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Webis at TREC 2020: Health Misinformation Track
Overview

q Baseline retrieval with ChatNoir
[Bevendorff et al; ECIR’18]

q Manual pilot judgments with ChatNoir

q Query expansion with keyqueries

– Pilot judgments form explicit relevance feedback

q Argumentative axiomatic re-ranking

– Capture argumentative nature of documents

– Re-ranking with axiomatic pipeline from last year
[Bondarenko et al.; TREC’18; Bondarenko et al.; TREC’19]
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Baseline Retrieval with ChatNoir
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Baseline Retrieval with ChatNoir
Overview

q ChatNoir is the basis for our submissions

Indexing

q Main content extraction
q Language detection
q Metadata extraction (keywords, headings, etc.)

Retrieval

q BM25F on title, URL, keywords, main content, and the full document
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Manual Pilot Judgments with ChatNoir
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Manual Pilot Judgments with ChatNoir
Idea

q Identify target documents for query expansion with keyqueries
q Goal (Ideal):

– Target documents are useful, correct, and credible
– ≥ 2 target documents per topic

Labeling of target documents

q Read the full topic to understand the information need
q Using the web interface of ChatNoir:

– Formulate queries
– Label target documents which provide correct answers

Budget/Restrictions

q 6 minutes per topic
q Inspect only the SERP (Title + URL + Snippet)
q Further inspection of the documents is not allowed
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Manual Pilot Judgments with ChatNoir
Results

q We identified 178 target documents
q 3 target documents per topic on average
q Maximum of 11 target documents for topic 41: Hib vaccine COVID-19

Manual Pilot Judgments vs All Runs

Useful (%) Correct Answer (%) Credible (%)

Pilot Judgments 83.9 62.7 84.3
All Runs 34.0 40.6 81.7
+∆ 49.9 22.1 2.6
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Query Expansion with Keyqueries

8 Alexander Bondarenko, Maik Fröbe



Query Expansion with Keyqueries
What is a keyquery? [Hagen et al.; ECIR’16]

Query q is a keyquery for a set D of target documents against a search engine iff

1. Every d ∈ D is in the top-k results. (specificity)
2. Query q has at least l results. (generality)
3. No subquery q′ ⊂ q satisfies the above. (minimality)

Remark: For small |D| ≤ 5, typically l ≥ 10 and k = 10.
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Query Expansion with Keyqueries
Example: Keyquery for a paper (l ≥ 1000, k = 3)
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Query Expansion with Keyqueries
Example: chatnoir is a keyquery for Google Scholar
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Query Expansion with Keyqueries
Example: chatnoir is a keyquery for Google Scholar
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Query Expansion with Keyqueries
Example: . . . but not for Google

13 Alexander Bondarenko, Maik Fröbe



Query Expansion with Keyqueries
Example: . . . but not for Google
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Query Expansion with Keyqueries
Input

q Target documents D for a topic

Query expansion

1. Calculate keyqueries for D

q Candidates: Power set of terms with the highest BM25 scores

2. Greedy selection of keyqueries:

q Assume d ∈ D is relevant
q Select the keyquery k with the highest nDCG
q Remove documents that are covered by k from D

3. Combine selected keyqueries with team-draft interleaving
4. Move d ∈ D to the top of the ranking
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Evaluation
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Evaluation
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Evaluation
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Evaluation
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Evaluation
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Conclusions
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Conclusions
Summary

q Low-budget judgments improved the performance (despite their noise)

– Increased help, decreased harm

q Separating credible and non-credible documents on the SERP is difficult
q Try ChatNoir at chatnoir.eu ;)
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q Use pilot judgments with other query expansion approaches
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Backup
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Backup
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Argumentative Axiomatic Re-ranking
Identifying Argumentative Queries and Text Units

q Queries for which retrieved documents contain argumentation

q Examples:

“Normal” query: What is COVID-19?

Relevant: Coronavirus disease (COVID-19) is an infectious disease caused
by a newly discovered coronavirus.

Argumentative query: Can ibuprofen worsen COVID-19?

Relevant: [Claim] Ibuprofen might increase the entrance of COVID-19
into the cells. [Premise] We found no corresponding human study.

q We marked all tracks’ queries as argumentative

q Our own TARGER, based on BiLSTM-CNN-CRF [Chernodub et al.; ACL 2019]
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Argumentative Axiomatic Re-ranking
Argumentative Axioms

q ArgUC: Argumentative units count
Favor documents which contain more argumentative units

q QTArg: Query term occurrence in argumentative units
Favor documents with the query terms close to argumentative units

q QTPArg: Query term position in argumentative units
Favor documents where the first appearance of a query term in an
argumentative unit is closer to the beginning of the document

ArgUC QTArg QTPArg
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Argumentative Axiomatic Re-ranking

4

4

q Retrieve an initial top-1000 result set with BM25

q Include ORIG axiom

q Derive the re-ranking preferences of the axioms

q Aggregate the re-ranking preferences

q Re-rank the initial top-20 result set
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A Brief Tour of Axiomatic IR
Basic Ideas

Purpose Acronyms Source
Term frequency TFC1–TFC3 [Fang, Tao, Zhai; SIGIR’04]

TDC [Fang, Tao, Zhai; SIGIR’04]

Document length LNC1 + LNC2 [Fang, Tao, Zhai; SIGIR’04]

TF-LNC [Fang, Tao, Zhai; SIGIR’04]

QLNC [Cummins, O’Riordan; CIKM’12]

Lower bound LB1 + LB2 [Lv, Zhai; CIKM’11]

Query aspects REG [Zheng, Fang; ECIR’10]

DIV [Gollapurdi, Sharma; WWW’09]

Semantic similarity STMC1 + STMC2 [Fang, Zhai; SIGIR’06]

STMC3 [Fang, Zhai; SIGIR’06]

TSSC1 + TSSC2 [Fang, Zhai; SIGIR’06]

Term proximity PHC + CCC [Tao, Zhai; SIGIR’07]
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A Brief Tour of Axiomatic IR

Term Frequency Constraints

TFC1 Give a higher score to a document with more occurrences of a query
term.

TFC2 The amount of increase in the score due to adding a query term must
decrease as we add more terms.

TFC3 Favor a document with more distinct query terms.

Length Normalization Constaints

LNC1 Penalize long documents.
LNC2 Avoid over-penalizing long documents.
TF-LNC Regularize the interaction of TF and document length.

Lower-bounding Term Frequency Constraints

LB1 The presence-absence gap shouldn’t be closed due to length
normalization.

LB2 Repeated occurrence isn’t as important as first occurrence.
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