the dimensions of differentdocument spaces with the sizes of the document representations.
Note the logarithmic scale of the orders of magnitudes.



Dictionary Number of dimensions

1-gram space 3 921 588
4-gram space 274 101 016
8-gram space 373 795 734
Shingling space 75 659 644

Table 2: Dictionary dimensions of the English Wikipedia
collection from November 2006.

tion from November 2006 as basis. Then-gram space
is spanned by the set of alln-grams in the collection,
hence the 1-gram space is the standard vector space.
The shingling space is spanned by the union set of
all shingles (= 8-grams) that have been selected dur-
ing the construction process of the documents’ low-
dimensional shingling representations (Broder, 2000).

Figure 2 also hints the two construction paradigms
for compact retrieval models: projecting and embed-
ding. Both aim at dimension reduction, and both pro-
vide a means for constructing a small document rep-
resentation. The rationale behind projecting is a hy-
pothesis test, whereas the rationale behind embedding
is to capture as much as possible from the information
of the high-dimensional representation. The next sub-
section discusses the implications.

2.1 Hypothesis Test or Model Fidelity?

Let D be the set of representations of the documents
in a collectionD, where each document vectord ∈ D
is based on 8-grams taken from its associated docu-
mentd. Let Rθ ⊂ D×D be the set of all pairs of doc-
ument vectors,{d1, d2}, whose similarityϕ(d1,d2)
is aboveθ, with θ ∈ [0.8;1.0). Likewise, letR<θ be
the set of all remaining pairs withϕ(d1,d2) < θ. Note
that|Rθ|/|R<θ| ≪ 1.

Consider now two document vectors,d1,d2 ∈ D,
and let there be an 8-gram,s, that is shared among
them, i. e.,s ∈ d1 ∩ d2. Then the question is, which
of the following hypotheses shall be accepted, which
shall be rejected?

H0 : “{d1,d2} is from R<θ”

H1 : “{d1,d2} is from Rθ”

To answer this question we have to investigate the
sizes of the setsRθ andR<θ in connection with the
probability of the event that two document vectors
share ann-gram. The sizes|Rθ| and |R<θ| will ba-
sically follow the characteristic of the 1-gram similar-
ity distribution shown in Figure 3, but still be more
extreme because of the 8-gram representation. Typi-
cal order of magnitudes are 0.012 · |D|2/2 for |Rθ| and
|D|2/2 for |R<θ|.

The probabilityPs of the event that two document
vectorsd1 and d2 share ann-gram s is determined
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Figure 3: Similarity distribution in the Reuters Corpus Vol-
ume 1, RCV1, (Rose et al., 2002) under the 1-gram docu-
ment representation (= VSM).

by their similarity, ϕ(d1,d2), and the underlyingn-
gram length. For the two events “{d1,d2} ∈ Rθ” and
“{d1,d2} ∈ R<θ” Figure 4 shows the characteristic
curves forPs, dependent on then-gram length. Alto-
gether, the probabilitiesP0 andP1 for the events for-
mulated as hypothesisH0 andH1 derive from the fol-
lowing relation:

|R<θ| ·Ps({d1,d2}∈R<θ, n=8)

|Rθ| ·Ps({d1,d2}∈Rθ, n=8)
∼

P0

P1

For the Wikipedia collection we have assessed
values forP0 and P1 assuming different similarity
thresholdsθ. It turns out that forθ-values from the
interval[0.8;1.0) the probabilityP1 is about 20 times
higher than the probabilityP0. I. e., H1 is accepted,
andH0 is rejected.
Remarks.The outlined connections form the rationale
of shingling (in particular) and projecting (in general).
They also show that this paradigm is strongly biased
towards high similarity relations, and that it cannot
be applied to reason about medium similarities. The
analyses of Section 3 will approve this argumenta-
tion. A diametrically opposed paradigm is embed-
ding, which aims at model fidelity, i. e., the preser-
vation of a wide range of similarity relations. Speak-
ing technically, projecting relates to feature selection
while embedding relates to feature reformulation.
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Figure 4: Probability of the event that two document vectors
share ann-gram, dependent onn. The upper curve relates
to highly similar pairs drawn fromRθ, θ ∈ [0.8;1.0); the
lower curve relates to pairs drawn fromR<θ. Consider in
this connection the distribution of the similarities underthe
1-gram document representation in Figure 3.



Projecting algorithm (Author) Characteristics of d′

rare chunks (Heintze, 1996) the descriptors ind′ occur at most once inD
SPEX (Bernstein and Zobel, 2004) the descriptors ind′ occur at least twice inD
I-Match (Chowdhury et al., 2002) d′ contains the most discriminant terms fromd

(Conrad et al., 2003; Kołcz et al., 2004)

random (misc.) the descriptors ind′ are randomly chosen fromd, or
shingling (Broder, 2000) the descriptors ind′ minimize a random function over the descriptors ofd

prefix anchor (Manber, 1994) the descriptors ind′ start with a particular prefix, or
(Heintze, 1996) the descriptors ind′ start with a prefix which is infrequent ind

hashed breakpoints (Manber, 1994) the last byte of the descriptors ind′ is 0, or
(Brin et al., 1995) the last word’s hash value of the descriptors ind′ is 0

sliding window (misc.) the descriptors ind′ start at a wordi modm in d, m ∈ {1, . . . , |d|}, or
winnowing (Schleimer et al., 2003) the descriptors ind′ minimize a hash function of a window sliding overd

Table 3: Summary of projecting algorithms. The rows containthe name of the construction algorithm, the authors, and a
characterization of the constraints that must be fulfilled by the descriptors ind′.

2.2 Construction Approaches

A basic step in all construction approaches for com-
pact retrieval models is dimension reduction, which
computes from a high-dimensional document repre-
sentationd a representationd′ with a small number of
features (recall Figure 1).

Figure 5 organizes in a taxonomy the dimension
reduction techniques that have been applied for re-
trieval model construction, whereas Table 3 and Ta-
ble 4 provide for a short characterization of the tech-
niques.

Collection-specific versus Document-specific.This
distinction pays tribute to the fact that a dimension
reduction approach relies either on a single document
at a time (= document-specific) or on the entire col-
lection D (= collection-specific). Typically the for-
mer is much more efficient with respect to runtime,
while the latter enables one to integrate global con-
siderations as well as knowledge from the retrieval
task. Note, however, that a document-specific dimen-
sion reduction presumes a closed retrieval situation
(Stein, 2007).

If the use case allows the abstraction of the contin-
uous similarity relation to a binary relation, or if re-
trieval time has top priority, a fingerprint can be com-

rare chunks,

SPEX, I-Match

random, shingling,

prefix anchor, 

hashed breakpoints,

sliding window, 

winnowing

Dimension

reduction

Embedding


FF, LSH

Document-

specific

LSI, PCA

Collection-

specific

Document-

specific

Collection-

specific

Principles Algorithms

Projecting

(chunk selection)


Figure 5: Survey of dimension reduction principles and
algorithms. Existing surveys are restricted to document-
specific algorithms that base on projecting (shown shaded).

puted fromd′. Fingerprinting applies tod′ an addi-
tional quantization and encoding step (see again Fig-
ure 1). Quantization is the mapping of the real valued
vector components to integer values. Encoding is the
computation of an integer number according to some
rule such as the one defined by thel1-norm of the em-
bedded and quantizedd.

Within the embedding LSH technology the quan-
tization step is operationalized as follows. The real
number line is divided into equidistant intervals each

Embedding algorithm (Author) Characteristics of d′

LSI (Deerwester et al., 1990) d′ is computed from the SVD of the term-document matrix
PCA (Jolliffe, 1996) d′ is computed from the SVD of the covariance matrix of the term-document matrix
PLSI (Hofmann, 2001) d′ contains the hidden variables of a statistical language model, computed by an EM

embedding LSH (Datar et al., 2004) the components ind′ are the scalar products ofd with a random vector set
fuzzy-fingerprinting (Stein, 2005) the components ind′ are the normalized expected deviations of particular

index term distributions ind

Table 4: Summary of embedding algorithms. The rows contain the name of the construction algorithm, the authors, and a
characterization of the construction method responsible for the computation ofd′.



of which having assigned a unique natural number,
and the components ofd′ are identified with the num-
ber of their enclosing interval. Encoding can happen
in different ways and is typically done by summation
(Charikar, 2002; Datar et al., 2004).

Within the fuzzy-fingerprinting technology the
quantization step is achieved by applying different
fuzzification schemes to the components ofd′. En-
coding is done by computing the smallest number in
a certain radix notation from the fuzzified deviations
(Stein, 2005).

3 MODEL LANDSCAPE

Which is the best-suited compact retrieval model for
a given task? Though this question may not be an-
swered in its generality, a comprehensive experimen-
tal analysis and its graphical presentation can help us
to understand the strong and weak points of a model.
This is the idea of our model landscape, shown in Ta-
ble 6, from which Table 5 shows a minimized version
for orientation purposes.

The model landscape combines three important
approaches, namely shingling, LSH, and fuzzy-fin-
gerprinting (x-axis) along with four different docu-
ment model sizes (y-axis):|d′| = 100, 50 and 10 in
the first, second, and third row respectively, while in
the fourth row the most compact model in the form of
the related fingerprint technology is used (cf. Table 5).
Each cell in Table 6 shows a histogram which quan-
tifies the achieved retrieval performance as rank cor-
relation value. Baseline for the rank correlation is the
standard VSM model: for each combination shown
in the table the rank correlation values of 1000 query
results are averaged. Since we expect that compact re-
trieval models are biased with respect to certain sim-
ilarity intervals, the rank correlation values were bro-
ken down to the following six similarity thresholds:
0, 0.25, 0.5, 0.65, 0.8, and 0.9.

As document collection for the rank correlation
analysis served the Reuters Corpus Volume 1 (Rose
et al., 2002). The corpus consists of Reuters news arti-
cles which have been manually assigned to categories.
For each query document 1000 comparison docu-
ments were chosen from the same category. For the
analysis of the fingerprinting methods the Wikipedia
Revision Corpus was used. The corpus contains the
complete revision history of each Wikipedia article,
and hence it forms a rich source of similar document
pairs. Such kind of “biased” corpus is necessary to re-
liably measure the recall performance of fingerprint-
ing methods; in standard corpora the number of doc-
ument pairs with a high similarity is extremely small

Document
model size

large

∧

∨

small

Shingling Embedding LSH Fuzzy-fingerprinting

Shingle vector
size:100 shingles

LSH vector
100-dimensional

Prefix class vector
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size: 10 shingles

LSH vector
10-dimensional

Prefix class vector
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LSH fingerprint
2× 8 Byte

Fuzzy-fingerprint
2 × 8 Byte

Table 5: Legend of the landscape of compact retrieval mod-
els shown in Table 6.

compared to those with a low similarity. Altogether,
about 7 Million document pairs from the corpus were
analyzed.

3.1 Rank Correlation

Let D be a set of document vectors,d a single docu-
ment vector, andϕ a similarity measure. A ranking of
D wrt. d underϕ is a list of all document vectors inD,
sorted in ascending order according to their similarity
to d. Let D′ be the set of compact document vectors
derived fromD, and letd′ be the compact vector de-
rived fromd. The correlation between the ranking of
D wrt. d and the ranking ofD′ wrt. d′ is referred to as
rank correlation.

The degree of correlation between two rankings
is measured with a rank correlation coefficient, yield-
ing a value from[−1,1], where−1 indicates a per-
fect anti-correlation while 1 indicates a perfect cor-
relation. Two rank correlation coefficients have been
proposed and can be used for our task, namely Spear-
man’sρ and Kendall’sτ (Kendall and Stuart, 1979;
Wackerly et al., 2001):

• Spearman’sρ. The Spearman coefficient accounts
the squared difference of the ranks of theith doc-
ument when it is represented under the standard
VSM and as compact vector:

ρ = 1−
6 ·∑|D|

i=0(r(di,D)− r(d′
i,D

′)2

|D| · (|D|2−1)
,

wherer denotes a ranking function which maps
di ∈ D (d′

i ∈ D′) to it’s rank in the ranking ofD
(D′) for a particulard (d′). A significance test for
ρ can be done for any|D|> 30, based on Student’s
t-distribution.

• Kendall’sτ. The Kendall coefficient compares the
ranking of each pair of documents when they are
represented under the standard VSM and as com-
pact vectors. If the ranking of a document pair is



Document
model size

large

∧

∨

small

Shingling Embedding LSH Fuzzy-fingerprinting

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.80.650.50.250.0

C
or

re
la

tio
n

Similarity threshold

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.80.650.50.250.0

C
or

re
la

tio
n

Similarity threshold

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.80.650.50.250.0

C
or

re
la

tio
n

Similarity threshold

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.80.650.50.250.0

C
or

re
la

tio
n

Similarity threshold

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.80.650.50.250.0
C

or
re

la
tio

n

Similarity threshold

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.80.650.50.250.0

C
or

re
la

tio
n

Similarity threshold

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.80.650.50.250.0

C
or

re
la

tio
n

Similarity threshold

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.80.650.50.250.0

C
or

re
la

tio
n

Similarity threshold

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.80.650.50.250.0

C
or

re
la

tio
n

Similarity threshold

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.80.650.50.250.0

F
-M

ea
su

re

Similarity threhold

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.80.650.50.250.0

F
-M

ea
su

re

Similarity threhold

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.80.650.50.250.0

F
-M

ea
su

re

Similarity threhold

Table 6: Landscape of compact retrieval models. The document representation in the first three rows is vector-based, with |d′|
= 100, 50 and 10 in the first, second, and third row respectively. Underlying the fourth row is the fingerprint representation
of the respective approach, i. e. a small number of codes{c1, . . . ,ck}. Each table cell shows a histogram which quantifies
the achieved retrieval performance as rank correlation value, broken down to six similarity thresholds. Baseline for the rank
correlation were 1000 queries per similarity interval conducted under the standard VSM.

the same under both models they are considered
as concordant.

τ = 1−
2 ·P

|D| · (|D|−1)
,

whereP denotes the number of concordant docu-
ment pairs. A significance test forτ can be done
for any|D|> 10, based on the normal distribution.

3.2 Discussion

The presented model landscape provides a compre-
hensive view on the characteristics of compact re-
trieval models. The important observations can be
summarized as follows:

• An increase in the similarity threshold goes along
with an increase in the rank correlation. Shingling

performs worst; the rank correlation at medium
similarity thresholds is considerable smaller than
those of the other models. Both embedding LSH
and fuzzy-fingerprinting show a high rank corre-
lation, with a slight advantage to the former.

• A reduction in the dimensionality impairs the rank
correlation for all approaches. Here, the com-
pact models based on embedding are affected by
at most 25% (cf. embedding LSH) whereas shin-
gling decreases by more than 75%. Considering
the third row of Table 6 both embedding LSH and
fuzzy-fingerprinting perform similar.

• The last row of Table 6 unveils an interesting char-
acteristic of the related fingerprints: the values of
shingling and fuzzy-fingerprintingat high similar-
ity thresholds compete with each other, while em-
bedding LSH is about 65% behind. I. e., the good



Suitability of compact retrieval model

Shingling Embedding LSH Fuzzy-fingerprinting
Use case Vector Fingerprint Vector Fingerprint Vector Fingerprint

High similarity search ++ ++ ++ ++ ++ ++
Similarity search – – o o o o
Plagiarism analysis + + o o + +
Post retrieval clustering – – o o + +

Table 7: Verbose version of the use cases from Table 1: while all compact retrieval models do a good job in high similarity
search, most of them fail in connection with standard similarity search, plagiarism analysis, or post retrieval clustering.

rank correlation of embedding LSH does not im-
ply a good retrieval performance for the related
fingerprint—and vice versa, as can be seen in the
case of shingling.

Table 7 gives a qualitative survey of our observa-
tions; it contrasts the suitability of the evaluated com-
pact retrieval models for the use cases discussed at the
outset.
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