
Figure 1: The radial layout places the subgraph containing the most articles in the center and orders the subgraphs with
decreasing numbers of vertices more distally by growing the diameter level-wise.

Abstract
In this poster we present intermediate results regarding
visual text analytics on Wikipedia. We implemented a
visualization providing insight about similarities among
Wikipedia articles in terms of structure as well as
content. The presented data was gathered and
processed via a pairwise comparison of all Wikipedia
articles. Comparisons were appropriately pruned due to
time and memory reasons when providing our in-
memory database with the computed similarity values
for visualization.

Data
From a recent dump of the English Wikipedia, all articles
were extracted (excluding meta pages such as user
pages, help pages, and talk pages, etc.) and transpiled to
plain text using Sweble. Under the vector space model
with a tf·idf weighting scheme, stemming, and stop word
removal, each text document d was represented as a
high-dimensional vector d. Given two vectors d1 and d2,
the semantic similarity of their original documents d1 and
d2 can be estimated using the cosine similarity measure
where a score of 0 means no similarity, and 1 maximum
similarity. All articles’ vectors combined form a term-
document matrix which was distributed column-wise
across four graphics cards (NVidia GTX 480) using CUDA.
This way, computing the cosine similarity of a given
article vector to all of Wikipedia took about 0.5
milliseconds. We compared every Wikipedia article in turn
in decreasing order of length (where length served as an
indicator of importance) to all others, recording the
computed cosine similarities. To save space, we
discarded all similarities of 0.1 or less as well as all
similarities beyond the top 100,000 per article. To save
time, we stopped computations once articles of length 50
terms or less were reached, since these articles are
mostly superficial. Note in this respect, that the short
articles still formed part of the aforementioned term-
document matrix, so that all longer articles have been
com- pared to the short ones, whereas the short ones
have not been com- pared among themselves. Table 1
gives an overview of the similarity distribution; a total of
65 billion similarities have been computed in about 22
days, stored in 402 GB of disk space for a total 3.8 million
articles disregarding the short ones.

Figure 2: Additional edges appear within as well as across
the subgraphs by lowering the global similarity threshold.

Figure 4: Subgraph merging (left). Local ring layout (right).

Figure 3: Interaction capabilities like zooming, panning and
dragging allow paying attention to particular subgraphs.

Visualizing Article Similarities in Wikipedia
Patrick Riehmann, Martin Potthast, Henning Gruendl, Johannes Kiesel, Dean Jürges, Giuliano Castiglia, Bagrat Ter-Akopyan and Bernd Froehlich

Similar ity Number of comparisons Percentage Size
^^[1.0,0.9) 215,221 0.00033 1.35MB

[0.9,0.8) 1,125,858 0.00173 7.09MB
[0.8,0.7) 4,762,437 0.00732 29.98MB
[0.7,0.6) 16,598,675 0.0255 104.57MB
[0.6,0.5) 71,085,794 0.1093 1.17GB
[0.5,0.4) 329,595,171 0.5069 2.02GB
[0.4,0.3) 1,442,942,719 2.2 8.80GB
[0.3,0.2) 6,918,854,819 10.6 42.40GB
[0.2,0.1) 56,558,065,056 86.9 347.60GB
> 0.1 65,344,422,345 100 402.14GB

Table 1: Distribution of Wikipedia article similarities
under the vector space model

Figure 5: A rectangular placement arranges the subgraphs
(in local circle layout) row-wise from left to right starting
with the one that contains the the most articles in the
lower left corner

Discussion and Future Work
Providing threshold-adaptive layout; less rigid and static
than before is crucial. A dynamic layout should at least
manage slight changes of the threshold at run time by
rearranging the node positions appropriately in local
regions without distracting the larger picture and without
loosing the user's mental map. For larger changes,
however, we intend to create a preprocessed
acceleration structure that provides initial positions or
proximity information about clusters and articles for the
entire threshold range.
Providing a proper subgraph labeling derived from the
content of the articles assigned to a particular one will
ease inspecting striking subgraphs. In our explorations
we found that our similarity measures tends to focus
more on structural similarity such as subgraphs of cities,
countries, years, events, etc.; maybe due to the fact that
Wikipedia articles discussing such entities tend to be
structured homogeneously. In order to ameliorate the
recognition of similarities in the actual running text, the
data cleaning has to be improved as well as the similarity
measures' weighting scheme. A comparison between
different similarity measures that may be superimposed
on top of each other is another interesting possibility.

Visualization and Interaction
Our visualization depicts articles as vertices and similarity
relations as edges. Since an edge is only constituted if the
similarity of the two adjacent articles’ vertices exceeds a
given threshold, the resulting graph consists of a large
number of isolated subgraphs (aka graph components).
At first, the vertices of each subgraph are arranged locally
circle-wise (Figure 1) or as ring metaphor by placing the
articles that are in sum incident to more than 50% of the
edges on an additional inner circle (Figure 4 right).
Globally, the subgraphs are arranged by number of
articles contained; either in rectangular (Figure 5) or radial
layout (Figure 1). Besides common interactions like
zooming and panning most interactions are subgraph-
centered such as dragging, dropping and highlighting
subgraphs (Figure 3). Semantically zooming on particular
subgraphs provides article titles and similarity values,
whereas subgraph merging (Figure 4 left) gathers all
subgraphs that become connected to the current one
when lowering the similarity threshold (Figure 2). Due to
the increasing number of edges going along with lowering
the similarity threshold, recreating the entire layout
instantly for billions of edges was infeasible. Thus, a base
drawing consisting of all edges exceeding the initial
threshold is generated. Changing the threshold entails the
appearance and disappearance of edges (Figure 2vvv),
however, some nodes may not emerge until the base
layout is recreated.
Implementation was done completely in C++ and
OpenGL by conveniently using gloost [WB], imgui [Corb]
and FastDB [Kni] (an in-memory database for C++). We
evaluated access times of custom-made, tailored data
structures against FastDB, the former being faster by a
factor of 2. We still opted in favor of FastDB for its
additional object-relational features, especially, since
practical render performance was barely effected.


