
Alexander Bondarenko Maik Fröbe Jan Heinrich Reimer Benno Stein Michael Völske Matthias Hagen

Axiomatic Retrieval Experimentation with ir axioms

Axiomatic Thinking
Successful retrieval scoring functions share similar properties:

BM25(q, d) =
n∑

i=1

IDF (ti) ·
TF (ti, d) · (k1 + 1)

TF (ti, d) + k1 ·
(
1 − b + b · |d |

avgdl

)
IDF weighting TF weighting Length normalization

Axioms formally capture such properties.

TFC1: prefer documents with more query terms [Fang et al., SIGIR’04]

LNC1: penalize non-query terms in longer doc’s [Fang et al., TOIS 29(2)]

Axiom applications
• Improving an initial retrieval result via re-ranking [Hagen et al., CIKM’16]

• Using axioms as regularization loss in neural models [Rosset et al., SIGIR’19]

• Learning how to combine retrieval models [Arora and Yates, AMIR@ECIR’19]

• Analyzing / explaining neural rankers [Völske et al., ICTIR’21; Formal et al., ECIR’21]

The ir axioms Framework
• Python framework for experiments with IR axioms
• Implements 25 axioms (parameterizable preconditions, multi-term queries, etc.)
• Access to retrieval models and test collections in PyTerrier and ir datasets

• Caching and parallelization

Examples
Implemented axioms:

Objective Axioms

Term frequency TFC1, TFC3,
TDC, M-TDC

Document length LNC1, TF-LNC
Lower-bound TF LB1
Query aspects REG, AND, DIV
Semantic similarity STMC1, STMC2
Term proximity PROX1–PROX5
Argumentativeness ArgUC, QTArg,

QTPArg, aSLDoc
Other ORIG, ORACLE

Implementing the TFC1 axiom:

class TFC1(Axiom):
name = "TFC1"
def preference(self ,c,q,d_i ,d_j) → float:

Length precondition.
if not approx_same_length(c,d_i ,d_j ,0.1):

return 0
Count query terms.
tf_i = sum(c.term_frequency(d_i ,t)

for t in c.terms(q))
tf_j = sum(c.term_frequency(d_j ,t)

for t in c.terms(q))
if approx_equal(tf_i ,tf_j ,0.1):

return 0
return 1 if tf_i > tf_j else -1

Combining axioms with operators:

Linear combination of TFC axioms.
tfc = TFC1() + (TFC3() * 2)

Conjunction of PROX axioms.
prox = PROX1() & PROX2() & PROX3()

Combine STMC in majority vote.
stmc = (STMC1() % STMC2 ()) | ORIG()

Normalize combined preferences.
normalized_arg = +(QTArg() + QTPArg ())

Cache preferences of ArgUC.
cached_arguc = ∼ ArgUC()

Post-hoc Analysis
bm25 = BatchRetrieve(index , "BM25")
monot5 = bm25 >> ...
experiment = AxiomaticExperiment(

[bm25 , monot5 , ...], # Retrieval systems
dataset.get_topics (), # Topics
dataset.get_qrels(), # Judgments
index , # Document index
axioms =[ArgUC(), QTArg(), QTPArg(), ...])

• Interface similar to PyTerrier’s Experiment

• Pairwise axiomatic preferences: experiment.preferences

• Consistency with judgments: experiment.preference_consistency

• Analyzing inconsistent pairs: experiment.inconsistent_pairs

Incorrectly ranked documents (most effective run idst bert p1 at TREC 2019 DL passage
retrieval): less relevant doc. at rank 3, more relevant at rank 5; violates TFC1 and STMC1,
but consistent with PROX1.

Query: 207786 how are some sharks warm blooded Selected Axioms

Rank Doc. ID Rel. Content TFC1 STMC1 PROX1

3 7941579 1 Great white sharks are some of the only. . . " " (

5 2763917 2 These sharks can raise their temperature. . . (("

Axiomatic Re-ranking
Re-rank top -20 BM25 results.
kwiksort = bm25 % 20 >> KwikSortReranker(

(ArgUC() & QTArg() & QTPArg ()) | ORIG(), index)

Train LambdaMART with axiomatic features from top -10.
features = bm25 % 10 >> AggregatedAxiomaticPreferences(

[ArgUC(), QTArg(), ...],
index ,
[mean , median])

ltr = features >> apply_learned_model(LGBMRanker (...))
ltr.fit(train_topics ,train_qrels ,dev_topics ,dev_qrels)

• Re-rank with KWIKSORT [Ailon et al., J. ACM 55(5)]

• Generate axiomatic features for LTR

• Estimate ORACLE preferences with axioms

Effectiveness for re-ranking top-20 of BM25 (TREC 2020 DL passages).

(Re-)Ranker nDCG@5 nDCG@10

BM25 (initial ranking) 0.497 0.494
KWIKSORT with majority voting 0.496 0.492
KWIKSORT with a rand. forest estimator for ORACLE prefs. 0.516 0.498
LambdaMART with axiom preference features 0.517 0.498

Conclusions
ir axioms:

• Implementation of 25 axioms
• Post-hoc analysis of rankings
• Axiomatic re-ranking pipeline
• Axiom preferences as features for LTR
• Caching and parallelization

Future work: further axioms, integration with other IR frameworks

Resources and Installation
Contributions and feedback are welcome!

§ webis-de/ir axioms

3 pip install ir axioms

A 10.1145/3477495.3531743

Thanks to the SIGIR for a student travel grant.
This work has been partially supported by the DFG through the project “ACQuA 2.0: Answering Comparative Questions with Arguments” (project number 376430233) as part of the priority program “RATIO: Robust Argumentation Machines” (SPP 1999).

www.webis.de Bauhaus-Universität Weimar & Martin-Luther-Universität Halle-Wittenberg

https://github.com/webis-de/ir_axioms
https://pypi.org/project/ir_axioms/
https://doi.org/10.1145/3477495.3531743
https://webis.de/

