Automatic Pipeline Construction
for Real-Time Annotation

Henning Wachsmuth, Mirko Rose, and Gregor Engels

Universitat Paderborn
s-lab — Software Quality Lab
Paderborn, Germany
hwachsmuth@s-lab.upb.de, {mrose,engels}@upb.de

Abstract. Many annotation tasks in computational linguistics are tack-
led with manually constructed pipelines of algorithms. In real-time tasks
where information needs are stated and addressed ad-hoc, however, man-
ual construction is infeasible. This paper presents an artificial intelligence
approach to automatically construct annotation pipelines for given infor-
mation needs and quality prioritizations. Based on an abstract ontologi-
cal model, we use partial order planning to select a pipeline’s algorithms
and informed search to obtain an efficient pipeline schedule. We realized
the approach as an expert system on top of Apache UIMA, which offers
evidence that pipelines can be constructed ad-hoc in near-zero time.

1 Introduction

Information extraction and other applications of computational linguistics deal
with the annotation of text, which often takes several interdependent steps. A typ-
ical annotation task is to relate different entity types to event anchors in a text.
E.g., the BioNLP shared task GENIA [13] included event types like Positive Regu-
lation(Theme, Cause, Site, CSite) whose instances are contained in sentences like:
“Eo-VP16, but not the empty GFP retrovirus, increased perforin expression in
both WT and T-bet-deficient CD8+ T cells.” Before entities and events can be
related, the respective types must have been recognized, which normally requires
linguistic annotations, e.g. part-of-speech tags. These in turn can only be added
to a text that has been segmented into lexical units, e.g. into sentences.

Because of the interdependencies of the steps, the standard way to address
such an information need is with an annotation pipeline IT = (A,), where A is
a set of algorithms and 7 is the schedule of these algorithms. Each algorithm in A
takes on one analysis by annotating certain types of output information, and it
requires certain types of information as input. The schedule 7 has to ensure that
all input requirements are fulfilled. Different algorithms for an analysis may vary
in their requirements, thereby placing different constraints on w. Moreover, [T
may have to meet efficiency and effectiveness criteria, e.g. measured as run-time
or F1-score. Often, an increase in effectiveness is paid with a decrease in efficiency
and vice versa. The set A must therefore be composed in respect of the quality
criteria at hand. When IT incorporates filtering steps, w affects the efficiency of IT

A. Gelbukh (Ed.): CICLing 2013, Part I, LNCS 7816, pp. 38-439] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Automatic Pipeline Construction for Real-Time Annotation 39

as well [21I]. As a result, pipeline construction faces two involved challenges:
(1) The selection of a set of algorithms that addresses a given information need
and that complies with the given quality criteria. (2) The determination of an
efficient schedule that fulfills the input requirements of all algorithms.

Traditionally, the construction of efficient and effective annotation pipelines
is performed manually by experts with domain knowledge. However, recent de-
velopments suggest that the future of annotation tasks will be real-time search
applications, where regular internet users state information needs ad-hoc [7/15].
In such scenarios, the only way to be able to directly respond to a user is to con-
struct and execute annotation pipelines in an automatic manner.

In this paper, we present an approach to automatically construct annotation
pipelines based on techniques from artificial intelligence [I8]. To this end, we for-
malize expert knowledge on algorithms and information types within an abstract
ontological model. Given an information need, we rely on partial order planning
to select a set of algorithms with a defined partial order. Where appropriate,
filtering steps are integrated, while a prioritization of quality criteria allows to
influence the trade-off between a pipeline’s presumed efficiency and effectiveness.
To obtain a correct and efficient schedule, we apply informed search using estima-
tions of the algorithms’ run-times. In large-scale scenarios, A* search could find
a near-optimal schedule on a sample of texts. For ad-hoc pipeline construction,
however, we argue that a greedy best-first search strategy is more reasonable.

We realized our approach as an open-source expert system on top of Apache
UIMA [2]. Experiments with this system suggest that automatic pipeline con-
struction can be performed in near-zero time for realistic numbers of algorithms.
Altogether, our main contributions are three-fold:

1. We formalize the expert knowledge that is needed to automatically address
annotation tasks in an abstract ontological model (Section B]).

2. We approach the automatic construction of efficient and effective annotation
pipelines with partial order planning and informed search (Section [).

3. We provide an expert system that constructs and executes annotation pipe-
lines ad-hoc, thereby qualifying for real-time applications (Section [H).

2 Related Work

Planning and informed search represent algorithmic foundations of artificial in-
telligence [18]. The latter has been used to speed up several tasks in natural
language processing, e.g. parsing [16]. In [20], we solve optimal scheduling theo-
retically, but we suggest to apply informed search in practice. In case of planning,
our work resembles [6] where partial order planning is proposed to compose in-
formation extraction algorithms. The authors do not consider quality criteria,
though, nor do they realize and evaluate their approach. This also holds for [22],
in which knowledge discovery workflows of minimum length are planned for an
ontology of data mining algorithms. A planning approach that sums up the costs
of steps is given in [I7] for data stream processing. In annotation tasks, however,
the values of criteria such as precision cannot simply be aggregated.

40 H. Wachsmuth, M. Rose, and G. Engels

Annotation tasks are often tackled with pipelines of algorithms [3]. For manu-
ally constructing such pipelines, software frameworks like Apache UIMA [2] and
GATE [10] provide tool support. Still, manual pipeline construction tends to be
error-prone and cost-intensive [5]. Recently, a UIMA-based system that automat-
ically composes and executes a defined set of algorithms was presented in [I1],
but it is not yet available. The author previously worked on U-COMPARE [12],
which allows a fast but manual construction and evaluation of pipelines. In con-
trast, we perform construction fully automatically. We realized our approach as
an expert system for regular users. Expert systems have been used for scheduling
and construction since the early times of artificial intelligence [9].

Automatic pipeline construction is important when different tasks require dif-
ferent algorithms. Major open information extraction systems such as REVERB
currently avoid this scenario by analyzing task-independent syntactical struc-
tures rather than semantic concepts [8]. However, they are restricted to binary
relations. More complex tasks are e.g. addressed by declarative approaches like
SYSTEMT [4]: users specify needs by defining logical constraints of analysis steps,
while the system manages the workflow. SYSTEMT optimizes schedules, but it
targets at expert users and works only with rule-based algorithms.

Efficient schedules benefit from the filtering of relevant information, which has
a long tradition in information extraction [1]. In [2I], we show how to construct
efficient pipelines for any set of extraction algorithms. We adopt parts of this
approach here, but we address arbitrary annotation tasks.

3 An Ontological Model of Annotation Tasks

In this section, we model the expert knowledge needed to automatically address
annotation tasks. Many annotation tasks target at information of domain- and
application-specific type systems, as e.g. in the GENIA example from Section [
Still, these type systems instantiate the same abstract structures. In particular,
most works distinguish between primitive types, such as integers or strings, and
hierarchically organized annotation types, which assign syntactic or semantic
concepts to spans of text. Annotation types can have features whose values are
either primitives or annotations. Among others, features thereby allow to model
concepts like relations and events as annotations. Not all features of an annota-
tion are always set. We call a feature active if it has a value assigned.

Now, an information need refers to a set of annotation types and features.
Besides, it may place value constraints on the text spans to be annotated. Within
GENTA, a constraint could be to keep only positive regulation events whose cause
is “Bo-VP16”, i.e., PositiveRegulation(_, “Fo-VP16”, _, _). In general, we define
the abstract information type to be found in annotation tasks as follows.

Information Type. A set of annotations of an arbitrary but fixed type denotes
an information type C' if it contains all annotations that meet two conditions:
1. Active Feature. The annotations in C either have no active feature or they
have the same single active feature.
2. Constraints. The annotations in C' fulfill the same set of value constraints.

Automatic Pipeline Construction for Real-Time Annotation 41

supertype successor
Prlmmve Annotatlon nformatlon Quallty Quallty
@ i @ . @ it 1 PI'IOI’IZat|on

active

Value Selectlwty Order Aggregate
Constralnt Estlmatlon Relatlon Functlon

(mstantlated by a type system) (instantiated by an algorithm repository) (instantiated by a quality model)

Fig. 1. Abstract ontological model of the expert knowledge for addressing annotation
tasks. White and black arrowheads denote “subclass” and “has” relations, respectively.
Grey-colored concepts are instantiated by concrete classes within an application.

By defining C to have at most one active feature, we obtain a normalized unit of
information in annotation tasks. A single information need can be stated as a set

of information types C = {C1, ..., C|c|}, meaning a conjunction C; A...ACg|.
Different information needs result in disjunctions of such conjunctions.
When fulfilling a need like PositiveRegulation(_, “Eo-VP16”, _, _), a certain

effectiveness and efficiency is achieved. Such quality criteria are used to evaluate
whether a solution is good or is better than another one. Conceptually, a quality
criterion) defines an order relation for a set of values.) may have an aggregate
function that maps any two values ¢1, g2 € Q (say, run-times) to a value g € Q (say,
the total run-time). An aggregate function allows to infer the quality of a solution
from the quality of partial solutions. However, far from all criteria entail such a
function. For instance, there is no general way of inferring an overall precision
from the precision of two algorithms. Similarly, functions that aggregate values
of different quality criteria rarely make sense. In contrast to other multi-criteria
optimization problems [I4], weighting different Pareto-optimal solutions (where
any improvement in one criterion worsens others) hence does not seem reasonable
in annotation tasks. Instead, we propose quality prioritizations:

Quality Prioritization. A prioritization P=(Q},..., QTQ\) is a permutation
of a set of quality criteria Q={Q1, ..., Q|q|} that defines an order of importance.

E.g., (run-time, precision, recall) targets at the solution with highest recall under
all solutions with highest precision under all solutions with lowest run-time. To-
gether, Q and a set of prioritizations P={Pi,..., Pp|} define a quality model.
To select a set of algorithms A for an information need C that complies with
a prioritization P, internal operations of the algorithms do not matter, but only
their input and output behavior. The actual efficiency and effectiveness of an
algorithm on a collection or a stream of texts is unknown beforehand. For many
algorithms, typical quality estimations are known from evaluations, though.

Algorithm. Let C be a set of information types and Q a set of quality criteria.
Then an algorithm A is a 3-tuple (C;y,, Cout, ?) such that C;;, # Cyys and

— Input. C;, C C is the set of input information types required by A,

— Output. C,,; C C is the set of output information types A produces, and

— Estimations. ¢ € (QU{L}) x ... x (Q)q|U{L}) contains one value g; for
each @; € Q. g; defines a quality estimation or it is unknown, denoted as L.

42 H. Wachsmuth, M. Rose, and G. Engels

information need ; 09;
PositiveRegulation Token ——————Token 1]
(_, "Eo-VP16", _,) ; POS tagger ; %; PosReg detector
- ‘@5 Token Part-of-speech PosReg filter
quality prioritization 1. 93 (_PosReg detector Y
1. run-time in ms per PosReg filter
text unit () PosReg Token Part-of-speech POS t'agger
2 Fscore % () } - -
3. Accuracy in % (a) PosReg Protein «——— Protein 1
e, § 49 CCause sxractor) .
Partial order ™\ { 77 M Informed Cause extractor
planning ! "Eo-VP16" filter search = =
PosReg("Eo-VP16") Eo-VP16" filter

Fig. 2. Pipeline construction for an information need and a quality prioritization. Seven
algorithms are selected with partial order planning and scheduled with informed search.

Assume that an algorithm has produced a type C € C, e.g. PositiveRegulation.
Then a means to improve efficiency is to further analyze only text units (say, sen-
tences) that contain positive regulation events and that, hence, may be relevant
for C [21]. We call an algorithm a filter if it discards text units that do not meet
some defined value constraints. In practice, algorithms may combine annotation
and filtering operations. Here, we separate filters as they can be created on-the-
fly for given information types. Such a filter has a single input type C;,, = {Cin}
that equals its output type Cout = {Cout} except that Coy: additionally meets
the filter’s value constraints[] While a filter implies a certain selectivity (i.e., a
fraction of filtered text units), selectivities strongly depend on the input [20].
So, reasonable selectivity estimations can only be obtained during analysis.
Altogether, Figure[lassociates the described concepts in an ontological model.
The helper concepts Type and Priority realize the diversity of features and the
permutations of prioritizations. As depicted, the modeled knowledge can be par-
titioned into three parts that are instiantiated within a concrete ontology:

Annotation Task Ontology. An annotation task ontology {2 denotes a 3-
tuple (Cq, P, Ag) such that Cy, is a set of available information types, Py, is
a set of available quality prioritizations, and A, is a set of available algorithms.

4 Automatic Pipeline Construction

We now introduce an artificial intelligence approach to automatically construct
annotation pipelines. In particular, we use partial order planning to select a set
of algorithms and a greedy informed search strategy to find an efficient schedule.
Figure 2 exemplarily illustrates the application of our approach.

We consider pipeline construction as a planning problem. In artificial intelli-
gence, the term “planning” denotes the process of generating a sequence of ac-
tions that transforms an initial state of the world into a specified goal state [I§].
A planning problem is defined by its domain and by the task to be addressed.
For pipeline construction, we describe the planning problem as follows:

! For filters that check the presence of an information type in a text unit, we define
that all information types have an implicit constraint “is contained in text unit”.

Automatic Pipeline Construction for Real-Time Annotation 43

Algorithm PpPIPELINEPARTIALORDERPLANNING(Cy, Cy, Py, A)

Algorithm set Ay <+ {Ag}
Partial schedule 7y « 0
Input requirements A <= {(Cy,Ay) | Cy € C4\Co}
while A # () do
Input requirement (Cp, Ap) < A.poll()
if Cp € C4 then
Filter Ap < CREATEFILTER(Cp)
Tp < T U {(AF < AA)}
(CAs AA) < (AF.Cin, AF)
Algorithm A <— SELECTBESTALGORITHM(Cq , Py, A)
if A= 1 then return L
Ty — 7y U{(A<Ap)}
15: A+~ AU{(CA)]|CeAC;»\Co}
16: return (A,, 7y)

EoD DO TD U W

Fig. 3. Pseudocode of partial order planning for selecting a set of algorithms A, (with
a partial schedule 74) that addresses a planning problem Pt = (Co,Cy, Py, Ag)

Planning Problem. Let 2 = (Cg,Pg, Ap) be an annotation task ontology.
Then a planning problem ¢(?) denotes a 4-tuple (Cy, Cy, Py, Ap) such that

Initial State. Cy C Cy; is the initially given information,
Goal. Cy C Cg; is the information need to be fulfilled,
Quality. P, € Py is the quality prioritization to be met, and
— Actions. A is the set of algorithms available to fulfill Cg.

We implicitly model states of a planning domain as sets of information types,
thereby reflecting the states of analysis of an input text So, all states C with
Cy C C are goal states. Algorithms represent actions in that they modify states
by adding new information types. To solve a problem ¢(*2) we hence need a
pipeline of algorithms that produces Cy\ Cy while complying with Pg.

4.1 Algorithm Selection Based on Partial Order Planning

We chose partial order planning to select a set of algorithms A, and to define a
partial schedule 74. In general, this backward approach recursively generates and
combines subplans for all preconditions of those actions that achieve a planning
goal [I8]. Actions may conflict, namely, if an effect of one action violates a pre-
condition of another one. In annotation tasks, however, algorithms only produce
information. While filters reduce the input to be processed, they never prevent
subsequent algorithms from being applicable [6].

In Figure[3l we adapt partial order planning for algorithm selection. For plan-
ning purposes only, a helper “finish algorithm” A, is initially added to A4. Also,
a set of input requirements A (the “agenda”) is derived from Cy4\Cy (lines 1-3).

2 In practice, Co will often be the empty set, meaning that an analysis starts on plain
text. Accordingly, a non-empty set Cy indicates texts that already have annotations.

44 H. Wachsmuth, M. Rose, and G. Engels

Each requirement specifies an information type, e.g. PositiveRegulation, and an
algorithm that needs this type as input. While A is not empty, lines 4-15 insert
algorithms into A4 and update both 74 and A. In particular, line 5 retrieves an
input requirement (Cp, Ax) with the deterministic method poll(). If Cx belongs
to Cy, a filter A is integrated on-the-fly, whereas (Ca, Aa) is replaced with the
input requirement of Ap (lines 6-10). Then, line 11 selects an algorithm A that
produces C . If any input requirement cannot be fulfilled, planning fails (line 12)
and does not reach line 16 to return a partially ordered pipeline (A4, 74).

For space reasons, we only sketch SELECTBESTALGORITHM: First, the set A
of algorithms that produce Cjp is determined. These algorithms are compared
iteratively for each quality criterion) of the prioritization Pp. If () has no aggre-
gate function, A is reduced to the algorithms with the best estimation for Q.
Else, the estimations of possible predecessor algorithms of Aa are aggregated.
In the worst case, this requires to recursively create plans for all input require-
ments of A . However, predecessors are stopped taken into account as soon as
a filter is encountered: filtering changes the input to be processed, hence it does
not make sense to aggregate estimations of algorithms before and after filtering.
In case, only one algorithm remains for any @) € Py, it constitutes the single best
algorithm. Otherwise, any best algorithm is returned.

The filtering view conveys a benefit of partial order planning: As we discussed
in [21], early filtering of information and lazy evaluation improve the efficiency of
pipelines while leaving their effectiveness unaffected. Since our planner proceeds
backwards, the constraints in 74 prescribe only to execute algorithms right before
needed, which implies lazy evaluation. Also, 7, allows to execute a filter directly
after its respective annotation algorithm, thereby enabling early filtering.

We defined an information need as one set Cg, but many tasks address k > 1
needs concurrently. Aside from PositiveRegulation, for instance, GENIA faced
eight other event types, e.g. Binding [13]. The principle generalization for k
problems ¢1, .. ., ¢ is simple: We apply partial order planning to each ¢;, which
results in k partially ordered pipelines (Ag,, 74,), ..., (Ag,, T4,). Then, we unify
all these pipelines as (Ay, my) = <Uf:1 Ay, Ule T,). However, attention must
be paid to filters, e.g. a text unit without positive regulations still may yield
a binding event. To handle such cases, a set of relevant text units should be
maintained independently for each ¢;, which is beyond the scope of this paper.
Below, we assume that an according maintenance system is given.

4.2 Scheduling with Informed Best-First Search

Informed search aims at efficiently finding solutions by exploiting problem-
specific knowledge [I8]. During search, a directed acyclic graph is generated
stepwise, in which nodes correspond to partial solutions and edges to solving
subproblems. For scheduling the set of algorithms A4, we let a node with depth
d in the graph denote a pipeline (A,) with d algorithms. The graph’s root node
is the empty pipeline, and each leaf a pipeline (A4, 7) with a correct schedule 7.
An edge represents the execution of an applicable filter stage. Here, a filter
stage (Ap,mp) is a pipeline where A consists of a filter Ap and all algorithms

Automatic Pipeline Construction for Real-Time Annotation 45

Algorithm GREEDYBESTFIRSTSCHEDULING (A, 7e)

1: Algorithm set A < ()
2: Schedule 7 + 0
3: while A # Ay do
Filter stages IT < ()
for each Filter Ap € {A € Ay\A | Ais a filter} do
Algorithm set Ap < {Ar} U GETALLPREDECESSORS(A4\A, 74, AF)
Schedule 7p < GETANYTOTALORDERING(AF, 7g)
Estimated cost h[(Ap,Tp)] < GETAGGREGATEESTIMATION(A)
II+ ITU {(AFJTF)}
10: Filter stage (A¢,m¢) < argmin h[(Ap,7p)]
(Ap,mp)€eIl
11: mm Um U{(A<Ay) | AEA N Ar€A}
12: A—AUA;
13: return (A,,)

Fig. 4. Pseudocode of greedy best-first search for scheduling the filter stages (A, m)
of a partially ordered pipeline (A4,) according to increasing estimated run-time

in Ay\A that precede Ap within my. (Ap,7r) is applicable at node (A,) if for
all ordering constraints (A’ < A) € my with A € Ap, we have A’ € A. Given Ap
is scheduled last, all schedules of the algorithms in a filter stage entail the same
run-time. Thus, it suffices to schedule all filter stages instead of all algorithms.

To efficiently find solutions, a common informed search strategy, called “best-
first search”, is to generate successor nodes of the node with the lowest estimated
solution cost first. For this purpose, a heuristic function h provides an estimated
cost of a path from a node to a leaf. The widely used best-first approach A* then
obtains the estimated solution cost of a path through a node by aggregating the
cost of reaching the node with the value of h. If h is optimistic (i.e., h never
overestimates costs), the first solution found by A* is optimal [18].

Now, let R({A,m)) be the units of an input text filtered by a pipeline (A,).
Further, let t((Ap, 7)) be the estimation of the aggregate run-time per text unit
of each filter stage (Ap,mr), and II the set of all applicable filter stages at node
(A, 7T>E Then we estimate the costs of reaching a leaf from (A,) as:

h((A,m) = [R((A,7))| - min {t((Ap,7p))| (A, 7p) € I}

In case t({(Ap,7F)) is optimistic, h({A,m)) is also optimistic, since at least one
stage must process R((A, m)). In large-scale scenarios, A* can use h to find an ef-
ficient schedule on a sample of texts. To compute R({A, 7)), however, the filtered
text units must be processed by each successor of the current best node. For ad-
hoc scenarios, A* thus imposes much computational overhead, as the information
contained in the sample may already suffice to directly return first results.
Instead, we propose greedy best-first search, using the algorithms’ estimated
run-times only. As sketched in Figure[2] we always apply the filter stage (A, m¢)
with lowest t({Ay, 7)) first. Since no text unit is taken into account, scheduling
can be performed without a sample of texts. Figure @ shows the greedy search

3 Here, we assume that run-time estimations of all algorithms in A, are given. For
algorithms without run-time estimations, at least default values can be used.

46 H. Wachsmuth, M. Rose, and G. Engels

@ inferface [acquisition | [search | [explanation | () average run-timt'a‘ per sentence (t)
| b7
inference | import | [construction|—| execution |
I | oy P \
knowledge | ontology | [task | [linputtexts | precision (p) F1-scc'>re (f1): O recall (r)

Fig. 5. (a) Architecture of the expert system. (b) Visualization of the system’s quality
model. The grey partially labeled circles represent the set of quality prioritizations Py,.

for (A, 7). Lines 3-12 subsequently add filter stages to (A, 7). Here, the set IT is
built with one stage for each filter Ap in A4\ A. Line 6 identifies all remaining
algorithms that must precede Ap, and lines 7-8 compute an ordering and a run-
time estimation of the filter stage. Then, line 10 determines (A, m;). Before A
and A, are merged in line 12, 7, is inserted into 7 as well as additional ordering
constraints to schedule the algorithms in A, after those in A (line 11).
GREEDYBESTFIRSTSCHEDULING may fail when rather slow filter stages filter
much less text. However, real-time applications will often not allow to preprocess
a statistically significant sample of texts. Moreover, the first applied stage always
processes the whole input, which makes a greedy strategy seem reasonable.

5 An Expert System for Real-Time Annotation

We implemented our approach as an expert system on top of Apache UIMA in
order to evaluate whether it qualifies for real-time annotation. The system can
be accessed at http://www.CICLing.org/2013/data/122 together with its Java
source code, usage instructions, and the algorithms used below.

Apache UIMA is a software framework for applications that annotate natural
language text [2]. It allows to compose primitive analysis engines (say, annotation
algorithms) as aggregate analysis engines (say, pipelines). To this end, analysis
engines are accompanied by a descriptor file with metadata, such as its input and
output annotation types. The respective type system itself is also specified in a
descriptor file. These files are all that we need for pipeline construction

FigureBla) shows the architecture of our expert system. All permanent know-
ledge is stored in an OWL ontology according to the model from Section Bl Via
an acquisition module, the automatic import of an annotation task ontology
(Cq, P, Ag) from a set of descriptor files can be triggered, except for Pg: For
convenience, we built in the quality model in Figure[Blb) and defined additional
“implies” relations between prioritizations. In this manner, the expert system
can compare algorithms whose effectiveness is e.g. given as accuracy, when e.g.
F-score is prioritized. The system’s prototypical search interface enables users to
specify a collection of input texts as well as a task consisting of a prioritization, a
set of information types, and different kinds of value constraints. The system then
starts the ontology-based ad-hoc construction and the execution of an aggregate
analysis engine. Analysis results are presented by an explanation module.

4 By default, quality estimations are not specified in descriptor files. We integrated
them in the files’ informal description field via a fixed notation, e.g. “@QRecall 0.7”.

Automatic Pipeline Construction for Real-Time Annotation 47

Table 1. The time in ms for algorithm selection (¢a), scheduling (¢~), and automatic
pipeline construction in total (tapc) as well as the number of employed algorithms |A|
for each C, and the prioritization (p,r,t) based on the 38 / 76 algorithms of A, / Ag,.

Information need Cy ta tr tape |A]
PositiveRegulation(_, _, _, _) 50 /54 10/14 202/229 6
PositiveRegulation(_, “Bo-VP167, _, _) 56/12.1 29/33 265/37.7 13

PositiveReg. (Theme, “Eo-VP16”, Site, CSite) 14.6 /17.9 5.0/5.7 39.5/46.9 20

Table 2. Properties, run-time ¢ in seconds averaged over 10 runs, precision p, and re-
call r of the pipelines constructed for the information need StatementOnRevenue(Time,
Money) and each quality prioritization P on the test set of the Revenue corpus [19].

Priorization P Properties of constructed pipeline t P r
(t,p,r), (t,r,p) fully rule-based; fast preprocessing 3.5 06 048
(r,t,p) mostly rule-based; exact preprocessing 21.3 0.67 0.58

(p,mt),(p,t,7), (r,p,t) mostly statistical; exact preprocessing 125.4 0.76 0.66

5.1 Experimental Analysis of Automatic Pipeline Construction

We experimented with two ontologies (Co,Po, Ag,) and (Cp, P, Ap,) based
on Py and a set Cg; that refers to 40 concrete annotation types of GENIA [13]
and the statement on revenue task [19]. A, consists of 76 preprocessing and ex-
traction algorithms, while A, contains only half of them. Up to three algorithms
exist for an information type in both cases. All experiments were conducted on
a 2 GHz Intel Core 2 Duo MacBook with 4 GB memory.

We evaluated the expert system for information needs of different complexity.
In particular, we measured the pipeline construction time for both ontologies and
three needs related to PositiveRegulation, as detailed in Table mA Irrespective of
the underlying ontology, algorithm selection and scheduling take only a couple of
milliseconds in all cases. The remaining part of ¢, refers to operations such as
creating descriptor files. Altogether, the measured run-times seem to grow linear
in the number of employed algorithms and even sublinear in the number of
available algorithms. Hence, we argue that our approach is suitable for real-time
annotation. In contrast, manual construction would take at least minutes.

In a second experiment with Ag,, we ran the expert system for the informa-
tion need StatementOnRevenue(Time, Money) and each possible prioritization of
run-time, precision, and recall. This resulted in the three different pipelines listed
in Table 2 which we then executed on the test set of the Revenue corpus [19].
The pipeline for (¢, p,r) and (¢, r, p) relies only on fast rule-based algorithms. As
expected, this pipeline was one to two orders of magnitude faster than the other
ones, while achieving much less precision and recall. The low recall of 0.58 under
(r,t,p) may seem surprising. However, it indicates the restricted feasibility of
predicting quality in annotation tasks: favoring high quality algorithms does not

5 We averaged the run-times ta, tr, and tqpc Over 25 runs, as their standard deviations
were partly over half as high as the run-times themselves due to I/O operations.

48 H. Wachsmuth, M. Rose, and G. Engels

guarantee a high overall quality, since the latter is also influenced by the inter-
actions of the algorithms. In the end, high quality can never be ensured, though,
as it depends on the domain of application and the processed input texts.

Finally, our realization revealed additional challenges of automatic pipeline
construction, which we summarize under three distinct aspects:

Joint Annotation. Algorithms that produce more than one information type
can compromise a quality prioritization. For instance, a constructed pipeline may
schedule a tagger A; before a chunker A;. that also performs tagging but less
accurate. In this case, the tags of A; are overwritten by As.. On the contrary, our
expert system recognizes “dominating” algorithms. E.g., if A;. precedes A; and
efficiency is of upmost priority, then A; is omitted. Still, automatic pipeline con-
struction benefits from a maximum decomposition of the analysis steps.

Inheritance. By concept, information types can inherit features from super-
types. In an information need PositiveRegulation(Theme, _, _, _), for instance,
Theme might be inherited from a general type Event. To handle such cases, we
normalize the need into Positive Regulation A Event(Theme), while ensuring that
only positive regulation events are kept. However, Theme also exemplifies a more
complex problem: In GENIA different event types can be themes of regulations.
But, for scheduling, it suffices to detect one event type before theme extraction,
so the expert system does not select further algorithms. A solution would be to
require all subtypes for types like Event, but this is left to future work.

Limitations of Automation. Some limitations result from performing pipeline
construction fully automatically. E.g., our approach does not allow to force cer-
tain algorithms to be employed (such as a sentence splitter tuned for biomedical
texts), except for cases that can be realized based on quality criteria. Also, algo-
rithms that target at a middle ground between efficiency and effectiveness tend
not to be chosen because of the prioritization concept. Similarly, it is not possi-
ble to prioritize efficiency in one stage (say, preprocessing) and effectiveness in
another (say, relation extraction). While such possibilities could be integrated in
our approach, they require more user interaction and thereby reflect the inherent
trade-off of pipeline construction between automation and manual tuning.

6 Conclusion

Annotation tasks like information extraction are often tackled with pipelines of
algorithms manually constructed by experts. In contrast, we provide an artificial
intelligence approach to automatically construct pipelines, which we realized as
an open-source expert system. Experiments with this system suggest that our ap-
proach renders it possible to efficiently and effectively tackle ad-hoc annotation
tasks in real-time applications. Currently, the approach relies on abstract expert
knowledge and techniques like relevance filtering. However, it uses general effi-
ciency and effectiveness estimations only. In the future, we will investigate how
to exploit samples of input texts and knowledge about the domain of applica-
tion in order to optimize pipeline construction. Also, we will work on a relevance
maintenance system to filter information for different tasks at the same time.

Automatic Pipeline Construction for Real-Time Annotation 49

Acknowledgments. This work was partly funded by the German Federal Min-
istry of Education and Research (BMBF) under contract number 01IS11016A.

References

1.

2.
3.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Agichtein, E.: Scaling Information Extraction to Large Document Collections. Bul-
letin of the IEEE Computer Society TCDE 28, 3-10 (2005)

Apache UIMA, http://uima.apache.org

Bangalore, S.: Thinking Outside the Box for Natural Language Processing. In:
Gelbukh, A. (ed.) CICLing 2012, Part I. LNCS, vol. 7181, pp. 1-16. Springer,
Heidelberg (2012)

Chiticariu, L., Krishnamurthy, R., Li, Y., Raghavan, S., Reiss, F.R.,
Vaithyanathan, S.: SystemT: An Algebraic Approach to Declarative Information
Extraction. In: Proc. of the 48th ACL, pp. 128-137 (2010)

Das Sarma, A., Jain, A., Bohannon, P.: Building a Generic Debugger for Informa-
tion Extraction Pipelines. In: Proc. of the 20th CIKM, pp. 2229-2232 (2011)
Dezsényi, C., Dobrowiecki, T.P., Mészaros, T.: Adaptive Document Analysis with
Planning. In: Péchoucek, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS
(LNATI), vol. 3690, pp. 620-623. Springer, Heidelberg (2005)

Etzioni, O.: Search Needs a Shake-up. Nature 476, 25-26 (2011)

Fader, A., Soderland, S., Etzioni, O.: Identifying Relations for Open Information
Extraction. In: Proc. of the EMNLP, pp. 1535-1545 (2011)

Fox, M.S., Smith, S.F.: ISIS: A Knowledge-based System for Factory Scheduling.
Expert Systems 1, 25-49 (1984)

GATE, http://gate.ac.uk

Kano, Y.: Kachako: Towards a Data-centric Platform for Full Automation of Ser-
vice Selection, Composition, Scalable Deployment and Evaluation. In: Proc. of the
19th IEEE ICWS, pp. 642-643 (2012)

Kano, Y., Dorado, R., McCrohon, L., Ananiadou, S., Tsujii, J.: U-Compare: An
Integrated Language Resource Evaluation Platform Including a Comprehensive
UIMA Resource Library. In: Proc. of the Seventh LREC, pp. 428-434 (2010)
Kim, J.D., Wang, Y., Takagi, T., Yonezawa, A.: Overview of Genia Event Task in
BioNLP Shared Task 2011. In: BioNLP Shared Task Workshop, pp. 7-15 (2011)
Marler, R.T., Arora, J.S.: Survey of Multi-Objective Optimization Methods for
Engineering. Structural and Multidisciplinary Optimization 26(6), 369-395 (2004)
Pasca, M.: Web-based Open-Domain Information Extraction. In: Proc. of the 20th
CIKM, pp. 2605-2606 (2011)

Pauls, A., Klein, D.: k-best A* Parsing. In: Proc. of the Joint Conference of the
47th ACL and the 4th IJCNLP, pp. 958-966 (2009)

Riabov, A., Liu, Z.: Scalable Planning for Distributed Stream Processing Systems.
In: Proc. of the 16th ICAPS, pp. 31-41 (2006)

Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn.
Prentice-Hall (2009)

Wachsmuth, H., Prettenhofer, P., Stein, B.: Efficient Statement Identification for Au-
tomatic Market Forecasting. In: Proc. of the 23rd COLING, pp. 1128-1136 (2010)
Wachsmuth, H., Stein, B.: Optimal Scheduling of Information Extraction Algo-
rithms. In: Proc. of the 24th COLING: Posters, pp. 1281-1290 (2012)
Wachsmuth, H., Stein, B., Engels, G.: Constructing Efficient Information Extrac-
tion Pipelines. In: Proc. of the 20th CIKM, pp. 2237-2240 (2011)

7 dkové, M., Kfemen, P., Zelezny, F., Lavra¢, N.: Automating Knowledge Discovery
Workflow Composition through Ontology-based Planning. IEEE Transactions on
Automation Science and Engineering 8(2), 253-264 (2011)

http://uima.apache.org
http://gate.ac.uk

	Automatic Pipeline Construction for Real-Time Annotation
	Introduction
	Related Work
	An Ontological Model of Annotation Tasks
	Automatic Pipeline Construction
	Algorithm Selection Based on Partial Order Planning
	Scheduling with Informed Best-First Search

	An Expert System for Real-Time Annotation
	Experimental Analysis of Automatic Pipeline Construction

	Conclusion

