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Motivation

– Transformer models are increasingly
used in active learning for text
classification.

– Query strategies targeted at neural
networks or text classification are
computationally expensive.

– Uncertainty-based query strategies are
computationally inexpensive but are
usually considered only as a baseline.

Contributions

– We systematically investigate
uncertainty-based query strategies in
combination with transformer models
(BERT [1], DistilRoBERTa [2]).

– Our experiments use five previously
established but lately neglected text
classification benchmarks.

– We investigate the effectiveness of using
a transformer model with fewer
parameters, DistiRoBERTa, for
active learning.
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Random Sample i.i.d. from the unlabeled pool.

Data
Dataset Name (ID) Type Classes Training Test
AG’s News (AGN) N 4 120,000 7,600
Customer Reviews (CR) S 2 3,397 378
Movie Reviews (MR) S 2 9,596 1,066
Subjectivity (SUBJ) S 2 9,000 1,000
TREC-6 (TREC-6) Q 6 5,500 500

Types: N=News, S=Sentiment, Q=Questions.
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Uncertainty-based query strategies with transformers
are strong on text classification benchmarks.

Results: Learning Curves
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Results: Summary

Model Strategy
Mean Rank Mean Result

Acc. AUC Acc. AUC

SVM PE 1.80 2.60 0.764 0.663
BT 1.60 1.60 0.767 0.697
LC 3.00 2.60 0.751 0.672
CA 5.00 5.00 0.667 0.593
RS 3.00 2.60 0.757 0.686

KimCNN PE 1.60 2.40 0.818 0.742
BT 1.60 2.00 0.818 0.750
LC 3.80 2.80 0.810 0.732
CA 3.80 4.80 0.793 0.711
RS 3.60 2.40 0.804 0.749

D.RoBERTa PE 2.60 3.00 0.901 0.856
BT 2.20 1.80 0.902 0.864
LC 1.40 2.00 0.904 0.860
CA 3.00 3.40 0.901 0.852
RS 5.00 4.20 0.884 0.853

BERT PE 2.40 2.40 0.909 0.859
BT 2.00 1.60 0.914 0.873
LC 2.20 3.80 0.917 0.866
CA 2.80 2.60 0.916 0.872
RS 5.00 4.00 0.899 0.861

Selected Results

– Using transformer models we reach considerably
higher AUC scores compared to Zhang et al. [9].

– Active learning reaches scores very close (and
even surpasses) previous state-of-the-art
results, and our own passive classification.

– DistilRoBERTa reaches scores only slightly
worse than BERT using about 25% of the
parameters.

Conclusions

– We find that, contrary to common practice,
prediction entropy seems not to always be
the strongest baseline.

– DistilRoBERTa achieves results close to
BERT while using only about 25% of the
parameters.

– Breaking ties, which is equal in the binary
setting, consistently outperforms prediction
entropy in multi-class scenarios.
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